2nd Penn State Bioinorganic Workshop May/June 2012

Quantum Chemistry at Work

(1) Introduction, General discussion, Methods, Benchmarking

Frank Neese

Max-Planck Institut für Bioanorganische Chemie Stiftstr. 34-36 D-45470 Mülheim an der Ruhr Germany

Frank.Neese@mpi-mail.mpg.de

MAX-PLANCK-INSTITUT FÜR BIOANORGANISCHE CHEMIE

Mechanisms-Intermediates-Spectra-Calculations

The **ORCA** Project

Hartree-Fock

RHF,UHF,ROHF,CASSCF Direct, Semidirect, Conventional, RI-Approx., Newton-Raphson

Electron Correlation

MP2/RI-MP2 CCSD(T),QCISD(T),CEPA,CPF (all with and without RI, Local) MR-MP2, MR-MP3, MR-MP4(SD) MR-CI, MR-ACPF, MR-AQCC

Relativistic Methods

1st-5th Order Douglas-Kroll-Hess Zero'th Order Regular Approximation (ZORA) Infinite Order Regular Approximation (IORA) Picture Change Effects, All electron basis sets, (Effective core potentials)

Semiempirical

INDO/S,MNDO,AM1,PM3,NDDO/1

Join ~10,000 users FREE Download http://www.thch. uni-bonn.de /tc/orca

Density Functional

LDA, GGA, Hybrid Functionals Double hybrid functionals, RI-Approx., Newton-Raphson RKS,UKS,ROKS

Excited States

TD-DFT/CIS+gradients MR-CI/DDCI/SORCI

Molecular Properties

Analytical Gradients(HF,DFT,MP2) + Geometries + Trans. States Polarizabilities, Magnetizabilities (Coupled-Perturbed HF/KS) COSMO Solvation Model Throughout IR, Raman and Resonance Spectra (Numerical Frequencies) EPR-Parameters (g,A,D,J,Q) Mössbauer-Parameters (δ,ΔE_Q) ABS,CD,MCD Spectra Population Analysis, NBOs, Localization, Multipole Moments,...

Advanced Theoretical Spectroscopy with ORCA

Many pathways to happiness ...

... Very little (if any) generally agreedupon wisdom ...

... Some things to think about ...

(1) Have a well defined question!

 \checkmark Are you doing a collaboration with an experimental group?

What do they know?

What do they want to know?

Can you provide this information?

 \checkmark Are you doing a collaboration with another theoretical group?

Are you using compatible methods?

Are you exchanging data?

Do you agree on file and data formats?

Are you benchmarking theoretical methods?

What is your reference data?

• Experiment?

Higher level calculations?

Are you aiming at reproducing experiments or predicting the outcome

of possible experiments?

Are you puzzled by seemingly conflicting observations?

 \checkmark Are you trying to bring order and meaning to a series of observations?

 \checkmark ... there is an infinite number of good reasons to do a computational chemistry study

(2) Be aware of the experimental and theoretical literature

- ✓ What is known for sure experimentally?
- ✓ Are there error bars on experimental numbers?
- ✓ What has been speculated upon and is not known for sure?

... it is neither forbidden nor a bad idea to talk to experimentalists of all flavors

Are there other experiments outside your field of specialty that shine more light on the subject?

... even when your are trying to answer an NMR question, there might be useful insights from, e.g. PES or IR or

✓ What theoretical work has been published prior to your study?

... Theoretical work is not automatically good if a big computer has worked for a long time and not automatically bad if it is performed at a (seemingly) lower level of theory.

(3) What is the timescale for your project?

- ✓ Very important question when working with experimentalists. They want to have an answer soon and not in one or two years!
- ✓ Very important question when you want to get out of gradschool!

(4) How accurate does your result have to be to be useful?

- Ideally we would always solve the relativistic many particle Schrödinger equation combined with quantum dynamics for a the entire system including its environment at finite temperature and inclusion of radiative corrections ...
 - but we cannot do that
 - neither do we need to do that to answer many useful chemical questions

(5) Choose the right tools to approach the problem

- Choose a theoretical method:
 - Density functional theory?
 - ▶ MP2?
 - More accurate *ab initio*?
 - > Are benchmark data available for the kind of problem you are studying?
- ✓ Are relativistic effects important?
- ✓ Are dynamics important?
- ✓ Are solvent effects important?
- Make a concious choice of basis set

(6) Choose the right software

- \checkmark Which programs do the things best that you want to do?
- \checkmark Are they available?
- \checkmark Are they user friendly enough?
- ✓ What do they cost?

.... investing a little time to learn something new may save you a lot of time later if you don't just stick to what you have done all the time

(7) Talk chemistry to chemists

- ✓ Try to go beyond tabulating numbers!
- ✓ Be interested in the electronic structure of the systems that you are studying
 - Analyze orbitals, densities, states, populations
 - ▶ If you feel comfortable explore NBOs, AIM, ELF,

BUT

- ✓ Try to interpret the results in terms of a language familiar to the chemists working in your branch of chemistry (e.g. Hückel theory, ligand field theory, …)
- ✓ Try to understand what is characteristic for the specific molecule you are studying vs the class of compounds that are under investigation

"... the best calculations are those that, after the fact, I realize I wouldn't have needed"

"... Computers don't solve problems - people do!"

Ernest R Davidson

(8) Separate fact from fiction

- \checkmark Be clear on what is an experimental observable and what is not.
 - Observables have unambigous values and can be measured (e.g. spectroscopic transition energies and intensities, thermondynamic or kinetic quantities)
 - > The total energy is, in principle, an observable. In practice it hardly is.
- ✓ Non-observable properties are "interpretation aids" that help us understand and be creative. They have no unambigous definition
 - Partial charges, spin populations,
- ✓ Quite typically experimentally working colleagues are more interested in the nonobservable properties. Be careful in explaining the difference.

Disgression: If you choose to do so, you can engage in vicious fights about non-observable properties (e.g. the interpretation of the rotational barrier in the ethane molecule). However, be aware that neither of you is "more right" - it is useless to argue whether red or green is more beautiful. It subjective! At the end of day it matters what helps us designing new experiments, new molecules, new methods. Different people are inspired by different pictures. These pictures are good, they are necessary for chemistry - but there is no objective truth in them.

(9) Seek feedback from experiment

- Calculations are becoming more accurate and reliable. Yet, there is every reason to not just hit the enter button and believe everything the computer tells you.
 - Your theoretical method may be dead wrong (happens!)
 - Your system setup might be inadequate
 - You might have converged to a wrong electronic state
 - > You might have converged to a wrong minimum on the PES
 - You might have missed alternative reaction pathways
 - ...
- In all these situations comparing theory and experiment is a highly useful way to strengthen everybodies (e.g. yourself, advisor, experimental collaborator, referee, competitor) faith in your results by comparing as many observables to experiment as possible. This may include:
 - Geometries
 - Thermodynamic data (reaction energies, isomerization energies, ...)
 - Kinetic data (rates, isotope effects)
 - Spectroscopic properties of all kind
 - ...

... we will come back to this in lecture 3^{13} ...

(10) Avoid "buffet theory"

- , this looks good so I will put it on the plate, this looks bad so I will leave it on the table"
 - ... a well worked out negative result might be as useful as a fantastic positive result.

Remember

(Günther Wächsterhäuser)

"Experimentalists are working for eternity - their measurements must remain true forever. Theoreticians are working for tomorrow - the interpretation of the facts may (and likely will) change over time"

"The only source of knowledge is experiment. The rest is poetry, imagination"

(Mike Zerner)

"Let's face it - somebody will do a better calculation tomorrow."

Practical Aspects of Working with ORCA

The Computational Environment

In order to run calculations with **ORCA**, three things are necessary:

1.Installation of the ORCA program

2.Using a text-editor to specify the calculation details, i. e. the *input file*

3.Running the ORCA program (in a cluster environment possibly controlled by a batch system)

NOTE: **ORCA** is available for all popular platforms:

- ★ Windows,
- ★ MacOS,
- ★ Linux

The Computational Environment

ORCA is available for the popular Windows, Mac OS X, and Linux platforms.

★ ORCA is distributed as an archive for all platforms. In this archive resides a directory with all executables. There are plenty of programs for extracting files from archives on all platforms (gzip, tar, zip/unzip,...).

★ On the follwing slides it will be shown how to run a calculation on Windows Vista, Mac OS X, and Linux.

★ It is assumed, that the orca executables reside in a directory 'orca'

Tasks to be Performed

- Calculation of single point energies
 - Hartree-Fock calculations: RHF, UHF and ROHF
 - Density functional calculations
- Optimization of molecular structures
 - Equilibrium geometries
 - Transition states and reaction rates
- Calculation of vibrational frequencies
 - Characterization of stationary points
 - Thermodynamic properties
 - Vibrational spectra
- Calculation of ground state properties
 - Looking at charge distributions and orbitals
 - IR+Raman spectra
 - NMR spectra
 - EPR spectra and exchange couplings
 - Mössbauer spectra
- Calculation of excited states and their properties
 - DFT calculation of absorption and CD spectra
 - Ab initio calculation of absorption and CD spectra
 - Advanced: Resonance-Raman, X-Ray absorption, forbidden transitions, MCD, Excited state geometry optimizations, ...

