Complementing in another language: Prosody and code-switching

Jonathan Steuck
Pennsylvania State University
Rena Torres Cacoullos
Pennsylvania State University

Abstract
In English-Spanish code-switching, the main and complement clause boundary is a site of variable equivalence between languages. Whereas the complementiser is always present in Spanish, in English it is only sometimes present, giving rise to a quantitative word string mismatch at this juncture. Comparisons with monolingual benchmarks reveal no grammatical convergence of the contact varieties in finite complementation patterns. Rather, prosody provides a solution to variable equivalence. Whereas in monolingual speech main and complement clauses tend to be prosodically integrated by occurring in the same Intonation Unit, the opposite is true when there is code-switching at the clause boundary. Prosodic distancing of the two languages at junctures of variable equivalence is thus a bilingual strategy for code-switching between separate grammars.

Keywords: Prosody, complementation, code-switching, equivalence, convergence, bilingualism, English, Spanish, New Mexico, Intonation Unit.

1. Code-switching and equivalence

“Mixing” is a descriptor widely applied to bilingual speech. Mixing of grammars also is implied by blended labels such as Spanglish or Türkendeutsch. Yet grammatical convergence is not inherent to bilingualism. Bilinguals' grammars are interconnected, as evidenced in structural priming across languages (Gries & Kootstra 2017), but still separate, as evidenced in their aligning with their respective monolingual benchmarks, while differing from each other (Torres Cacoullos & Travis 2018). The key methodological tool is the identification of grammatical (dis)similarities by using quantitative diagnostics in speech corpora.1

Code-switching between languages is illustrated in (1). Examples are from the New Mexico Spanish-English Bilingual corpus (cf. Torres Cacoullos & Travis 2018, Chapters 2 & 3); italics and roman type respectively indicate speech originally produced in Spanish and English.

(1) Miguel: ... hay veces que quiero poner una .. Spanish word in there.
‘... there are times that I want to put a .. Spanish word in there.’
[04, 1:11:19-1:11:24]2

The Equivalence Constraint states that bilinguals tend to avoid code-switching at points of word order conflicts between the two languages. Word order equivalence was the major finding of Poplack (1980), who reported that fewer than 1% (11/1,835) of code-switches occurred at points where the word orders were different. The key insight of the

1 We gratefully acknowledge National Science Foundation grants 1019112/1019122 to Rena Torres Cacoullos and Catherine Travis and 1624966 to Torres Cacoullos and Shana Poplack.
2 Within brackets following examples are the recording number and the beginning-ending time stamps of the lines reproduced. Transcription protocols follow Du Bois et al. (1993).
Equivalence Constraint is that the concatenated strings constituting code-switches internally follow the grammar of their respective language, but that at the points at which languages are switched the two grammars are ‘equivalent’ (Poplack 1980, Sankoff 1998). For example, in (1), where Miguel (a pseudonym) begins in Spanish and ends in English, each string adheres to the respective monolingual norms. On the one hand, the Spanish string follows the Spanish ‘there are times that’ rather than the English *there are times when*, which is preferred over *there are times that* (a search in the Corpus of Contemporary American English [Davies 2008-] yielded frequencies of 856 versus 49). On the other, the English string displays adjective noun order rather than the Spanish preference for postnominal adjectives (e.g. Delbecque 1990). However, at the juncture between languages, there is word string equivalence between the two languages, since the determiner precedes the noun in both Spanish and English (Sankoff & Poplack 1981:17).

Here we focus on the boundary of main and complement clauses, illustrated in (2) for English and (3) for Spanish. In (2), the English complementiser *that* is absent, indicated with a Ø between the main clause [MC] and the complement clause [CC]. The complementiser is in fact absent most of the time in English (see Shank, Plevots and Van Bogaert [2016] for a summary of *that*/zero alternation). Though rates of complementiser presence vary according to register, they range approximately between 10% and 20% in corpora of spoken English (e.g. Thompson & Mulac 1991; Torres Cacoullos & Walker 2009). In Spanish, in contrast, the complementiser *que* is virtually always present (Silva-Corvalán 1994:137).

