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Abstract

Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical
classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic
markers, like those in the genus Ocimum. Untargeted LC—MS metabolomics coupled with multivariate predictive modeling
provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for
many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown
authentic Ocimum to build predictive models for classifying commercially available Ocimum products. We found that three
species, O. tenuiflorum, O. gratissimum, and O. basilicum, were chemically distinct based on their untargeted UPLC-MS/
MS profiles when grown in controlled settings; combined with an orthogonal high-performance thin-layer chromatography
(HPTLC) approach, O. tenuiflorum materials revealed two distinct chemotypes which could confound analysis. Three pre-
dictive models (partial least squares, LASSO regression, and random forest) were employed to extrapolate these findings
to commercially available products; however, the controlled materials were significantly different from external samples,
and all three chemometric models were unreliable in classifying external materials. LASSO was the most successful when
classifying new greenhouse samples. Overall, this study highlights how growing and processing conditions can influence the
complexity of botanical metabolome profiles; further studies are needed to characterize the factors driving herbal products’
phytochemistry in conjunction with chemometric predictive modeling.
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Introduction Currently, 21 CFR 111 sets guidelines for supplement testing

and regulations, including meeting specifications for prod-

In 1994, Congress passed the Dietary Supplement Health and
Education Act (DSHEA), which required the US Food and
Drug Administration to set clear good manufacturing pro-
cesses (GMP) regulations for the dietary supplement industry.
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uct identity, purity, strength, composition, and limiting con-
taminants. While each of these categories is crucial for a safe
marketplace, understanding and defining proper specifications
and testing approaches is quite complex, especially regard-
ing herbal supplements, where the chemical complexity of
botanicals makes identification convoluted. Three primary
techniques used in the industry for botanical identification
include morphology, genetics (both whole genome and PCR-
based approaches), and analytical chemistry.

A major complication in herbal identity studies is that
closely related species can have very similar morphological
and genetic markers but variations in therapeutic proper-
ties. Most identification approaches compare a sample to a
limited number of reference standards meant to represent the
characteristics of the entire species. However, this fails to
incorporate the intraspecies variation that results from differ-
ences in chemotypes, environmental factors, and processing
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practices [1]. For example, highbush blueberries harvested
at different altitudes have different anthocyanin profiles [2],
and green tea leaves have differential metabolomes based
on season, geography, and harvest time [3]. In these cases,
a single reference standard would not incorporate all poten-
tial chemical variations [2]. And since herbal products’
therapeutic benefits are a result of their unique metabolite
compositions, species labels may not fully incorporate these
distinctions.

Recent developments in mass spectrometry provide a
potential avenue to improve this limitation. Improvements
in MS instrumentation yield analyses with high resolution
and mass accuracy, yielding detection and relative abun-
dance determination for thousands of compounds in a plant
sample. This shifts the analytical approach, moving from
reliance on a single marker compound or small subset of
compounds to examining a sample’s entire metabolome.
These non-targeted metabolite profiles provide a more exten-
sive look into plants’ chemical similarities and relationships
[4]; these methods, combined with multivariate statistical
approaches, have been successful in identifying botanical
adulteration [5].

However, translation of these approaches beyond the lab
and into commercial workflows faces several hurdles. The
first is that introducing more metabolite information does not
overcome the lack of chemical diversity that limited refer-
ence standards provide; where they exist, many species are
represented by one or two reference materials, and those
available often lack appropriate voucher specimens and
identifying information [1]. Recent efforts by the NIH Office
of Dietary Supplements have expanded reference material
availability, but it is still infeasible to generate numerous
standards for every commercially viable herb [6]. For suc-
cessful predictive modeling, a study must incorporate a
range of reliably identified samples, especially for plants
with many cultivars or closely related species.

Metabolomics data requires the application of an appro-
priate chemometric tool to robustly interpret the data. Linear
regression models are among the simplest and most wide-
spread approaches. Perhaps the most common supervised
linear model used in herbal product studies to combat the
small sample size limitation is partial least squares (PLS).
PLS models reduce large datasets to smaller components
that encompass the covariance and correlation of features,
similar to principal component analysis (PCA). Unlike
PCA, dependent variables guide the data reduction in PLS
so that the covariance of sample groups is maximized.
New samples can then be added to the model to determine
their classification based on the similarities in metabolite
profiles [7]. The use of PLS-discriminant analysis (PLS-
DA) in herbal authentication studies has been thoroughly
reviewed [8-10]; however, linear models like PLS tend to
overfit data containing more variables than samples (as is the
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case with untargeted metabolomics) [5, 11, 12]. To mitigate
the limitations of small sample numbers is to add a pen-
alty parameter to the linear model, conservatively biasing
model parameters towards zero [13]. Least absolute shrink-
age and selection operator (LASSO) regression is a form of
penalization particularly well suited for producing sparse,
simple models: in the present context, it encourages models
where only a small number of metabolites are used to predict
the outcome [14]. Studies exemplify LASSO as a prefer-
able method for variable selection over other data reduc-
tion techniques, like PLS-DA, for reducing overfitting and
model complexity [15]. However, Zhu et al. (2017) reported
that LASSO models had lower prediction accuracies than
similar penalized regression techniques like elastic net and
weighted fusion when classifying Ganoderma species [16].
Non-linear models, like random forest (RF), are also gaining
popularity as herbal product authentication tools. RF is an
ensemble approach that combines the predictive classifica-
tions of multiple decision trees. At each node of a decision
tree, a different metabolite is considered. Samples are sepa-
rated at each node based on the abundance or presence of the
specific metabolite, and each sample moves down the tree’s
nodes until a final classification is made [17]. RF uses the
principle of majority voting; the most common prediction
from all decision trees is the final classification [17].

Thus far, few studies have directly evaluated the perfor-
mance of untargeted metabolomics for herbal product iden-
tification studies for their ability to predict and model the
identity of external, consumer-available products. There is
a lack of reference materials for most herbal species, and
acquiring enough samples with reliable identifications is
complicated. To this end, this study used a controlled green-
house experiment to incorporate inter- and intra-species vari-
ation into the dataset while ensuring a proper sample size for
modeling is met. We grew thirty-one varieties of Ocimum,
or basil/Tulsi, belonging to three species, Ocimum gratis-
simum L. (OG), Ocimum tenuiflorum L. (OT), and Ocimum
basilicum L. (OB), in a greenhouse. These materials were
ordered based on the claimed identity on the seed distribu-
tors’ websites, and subsequent morphological identification
was performed on the seeds. Furthermore, samples were also
analyzed using high-performance thin-layer chromatogra-
phy (HPTLC). HPTLC is one of the most popular analytical
techniques in compendial methods and regulatory settings
for botanical identity testing but can also be applied as a
powerful quantitative tool. Herein, we compared the ability
of HPTLC and untargeted metabolite profiling to distinguish
the materials based on claimed species and morphological
identity, ultimately identifying 4 distinct chemotypes across
three species of Ocimum that did not necessarily align with
the species. However, despite the chemotype designation,
the greenhouse-grown materials were not translatable to
predict the classification of external materials.