Philosophy of the ORCA Project

General goal: Create a powerful tool to allow connection between theory and experiment. \rightarrow Observables! (Spectra, Structures, Energies)

Design principles:

- 1. The program should be as flexible as possible
- 2. The program should be as efficient as possible (parallel, efficient algorithms, BLAS libraries)
- 3. The program should be as comprehensive as possible
- 4. The program should be as user friendly as possible
- 5. The program should be easily extendable (highly modular)
- The source code should be as clean and well structured as possible (C ++ rather than Fortran).
- 7. The program should be platform independent

The **ORCA** Project

A First ORCA Job

Output of Single Points

We first echo the input file and some references to the basis sets used. Then you get information on the job-type, the input coordinates in various formats and the basis set

CARTESIAN COORDINATES (ANGSTROEM)

0		000121111	120 (12:0011:0	
С	0.	000000	0.00000	0.00000
0	0.	000000	0.00000	1.130000

BASIS SET INFORMATION

There are 2 groups of distinct atoms

Group	1 Type C	:	7s4p1d cont	racted to	3s2p1d	pattern	$\{511/31/1\}$
Group	2 Type O	:	7s4p1d cont	racted to	3s2p1d	pattern	${511/31/1}$

Next the one-electron integrals are calculated (and perhaps also the twoelectron integrals if **conv** if requested for "conventional SCF")

ORCA GTO INTEGRAL CALCULATION

BASIS SET STATISTICS AND STARTUP INFO

<pre># of primitive gaussian shells</pre>			24
# of primitive gaussian function	ıs		48
<pre># of contracted shell</pre>			12
<pre># of contracted basis functions</pre>			28
Highest angular momentum			2
Maximum contraction depth			5
Integral threshhold	Thresh	1	.000e-010
Primitive cut-off	TCut	3	.000e-012

Next the SCF program is taking over and commences with giving all details about the SCF settings

SCF SETTINGS			
Hamiltonian:			
Density Functional	Method		DFT (GTOs)
Exchange Functional	Exchange		B88
X-Alpha parameter	XAlpha		0.666667
Becke's b parameter	XBeta		0.004200
Correlation Functional	Correlation		LYP
LDA part of GGA corr.	LDAOpt		VWN-5
Gradients option	PostSCFGGA		off
Hybrid DFT is turned or	n		
Fraction HF Exchange	ScalHFX		0.200000
Scaling of DF-GGA-X	ScalDFX		0.720000
Scaling of DF-GGA-C	ScalDFC		0.810000
General Settings:			
Integral files	IntName		JOB-01
Hartree-Fock type	HFTvp		RHF
Total Charge	Charge		0
Multiplicity	Mult		1
Number of Electrons	NEL		14
Basis Dimension	Dim		28
Nuclear Repulsion	ENuc		22.4778902655 Eh
Convergence Tolerance:			
Energy Change	TolE		1.000e-008 Eh
Max Density Change	TolMaxP		1.000e-007
RMS Density Change	TolRMSP		1.000e-008
DIIS Error	TolErr		1.000e-007
Diagonalization of the o	overlap matrix:		
Smallest eigenvalue	-		1.911e-002
Time for diagonalization	n		0.010 sec
Time for construction of	f square roots		0.030 sec
Total time needed	······	•	0.040 sec
		•	

The integration grid is produced and the initial guess performed

DFT GRID GENERATION

General Integration Accuracy	IntAcc	 4.010	
Total number of grid points		 5057	
INITIAL GUESS: MODEL POTENTIAL			
Loading Hartree-Fock densities		done	
Now organizing SCF variables		done	
INITIAL (GUESS DONE		

Now we are ready to start the SCF iterations

SCF ITERATIONS

	-		
		! ITERATION	0
Motol Enorgy			
IOLAI Energy	•	-112.951951547451	E11
Energy Change	:	-112.951951547431	Eh
MAX-DP	:	0.674569966353	
RMS-DP	:	0.053899776162	
Actual Damping	:	0.0000	
Int. Num. El.	:	14.00002071 (UP=	7.00
Exchange	:	-10.98287769	
Correlation	:	-0.58429246	
DIIS-Error	:	0.450135783168	

Which hopefully eventually converge and:

****	***************************************	***
*	SUCCESS	*
*	SCF CONVERGED AFTER 11 CYCLES	*

The total energy and its components are printed

TOTAL SCF ENERGY

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Total Energy :	-113.17273851 Eh	-3079.50944 eV
Components:		
Nuclear Repulsion :	22.47789027 Eh	611.63913 eV
Electronic Energy :	-135.65062877 Eh	-3691.14856 eV
One Electron Energy:	-198.09397475 Eh	-5390.27572 eV
Two Electron Energy:	62.44334598 Eh	1699.12715 eV
Virial components:		
Potential Energy :	-225.62136955 Eh	-6139.31540 eV
Kinetic Energy :	112.44863104 Eh	3059.80596 eV
Virial Ratio :	2.00643945	

Next you get the orbital energies printed:

ORBITAL ENERGIES

. . .

NO	OCC	E(Eh)	E(eV)
0	2.0000	-19.243280	-523.6231
1	2.0000	-10.301611	-280.3141
2	2.0000	-1.152619	-31.3636
3	2.0000	-0.568518	-15.4698
4	2.0000	-0.476766	-12.9731
5	2.0000	-0.476766	-12.9731
6	2.0000	-0.373742	-10.1698
7	0.0000	-0.026298	-0.7156
8	0.0000	-0.026298	-0.7156
9	0.0000	0.221613	6.0303
10	0.0000	0.400346	10.8937
11	0.0000	0.457384	12.4458
12	0.0000	0.457384	12.4458

Now comes the "soft science" (e.g. population analysis of the SCF density matrix

MULLIKEN A	TOMIC CH	IARGES		
0 C : 1 O : Sum of ato	0.0160 -0.0160 mic chai	 569 569 cges: -0.0	000000	
MULLIKEN F	EDUCED (ORBITAL CHAR	RGES	
0 C s	:	3.834569	s :	3.834569
pz	:	1.009723	р:	2.073008
px	:	0.531642		
ру	:	0.531642		
dz2	:	0.027088	d :	0.075754
dxz	:	0.024333		
dyz	:	0.024333		
dx2y	2 :	0.00000		
dxy	:	0.00000		
10 s	:	3.737862	s :	3.737862
pz	:	1.381818	р:	4.256855
рх	:	1.437518	-	
- py	:	1.437518		
dz2	:	0.008940	d :	0.021953
dxz	:	0.006506		
dyz	:	0.006506		
dx2v	2 :	0.00000		
dxv	:	0.00000		
4				

MULLIKEN OVERLAP CHARGES

B(0-C , 1-O) : 1.3340

The Löwdin analysis contains a detailed breakdown of the MOs in terms of angular momentum components of each atom. This helps a lot when you select the orbitals for plotting.

LOEWDIN ATOMIC CHARGES

0 C : -0.050462 1 O : 0.050462

etc.