(2) Pedro: *... I thought* [MC] Ø it was a pretty big town back then. [CC] [10, 35:55-35:57]

(3) Alfredo: *yo pensé* [MC] *que* estaba muy alto. [CC] ‘*I thought* [MC] *that* it was very high. [CC]’ [31, 52:11-52:12]

For English-Spanish bilinguals, the juncture between MC and CC would be a site of *variable equivalence* (Torres Cacoullos & Poplack 2016). Sites of variable equivalence display a quantitative rather than a qualitative mismatch—where the languages differ only sometimes, due to independent, but inherently variable, processes in one or both of the languages. This sometimes-applying mismatch between the languages at the main and complement clause boundary has the consequence that for code-switching there arises the problem of variable equivalence at this juncture. In this paper, we offer evidence for prosodic separation as a bilingual strategy for dealing with cross-language mismatches found at the juncture of two languages.

2. A community-based bilingual speech corpus

To address the prosody of code-switching, we visit northern New Mexico, where code-switching is “the appropriate code for the Hispano community” (Gonzales 1999:29). Spanish has been spoken here longer than English (Bills & Vigil 2008:29-47). With U.S. statehood in 1912, however, Spanish was relentlessly displaced in the schools, being relegated to a foreign language subject. Today the local variety is endangered, due to stigmatisation and shift to English. Still, of U.S. states, New Mexico has the highest “Hispanic or Latino population” as a percent of the total, at 47%, followed by California
and Texas, each at 38% (United States Census Bureau 2015). It also has the lowest proportion of first-generation immigrants (“foreign born”), at about one-fifth of the New Mexico Hispanic population, compared with approximately one third in Texas and nearly half in Florida (United States Census Bureau 2015). In northern counties, the percent of Hispanics is as high as 80% and the proportion of non-US born is as low as 5%. Since these demographics imply limited contact with monolingual Spanish, this bilingual community is a prime candidate for language mixing.

What kind of data offer insights on patterns of language use within the speech community? According to Labov (1989:2), “Word lists and formal elicitations are the primary sources of confusion in our descriptions of language.” The New Mexico Spanish-English Bilingual (NMSEB) corpus is a sociolinguistic-style corpus of spontaneously produced bilingual speech, recording 40 northern Hispano New Mexicans, minimally third-generation, who meet the criterion of regular use of both languages (Torres Cacoullos & Travis 2018:13-56). Participants are not asked to code-switch nor about their code-switching. Instead, the technique is to elicit narratives of personal experience, where speakers shift towards the vernacular, the mode of everyday speech, because they, not the university-affiliated interviewer, are the authority (Labov 1984:32).

Testimony to the bilingualism of the corpus is the distribution of [Main Clause + Complement Clause] instances according to language. In Figure 1 we see that the proportions of English-only, as in (2), and Spanish-only, as in (3), tokens are nearly equal, at 41% (467/1,133) and 43% (484/1,133), respectively.

![Figure 1. Language of [Main Clause + Complement Clause] (NMSEB, N=1,133)](image)

Cases involving multiword code-switching (CS) constitute 9% (107/1,133) of [Main Clause + Complement Clause] tokens. In (4), code-switching is at the boundary between the clauses (@ represents one syllable of laughter). In (5) code-switching is within one of the clauses, here between the verb and an adverbial expression in the complement clause. Single word insertions (as in me acuerdo que era una purple ‘I remember that it was a purple one’ [06, 18:28-18:29]), which add up to another 7% (75/1,133), are not counted with multiword (unambiguous) instances of code-switching (cf. Poplack 2018).
(4) Code-switching at [MC + CC] boundary
Dolores: *me dijeron que,* [MC]
I was gonna run the two mile? [CC]
‘they told me that,’ [MC]
I was gonna run the two mile? [CC]’

[22, 11:08-11:10]

(5) Code-switching within MC or CC, but not at boundary
Dora ... *se me hace* [MC] *que era* four years ago. [CC]
‘...I think [MC] that it was four years ago.’ [CC]’

[14, 30:10-30:11]

When speakers switch from one language to the other at the boundary between main and complement clause, they do so in both directions at roughly the same rate. Speakers switch from Spanish main clauses to English complement clauses, as in (4) above, about 59% of the time, and the reverse, as in (6), 41% of the time in aggregate, as shown in Figure 2. The lack of a conspicuous directionality of code-switching is further testimony to the bilingualism of these speakers. The even distribution of the languages and lack of switching directionality are consistent with the locally unpredictable use of code-switching as a general discourse mode for the community.