Application of predictive modeling tools for the identification of Ocimum spp. herbal products

Experimental
Materials

All solvents and chemicals used, unless otherwise noted,
were of reagent or spectroscopic grade, as required, and
obtained from VWR (Radnor, PA, USA) or Sigma-Aldrich
(St. Louis, MO, USA).

Greenhouse growth

Thirty-one varieties of Ocimum, belonging to three spe-
cies, O. basilicium, O. tenuiflorum, and O. gratissimum,
were ordered from thirteen sources and stored at 4 °C until
grown in a greenhouse under controlled environmental

conditions (Table 1). Seeds were sowed in one-inch germi-
nation squares with common potting soil. Four seeds were
planted per square, and two plants were allowed to grow fol-
lowing germination. Each variety had a total of five one-inch
squares for germination. Seedlings were held in a walk-in
growth chamber at 24 °C and watered every 3 days or when
the top 0.5 inch of soil was dry. Once seedlings reached
three internodes, one of the two plants was transferred into a
four-inch pot with the same common potting soil mixed with
Miracle-Gro water-soluble fertilizer (The Scotts Company,
Marysville, OH, USA) and moved to a greenhouse. The
greenhouse was maintained at 24 °C with an 8:16 light:dark
cycle and watered every other day. In total, five plants of
each variety were grown until harvest. The entire growth
cycle was repeated for three rounds, resulting in 3 biological

Table 1 Greenhouse-grown

. R . Sample name  Labeled species ~ Morphological ID"  Variety Average extrac-
Ocimum extraction information. tion vield +SD
"Morphological identification vied®

1008 . (%)

provided from seed taxonomic

analysis; missing values indicate RS G O. gratissimum West African Wild Clove  14.49+0.69

noreserve see@s av?lilable for CP_G O. gratissimum 0. gratissimum n/a 11.3+2.2

taxonomic verification (for

images, see Table S2) CP_S O. tenuiflorum O. tenuiflorum Purple Tulsi 11.6+5.1
FS_G O. gratissimum 0. gratissimum n/a 139+1.3
FS_S O. gratissimum O. basilicum n/a 15.3+2.8
JS_ G O. basilicum O. basilicum Genovese 143+2.4
JS_H O. tenuiflorum O. tenuiflorum n/a 11.3£5.0
JS_ R O. basilicum O. basilicum Red Rubin 12.3+6.4
JS_S O. basilicum O. basilicum Sweet Thai 14.0+2.4
LSC_T 0. gratissimum n/a 159+3.1
PGS_A O. basilicum 0. basilicum Amethyst Purple 17.2+1.2
PGS_G O. basilicum O. basilicum Genovese 12.5+2.0
PGS_K O. tenuiflorum O. basilicum Kapoor 150+1.4
PGS_R O. tenuiflorum 0. basilicum Rama 153+1.7
PGS_T O. basilicum O. basilicum Thai 11.2+1.5
PGS_V 0. gratissimum O. gratissimum Vana 9.3+34
SE_K O. tenuiflorum O. basilicum Kapoor 13.1+£2.6
SMS_A O. tenuiflorum O. tenuiflorum Amrita 146+1.4
SMS_G O. basilicum O. basilicum Genovese 15.75+0.98
SMS_K O. tenuiflorum Krishna 10.4+6.4
SMS_M O. basilicum O. basilicum Mriani 12.8+1.8
SMS_R O. tenuiflorum O. tenuiflorum Rama 15.1+4.3
SMS_S O. basilicum O. basilicum Sweet lettuce leaf 10.4+3.0
SMS_T O. basilicum O. basilicum Thai 13.9+4.1
SMS_V O. gratissimum O. gratissimum Vana 17.4+3.9
SN_S O. tenuiflorum O. tenuiflorum n/a 11.5+2.1
STS_K O. tenuiflorum O. basilicum Kapoor 154+3.0
TLM_H O. tenuiflorum O. tenuiflorum Holy green leaf 12.7+£3.2
TLS_K O. tenuiflorum O. basilicum Kapoor 149+1.8
TLS_V O. gratissimum O. gratissimum Vana 105+14
TS_G O. tenuiflorum O. tenuiflorum Holy green leaf 16.2+3.0
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replicates (separate greenhouse growth times), with five
technical replicates (same greenhouse growth time) each.

Once the plants showed their first inflorescence, but
before full flowering, the leaves were harvested. All leaves
from each plant were cut using sterile scissors at the base
and flash frozen in liquid nitrogen before transfer to a — 80
°C freezer for storage. In the final greenhouse replicate, an
extra plant was grown of each variety. This plant was mor-
phologically identified as Ocimum and used as a voucher
specimen. All voucher specimens can be found at the
Pennsylvania State University Herbarium, or online from
the Mid-Atlantic Herbaria Consortium (record numbers
30760376-30760406).

Morphological identification

We used seed characteristics based on the work of Patel et al.
(2015) [18] as well as the formation of mucilage to con-
firm seed identity [19]. To identify seeds, 3-5 seeds were
removed from each seed packet. Seeds were examined under
a stereomicroscope to record shape, color, and texture. Seeds
were then placed in a Petri dish filled with tap water for a
minimum of 5 min and observed for the presence of a muci-
laginous coat around the testa. Seeds were identified via the
following criteria:

e Ocimum basilicum: ellipsoid, black seeds with pitted sur-
face texture, forming a thick, cloudy mucilaginous coat
in the presence of water.

e Ocimum gratissimum: rounded, brown seeds with pebbly
surface texture, not mucilaginous in water.

e Ocimum tenuiflorum: ellipsoid, yellow seeds with streaks
of black, surface smooth, forming a thin, translucent
mucilaginous coat in the presence of water.