LOEWDIN REDUCED ORBITAL POPULATIONS PER MO

THRESHOLD FOR PRINTING IS 0.1%

		0	1	2	3	4	5
ORB-E	IN	-19.24328	-10.30161	-1.15262	-0.56852	-0.47677	-0.47677
occ		2.00000	2.00000	2.00000	2.00000	2.00000	2.00000
0 C	s	0.0	99.5	18.6	11.5	0.0	0.0
0 C	pz	0.1	0.0	16.7	4.8	0.0	0.0
0 C	рх	0.0	0.0	0.0	0.0	6.9	20.9
0 C	py	0.0	0.0	0.0	0.0	20.9	6.9
0 C	dz2	0.1	0.0	2.4	0.0	0.0	0.0
0 C	dxz	0.0	0.0	0.0	0.0	0.5	1.5
0 C	dyz	0.0	0.0	0.0	0.0	1.5	0.5
10	s	99.8	0.1	54.7	20.8	0.0	0.0
10	pz	0.0	0.4	7.3	62.3	0.0	0.0
10	рх	0.0	0.0	0.0	0.0	17.4	52.4
10	py	0.0	0.0	0.0	0.0	52.4	17.4
10	dz2	0.0	0.1	0.3	0.6	0.0	0.0
10	dxz	0.0	0.0	0.0	0.0	0.1	0.3
10	dyz	0.0	0.0	0.0	0.0	0.3	0.1
		6	7	8	9	10	11
		6 -0.37374	7 -0.02630	8 -0.02630	9 0.22161	10 0.40035	11 0.45738
		6 -0.37374 2.00000	7 -0.02630 0.00000	8 -0.02630 0.00000	9 0.22161 0.00000	10 0.40035 0.00000	11 0.45738 0.00000
		6 -0.37374 2.00000 	7 -0.02630 0.00000	8 -0.02630 0.00000	9 0.22161 0.00000	10 0.40035 0.00000	11 0.45738 0.00000
0 C	S	6 -0.37374 2.00000 49.2	7 -0.02630 0.00000 0.0	8 -0.02630 0.00000 0.0	9 0.22161 0.00000 33.5	10 0.40035 0.00000 60.9	11 0.45738 0.00000 0.0
0 C 0 C	s pz	6 -0.37374 2.00000 49.2 39.3	7 -0.02630 0.00000 0.0 0.0	8 -0.02630 0.00000 0.0 0.0	9 0.22161 0.00000 33.5 46.5	10 0.40035 0.00000 60.9 35.3	11 0.45738 0.00000 0.0 0.0
0 C 0 C 0 C	s pz px	6 -0.37374 2.00000 49.2 39.3 0.0	7 -0.02630 0.00000 0.0 0.0 15.2	8 -0.02630 0.00000 0.0 0.0 54.7	9 0.22161 0.00000 33.5 46.5 0.0	10 0.40035 0.00000 60.9 35.3 0.0	11 0.45738 0.00000 0.0 0.0 15.5
0 C 0 C 0 C	s pz px py	6 -0.37374 2.00000 49.2 39.3 0.0 0.0	7 -0.02630 0.00000 0.0 0.0 15.2 54.7	8 -0.02630 0.00000 0.0 0.0 54.7 15.2	9 0.22161 0.00000 33.5 46.5 0.0 0.0	10 0.40035 0.00000 60.9 35.3 0.0 0.0	11 0.45738 0.00000 0.0 0.0 15.5 81.4
0 C 0 C 0 C 0 C	s pz px py dz2	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.0 0.8	7 -0.02630 0.00000 0.0 0.0 15.2 54.7 0.0	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8	10 0.40035 0.00000 60.9 35.3 0.0 0.0 1.2	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0
0 C 0 C 0 C 0 C 0 C	s pz px py dz2 dxz	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.8 0.0	7 -0.02630 0.00000 0.0 0.0 15.2 54.7 0.0 0.4	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0 1.5	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0	10 0.40035 0.00000 60.9 35.3 0.0 0.0 1.2 0.0	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1
0 C 0 C 0 C 0 C 0 C 0 C	s pz px dyz dxz dyz	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.0 0.8 0.0 0.0	7 -0.02630 0.00000 0.0 0.0 15.2 54.7 0.0 0.4 1.5	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0 1.5 0.4	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0 0.0 0.0	10 0.40035 0.00000 60.9 35.3 0.0 0.0 1.2 0.0 0.0	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1 0.3
0 C 0 C 0 C 0 C 0 C 0 C 1 0	s pz px py dz2 dxz dyz s	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.0 0.8 0.0 0.0 0.0 2.0	7 -0.02630 0.00000 0.0 0.0 15.2 54.7 0.0 0.4 1.5 0.0	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0 1.5 0.4 0.0	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0 0.0 12.0	10 0.40035 0.00000 60.9 35.3 0.0 0.0 1.2 0.0 0.0 0.0 0.0	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1 0.3 0.0
0 C 0 C 0 C 0 C 0 C 0 C 1 0	s pz py dz2 dxz dyz s pz	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.0 0.8 0.0 0.0 0.0 2.0 8.8	7 -0.02630 0.00000 0.0 0.0 15.2 54.7 0.0 0.4 1.5 0.0 0.0	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0 1.5 0.4 0.0 0.0	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0 0.0 7.8 0.0 0.0 12.0 0.2	10 0.40035 0.00000 60.9 35.3 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.6 1.0	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1 0.3 0.0 0.0
0 C 0 C 0 C 0 C 0 C 0 C 1 0 1 0	s pz py dz2 dxz dyz s pz px	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.0 0.8 0.0 0.0 0.0 2.0 8.8 0.0	$7 \\ -0.02630 \\ 0.00000 \\ \\ 0.0 \\ 0.0 \\ 15.2 \\ 54.7 \\ 0.0 \\ 0.4 \\ 1.5 \\ 0.0 \\ 0.0 \\ 0.0 \\ 5.9 \\ $	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0 1.5 0.4 0.0 0.0 21.2	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0 0.0 12.0 0.2 0.0	10 0.40035 0.00000 60.9 35.3 0.0 0.0 1.2 0.0 0.0 0.0 0.6 1.0 0.0	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1 0.3 0.0 0.0 0.3
0 C 0 C 0 C 0 C 0 C 0 C 1 0 1 0 1 0	s pz py dz2 dxz dyz s pz px py	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.0 0.8 0.0 0.0 2.0 8.8 0.0 0.0 0.0	$7 \\ -0.02630 \\ 0.00000 \\ \\ 0.0 \\ 0.0 \\ 15.2 \\ 54.7 \\ 0.0 \\ 0.4 \\ 1.5 \\ 0.0 \\ 0.0 \\ 5.9 \\ 21.2 \\ $	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0 1.5 0.4 0.0 0.0 21.2 5.9	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0 0.0 12.0 0.2 0.0 0.0	$ \begin{array}{r}10\\0.40035\\0.00000\\\hline\\\hline\\\\\\\\\\\\\\\\$	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1 0.3 0.0 0.0 0.3 1.5
0 C 0 C 0 C 0 C 0 C 0 C 0 C 1 0 1 0 1 0	s pz py dz2 dxz dyz s pz px py dz2	6 -0.37374 2.00000 49.2 39.3 0.0 0.0 0.0 0.0 0.0 2.0 8.8 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 7\\ -0.02630\\ 0.00000\\ \hline \\ 0.0\\ 0.0\\ 15.2\\ 54.7\\ 0.0\\ 0.4\\ 1.5\\ 0.0\\ 0.0\\ 5.9\\ 21.2\\ 0.0\\ \end{array}$	8 -0.02630 0.00000 0.0 0.0 54.7 15.2 0.0 1.5 0.4 0.0 0.0 21.2 5.9 0.0	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0 0.0 12.0 0.2 0.0 0.0 0.0	$ \begin{array}{r}10\\0.40035\\0.00000\\\hline\\60.9\\35.3\\0.0\\0.0\\1.2\\0.0\\0.0\\1.2\\0.0\\0.0\\0.0\\0.0\\0.0\\0.0\\0.0\\0.0\\0.9\end{array} $	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1 0.3 0.0 0.0 0.3 1.5 0.0
0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 1 0 1 0 1 0 1 0	s pz py dz2 dxz dyz s pz px py dz2 dxz	$ \begin{array}{r} 6 \\ -0.37374 \\ 2.00000 \\ \\ 49.2 \\ 39.3 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 2.0 \\ 8.8 \\ 0.0 \\ $	$\begin{array}{c} 7\\ -0.02630\\ 0.00000\\ \hline \\ 0.0\\ 0.0\\ 15.2\\ 54.7\\ 0.0\\ 0.4\\ 1.5\\ 0.0\\ 0.0\\ 5.9\\ 21.2\\ 0.0\\ 0.2\\ \end{array}$	$ \begin{array}{r} 8 \\ -0.02630 \\ 0.00000 \\ \hline 0.0 \\ 54.7 \\ 15.2 \\ 0.0 \\ 1.5 \\ 0.4 \\ 0.0 \\ 21.2 \\ 5.9 \\ 0.0 \\ 0.9 \\ \end{array} $	9 0.22161 0.00000 33.5 46.5 0.0 0.0 7.8 0.0 0.0 12.0 0.2 0.0 0.0 0.0 0.0 0.0	$ \begin{array}{c} 10\\ 0.40035\\ 0.00000\\ \hline 60.9\\ 35.3\\ 0.0\\ 0.0\\ 1.2\\ 0.0\\ 0.0\\ 0.6\\ 1.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	11 0.45738 0.00000 0.0 0.0 15.5 81.4 0.0 0.1 0.3 0.0 0.0 0.3 1.5 0.0 0.1

Looking at Orbitals

There is a utility program orca_plot which lets you generate graphics information. The information about the MOs, the geometry and the basis set is stored in the so called gbw-File (,geometry-basis-wavefunction').

To generate the plot information interactively use:

orca_plot myjob.gw -i

You will get a "stone-age" menu which you can use to generate the necessary files.

- 1. Press 5 ENTER to choose the output formation. (press 7 ENTER for gaussian cube, the preferred format)
- Press 4 ENTER to choose the number of grid intervals. Something like 40 will be o.k. For high resolution on larger molecules choose 65-75.
- 3. To plot an orbital from a closed shell calculation press 3 ENTER and choose 0 ENTER. For spin-up from UHF/UKS the same. For spin down from UHF/UKS choose 1 ENTER.
- 4. Press 2 ENTER and enter the number of the MO that you want to plot. NOTE THAT COUNTING STARTS WITH 0!!!
- 5. Press 10 ENTER to generate the output file.
- 6. Repeat steps 4 and 5 until all desired files are produced

The orca_plot program automatically produces an ,xyz' file which contains the molecular coordinates.

We presently like the *Chimera* program for vizualization. There are many free alternatives such as *Molekel, gOpenMol, Molden,...* any program that reads .xyz and .cube files

With **Chimera**, do the following:

- 1. Start Chimera
- 2. Choose "File Open" and navigate to open the .xyz file of interest
- 3. Choose "**Presets** → **Publication 1**"
- 4. Choose "Actions → Atoms&Bonds → ball & stick"
- 5. Choose "Actions → Color → By element"
- 6. Choose **"Tools → Volume Data → Volume Viewer**"
- Choose "File → Open Map" and Gaussian Cube format and open the cube file of interest
- Enter in "Level" 0.03 and press ENTER. Then click on Color and choose red (or whatever you like)
- Hold the Ctrl-key and click on the negative part of the contours. Enter in "Level" -0.03 and press ENTER, then go to color and choose yellow (or whatever you like)
- Orient the contour in the way you like and go to "File → Save Image". Choose PovRay "true" and go ahead.

Efficient DFT: The RI Approximation

As long as there is NO Hartree-Fock exchange present (no hybrid functionals), a very efficient approximation can be used to speed up (factor 10-100) DFT calculations: the **RI approximation** (also called **density fitting** method)

In this method the electron density is fit to an auxiliary basis set which must be provided by the user. The effect of the approximation on structures and frequencies is barely visible. Absolute energies are affected to a few kcal/mol, relative energies much less.