(6) Fabiola ...*(0.8)* did Nancy tell you [MC] *que había venido a ver a la grandma?* [CC]
‘...(0.8) did Nancy tell you [MC] *that she had come to see grandma?’ [CC]’

[09, 43:43-43:46]

Figure 2. Direction of code-switching at [Main Clause + Complement Clause] boundary (NMSEB, N = 63)

3. Prosodic and syntactic relationships

We do not usually speak in the well-formed sentences privileged by much syntactic analysis. Intonation Units are recognisable units of conversation (Chafe 1994:53-70). The Intonation Unit (IU) is “a stretch of speech uttered under a single, coherent intonation contour” (Du Bois et al. 1993:47). Each IU appears on a distinct line in the transcription followed by punctuation representing its transitional continuity (Du Bois et al. 1993:53). For example, in (7) the first IU has continuing intonation, indicated by a comma; the second IU ends in a final intonation contour, marked by a period.
Sandra: I think he just was giving us time to think, you know.

Transcription of the speech stream into IUs is done perceptually by trained linguists (Du Bois et al. 1993). Nevertheless, the waveform and F0 trace in Figure 3 illustrate acoustic features transcribers attend to. For example, we can see the higher pitch at the beginning, gradually dropping over the course of the IU to the end, as well as the slower rate of speech at the end of the IU (compare the two instances of think).

![Figure 3. Acoustic properties of the Intonation Unit (IU)](image)

*Figure created in Praat (Boersma & Weenink 2018).

There generally is a tighter syntactic relationship between words in the same IU than between words positioned in different IUs (Croft 1995:849-864). The syntactic relationship between main and complement clause is realized prosodically in the tendency for the complement clause verb to occur in the same IU as its main clause verb. This is true for finite clausal complements in conversational English and Spanish data, at rates of 78% (660/844) and 68% (224/328) respectively (Steuck 2016:81), as shown in Figure 4 (left panel). The datasets consist of all declarative finite verbs with finite clausal complements. Conventionalised formulae such as you know or collocations such as I think that are prosodically independent or that occur as parentheticals were excluded (see Steuck [2016:77-80] for exclusion protocols).

3 For each hour of speech, at least 50 were required for transcription of the NMSEB corpus (Torres Cacoullos & Travis 2018:46-51).
So, most of the time main and complement clauses are prosodically integrated in a single IU. When are they spread over two or more IUs? In Table 1, contexts hypothesised to influence the prosody of complementation are operationalised as factors in a multivariate analysis; their relative contribution to the probability of the absence of prosodic integration is given as a factor weight between 0 and 1 (Sankoff et al. 2005). The higher the number, the greater the probability of the absence of prosodic integration in the corresponding context. The second column gives the number of observations.

In both languages (monolingual benchmarks appear in the leftmost columns of Table 1), the absence of prosodic integration is favoured in the context of intervening material, such as adverbials, other clauses, or pauses. In English, the presence of the complementiser, itself a kind of intervening material, also favours the absence of prosodic integration (in Spanish, the complementiser is invariably present). Grammatical person and form of the subject also contribute to speaker choices: the absence of prosodic

Figure 4. Prosodic integration of [Main Clause + Complement Clause]: Proportion of occurrences in same IU versus two (or more) IUs in monolingual benchmarks and bilinguals’ varieties

4 Pauses are represented by dots in the transcription; a number within parentheses indicates a timed pause of 0.7 seconds or longer, as in example (6). Though pauses often coincide with IU boundaries, they are not a required feature (Chafe 1994:58-60; Croft 1995:840). IU-internal pauses, as in (6), are notably less frequent; in a NMSEB sample, 33% (550/1662) of IUs have pauses marked initially, but only 5% (81/1662) have internal pauses (Steuck 2018:86-88).
integration is more likely with non-first person main clause subjects and with lexical rather than pronominal complement clause subjects. These factors indicate the role of syntactic distancing, as well as that of particular constructions (e.g., I think, yo creo ‘I believe’) and considerations of information status or heaviness of constituents (Croft 1995:850-864; Steuck 2016).