Metabolite extraction

The five technical replicates were combined for each growth
replicate, resulting in three samples per variety. After the
final harvest, samples were lyophilized at the Pennsylvania
State University CSL Behring Fermentation Facilities. Lyo-
philized samples were then ground to a fine powder with a
mortar and pestle under liquid nitrogen. Powdered samples
were weighed, combined with 80% aqueous methanol with
0.1% formic acid, and shaken at 200 rpm at room tempera-
ture for 16—18 h. Following extraction, the solid material
was separated via vacuum filtration with 0.2 um filter paper,
and the solvent was dried to completion with a Buchi roto-
evaporator. Final extracts were stored at room temperature
in sealed vials until mass spectrometry preparation. Extract
yields can be found in Table 1.
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Obtaining consumer-available Ocimum products
and Ocimum reference materials

Reference materials

Eleven reference materials were obtained through online
retailers to construct an external validation set. Four sam-
ples were ordered from herbal product suppliers and arrived
with certificates of analysis (COAs) verifying their species
identification (two O. tenuiflorum and two O. gratissimum).
Two samples (one O. tenuiflorum and one O. gratissimum)
were donated from the University of Georgia Medicinal Plant
Farm and were morphologically identified with an associated
publication [20]. An O. tenuiflorum VRBM was obtained
from ChromaDex (Torrance, CA, USA), and a “Holy Basil”
reference standard was obtained from USP (however, no spe-
cific species was listed). Two out-group reference materials
were added to the external validation set—one Salvia ros-
marinus L. (rosemary) standard (USP) and one Salvia offici-
nalis L. (sage) leaf reference material (ChromaDex). One O.
basilicum sample was obtained from an organic farm and
morphologically identified on-site prior to shipment. Sam-
ples were extracted following the method described above for
greenhouse sample extractions, except materials that arrived
as a powder were not ground with liquid nitrogen prior to
extraction. VRBMs and USP reference standards were only
extracted once due to limited sample size. All samples were
stored at room temperature in the dark until use, and final
extracts were stored at room temperature in sealed vials until
mass spectrometry preparation. See Table 2 for a complete
list of reference materials and extraction yields.

Consumer products

Seventeen consumer products were ordered online from a
variety of retailers. Eleven products were bulk, dried herbs
from organic farms, herbal product suppliers (with no asso-
ciated COAs), or eBay retailers. Two were tinctures or liq-
uid softgels, two were O. gratissimum and O. tenuiflorum
tea blends, and two were culinary products. There were six
O. basilicum products, six O. tenuiflorum products, two O.
gratissimum, and three “holy basil” products with no species
identification. Dried leaves and powdered materials were
prepared as described above. Most products were extracted
in triplicate, but some only underwent a single extraction
due to limited sample quantity. Liquid samples were not
further extracted, and their mass spectrometry preparation
is described below. All samples were stored at room tem-
perature in the dark until extraction, and the final extracts
were stored at room temperature in sealed vials until mass
spectrometry preparation. See Table 2 for a complete list of
consumer products and extraction yields.
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Table 2 Reference material (EVS) and consumer product (C) information

Sample name Set Type Species Average extrac-
tion yield + SD
(%)

B1 C Dried herb O. tenuiflorum 18.4+6.9

B2 C Dried herb O. tenuiflorum 10.8+1.3

B3 C Dried herb O. gratissimum 14.36 +0.68

B4 C Dried herb O. tenuiflorum 26.7+2.4

BS C Dried herb O. gratissimum 17.53+0.87

B6 C Dried herb O. tenuiflorum 14.25+0.91

B7 C Dried herb O. tenuiflorum 15.0+1.6

B8 C Dried herb O. basilicum 242+2.1

B9 C Dried herb O. basilicum 21.3+1.3

B10 C Dried herb O. tenuiflorum 16.19+0.16

B1l1 C Dried herb O. basilicum 18.6+3.5

B12 C Culinary herb O. tenuiflorum 16.97

B13 C Culinary herb O. basilicum 30.91

Bl14 C Tulsi tea, mix O. tenuiflorum and O. gratissimum 17.57

B15 C Holy basil extract gel capsule O. tenuiflorum 38.42

B16 C Holy basil tincture O. tenuiflorum n/a

B17 C Tulsi tea, mix O. gratissimum and O. tenuiflorum 22.77

VS1 EVS Dried herb—COA O. gratissimum 15.1+1.2

VS2 EVS Dred herb—COA O. tenuiflorum 11.8+4.1

VS3 EVS Dried herb—publication O. tenuiflorum 16.9+2.6

VS4 EVS Dried herb—publication O. gratissimum 14.1+2.0

VS5 EVS Holy basil VRBM O. tenuiflorum n/a

VS6 EVS Rosemary USP reference standard Non-target n/a

VS7 EVS Sage leaf USP reference material Non-target n/a

VS8 EVS Holy basil USP reference material O. tenuiflorum or O. gratissimum n/a

VS9 EVS Dried herb—morphological ID O. basilicum 212+1.4

Ultraperformance liquid chromatography tandem
mass spectrometry analysis

All samples were prepared at a concentration of 1 mg/
mL in LCMS grade methanol with 1 uM chlorpropamide
(Stanta Cruz Biotechnology, Dallas, TX, USA) as an internal
standard.

Untargeted metabolomic analyses were performed on
a Vanquish Duo UHPLC system connected to a Thermo
Orbitrap Fusion Lumos Mass Spectrometer (ThermoFisher
Scientific, Waltham, MA). A Waters Acquity UPLC BEH
C18 (1.7 ym, 2.1 X 150 mm) column was used with a flow
rate of 0.1 mL/min at 55 °C. Solvent A was 0.1% formic acid
(v/v) in LC-MS water and solvent B was 0.1% formic acid
(v/v) in LC-MS acetonitrile. The mobile phase gradient of
solvent B was as follows: 3% for 0.01 min, 45% for 10 min,
75% for 2 min, 100% for 4.5 min, and 3% for 0.2 min. A 2
uL injection was used for all samples [21, 22].

Mass spectrometry was conducted using an electrospray
ionization source with a positive ion spray voltage of 3500 V,

sheath gas pressure of 25 Arb, auxiliary gas pressure of 5
Arb, ion transfer temperature of 275 °C, and vaporizer tem-
perature of 75 °C. MS! data was acquired with an Orbitrap
resolution of 120,000, a scan range of 100—1000 Da, and an
RF lens of 50% in the profile mode. MS? data was collected
in a data-dependent manner using an intensity threshold of
2.5e4 and dynamic exclusion (ions excluded after 1 detec-
tion for 30 s).