TIP: For geometry and frequency calculations the BP86 and PBE functionals together with the RI approximation is recommended. Basis sets of TZVP quality are appropriate for good accuracy! SV(P) is already good enough for a first orientation. Use keywords **QuickOpt, NormalOpt or GoodOpt**! For <u>energy calculations</u> I recommend the B3LPY or PBE0 functionals and larger basis sets (TZVPP if possible or even aug-TZVPP). Use Keyword **DFTEnergy**

Efficient HF and Hybrid DFT: RIJCOSX

Unfortunately, RI does not smoothly carry over to Hartree-Fock and hybrid DFT calculations. One attempt to do so is the **RI-JK** approximation that needs to be invoked together with ,JK' fitting bases. RI-JK cannot be used for optimizations

! B3LYP RI-JK def2-SVP def2-SVP/JK TightSCF

A more efficient approximation that leads to large speedups is the **RIJCOSX** approximation. it uses **RI-J** for the Coulomb part and a special approximation ,**COSX**['] for the exchange part. It is available throughout the program and leads to large speedups at very little loss in accuracy

! B3LYP RIJCOSX def2-SVP def2-SVP/J TightSCF

If combined with **RI-MP2** you need to give two auxiliary basis sets for optimal speed and accuracy:

```
! RI-MP2 RIJCOSX def2-SVP def2-SVP/J def2-SVP/C TightSCF
```

Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. (2009) Chem. Phys., <u>356</u>, 98–109

Speedup through Parallelization

Transition Metal Calculations

For open-shell transition metals convergence of the SCF is often a problem. There are a few ways in ORCA to help this process:

... Actually, this particular job converges without any damping or shifting. However, in many situations, the damping and shifting is necessary as you will undoubtedly find out yourself once you start calculations in the "real world".

In the present example the convergence "aids" acctually strongly slow down convergence. It is quite uniform since the energy is always decreasing. Thus, these "helpers" more or less "babysit" the job to a converged solution.

Restarting Calculations

In many cases it is a very good idea to start from the convergence MOs of a previous job.

Note that the calculation can be started from a gbw file which is from a nearby geometry, uses a different basis set of theoretical method or HFType (UHF,RHF or ROHF). The program will take care to translate the orbitals to the present situation.

Multiple Job Steps

You can also run the two jobs from one input file.

```
# Run a two-step job. The first one is "cheap" and provides
# input orbitals for the second one.Note that we also re-
# read the geometry in the second job-step
! UKS SV(P) B3LYP TightSCF SlowConv XYZFile
%base "JOB a"
%scf shift shift 0.1 erroff 0 end
     damp damp 0.8 erroff 0.001 end
     end
* xyz -2 2
Cu 0 0 0
F 1.900
F -1.900
F 0 1.90
F 0 -1.90
*
$new job
# Now this job should converge rather well. Turn off all
# damping and shifting
! UKS TZVP B3LYP TightSCF NoDamp NoLShift
! moread
%moinp "JOB a.gbw"
%base "JOB b"
%scf guessmode cmatrix
     end
* xyzfile -2 2 JOB a.xyz
```

Calculating EPR Parameters

The calculation of EPR parameters is controlled via the EPRNMR block:

```
# A simple EPR job
! UKS EPR-II B3LYP TightSCF SlowConv
* xyz 0 3
N 0 0 0
H 0 0 1.0
%eprnmr dtensor SSandSO # request calculation of the ZFS tensor
                         # using both Spin-Spin (SS) and Spin-Orbit
                         # (SO) contributions
                         # linear response treatment of SO contrib.
        dsoc cp
                         # alternative is PK (Pederson-Khanna)
        dss uno
                         # us the spin-restricted density for SS part
                         # alternative is "direct"
        gtensor true
                         # calculate the g-tensor using linear response
        # nuclear properties. Note that aorb is expensive and should
        # only be applied to heavier nuclei like metals. For ligand
        # nuclei aorb is small. The other properties are simple
        # expectation values
        nuclei = all H { aiso, adip, aorb, fgrad, rho}
        nuclei = all N { iaos, adip, aorb, fgrad, rho}
        # printlevel 3 provides a detailed analysis of all properties
        # the default is to print only a minimum amount of information.
        printlevel 3
        end
```

Geometry Optimization

To optimize the geometry of the molecule, simply include the keyword Opt

```
! RKS SV(P) B3LYP TightSCF Opt
* int 0 1
C 0 0 0 0 0 0 0
0 1 0 0 1.15 0 0
H 1 2 0 1.00 115 0
H 1 2 3 1.00 115 180
*
```

The program will first produce a set of "redundant internal coordinates" which are used in the calculation.

			Redundant Internal Coordinates				
Defint	Defintion			Initial Value	Approx d2E/dq		
1. B(O 2. B(H 3. B(H 4. A(H 5. A(H 6. A(H 7. I(O	1,C 2,C 3,C 2,C 3,C 3,C 1,H	0) 0) 0,0 0,0 0,0 0,H 3,H	1) 1) 2) 2,C	1.1500 1.0000 1.0000 115.0000 115.0000 130.0000 0) 0.0000	1.351281 0.501167 0.501167 0.425466 0.425466 0.323418 0.151694		

TIP: Always use TightSCF or VeryTightSCF in geometry optimizations. Otherwise the gradients are somewhat noisy.

After calculating the SCF energy and the gradient of the energy, a And a new geometry is proposed: relaxation is step is carried out:

ORCA GEOMETRY RELAXATION STEP							
Number of a	atoms			4			
Number of i	internal coordin	nates		7			
Current Ene	ergy			-114.317745134 Eh			
Current gra	adient norm			0.207887808 Eh/bohr			
Maximum all	Lowed component	of the step	0.300				
Current tru	ıst radius			0.300			
Evaluating	the initial hes	ssian	(Almloef) done				
Projecting	the Hessian		c	lone			
Forming the	augmented Hess	sian	c	lone			
Diagonalizi	ing the augmente	ed Hessian	c	lone			
Last elemen	nt of RFO vector	2		0.957975075			
Lowest eige	envalues of augr	mented Hessian	1:				
-0.0571747	0.151693870	0.36094984	5 0.425	6465740 0.501166791			
Length of the computed step 0.299435193							
The final length of the internal step 0.299435193							
Converting the step to cartesian space:							
Transforming coordinates:							
Iter 0:	RMS(Cart)=	0.0824560429	RMS (Int	c) = 0.1127292561			
Iter 1:	RMS(Cart)=	0.0024951498	RMS (Int	c) = 0.0033197589			
Iter 2:	RMS(Cart)=	0.0002432861	RMS (Int	c) = 0.0003067902			
Iter 3:	RMS(Cart)=	0.0000185328	RMS (Int	c) = 0.0000231161			
Iter 4:	RMS(Cart)=	0.000012690	RMS (Int	c) = 0.0000015779			
Iter 5:	RMS(Cart)=	0.000000832	RMS (Int	c) = 0.000001034			
Iter 6:	RMS(Cart)=	0.000000054	RMS (Int	c) = 0.000000067			
done							
Storing new	<pre>v coordinates</pre>		I	one			

The status of the geometry convergence is printed:

Geometry convergence						
Item	value		Tolerance	Converged		
RMS gradient	0.078	83145	0.00010000	NO		
MAX gradient	0.142	33649	0.00030000	NO		
RMS step	0.113	17586	0.00200000	NO		
MAX step	0.185	11086	0.00400000	NO		
Max(Bonds)	0.0980	Max(Angles)	4.89			
Max(Dihed)	0.00	Max(Improp)	0.00			

The optimization has not yet converged - more geometry cycles are needed

Redundant Internal Coordinates

(Angstroem and degrees)

Definition					Value	dE/dq	Step	New-Value
1. B(O	1,C	0)			1.1500	-0.142336	0.0535	1.2035
2. B(H	2,C	0)			1.0000	-0.103355	0.0980	1.0980
3. B(H	3,C	0)			1.0000	-0.103355	0.0980	1.0980
4. A(H	2,C	0,0	1)		115.00	-0.017685	2.44	117.44
5. A(H	3,C	0,0	1)		115.00	-0.017685	2.44	117.44
6. A(H	3,C	0,Н	2)		130.00	0.035370	-4.89	125.11
7. I(O	1,H	З,Н	2,C	0)	0.00	-0.000000	0.00	0.00

GEOMETRY OPTIMIZATION CYCLE 2

Then the next SCF is done and the next gradient calculated, a new geometry is proposed until (hopefully) finally:

Following this statement one more energy calculation is performed in order to make sure that the energy and properties are really done at the stationary point of the PES.
Constraints and Relaxed Scans

You can "freeze" certain geometrical parameters in an optimization:

```
! RKS B3LYP/G SV(P) TightSCF Opt
%geom Constraints
        { B 0 1 1.25 C }
        { A 2 0 3 120.0 C }
        end
      end
* int 0 1
     0 0 0 0.0000
                      0.000
    С
                               0.00
   0 1 0 0 1.2500
                      0.000
                               0.00
   H 1 2 0 1.1075 122.016
                               0.00
   H 1 2 3 1.1075 122.016
                             180.00
*
```

... Or freeze some and vary others (one frequently used possibility is to only optimize hydrogen positions **OptimizeHydrogens true**). Constrained surfaces are calculated as:

```
%geom Scan
        B 0 1 = 1.35, 1.10, 12 # C-O distance that will be scanned
        end
        end
```

Frequency Calculations

There are several good reasons for calculating the harmonic frequencies:

- 1. Characterize stationary points as minima (no negative frequencies), transition states (one negative frequency) or higher-order saddle point (more negative frequencies
- 2. Predict vibrational spectra (IR, Raman)
- **3.** Calculate thermodynamic properties (zero-point energy, finite temperature correction)

ORCA presently calculates harmonic frequencies through (one- or two-sided) numeric differentiation of analytic frequencies

<pre>! RKS BP86 RI SV(P) SV/J Grid4 TightSCF SmallPrint ! TightOpt NumFreq</pre>	
%freq CentralDiff true	— Run a numerical frequency calculation
Increment 0.005 end * xyz 0 1	 Two sided differences (twice as expensive but more accurate! Be careful – numerical frequencies can be quite noisy)
C 0.000000 0.000000 -0.533905 O 0.000000 0.000000 0.682807 H 0.000000 0.926563 -1.129511 H 0.000000 -0.926563 -1.129511 *	 Increment for displacements (in Bohrs)

The first thing that is printed are the vibrational frequencies. The first six modes are translations and rotations and these are zero because they are projected out.