<table>
<thead>
<tr>
<th>Average Corrected mean</th>
<th>English-Monolingual 22%, 184/844</th>
<th>Spanish-Monolingual 32%, 104/328</th>
<th>English-Bilingual 22%, 101/467</th>
<th>Spanish-Bilingual 36%, 172/484</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervening material</td>
<td>.92 126/183 .90 70/91</td>
<td>.94 62/80 .89 118/150</td>
<td>.90 70/91</td>
<td>.89 118/150</td>
</tr>
<tr>
<td>Present</td>
<td>.34 58/661 .30 34/237</td>
<td>.37 39/387 .28 54/334</td>
<td>.30 34/237</td>
<td>.28 54/334</td>
</tr>
<tr>
<td>Absent Complementizer</td>
<td>.81 60/107</td>
<td>.71 55/126</td>
<td>.81 60/107</td>
<td>.71 55/126</td>
</tr>
<tr>
<td>Present</td>
<td>.45 124/737 NA</td>
<td>.42 46/341 NA</td>
<td>.45 124/737 NA</td>
<td>.42 46/341 NA</td>
</tr>
<tr>
<td>Person main clause subject</td>
<td>.62 77/222 .61 61/150</td>
<td>.57 33/104 [.50]</td>
<td>.62 77/222 .61 61/150</td>
<td>.57 33/104 [.50]</td>
</tr>
<tr>
<td>3rd or 2nd person</td>
<td>.46 107/622 .41 43/178</td>
<td>.48 68/363 [.50]</td>
<td>.46 107/622 .41 43/178</td>
<td>.48 68/363 [.50]</td>
</tr>
<tr>
<td>1st person</td>
<td>.59 70/246 [.65]</td>
<td>.58 25/90 .65 123/37</td>
<td>.59 70/246 [.65]</td>
<td>.58 25/90 .65 123/37</td>
</tr>
<tr>
<td>Pronoun, Other</td>
<td>[.46] 114/598 [.46]</td>
<td>.48 76/376 .46 48/104</td>
<td>[.46] 114/598 [.46]</td>
<td>.48 76/376 .46 48/104</td>
</tr>
</tbody>
</table>

Table 1. Independent variable rule analyses of the contribution of linguistic factors to the absence of prosodic integration of [Main Clause + Complement Clause]

* Factor weights in variable rule analysis (Sankoff 1988) indicate the strength of constraints relative to the corrected mean. Monolingual benchmark analyses from Steuck (2016).

What, then, is the prosodic profile of bilinguals’ code-switched [Main Clause + Complement Clause] occurrences?

4. Variable equivalence and English-Spanish complementation

At junctures of variable equivalence the word strings of the two languages in contact are equivalent only sometimes. Such is the boundary of main and complement clauses: whereas in Spanish the complementiser que is always present, in English complementiser that is variably present. Bilinguals might circumvent the mismatch between the languages by mixing them, that is, through grammatical convergence (cf. Gumperz & Wilson 1967; Backus 2005). In other words, they might make the contact varieties more similar to each other than their non-contact (monolingual) counterparts are. They do not do so.

Evidence against grammatical mixing is that bilinguals’ English-only and Spanish-only [Main Clause + Complement Clause] occurrences adhere to the same prosodic pattern as their respective monolingual benchmarks. The rates of integration of main and
complement clauses in the same IU are 78% (N = 467) in bilinguals’ English, but 64% (N = 484) in their Spanish (Figure 4, right panel). At the same time, the direction of effect of factors contributing to the prosody of complementation is consistent across monolingual and bilingual varieties of the two languages (Table 1, right-hand columns). (The difference in main-clause subject person in bilinguals’ New Mexican Spanish is due to the use of the impersonal expression se me hace ‘it seems to me’ [as in (5)], absent in the Colombian Spanish benchmark; see Figure 6.)