Data processing and preparation

The UPLC-MS/MS data were analyzed and processed using
MZmine 3.1 software [23]. Peaks were detected with a noise
level of 5.5E5 counts, minimum peak duration of 0.25 min,
and 25% tolerance for m/z intensity variation. The ADAP algo-
rithm was used to build chromatograms with the following
parameters: minimum group size=>5, group intensity thresh-
old=5.5ES, minimum highest intensity =5.5ES5, and scan-to-
scan accuracy =0.05 Da or 10.0 ppm. Chromatograms were
resolved using the ADAP intensity window chromatogram

@ Springer



E.J. Abraham et al.

resolution feature with a signal/noise threshold of 7, mini-
mum feature height of 80, coefficient/area threshold of 110,
peak duration range of 0.00-0.10 min, and RT wavelet range
of 0.00 to 0.10 min. Isotopes were filtered before integrating
all features with the join aligner algorithm with the following
parameters: m/z tolerance =0.05 Da or 10.00 ppm, weight for
m/z=>50, RT tolerance =0.25 min, weight for RT =50, and
mobility weight=1.00.

Features not present at an intensity greater than fivefold
the average intensity compared to the blank samples were
removed. Additionally, all samples not present in at least 3 rep-
licates were removed. Then, the three replicates of each vari-
ety were averaged for further data analysis. Raw spectral data
was deposited in the MASSive database (ID: MSV000094012,
https://doi.org/10.25345/C5V980317). The final dataset con-
tained 1123 features after all processing steps.

Metabolomics data analysis

Data preprocessing was performed in R version 4.1.1. Preproc-
essing settings were selected based on the greenhouse data
and applied to the external validation and consumer product
datasets in future steps (see “Supervised predictive models”
section). Features were Hellinger transformed (square root) to
transform from heteroscedastic to homoscedastic noise and
auto-scaled (sample intensity—average feature intensity/fea-
ture intensity standard deviation) to limit the dependence of
the variation on the mean concentration and improve biologi-
cal relevance [24]. The R script is available at: https://github.
com/kelloggresearchgroup/MetabolomicsAnalysis/

After transformation, a permutational multivariate
analysis of variance (PerMANOVA) was performed using
the pairwise.adonis() function in the vegan package using
Euclidean distances and Benjamini & Hochberg p-value
adjustment to determine if a statistical difference exists
between the overall metabolomes of the three species [25].

Unsupervised PCA

An unsupervised principal component analysis (PCA) was
performed to visualize potential metabolite patterns between
the three species in the greenhouse data and the variation
between the greenhouse, external validation set, and con-
sumer products. For all three PCAs, the key components
were selected using scree plots generated with the viz_con-
rtib() tool within the factoextra package.

Supervised predictive models
General ensemble approach

We designed three predictive models (PLS-DA, LASSO,
and RF) to dually classify samples as a given species (e.g.,
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“is O. basilicum” or “is not O. basilicum”), developing a
Monte Carlo training scheme for each model to evaluate
multiple test and training set combinations. This resulted
in an ensemble approach that allows probabilistic predic-
tions. The model workflow (Fig. 1) was performed 100
times to evaluate the distribution of validation parameters
and determine the species predictions within the exter-
nal validation set and consumer products set based on the
probability (out of 100) that a sample is or is not the speci-
fied species.

PLS-DA Binary partial least squares—discriminatory
analysis (PLS-DA) models were constructed in R with
the splsda() function in the mixOmics package [26]. The
tune.splsda() function was used to optimize the model
with the training set with a fivefold cross-validation
method to select the ideal number of components and
variables. The test, external validation, and consumer sets
were predicted using the predict() function, and valida-
tion scores and classification rates were generated using
the confusionMatrix() function from the caret package.
The entire process was repeated 100 times. Final predic-
tions of the external validation and consumer products
sets were made by evaluating the probability that each
sample is “positive” over the 100 predictions and choos-
ing the species with the highest probability out of the
three separate binary models. The distribution of valida-
tion scores was expressed as the average and standard
deviation over 100 runs.

LASSO Binary LASSO regression models were built using
the glmnet package in R [27]. The key parameter of LASSO
models is the regularization parameter lambda (4), which
controls the amount of shrinkage the coefficients receive.
Larger A values result in more zero coefficients, and thus a
simpler model. However, a smaller A yields less bias with
more features [14]. Lambda was chosen to minimize tenfold
cross validation error on the training set using cv.glmnet().
The lambda that resulted in the lowest mean validation error
was used to build the LASSO model with the glmnet() func-
tion. The test, external validation, and consumer sets were
predicted using the predict() function, and model evalua-
tion and final predictions over 100 runs were conducted as
described in the PLS-DA section.

Random forest Random forest ensemble models were con-
structed using the randomForest() function from the ran-
domForest package in R [28]. Each model was constructed
from 500 individual trees. A bootstrap approach was used
to evaluate model performance on the training set, and the
test, external validation, and consumer sets were predicted
as described above.


https://doi.org/10.25345/C5V980317
https://github.com/kelloggresearchgroup/MetabolomicsAnalysis/
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Consumer
product set

Balanced training set

\_ Internal validation

A. 80% OB .
“.(CV or bootstrap)
Is OB (nx0.8) NG N G.
) Balanced nOB Majority vote
B. (m x (0 x 0.8)) D. . . predictions
Is not OB — C. Build model
(m) Remaining test set W with training set
20% OB .
(n-(nx0.8)) o | Validation scores
R distributions
Remaining A
nOB Test set validation
(m-(mx(nx0.8))

External
validation set

F. X100

Fig. 1 Monte-Carlo based resampling workflow for supervised model
construction. A Assign binary variable names, B split data into bal-
anced test and training sets, C auto-scale all data based on the mean
and standard deviations of each variable in the training set, D build

Model comparisons and validation parameters

Model performance was evaluated by directly comparing
each model’s specificity, sensitivity, balanced accuracy,
and correct classification rate (CCR) over 100 runs. Each
of these measurements considers the true positives (TP),
true negatives (TN), false positives (FP), and false nega-
tives (FN) in the model’s prediction.

Specificity is the model’s ability to determine FNs (e.g.,
a model’s ability to predict that a not-O. basilicum sample
is not-O. basilicum):

Specificity = TN /(TN + FP)

Sensitivity is the opposite of specificity; it is the mod-
el’s ability to predict TPs (e.g., correctly predicting O.
basilicum samples):

Sensitivity = TP /(TP + FN)

Balanced accuracy is a combination of specificity and
sensitivity, with an adjustment to account for the uneven
distribution of classes in the predicted dataset.

Balanced accuracy = (specificity + sensitivity) /2

We further evaluated the predictions from each model.
The probability of a sample being positive or negative
(OB or nOB, for example) was calculated based on the
number of each prediction over the 100 runs. Using this

!

predictive model with training set, E use model to predict species of
each new sample in the test, external validation, and consumer prod-
uct sets, F repeat steps B-E 100 times, G evaluate validation param-
eters and predictions over 100 runs

information, we calculated the correct classification rate
(CCR) of each model:

CCR = (TP + TN) /(TP + FP + TN + FN)

High-performance thin-layer chromatography
Standards and test solutions

Stock solutions for quercetin, rutin, and chlorogenic acid
were prepared at 1 mg/mL in methanol. Chlorogenic acid
and quercetin were further diluted at 200 ug/mL while rutin
was prepared at 400 ug/mL. The universal HPTLC mix
(UHM) was prepared in-house and used as a system suit-
ability test (SST) [29]. Sample extracts were prepared at
10 mg/mL in methanol.