VIBRATI	ONAL FREG	QUENCIES
0:	0.00	cm**-1
1:	0.00	cm**-1
2:	0.00	cm**-1
3:	0.00	cm**-1
4:	0.00	cm**-1
5:	0.00	cm**-1
6:	1140.72	cm**-1
7:	1230.49	cm**-1
8:	1498.92	cm**-1
9:	1812.75	cm**-1
10:	2773.72	cm**-1
11:	2805.59	cm**-1

Then the program prints the normal modes. This is usually not very revealing. The program produces a **BaseName.hess** file which you can run through **orca_vib** to get additional information.

XYZ files to be used for animation of vibrational modes are produces by the program **orca_pltvib**.

Then you get the IR spectrum:

IR SPECTRUM

F 066	
	11
[(a)	
.900 -	V
S S	
<u></u>	

The IR spectrum can be plotted through the orca_mapspc utility

(orca_mapspc BaseName.out IR)

1000

~-~

Wavenumber (cm⁻¹)

Finally, the thermodynamic properties at 298.15 K are printed (assuming ideal gas behaviour)

Electronic energy	• • •	-114.414	135858	Eh
Zero point energy	• • •	16.10	kcal/m	ol
Thermal vibrational correct	tion	0.03	kcal/m	ol
Thermal rotational correct	ion	0.89	kcal/m	ol
Thermal translational corr	ection	0.89	kcal/m	ol
Total thermal energy		-114.385	582646	Eh
Then enthalpy+entropy and	finally the	e free er	nergy:	
Total enthalpy	-114.384882	25 Eh		
Total entropy correction	-15.36 kca	al/mol		
Final Gibbs free enthalpy	-114.409358	358 Eh		
$G - E(e_1) = 0.00500000 En =$	3.14 KCal/I	IOT		

Mode	freq (cm**	-1) T**2	ТХ	TY	TZ	
6:	1140.72	1.465985	(-1.210739	-0.008963	-0.004000)	
7:	1230.49	10.082152	(0.004428	-3.175237	-0.001184)	
8:	1498.92	4.648016	(-0.000197	0.001760	-2.155925)	
9:	1812.75	105.821353	(-0.000043	0.002847	-10.286950)	
10:	2773.72	73.358541	(0.000042	-0.020336	-8.564936)	
11:	2805.59	205.230431	(-0.000359	-14.325864	0.007790)	

Metalloproteins: Cluster vs QM/MM Models

Stages of Model Building

Cluster Models are often sufficient

... But Protein effects can be very subtle

Motivation for QM/MM: QM/MM

Combine the advantages of both methods

- QM/MM level:
 - ✓ Small and chemically important part of the system (e.g. active site): QM
 - Large and less important part of the system:
 MM

 \rightarrow Realistic chemistry of real systems

Separation of a QM/MM system

- ✓ Primary- (QM-) subsystem: a localized region, where a process of interest takes place (e.g. enzymatic reaction, charge transfer process, electronic excitation, ...).
- ✓ Outer- (MM-) subsystem: the environment of the QM-subsystem. This part plays an important role for the inner subsystem (e.g. a protein which imposes steric constraints on the active site, specific hydrogen bonds and salt bridges).
- Boundary region: is of importance if both subsystems are connected via bonds.

QM/MM Energy

$$E_{QM/MM}(S) = E_{MM}(O) + E_{QM}(P+L) + E_{QM-MM}(P,O)$$

- **E**_{QM}: QM energy of the (capped) primary subsystem.
- *E_{QM-MM}*: QM-MM interaction calculation between primary and outer subsystem.

MM energy E_{MM}

• Bonded and nonbonded interactions.

$$E_{MM} = \sum_{\text{bonds}} k_d (d - d_0)^2$$

+ $\sum_{\text{angles}} k_{\theta} (\theta - \theta_0)^2$
+ $\sum_{\text{dihedrals}} k_{\phi} [1 + \cos(n\phi + \delta)]$
+ $\sum_{\text{dihedrals}} \epsilon_{AB} \left[\left(\frac{\sigma_{AB}}{r_{AB}} \right)^2 - \left(\frac{\sigma_{AB}}{r_{AB}} \right)^6 \right]$
+ $\sum_{\substack{\text{non-bonded pairs AB}}} \frac{1}{4\pi\epsilon_0} \frac{q_A q_B}{r_{AB}}$

MM force fields

✓ Force field: collection of MM parameters.

- ✓ **MM parameters** (σ_{AB} , k_d , ...) are atomtype specific (e.g. a hydrogen in a methyl group has a different atom type than a hydrogen atom in a benzene).
- Standard force fields in biochemical research have parameters for biomolecules (standard amino acids, DNA, lipids, sugars), but e.g. not for metal atoms.

✓ ... If no parameters are available for a molecule ...

- ➡ Parametrization necessary or
- Assign parameters from similar chemical patterns.

QM/MM Boundary

- If bonds are cut between the primary and the outer subsystem, the cleaved bond has to be saturated (→← homolytic/heterolytic cleavage).
- Several procedures were developed to handle this problem. The most popular one is the usage of **link atoms**:
 - A hydrogen atom caps the cleaved bond.

QMMM interaction energy E_{QM-MM}

• Interactions between primary and outer subsystem:

$$E_{QM-MM} = E_{bonded}(P,O) + E_{VDW}(P,O) + E_{el}(P,O)$$

• E_{bonded} and E_{VDW} always calculated on MM level.

• E_{e} dependent on embedding scheme.

- Mechanical embedding
- Electrostatic embedding

QMMM interaction energy E_{QM-MM}

• Interactions between primary and outer subsystem:

$$E_{QM-MM} = E_{bonded}(P,O) + E_{VDW}(P,O) + E_{el}(P,O)$$

- E_{bonded} and E_{VDW} always calculated on MM level.
- E_{el} dependent on embedding scheme:
 - Mechanical embedding
 - Electrostatic embedding

Mechanical embedding

$$E_{QM-MM} = E_{bonded}(P, O) + E_{VDW}(P, O) + E_{el}(P, O)$$

 ✓ Electrostatic Interaction between primary and outer subsystem is calculated on the MM level.

$$E_{el} = \sum_{\substack{\text{non-bonded} \\ \text{pairs AB}}} \frac{1}{4\pi\varepsilon_0} \frac{q_A q_B}{r_{AB}}$$

✓ Drawbacks:

- QM charge density is mimicked by point charges.
- QM electron density is not polarized by the MM-point charges.

Electrostatic embedding

$$E_{QM-MM} = E_{bonded}(P,O) + E_{VDW}(P,O) + E_{el}(P,O)$$

 Electrostatic Interaction between primary and outer subsystem is calculated on the QM level.

$$\hat{H}_{QM-MM}^{el} = -\sum_{i}^{electrons} \sum_{B \in O} \frac{q_B}{\left|r_i - R_B\right|} + \sum_{C \in (I+L)} \sum_{B \in O} \frac{q_M Z_C}{\left|R_C - R_B\right|}$$

Advantage: QM electron density is directly polarized by the MM-point charges.

✓ Drawbacks:

- Might become expensive (long range interaction).
- MM charges may not be well constructed to interact with the QM density.