A second piece of evidence countering convergence is that the distribution of main-clause verbs is strikingly similar in the bilingual and the monolingual varieties. In English, for both bilingual and monolingual varieties, think, know, guess and say account for two-thirds of the data (Figure 5, top panel). In Spanish, the most frequent complement-taking verbs are creer ‘believe’, decir ‘tell’, saber ‘know’, pensar ‘think’ and, in the New Mexican data, se me hace ‘it seems to me’ and acordarse ‘remember’ (Figure 5, bottom panel).

Figure 5. Frequency of complement-taking lexical types, in monolingual benchmarks and bilinguals’ varieties

A third piece of evidence that bilinguals are adhering to separate grammars is that complementiser that is mostly absent in bilinguals’ English (appearing at a rate of 27%, 126/467), as in the English monolingual benchmark, while complementiser que is never absent, as in the Spanish benchmark (Table 1).

In sum, at least as concerns finite complementation, when these bilinguals speak English, they speak as monolingual English speakers do. When they speak Spanish, they
do so like other Spanish speakers. So, when switching at the main and complement clause boundary, bilinguals confront a word string mismatch between their languages, because of the language-internal structural variability in English. What strategy do they use, then, to deal with such a site of variable equivalence? One hypothesis is that bilinguals employ prosodic distancing of code-switching boundaries (Torres Cacoullos & Poplack 2016). As we have seen, main and complement clauses tend to be prosodically integrated, that is, they tend to occur in the same prosodic unit (Figure 4, above). Therefore, the prediction is that, in the presence of code-switching at the boundary between main and complement clauses, absence of prosodic integration will be more frequent, as compared with Spanish-only and English-only baselines.

5. Code-switching through prosodic distancing of the boundary between main and complement clause

Code-switching in bilingual complementation may be at the boundary between main and complement clause—as in examples (4) and (6)—or within one of the clauses, as in (5). Are main and complement clauses prosodically integrated at the same rate when code-switching occurs at the clause boundary—a site of variable equivalence—as when it occurs within clauses at loci of equivalence? If code-switching entails a general processing cost, the absence of prosodic integration should be equally as high, compared with monolingual baselines. If, on the other hand, it is equivalence that matters and bilinguals use prosody to deal with variable equivalence, the absence of prosodic integration should be more frequent with code-switching at the clause boundary.

Figure 6 (left panel) shows that in the presence of within-clause code-switching, the main and complement clause tend to occur in the same IU, at a rate of 64% (28/44), nearly the same as in the monolingual benchmarks and—notably—as in bilinguals’ own non-code-switched speech (Figure 4). But with code-switching at the clause boundary, we see the opposite tendency, namely not to prosodically integrate the clauses, at a rate of 60% (38/63) (Figure 6, right panel).

![Figure 6. Prosodic integration of [Main Clause + Complement Clause]: Proportion of occurrences in same IU versus two (or more) IUs, in the presence of code-switching](image)

* $p < .05$, by Fisher’s exact test.
In summary, if cross-language equivalence matters, bilingual strategies for dealing with variable equivalence should be observable in code-switching preferences (Torres Cacoullos & Poplack 2016). The absence of prosodic integration of main and complement clauses is indeed more frequent when code-switching occurs at the boundary between them. The rate is higher as compared with both Spanish and English monolingual benchmarks, the very same bilinguals’ Spanish-only and English-only speech, and, finally, when code-switching occurs elsewhere—not at clause boundary. These prosodic patterns of complementation are evidence that prosodic distancing is due not so much to a problem of general processing cost of code-switching per se, but rather due to a problem of cross-language mismatches at particular sites. The prosody of complementation also supplies evidence that grammatical mixing is not a necessary accompaniment of code-switching since, where there are differences between English and Spanish (in the rate of prosodic integration and, especially, in the presence of the complementiser), these are maintained in bilinguals’ varieties.

The conclusion is that, just like monolingual speech, bilingual speech is syntactically and prosodically structured. When confronted with quantitative cross-language mismatches—sites of variable equivalence—bilinguals may mitigate them through prosodic distancing of code-switching boundaries.

References