Instrumentation

HPTLC analyses were conducted with an HPTLC system
(CAMAG), equipped with a TLC-Visualizer 2, Automatic
TLC Sampler 4, Automatic Developing Chamber 2, TLC
Scanner 4, TLC Plate Heater III, and a Derivatizer. Analyses
were run and data was processed using the software vision-
CATS version 3.2. HPTLC parameters were in agreement
with the United States Pharmacopoeia (USP) general chap-
ter 203 [30].
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Application, development, and detection

Two microliters of the reference standards and UHM
and 8 puL of the sample were applied onto an HPTLC Si
60 F254 plate (Supelco), then developed with n-butyl
acetate:methanol:water:formic acid (7.5:2:1:1, v/v) [31].
The detection was performed under shortwave UV (254 nm),
longwave UV (350 nm broad band), and white light in reflec-
tion + transmission (RT) prior to derivatization and in long-
wave UV and white light RT after derivatization with natural
product reagent (NP), and anisaldehyde (AS) subsequently
to NP (NP + AS).

Reagent preparation and spraying

Natural product reagent was prepared by dissolving 1 g
of 2-aminoethyl diphenylborinate in 200 mL of methanol.
The plate was heated at 100 “C for 3 min, then cooled down
to room temperature and sprayed with 3 mL of the solu-
tion using a Derivatizer with a green nozzle, set at level 3.
Images were recorded after 2 min.

Anisaldehyde in sulfuric acid reagent was prepared as
follows: 170 mL of cooled methanol were slowly mixed with
20 mL of acetic acid and 10 mL of sulfuric acid. The mix-
ture was cooled down to room temperature, then 0.5 mL of
anisaldehyde (p-methoxy benzaldehyde) was added. Three
milliliters of the solution was sprayed onto the plate using a
Derivatizer with a blue nozzle at level 4, then the plate was
heated at 100 °C for 3 min and the images were recorded.

Results and discussion
Ocimum growth and variation

This study utilized the natural variation within Ocimum, or
basil/Tulsi, to investigate the application of statistical models
in natural product studies. Ocimum has been widely culti-
vated worldwide for centuries. There are over 60 reported
species of Ocimum, each with a number of cultivars and
chemotypes [19]. This extensive taxonomic collection, along
with morphological overlap between varieties, results in
convoluted Ocimum identification. O. tenuiflorum, often
called O. sanctum, is the most common therapeutic spe-
cies of Ocimum. O. tenuiflorum cultivars include Krishna
and Rama and are typically characterized by strong, spicy
scents and fuzzy leaves, although wide morphological vari-
ation is reported among O. tenuiflorum varieties [32]. O.
gratissimum also contains valuable therapeutic proper-
ties. Vana is a common O. gratissimum cultivar, and other
names for O. gratissimum include African and Clove Tulsi
[33]. O. basilicum, or sweet basil, possesses high economic
value, mainly for its culinary uses. O. basilicum is widely
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cultivated, resulting in numerous cultivars, including Thai
basil, Purple basil, Genovese basil, and more. The extensive
collection of common names and Ocimum varieties often
results in misclassification upon harvest and the potential
substitution of rare types with cheaper varieties [34]. For
example, the O. basilicum variety purple basil can easily be
confused with O. tenuiflorum due to the similarity in leaf
colors. This makes Ocimum an ideal model system for inves-
tigating the potential for predictive models to differentiate
between closely related herbal species.

The commercial seeds were labeled as O. basilicum (10),
O. tenuiflorum (13), or O. gratissimum (8); however, based
on morphological investigations using seed characteristics,
our dataset contained 5 O. gratissimum, 7 O. teniflorum, and
16 O. basilicum materials. We observed no species-based
trends in biomass, leaf dry weight, or growth patterns (data
not shown). We found that morphological identification
based on leaf and floral characteristics was quite tedious and
challenging, and we posit a potential reason for the misclas-
sification of commercially available seeds. To better charac-
terize the samples, we used seed morphology (Supplemental
Table 2) to highlight differences between the three species’
seeds. All mislabeled seeds were O. basilicum characterized
as a holy basil species, highlighting the extent of cultivation
and morphological variation within O. basilicum which can
complicate taxonomic evaluation.

Unsupervised evaluation of sample relationships

Before developing predictive models, we investigated the
relationships between the greenhouse-grown Ocimum spe-
cies. Permutational multivariate analysis of variance (Per-
MANOVA) is a Euclidian-distance-based measurement that
evaluates group differences within a multivariate space with
multiple permutations which accommodates the covariates
and unbalanced datasets common to metabolomics studies
[29]. We compared the relationships of the labeled species
(the species on the seed packet) and the morphologically
ID’d species to investigate the chemical differences with dif-
ferent classifications. Among the greenhouse samples, there
was a significant difference between all three labeled species
(Table 3). O. basilicum—labeled materials differed the most
from the other two species, with a p-value of 0.0001 for both
O. basilicum vs O. tenuiflorum and O. gratissimum. O. ten-
uiflorum vs O. gratissimum resulted in a p-value of 0.0014,
demonstrating that the three species as listed on the seed
packets have unique metabolite profiles and are chemically
distinct when grown in a controlled setting. PerMANOVA
based on the morphological identification show similar
results; all three species are significantly different from each
other (Table 3).