Scheme of a QM/MM Study:

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation

MM

- Energy Minimization
- Equilibration / MD \rightarrow snapshots
- Optimization of snapshots
- Property calculations on optimized geometries

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation

MM

MM/MM

- Energy Minimization
- Equilibration / MD \rightarrow snapshots
- Optimization of snapshots
- Property calculations on optimized geometries

- Constructing missing MM parameters (ESP charges, prodrg)
 - E.g. Nicotinamide:

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation

MM

- Energy Minimization
- Equilibration / MD \rightarrow snapshots

Property calculations on optimized geometries

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation

MM

WV WV

- Energy Minimization
- Equilibration / MD \rightarrow snapshots
- Optimization of snapshots
- Property calculations on optimized geometries

• Adding hydrogens

PDB structure without hydrogens

Structure with hydrogens (dep. on pk_A)

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation

MM

WV WV

- Energy Minimization
- Equilibration / MD \rightarrow snapshots
- Optimization of snapshots
- Property calculations on optimized geometries

Solvation

Unsolvated protein

Solvated protein in a box

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation

ΣΣ

- Energy Minimization
- Equilibration / MD \rightarrow snapshots

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation
- Energy Minimization
- Σ
- Equilibration / MD \rightarrow snapshots

Optimization of snapshots
 E

Property calculations on optimized geometries

• Equilibration / MD \rightarrow snapshots

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation
- Energy Minimization
- Σ
- Equilibration / MD \rightarrow snapshots
- Optimization of snapshots

Property calculations on optimized geometries

- Optimization of snapshots:
 - A sphere around the QM-region is optimized: usually about 1000 atoms

- Constructing missing MM parameters (ESP charges, prodrg)
- Structure validation
- Adding hydrogens
- Solvation
- Energy Minimization
- Equilibration / MD \rightarrow snapshots
- Optimization of snapshots
- Property calculations on optimized geometries

QM/MM

• Property calculations on optimized geometries:

MO-analysis

Ab initio calculations \rightarrow more accurate energies

Example Setup: QM/MM with Gromacs/ORCA

QM/MM Example: P450 NO Reductase

Characterizing Intermediates - P450nor

Structure and Mechanism of P450nor

Shimizu, H. *et al.* (**2000**) *J. Biol. Chem.*, <u>275</u>, 4816 (a) Shiro, Y. et al. (**1994**) *Biochemistry*, <u>33</u>, 8673 (b) Daiber, A. *et al.* (**2002**) *J. Inorg. Biochem.*, <u>88</u>, 343

Nature of Intermediate "I"?

 $[Fe-NO]^{+} (=\{FeNO\}^{8})$ $[Fe-NOH]^{2+} \text{ or } [Fe-NHO]^{2+}$ $[Fe-NHOH]^{3+}$ $[Fe-NOH_{2}]^{3+}$ $[Fe-N]^{3+} (Compare [Fe-N]^{2+})$

Spectroscopic Characterization of "I"

Proposed Mechanism of P450nor

P450nor- System setup - Summary

- P450nor from *Fusarium oxysporum*.
- QM/MM geometry optimizations performed at RIJCOSX-B3LYP/SV(P) / OPLSaa-level.
- Total system: 45500 atoms.
- 60-140 QM atoms
- About 1000 atoms optimized.
- Moessbauer calculations performed with B3LYP*/ Fe CP(PPP)/others TZVP, with ZORA.

NADH Binding Interactions

Hydride transfer – QM/MM Surface Scan

Hydride Transfer Transition State

Two different low-lying electronic states were found that are both kinetically competent:

80

Hydride Transfer Transition State

Hydride transfer – Link to Experiment

Protonation State of Intermediate I

Calculations are in excellent agreement with experiment for the two well characterized species.

The Mössbauer data is consistent with mono- or diprotonated species

Second Half Reaction via HNO

Second Half Reaction via HNOH

Revised Mechanism of P450nor

Summary

- Successfully performing computational chemistry projects requires careful planing, awareness of methodological issues and knowledge of available experimental data.
- Many computational projects can be properly addressed with DFT once properly calibrated.
- When applicable (single-reference, affordable cost), coupled-cluster methods are preferable.
- Multireference problems are abundant in chemistry and need to be carefully addressed. Stay Single-reference as along as you can.
- Computers don't solve problems people do! 87

Appendix: More information on Computational Methods

Configuring ORCA under Windows Vista

Setting the PATH variable to the ORCA directory

Control Panel → Tasks	System View basic informati Windows edition	• + Search	0	Edit System Varial	ble
 Remote settings System protection Advanced system settings 	Windows Vista [™] Business Copyright © 2007 Microsoft Corporation. All rights reserved. Service Pack 2 Upgrade Windows Vista			Variable name: Variable value:	Path Charces % SystemRoot % system 32; % Syste OK Cancel
	System Rating: Processor: Memory (RAM): System type:	System Properties Computer Name Hardware Advanced System Protection Remote You must be logged on as an Administrator to make most of these change Performance Visual effects, processor scheduling, memory usage, and virtual memory	es.	Vironment Variables User variables for fra Variable TEMP TMP	s ES ankw Value %USERPROFILE%\AppData\Local\Temp %USERPROFILE%\AppData\Local\Temp
See also	Computer name, domai Computer name: Full computer name Computer descriptic	User Profiles Desktop settings related to your logon Settings		System variables	New Edit Delete
Security Center Performance	Workgroup: Windows activation	Startup and Recovery System startup, system failure, and debugging information Settings		Variable NUMBER_OF_P OS Path PATHEXT	Value I Vindows_NT C:\OrcaDevCenter\prca\x86_exe\x64\RCOM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS; New Edit Delete
		OK Cancel Appl	y		OK Cancel

The Path Variable can be accessed via

Control Panel > System > Advanced system Settings

Here it is assumed that ORCA resides in **c:\orca**

Editing Textfiles under Windows Vista

Editing Text using Notepad

Running ORCA under Windows Vista

Opening a command window:

then cmd.exe will be executed upon pressing **RETURN**.

Running ORCA under Windows Vista

Executing the ORCA program

Once **ORCA** is in the **PATH**, you can run jobs from any directory you want

Using the sequence orca myinput.inp > myinput.out'

the output will be put in a file named like that.

The TaskManager

is a handy tool to check if the calculation is still running.

Getting Started with **ORCA** under Mac OS X

TextEdit & Terminal

🕷 Grab File Edit Capture Window Help 🔢 🗿 🕴 🔿 🜒 💶 💽 (96%) Thu 9:43 Q ALC: NO. 000 Applications \bigcirc MacHD 4 1 = = ⊙ ☆ -Q **V DEVICES** 000 .bashrc MacHD Disk 🗖 export PATH=%HOME/orca:\$PATH **V PLACES** TextEdit Stickies System Preferences T Desktop frankw Documents Time Machine Utilities VMware Fusion **V SEARCH FOR** 1 of 39 selected, 420.59 GB available M **Utilities** 000 4 1 ⊙ ☆ -Q **V DEVICES** MacHD IDisk **Keychain Access** Migration Assistant Network Utility sagnix% orca myinput.inp >& myinput.out & **V PLACES** top Desktop frankw Applications C Documents ODBC Administrator Podcast Capture **RAID Utility V SEARCH FOR** • Today Sesterday Remote Install Mac OS X System Profiler Past Week Terminal All Images All Movies 40 Х All Documents X11 VoiceOver Utility 1 of 26 selected, 420.59 G8 available ¥ 🛞 🔕 🥝 의 💆 🐼 II 🔘 🐼 🕊 💋 📌 🖉 📣 🔄 🏱 C 🐣 🛅 💓 🕅 📩 🚔 🔒 🏐

Configuring **ORCA** under Mac OS X

TextEdit & Terminal

ORCA path entered in the file

'.bashrc'

using TextEdit

Running **ORCA** under Mac OS X

Configuring ORCA under Linux

Linux (Ubuntu 9.10): Setting the PATH variable

Running ORCA under Linux

Linux (Ubuntu 9.10): Text Editor (gedit) & ORCA execution

Applications Places System	em 🙋 🗟 🕢	🗉 🜉 剩 Thu Aug 6, 11:08 AM	Frank Wennmohs 🕘	
🔁 sim	ple.inp (~/simple) - gedit			
<u>File Edit View Search Too</u>	ols <u>D</u> ocuments <u>H</u> elp		and the second secon	
New Open Save Print.	. Undo Redo Cut Copy Paste Find Replace			Especially
simple.inp				under Linux
! RHF SVP OPT				there is an
*xyz 0 1	frankw@MyUbu	ntu: ~/simple	- • ×	there is an
H 1.0 0.0 0.0	<u>File Edit View Terminal H</u> elp			uncountable
H 0.0 1.0 0.0 *	frankw@MyUbuntu:~/simple\$ orca simple.inp >&	simple.out &	<u>^</u>	number of
	frankw@MyUbuntu:~/simple\$ tail -f simple.out			text-editors.
				Very popular
				ones are
				Vim Emacs
				NEdit, Kate,
·				etc.
			=	
			~	
🗐 : 🔲 frankw@MyUbuntu: ~/.	🍞 simple.inp (~/simple)			

Appendix: More information on Computational Methods

Method Overview

Computational Cost

100 B.P.=Big project

How accurately do we have to calculate?

An error of only **1.3 kcal/mol** is equivalent to:

- pK_a-value
- : One log-unit
- Redox Potential : 56 mV
- Reaction Rate : Factor 10

Accuracy of ~1 kcal/mol required

Total Energy ~ 290668 kcal/mol

Possible Consequences:

a) Need extremely accurate theory

b) Need very good error compensation

c) Care other properties than E_{tot}

Every day life "in hell" of uncertainy and computational errors

The Functional Zoo

Name	Туре	Comments
BLYP	GGA	One of the earliest GGA functionals. Usually inferior to BP86 and PBE. Predicts too long bonds.
BP86	GGA	Excellent geometries and vibrational frequencies. Energetics is usually not highly accurate but performs often well in spectroscopic investigations.
PW91	GGA	One of the older GGA functionals with excellent accuracy for exchange couplings.
PBE	GGA	A GGA version designed to replace PW91. Very popular in physics. Often similar to BP86.
OLYP	GGA	Violates the uniform electron gas limit but gives improved results for molecules
B3LYP	Hybrid	De facto standard in chemistry for structures, energies and properties. See discussion in the text.
PBE0	Hybrid	Excellent accuracy; competitive with B3LYP
TPSS	Meta-GGA	Improvement over PBE. Includes the kinetic energy density and obeys more constraints known from rigorous theory.
TPSSh	Hybrid meta- GGA	Probably improvement over PBE0; perhaps increase fraction of HF to 25% (TPSS0)
B2PLYP	Double hybrid	First (and prototypical) member of the double hybrid class of functionals. So far been proven excellent for energies and geometries. More exploration needed.