There were distinct clusters of the materials labeled and
morphologically ID’d as O. basilicum in the PCA scores
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Table 3 PerMANOVA results
comparing the untargeted
metabolite profiles of species
and sample source. P=0.05

Adjusted P-value
Greenhouse-only labeled species
Adjusted P-value

All samples

Adjusted P-value

Greenhouse-only morphological ID

0B vs OG OB vs OT OG vs OT

0.0008 0.0003 0.0018

OB vs OG OB vs OT OG vs OT

0.0001 0.0001 0.0014

GH vs consumer GH vs EVS Consumer vs EVS
0.0001 0.0001 0.5333

plots (Fig. 2). O. basilicum, commonly called sweet basil,
differs from holy basil in its chemical properties, bioactive
potential, and intended cultivation as a culinary, not ther-
apeutic, herb [35]. While there is a significant difference
between all three species based on claimed ID and morpho-
logical ID, there was an unexpected overlap seen in the PCA
scores plots (Fig. 2). Figure 2a shows that 5 O. basilicum
materials are more chemically similar to the O. gratissimum
materials, and Fig. 2b highlights that these same materials
are all labeled as O. tenuiflorum by the seed distributors.
Four of the five samples were labeled as “Kapoor” varie-
ties, which is taxonomically ambiguous; some sources list
Kapoor as a variety of O. tenuiflorum [36], while others
classify it as O. africanum [37, 38]. This confusion extends
to commercial seed labels, as most “Kapoor” seeds were
labeled as O. tenuiflorum when ordered in 2021, but their
label has since changed to O. africanum. Upon further
investigation via HPTLC, we confirmed that these materi-
als belong to a unique cultivar separate from O. tenuiflo-
rum and O. gratissimum (Fig. 2e). Possible explanations for
this overlap include potential gene flow, local adaptation,
or hybridization. However, this is beyond the focus of this
study, and therefore further studies investigating evolution-
ary history and hybridization could clarify the classification
of these materials. However, the current study highlights
the benefits of orthogonal chemical approaches—i.e., untar-
geted LC—MS metabolomics and HPTLC with multivariate
modeling—that are capable of identifying hidden patterns
between materials that morphological evaluation (whether
by leaf or seed) alone may be overlooked.

Together, these results indicate that while conclusive tax-
onomic classification is difficult, there are three chemotypes
among the greenhouse materials based on the untargeted
metabolomics information, and a potential fourth chemical
group based on the HPTLC fingerprints. Since we observed
such distinct chemical groupings, we further investigated if
chemotype groupings are more reliable for classifying new
materials than species identification. While straying from
traditional identification categories, chemotype classifica-
tions can be informative for consumers and herbal supple-
ment manufacturers since chemical diversity drives differ-
ences in therapeutic effects.

Regardless of the classification approach, an essential
question surrounding botanical authentication is to know if

“reference materials” (i.e., the greenhouse-grown samples)
are a reliable predictive model for external samples. Thus,
we evaluated the chemical variation between the green-
house and commercial samples, including reference materi-
als and consumer products (Table 3). PerMANOVA results
revealed that the greenhouse samples (all three species com-
bined) were significantly different from both the external
validation samples (p =0.0001) and the consumer products
(p=0.0001). However, the consumer and external valida-
tion profiles did not significantly differ (p =0.53330). Simi-
larly, consumer and validation set samples were positioned
close together on the PCA scores plot (Fig. 3a). The three
consumer products that were separated from the remain-
ing samples (in the upper right quadrant) were the two tea
blends—B14 and B17—and a product marketed for culinary
use—B13. While it is difficult to conclude why these prod-
ucts are so unique, we can hypothesize the chemical profile
was altered as a result of processing, harvest, or formula-
tion conditions. These results are supported with HPTLC
fingerprints, where the consumer product fingerprints are
much more complicated than the greenhouse-grown materi-
als (Fig. 3b).

These findings agreed with the original hypotheses:
greenhouse samples had highly controlled growth and
processing conditions, which reduced sources of variation
typical of herbal product manufacturing. When introducing
external conditions, like temperature, moisture, drying con-
ditions, and storage, Ocimum chemical profiles experience
large variations [39, 40]. Since the conditions under which
the ordered samples were grown, processed, packaged, and
shipped were unknown (as is typical in a regulatory testing
environment), we could not introduce all potentially relevant
variables into our dataset. This is representative of industry
conditions in which having such a varied collection of sam-
ples for any species would be quite time- and cost-intensive.

Predictive model construction and evaluation

The PerMANOVA and PCA results clearly demonstrated
that the greenhouse samples are chemically distinct from
the commercial samples. Adding in a supervision com-
ponent could potentially leverage the known metadata to
improve the predictive capabilities of the metabolomics
datasets; thus, we evaluated if the greenhouse-produced
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Fig.2 Principal component analysis (PCA) scores plots of the untar-
geted metabolomics profiling of Ocimum samples from greenhouse-
produced samples. PCA scores plot of greenhouse samples coded by

“reference materials” could predict the identity of com-
mercial samples when employing a supervised machine
learning approach. To this end, we chose three models to
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a morphological ID, b labeled species, ¢ LC-MS-based chemotype
(3 groups), d HPTLC-based chemotype, as demonstrated by HPTLC
fingerprints (e)

evaluate predictive capabilities: LASSO, PLS-DA, and RF.
LASSO and PLS-DA are both linear models that are quite
common in the herbal product literature. RF is increasingly
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popular, especially considering the often non-linear relation-
ship of metabolites. We constructed binary models (e.g.,
each sample was classified as “is O. basilicum” or “is not O.
basilicum”) for all evaluations. We had the additional goal of
determining if classification based on chemotype or species
is more reliable when building predictive models. All data
shown is based on the seed morphological identity of the
materials, not the provided commercial label identification.

A common hindrance to metabolomics-based predictive
modeling is building a representative training set with a
small sample size. The most common solution is randomly
selecting a subset of data to serve as a training set; while
this is adequate for large datasets with balanced groups, it
becomes complicated with small, unbalanced groups [41].
Consider, for example, using 80% of the overall data as the

“ I“iﬁiﬁ“mi .
’

training set for the O. gratissimum model. However, less than
20% of the samples were O. gratissimum, and therefore it is
possible that no O. gratissimum samples would be selected
to build its own model! Thus, we used a Monte Carlo—based
ensemble approach which randomly generated a training set
that is balanced based on the number of samples in the “pos-
itive” group with the remaining samples placed in the test
set (Fig. 1). The model was built and optimized as described
in the experimental section, and the process was repeated
for 100 iterations. Notably, this ensemble approach allowed
the final prediction of new samples to be probability-based;
the final prediction was based on the probability the sample
belonged to each class over the 100 generated models. We
evaluated model performance by comparing the distribution
(average and standard deviation) of selectivity, specificity,
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balanced accuracy, and CCR over 100 runs (Table 4, stand-
ard deviations can be found in Supplemental Table 1).

Predictive models classify new greenhouse samples
with varying success

We first evaluated three supervised models’ ability to clas-
sify new greenhouse samples based on species and chemo-
type; LASSO (Fig. 4a), PLS-DA (Fig. 4b), and RF (Fig. 4c).
Overall, the models based on species had higher accura-
cies and correct classification rates (CCRs) than the models
based on chemotype. The lowest accuracy (0.62) based on
species resulted from the O. gratissumum binary LASSO
model, whereas the lowest accuracy based on chemotype
was 0.28 with the C3 LASSO model. We originally hypoth-
esized that the chemotype classifications would be more reli-
able than morphological species for classifying new materi-
als. However, these results indicate that even though there
are interspecies chemical overlaps, species classifications
provide more accurate predictions for new materials. These
chemical relationships could be further investigated in future
studies by expanding the sample size of all three species.
Within the species classifications, there are O. basilicum
materials with high chemical similarity to O. gratissium
which could have confounded the results. Indeed, the O.
gratissimum models resulted in lower accuracies than the
O. tenuiflorum and O. basilicum models. O. tenuiflorum and
O. basilicum models resulted in high balanced accuracies
(above 0.85), meaning all three models were mostly able
to correctly predict the species identity of unseen samples.
The CCR highlights that the LASSO models resulted in the
most correct classifications for all three species—O. basili-
cum (100%), O. tenuiflorum (100%), and O. gratissimum
(95%) (Table 4). It is of note that the CCR was often higher
than the average balanced accuracy over the 100 runs, sug-
gesting that a probability-based prediction scheme could

be useful for optimizing prediction results. Taken together,
these results indicate that a LASSO predictive model can
successfully predict the species, but not chemotype, of new
materials that were grown in the same controlled setting.

Developed models are not applicable to external
samples

Before evaluating consumer products with the developed
models, we assessed each model’s ability to predict the spe-
cies identity of validated external reference materials. This
external validation set included certified reference materi-
als from USP and Chromadex, as well as dried herbs from
well-established sources with accompanying certificates of
analyses (COAs) or publications to confirm species identity.
We also included sage (Salvia officinalis L.) and rosemary
(Salvia rosmarinus L.) materials to determine if the model
can identify non-Ocimum samples. One note, only one O.
basilicum sample was included in the external validation set
due to a lack of available reference materials.

Overall, none of the three models performed well in
classifying the reference materials (Table 4, Fig. 5 (row
2)). The LASSO model for O. basilicum had the highest
balanced accuracy at 71%. Both the PLS-DA and RF had
low balanced accuracies overall, and there was no indi-
cation that the models built with greenhouse materials
could successfully predict the species of external materials
(Table 5). When considering specificity and sensitivity, we
observed inverse relationships between O. basilicum and
0. gratissimum/O. tenuiflorum; as O. basilicum’s sensitiv-
ity increased, the other two species’ sensitivity decreased.
So, when a model determined a new material was O.
basilicum, its ability to reliably recognize the other species
decreased. Similarly, when a model correctly predicted if
a new material was not O. basilcum, it could not recog-
nize if a material was not the other two species. However,

Table 4 Average validation
scores across 100 runs of each
supervised model (LASSO, LASSO
PLS-DA, and RF) in predicting OB oT
the greenhouse test sets based

Species

. Sensitivity  0.91 1.00
on species and chemotype Specificity  0.97 0.96
Accuracy 0.94 0.98
CCR 1.00 1.00
Chemotype
LASSO

Cl1 C2
Sensitivity ~ 0.54 0.13
Specificity  0.92 0.73
Accuracy 0.73 0.43
CCR 0.87 0.42

PLS-DA RF
OoG OB oT oG OB oT OG
037 091 1.00 082 096 1.00 0.99
087 094 099 056 092 071 0.50
062 092 099 0.69 094 0.86 0.75
095 1.00 1.00 0.63 1.00 0.76 0.58
PLS-DA RF
C3 Cl1 C2 C3 Cl C2 C3
0.05 0.83 080 1.00 0.83 0.87  1.00
052 0.93 042 093 0.87 073  0.78
028 0.88 061 097 090 080  0.88
0.64  1.00 055 1.00 1.00 1.00  0.79
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Fig.4 Validation scores bar plots for a LASSO, b PLS-DA, ¢ RF. Validation scores are represented as the average and standard deviation over
100 runs of each model predicting the greenhouse test set based on chemotype (left) and species (right)

irrespective of the models’ accuracies, when the three spe-
cies’ models were combined for overall probability-based
predictions, it was rare that the final prediction was correct
(Table 6). The LASSO model, which was the most reliable
for predicting new greenhouse materials, resulted in a final
assignment that over half of the materials are not one of
the three Ocimum species at all (Table 6).

These results are not all together unexpected; a botani-
cal’s chemical profile is greatly impacted by environmen-
tal, harvesting, and processing conditions. The untargeted
metabolomics PCA scores plots combined with HPTLC
fingerprints confirmed that the greenhouse materials were
not chemically representative of the external materials,
and introducing a supervised aspect via multivariate pre-
dictive modeling did not improve this relationship.

Consumer product identity predictions

While no model built on the greenhouse samples was able to
adequately distinguish external reference samples, they were
evaluated for their abilities to classify consumer-available
products. It should be noted that these samples were not ver-
ified materials, so their actual species identity has not been
confirmed. Thus, reporting sensitivity, specificity, and bal-
anced accuracy was our best estimate of model performance.

While in most cases the balanced accuracies were
slightly higher with the consumer products than the vali-
dation set predictions, they were still too low for reliable
identification in an industry setting. For example, the
highest balanced accuracy for consumer product predic-
tions is 71% (RF, O. tenuiflorum model), accompanied by
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Fig.5 Validation scores bar plots for a LASSO, b PLS-DA, ¢ RF. Validation scores are represented as the average and standard deviation over
100 runs of each model predicting the external validation set (left) and consumer product set (right) based on species

Table5 Average validation

scores across 100 runs of each External validation

supervised model (LASSO, LASSO PLS-DA RF
PLS-DA, and RF) in predicting OB oT oG OB oT oG OB OT oG
the greenhouse test sets based Sensitivity ~ 0.68 027 021 006 051 093 0.42 0.68  0.99
on species and chemotype Specificity  0.74 074 093 080 034 028 0.77 0.16 034
Accuracy  0.71 052 057 043 043  0.60 0.56 042 0.68
CCR 0.89 067 067 022 044 044 0.67 044 056
Consumer products
LASSO PLS-DA RF
OB OT 0OG OB OT 0G OB OT OG
Sensitivity  0.62 024 001 049 0.57 0.62 062 089 060
Specificity  0.66 092 090 071 074 0.37 079 052 036
Accuracy  0.64 058 048 060 0.66 0.49 071 070 048
CCR 0.76 053 076 035 0.76 0.41 076 071 029
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Table 6 Probabilities of each

external validation material LASS0

belonging to each species over Actual sample ID:  OG OoT OoT OG OT  Non-target Non-target OTor OG OB