Total Energies

Total, correlation and exchange energies of the Neon atom using the *ab initio* CCSD(T) method and various standard functionals (deviations from the wavefunction results in mEh).

	E _{tot}	E _{corr}	E _x
CCSD(T)	-128.9260	-0.379	-12.098
	-129.0640 (DKH2)		
BP86	-128.9776 (-52)	-0.388 (- 9)	-12.104(-6)
PBE	-128.8664 (+60)	-0.347 (+32)	-12.028 (+70)
BLYP	-128.9730 (-47)	-0.383 (- 4)	-12.099(-1)
TPSS	-128.9811 (-55)	-0.351 (+28)	-12.152 (-54)
B3LYP	-128.9426 (-17)	-0.452 (-73)	-12.134 (-36)
B2PLYP	-128.9555 (-30)	-0.392 (-13)	-12.103 (- 5)
Exp	-129.056		

Wavefunction theory is very accurate (but also very expensive). DFT results vary widely among different functionals and either over- or undershoot.

total energies are not important in chemistry - relative energies matter.

DFT Energies - Benchmarking (1)

Today the accuracy of a given density functional is no longer assessed by doing a few illustrative calculations or studying the "G2 set".

(Even worse: atomization energies. There is <u>no</u> correlation between the performance of a method for atomization energies and its performance in chemistry)

	BP86	PBE	TPSS	TPSSh	B3LYP	PBE0	
(kcal/mol)		Small molecule test set					
Mean error	0,4	0,2	0,7	0,4	0,3	-0,3	optimistic
Mean Abs. error	2,8	2,9	3,1	2,7	2,1 🗸	2,2	
Max error	24,2	25,9	21,7	19,8	14,5	14,7	
	Large molecule test set					realistic	
Mean error	-4,6	-2,7	-4,5	-3,6	-6,9	-0,9	
Mean Abs. error	8,8	7,7	8,5	7,0	8,5	4,6	
Max error	87,4	79,0	70,3	52,9	77,9	36,9	

DFT Energies - Benchmarking (2)

http://toc.uni-muenster.de/GMTKN/GMTKN24/GMTKN24main.html

GMTKN24 - A database for general main group thermochemistry, kinetics, and non-covalent interactions

This web site is an overview of the GMTKN24 database, recently presented by ...Goerigk and S. Grimme in J. Chem. Theory Comput. 2010, 6, 107-126. Below, a list with links to all 24 subsets is shown. For each subset, the relevant reference values are given. Furthermore, all necessary geometries (in TURBOMOLE format) are available for download (as zip files). All results for all density functionals tested so far are also given. This web site was last updated on 04/20/2010.

Subsets

- The MB08-165 subset
- The W4-08 and W4-08woMR subsets
- The G21IP subset
- The G21EA subset
- The PA subset
- The SIE11 subset
- The BHPERI subset
- The BH76 and BH76RC subsets
- The RSE43 subset
- The O3ADD6 subset
- The G2RC subset
- The AL2X subset
- The NBRC subset
- The ISO34 subset
- The DC9 subset
- The DARC subset
- The IDISP subset
- The WATER27 subset
- The S22 subset
- The PCONF subset
- The ACONF subset
- The SCONF subset
 The CVCONE subset
- The CYCONF subset

Very extensive data sets exist that contain hundreds of molecules and thousands of reference data. The most rigorous collection is probably due to Grimme:

DFT Energies - Benchmarking (3)

NOTE:

- Requires 3218 single point calculations
- Compare 841 data points
- Covers:
 - * Reaction energies
 - * Isomerization energies
 - * Weak interactions

BUT:

- Still only closed-shell organic/main group chemistry!
- This is *NOT* transferable to transition metal chemistry or open shells!

DFT Energies - Benchmarking (4)

DFT Energies - Benchmarking (5)

- Rather similar behavior for differenty hybrids with B3LYP not the best.
- Minnesota functionals accurate (M06-2X) but not stable
- No improvement for range-corrected functionals

DFT Energies - Benchmarking (6)

DFT Energies - Benchmarking (6)

DFT Energies - Benchmarking (7)

DFT Energies - Summary

Overall recommendations by Göricke and Grimme (2011):

- **LDA**: Not recommended for chemistry
- GGA: B97-D3 is the most accurate functional BLYP-D3 is the second best

Hybrid: PW6B95 is the most accurate functional Minnesota functional (M062X) are as good but are not robust Range separated functionals do not represent an improvement "B3LYP-D3 is not the overall applicable functional as many user may still believe Surprisingly it is even worse than the average hybrid. Particularly for reaction energies it was the worst of all 23 tested hybrids."

DHDF: PWPB95 is the most accurate functional

All DHDFs outperform all other functionals. Their basis set dependence is higher DHDFs are more accurate than MP2 or SCS-MP2 except in cases with large SIE

Recommendations: Density Functional Theory

- Use a functional that is well tested for your domain of application (... often this will come out to default to B3LYP ...)
- Always use empirical dispersion corrections (D3 of Grimme). They come for free, almost never make your results worse and are frequently essential for correct chemistry.
- Whenever you can: use GGAs they can be evaluated extremely efficiently. Invest the time saved into a more realistic model of your system or its environment, better basis sets, ...
- Use the largest basis sets that you can afford. Studying basis set artifacts is boring. Be careful with special properties or anions. The basis set of the Karlsruhe group are particularly consistent, accurate and efficient.
- In particular GGA, geometries are very good. There is little (if any) point in spending all the extra time for getting MP2 or CCSD geometries (CCSD(T) would be slightly better but comes at humungous cost)
- When dealing with heavy elements (e.g. beyond Ca):Scalar relativistic corrections (ZORA, DKH, ...) are more rigorous than ECPs and spin-free calculations are not much more expensive.
- When studying systems in the condensed phase (particularly anions), some model of the environment must be included. At least COSMO/PCM.

Example: 3d+4d+5d Transition metal bondlengths

			-			-						
entry	functional	3d ECP/basis set ^b	4d,5d ECP/basis set ^b	Dequil	Dequil	Dequil	Dequilc	Deff	Deff			
1	BP86	SDD	SDD	1.40	2.41	2.63	7.5 [5d:36]	1.94	2.56			
2	BP86	AE1	SDD	1.80	2.37	2.32	7.5[5d:36]	2.34	2.22	Mean	Mean	Std.Dev.
3	B3P86	AE1	SDD	0.04	1.60	2.10	-7.7 [5d:3]	0.57	2.02			
4	BLYP	AE1	SDD	3.71	3.84	2.61	11.6 [5d:36]	4.25	2.53		(in pm)	
5	B3LYP	AE1	SDD	1.85	2.41	2.35	9.6 [5d:36]	2,39	2.3	0.00	4 00	0.05
6	B3LYP	SDD	SDD	1.43	2.45	2.68	9.6 [5d:36]	1.97	2.6	0.99	1.93	2.25
7	BPW91	AE1	SDD	1.78	2.35	2.31	7.6 [5d:36]	2.32	2.2	0.70	1 07	0.00
8	B3PW91	AE1	SDD	0.39	1.67	2.12	-7.1 [5d:3]	0.93	2.0	-0.79	1.97	2.00
9	TPSS	AE1	SDD	1.59	2.16	2.27	-7.8 [5d:3]	2.12	2.11			
10	TPSSh	AE1	SDD	0.91	1.80	2.18	-8.2 [5d:3]	1.44	2.05			
11	LSDA	AE1	SDD	-2.01	2.72	2.71	-8.7 [5d:3]	-1.47	2.54			
12	VSXC	AE1	SDD	2.56	2.79	2.48	16.9 [4d:28]	3.10	2.48			
13	PBE1	AE1	SDD	-0.17	1.65	2.14	-7.4 [5d:3]	0.37	2.08			
14	BP86	SVP	SDD/SVP ^d	1.16	2.13	2.40	8.0 [5d:36]	1.70	2.36			
15	BP86	TZVP	SDD/TZVP ^d	1.39	2.04	2.19	-6.7 [5d:3]	1.92	2.12			
16	BP86	QZVP	SDD/QZVP ^d	0.93	1.72	1.99	-6.8 [5d:3]	1.47	1.93			
17	BP86	TZVP	ZORA/TZVP	1.24	2.05	2.29	-8.6 [5d:3]	1 78	2.18			
18	TPSS	TZVP	ZORA/TZVP	1.04	1.83	2.19	-10.4 [5d:3]	1.58	2.02			
19	TPSSh	TZVP	ZORA/TZVP	0.01	1.54	2.07	-10.7 [5d:3]	0.84	1.92			
20	PBE	TZVP	ZORA/TZVP	0.99	1.93	2.25	-8.5 [5d:3]	1.53	2.13			
21	PBE1	TZVP	ZORA/TZVP	-0.79	1.97	2.00	-9.7 [5d:3]	-0.25	1.93			
22	PBE+VdW	TZVP	ZORA/TZVP	0.07	1.03	2.40	-9.6 [5d:3]	1.41	2.24			
23	LSDA	ZORA/TZVP	ZORA/TZVP	-2.63	2.96	2.65	-11.9 [5d:3]	-2.09	2.46			
24	PBE1	ZORA/TZVP	ZORA/TZVP	-1.05	1.81	2.11	-9.7 [5d:3]	-0.51	2.04			
25	B3P86	ZORA/TZVP	ZORA/TZVP	-0.48	1.71	2.19	-9.6 [5d:3]	0.06	2.12			
26	B3PW91	ZORA/TZVP	ZORA/TZVP	-0.46	1.71	2.18	-9.4 [5d:3]	0.08	2.11			
27	TPSSh	ZORA/TZVP	ZORA/TZVP	0.04	1.69	2.23	-10.7 [5d:3]	0.58	2.09			
28	PBE	ZORA/TZVP	ZORA/TZVP	0.73	2.00	2.43	-8.5 [5d:3]	1.26	2.32			
29	B3LYP	ZORA/TZVP	ZORA/TZVP	1.17	2.15	2.50	-8.3 [5d:3]	1.70	2.50			
30	TPSS	ZORA/TZVP	ZORA/TZVP	0.77	1.91	2.38	-10.4 [5d:3]	1.30	2.22			
31	BPW91	ZORA/TZVP	ZORA/TZVP	1.00	2.11	2.46	-8.4 [5d:3]	1.54	2.36			
32	BP86	ZORA/TZVP	ZORA/TZVP	0.98	2.11	2.47	-8.6 [5d:3]	1.52	2.38			
33	BLYP	ZORA/TZVP	ZORA/TZVP	3.11	3.44	2.86	9.1[5d:36]	3.65	2.83			
34	PBE+VdW	ZORA/TZVP	ZORA/TZVP	0.62	2.04	2.56	-9.6 [5d:3]	1.16	2.41			
35	B3LYP+VdW	ZORA/TZVP	ZORA/TZVP	0.92	2.03	2.48	-9.9 [5d:3]	1.45	2.40			ot al
36	TPSS+VdW	ZORA/TZVP	ZORA/TZVP	0.54	1.94	2.53	-11.9 [5d:3]	1.08	2.31		DUIII, IVI.,	El al.
37	BP86+VdW	ZORA/TZVP	ZORA/TZVP	0.83	2.12	2.61	-10.2 [5d:3]	1.36	2.47	. 10	CTC 2008	4 1449
38	BLYP+VdW	ZORA/TZVP	ZORA/TZVP	2.78	3.21	2.83	8.8 [4d:28]	3.32	2.73	00	<i>, , , , , , , , , , , , , , , , , , , </i>	<u> </u>