100 runs of each model OB 001 023 079 0.02 0.08 037 0.46 0.09 0.68
oG 0.2 0.00 0.00 042 020 0.00 0.20 0.00 0.00
oT 0.16 0.06 0.06 0.05 092 0.00 0.07 0.89 0.00
Predicted ID: None None OT None OT  None None OoT OB
PLS-DA
Actual sample ID:  OG oT OoT 0OG OT  Non-target Non-target OTor OG OB
OB 1.00 097 068 099 083 093 0.04 0.96 0.94
oG 089 082 066 089 089 0.77 0.73 1.00 0.46
oT 1.00 0.06 036 049 1.00 049 0.62 1.00 0.32
Predicted ID: All OB OB OB OT OB oG OGorOT OB
RF
Actual sample ID:  OG oT OoT OG OT  Non-target Non-target OTor OG OB
OB 0.00 021 061 0.00 0.00 0.02 1.00 0.00 0.42
oG 0.98  0.67 1.00 1.00 0.88 0.99 0.02 1.00 0.29
oT 1.00 082 088 090 1.00 0.82 0.00 1.00 0.46
Predicted ID: oG oG oT OG oG OG OB OGor OT OG

a 76% CCR. If approximately 30% of the time the model Conclusions

incorrectly identifies the product, this would translate to
a 30% chance of mislabeled products reaching the market
or unnecessary supply chain investigations.

Taken together, these results cast a doubtful light on the
usefulness of controlled-environment samples serving as
the foundation of machine learning and predictive mod-
eling in herbal product identification studies. Overall, the
models developed based on controlled greenhouse sam-
ples could not be applied to these external samples. These
results were congruent with the unsupervised analysis, in
which the external samples were separated from the green-
house samples in the PCA scores plot (Fig. 2d). Recently,
Harnly and Upton reported similar findings when using
chemometrics models to investigate variation between
Actaea racemosa L. reference materials and commercial
standards [42]. These authors investigated multiple pre-
treatment approaches and model manipulation techniques
to ultimately report that statistical modeling results in gen-
erally high sensitivity and low specificity when assessing
the species of new materials, even when looking at a con-
served subset of compounds. In our current study, samples
in the external validation set were reference standards;
they all originated from different sources, locations, and
growing conditions that can influence their chemical pro-
files. These studies together suggest that external factors
play a major role in metabolite composition and highlight
the crucial need for the inclusion of more data from envi-
ronmental, processing, and other external variables into
predictive models before integrating such approaches into
identification or authentication applications.

Multivariate modeling is a primary method for analyz-
ing untargeted metabolomics data and is well-suited to
discover patterns within complex chemical profiles. Che-
mometric approaches are instrumental in identifying and
authenticating botanical materials due to their independ-
ence from a small subset of specific chemical markers,
as well as their ability to incorporate numerous validated
samples with inter- and intraspecies variation. As machine
learning and predictive modeling become more popular
across scientific disciplines, the limitations and applica-
bility of new models in the herbal product space must be
critically evaluated.

This study demonstrated that using chemometric mod-
els built on untargeted metabolomics data from controlled
greenhouse samples could aid in classifying new O. ten-
uiflorum and O. basilicum greenhouse samples. Since the
greenhouse samples all had the same environmental and
processing conditions, this loosely resembled the condi-
tions that a raw material grower would face. Thus, it is
conceivable that using a LASSO model would be accept-
able as an internal material verification system to confirm
whether the chemical composition of the plants grown/
processed under similar conditions conforms as expected
or if there is unusual metabolite variation between batches.

Ultimately, chemometric modeling of controlled ref-
erence materials was not able to accurately predict the
identity of commercially available products, as it was evi-
dent that there were significant differences in chemical
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composition between the greenhouse and commercial
samples. This suggests that environmental variation is a
large driver of Ocimum diversity, potentially greater than
taxonomic classifications; this is borne out by other recent
botanical studies. While this has been extensively reported
upon in agricultural and crop science studies, the relation-
ship between genetics, metabolomics, and environmental
interactions in herbal products has not been thoroughly
investigated [43]. Including more variation in the original
models, such as different post-harvest drying conditions
or water and nutrient levels, may improve their ability to
predict external samples. Attempting to encompass all
potential sources of variation would result in a large and
complex study requiring extensive data collection stages;
however, smaller studies could potentially identify spe-
cific factors driving the shifts in chemistry and yield more
successful predictive models. Therefore, more studies are
needed to determine which of these myriad factors have
the greatest impact on chemical diversity.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00216-025-05735-0.
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Supplemental Table 1: Validation scores’ standard deviations across 100 runs of each supervised model
(LASSO, PLS-DA, and RF) in predicting the greenhouse test sets, external validation set, and consumer
product set.

Greenhouse Species
LASSO PLS-DA RF
OB OT OG OB OT OG OB OT OG
Sensitivity 0.15 0.00 0.49 0.15 0.00 0.39 0.079  10.00 0.310
Specificity 0.11 0.14 0.16 0.13 0.025 |0.24 0.14 0.10 0.15
Accuracy 0.084 [0.16 0.19 0.087  (0.013  |0.13 0.075  10.050 0.089

Greenhouse Chemotype

LASSO PLS-DA RF
Cl1 C2 C3 C1 C2 C3 C1 C2 C3
Sensitivity 0.45 0.23 0.20 0.28 0.21 0.00 0.26 0.19 0.00
Specificity 0.090 0.21 0.21 0.076 0.31 0.11 0.045 0.25 0.027
Accuracy 0.22 0.090 0.12 0.16 0.11 0.055 0.14 0.14 0.013

External validation - Species

LASSO PLS-DA RF
OB oT oG OB OoT oG OB OoT oG
Sensitivity 0.47 0.10 0.27 0.24 0.21 0.21 0.50 0.15 | 0.047
Specificity 0.16 0.093 0.13 0.13 0.25 0.24 0.10 0.19 0.17
Accuracy 0.23 0.088 0.08 0.13 0.084 0.10 0.23 | 0.058 | 0.083

Consumer Products - Species

LASSO PLS-DA RF
OB oT oG OB OoT oG OB OoT oG
Sensitivity 0.35 0.15 0.10 0.11 0.16 0.34 0.15 0.13 0.24

Specificity 0.25 0.24 0.11 0.16 0.16 0.23 0.14 0.19 0.24




Accuracy 0.080 | 0.048 | 0.048 | 0.082 0.075 0.095 | 0.059 | 0.056 | 0.060

Supplemental Figure 1: Representative Voucher Specimens. A) O. basilicum (sweet basil) B) O.
gratissimum (Vana) C) O. tenuiflorum (Kapoor) D) O. tenuiflorum (Rama)




Supplemental Table 2: Seed morphological determination, based upon microscopy images
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