Table 3. Statistical Assessment of Equilibrium (r_e) and Effective (r_{eff})⁷⁶ Metal-Ligand Bond Distances Computed for the Combined Test Sets of All 3d-, 4d-, and 5d-Metal Complexes at Selected Levels of Theory^a

^a See footnotes in Table 2. ^b See footnotes in Table 2. ^c In brackets: transition row and corresponding running bond number from refs 7 and 8 and this work. ^d See footnotes in Table 2.

Example: Van der Waals

Siegbahn, PEM, Blomberg, M.A.; Chen, S.-L. JCTC, **2010**, <u>6</u>, 2040

Significant van der Waals effects

However: Ab Initio vs actual DFT Potentials

There are (expensive!) ways to construct very good KS potentials from accurate densities (red). These can be compared with "typical" present day potentials (blue).

The presently used potentials are far from being correct and all present day DFT results rely on cancellation of large errors.

Big qualitative problems still exist ...

Energies - DFT vs ab initio

FN, A. Hansen, F. Wennmohs, S.- Grimme (2009), Acc. Chem. Res. 42, 641

Systematically approaching the solution

THE JOURNAL OF CHEMICAL PHYSICS 125, 144108 (2006)

W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions

Amir Karton, Elena Rabinovich, and Jan M. L. Martin^{a)} Department of Organic Chemistry, Weizmann Institute of Science, IL-76100 Rehovot, Israel

Branko Ruscic Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

(Received 7 July 2006; accepted 10 August 2006; published online 12 October 2006)

insurmountably higher than that of the earlier W3 theory, while performance is markedly superior. Our W4 atomization energies for a number of key species are in excellent agreement (better than 0.1 kcal/mol on average, 95% confidence intervals narrower than 1 kJ/mol) with the latest experimental data obtained from Active Thermochemical Tables. Lower-cost variants are proposed:

... meaning the (non-relativistic) Schrödinger equation is solved to an accuracy of 0.0001 Eh which is ~99.9999% or ~1 part in 10⁶!

... For **really** small systems (1-6 *electrons*), we can today reach "crazy accuracy", e.g. Nakatsuji calculated the H₂⁻ ground state energy to be **-0.597 139 063 123 405 074 834 134 096 025 974 142 a.u.** (36 significant digits!)

Electron Correlation: The Physical Problem

F12 Methods 122

Electron Correlation: The Computational Problem

Appendix: More information on Multireference Methods

Generalizing: Detecting Multireference Character

Generally

Use chemical common sense!

Using, e.g. ligand field theory or Lewis resonance structures you will in a large majority of cases be able to figure out off-hand that your system is multideterminantal or multiconfigurational

In DFT:

- \checkmark Examine if the RHF wavefunction is stable and/or look at <S²>
 - Note: this may well require several different initial guesses for the SCF to find alternative electronic states.
 - For example, the **ORCA** program let's you try different guesses according to BS(*m*,*n*)
 - Note: the more Hartree-Fock exchange the more likely your solution is to be "unstable" and converge to spin-coupled states!
- ✓ Analyze the corresponding orbitals of the various solutions for overlaps significantly smaller than unity.
- Determine magnetic coupling parameters and solve the Heisenberg Hamiltonian for an estimate of pure spin-state energies

In Wavefunction Theory:

- ✓ Analyze the UHF wavefunction in the same way
- Look at the natural orbital occupation numbers of MP2 (or CCSD). Values significantly different from 0,1 or 2 indicate multireference character
 - ► These natural orbitals are excellent guesses for a subsequent CASSCF calculation
- Examine the largest doubles amplitudes of a CCSD calculation. Large values (approaching unity) indicate multireference character
 - Note that the frequently used T1-diagnostic is not a good measure or MR character

Which Multireference Methods?

✓ Complete Active Space self consistent field

- CASSCF is almost always the starting point for a MR calculation. You have to be careful about a number of points:
 - Which orbitals go in the active space? A bad choice spoils convergence. If the occupation number of an active orbital approaches 2.0 or 0.0 during the optimization this usually signals trouble. The active space should just cover the "essential physics" (whatever that means to you ...)
 - Where do you get your initial guess orbitals from? Typically some kind of natural orbitals is a good idea. Never do a CASSCF calculation without looking at the orbitals that you put in the active space! Even then you may need to experiment with alternative active spaces
 - Over how many roots do you average?
 - Be aware of the restriction to about 14 active orbitals. Alternatives that allow larger active spaces exist (RASSCF, DMRG,...) but are not yet part of the standard arsenal.
- > CASSCF is not automatically size consistent. It depends on your choice of active space.
- Geometry optimizations are reasonably efficient as CASSCF is fully variational
- Do not forget that CASSCF is of the same overall quality as HF is for closed shell molecules. You cannot expect miracles and the CASSCF orbitals may be as desastrous for transition metals as RHF or ROHF orbitals.

Which Multireference Methods?

Multireference Perturbation Theory

- Second order MR-PT has been developed into a general and powerful post-CASSCF theory. However, you should not forget that this is still second-order perturbation theory.
 - ➡ You get improved energies but not improved wavefunctions
 - The intrinsic accuracy cannot be expected to be much higher than single reference MP2 inside its valid domain unless you put substantial dynamic correlation in the reference.
- The most popular MR-PT2 variant is CASPT2 which is implemented in MOLCAS or MOLPRO. It has additional options:
 - The precise choice of H0. Depending on the type this may involve additional empirical parameters to be input
 - An empirical level shift to avoid intruder states
 - The option for "multistate" treatments that make the results sensitive to the number and nature of roots to be determined
- An alternative is NEVPT2 (Dalton, MOLPRO, ORCA) or MCQDPT (Gamess, Firefly).
- For close-lying or crossing states you may have to resort to "multi-state" treatments. These come with their own package of problems.
- Gradients are only sparsely available

Which Multireference Methods?

Multireference Coupled Cluster Theory

From the point of view of computational chemistry this is "emerging technology" that is barely applicable in its present form - but it is a very active field.

Multireference Configuration Interaction

- In principle, a high accuracy method that provides variational energies and wavefunctions, BUT:
 - If you pursue an "uncontracted" MR-CI the calculations are of explosive cost with respect to the active space. (Very few programs: check COLUMBUS)
 - "Internal contracted MR-CI (e.g. MOLPRO) is much more efficient but still fairly limited in its applicability to larger molecules.
 - Approximate and more affordable MR-CI methods exist (e.g. SORCI in ORCA) but are specialist domain.
 - MR-CI is not size consistent. Popular options to approximately deal with this are MR-ACPF or MR-AQCC
 - A powerful approach for the calculation of energy differences that is less prone to size consistency problems and is much less expensive than full MR-CI is "difference dedicated CI" (Malrieu, Caballol) as implemented in the programs of the Toulouse group or ORCA