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Abstract
Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical 
classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic 
markers, like those in the genus Ocimum. Untargeted LC–MS metabolomics coupled with multivariate predictive modeling 
provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for 
many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown 
authentic Ocimum to build predictive models for classifying commercially available Ocimum products. We found that three 
species, O. tenuiflorum, O. gratissimum, and O. basilicum, were chemically distinct based on their untargeted UPLC-MS/
MS profiles when grown in controlled settings; combined with an orthogonal high-performance thin-layer chromatography 
(HPTLC) approach, O. tenuiflorum materials revealed two distinct chemotypes which could confound analysis. Three pre-
dictive models (partial least squares, LASSO regression, and random forest) were employed to extrapolate these findings 
to commercially available products; however, the controlled materials were significantly different from external samples, 
and all three chemometric models were unreliable in classifying external materials. LASSO was the most successful when 
classifying new greenhouse samples. Overall, this study highlights how growing and processing conditions can influence the 
complexity of botanical metabolome profiles; further studies are needed to characterize the factors driving herbal products’ 
phytochemistry in conjunction with chemometric predictive modeling.
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Introduction

In 1994, Congress passed the Dietary Supplement Health and 
Education Act (DSHEA), which required the US Food and 
Drug Administration to set clear good manufacturing pro-
cesses (GMP) regulations for the dietary supplement industry. 

Currently, 21 CFR 111 sets guidelines for supplement testing 
and regulations, including meeting specifications for prod-
uct identity, purity, strength, composition, and limiting con-
taminants. While each of these categories is crucial for a safe 
marketplace, understanding and defining proper specifications 
and testing approaches is quite complex, especially regard-
ing herbal supplements, where the chemical complexity of 
botanicals makes identification convoluted. Three primary 
techniques used in the industry for botanical identification 
include morphology, genetics (both whole genome and PCR-
based approaches), and analytical chemistry.

A major complication in herbal identity studies is that 
closely related species can have very similar morphological 
and genetic markers but variations in therapeutic proper-
ties. Most identification approaches compare a sample to a 
limited number of reference standards meant to represent the 
characteristics of the entire species. However, this fails to 
incorporate the intraspecies variation that results from differ-
ences in chemotypes, environmental factors, and processing 
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practices [1]. For example, highbush blueberries harvested 
at different altitudes have different anthocyanin profiles [2], 
and green tea leaves have differential metabolomes based 
on season, geography, and harvest time [3]. In these cases, 
a single reference standard would not incorporate all poten-
tial chemical variations [2]. And since herbal products’ 
therapeutic benefits are a result of their unique metabolite 
compositions, species labels may not fully incorporate these 
distinctions.

Recent developments in mass spectrometry provide a 
potential avenue to improve this limitation. Improvements 
in MS instrumentation yield analyses with high resolution 
and mass accuracy, yielding detection and relative abun-
dance determination for thousands of compounds in a plant 
sample. This shifts the analytical approach, moving from 
reliance on a single marker compound or small subset of 
compounds to examining a sample’s entire metabolome. 
These non-targeted metabolite profiles provide a more exten-
sive look into plants’ chemical similarities and relationships 
[4]; these methods, combined with multivariate statistical 
approaches, have been successful in identifying botanical 
adulteration [5].

However, translation of these approaches beyond the lab 
and into commercial workflows faces several hurdles. The 
first is that introducing more metabolite information does not 
overcome the lack of chemical diversity that limited refer-
ence standards provide; where they exist, many species are 
represented by one or two reference materials, and those 
available often lack appropriate voucher specimens and 
identifying information [1]. Recent efforts by the NIH Office 
of Dietary Supplements have expanded reference material 
availability, but it is still infeasible to generate numerous 
standards for every commercially viable herb [6]. For suc-
cessful predictive modeling, a study must incorporate a 
range of reliably identified samples, especially for plants 
with many cultivars or closely related species.

Metabolomics data requires the application of an appro-
priate chemometric tool to robustly interpret the data. Linear 
regression models are among the simplest and most wide-
spread approaches. Perhaps the most common supervised 
linear model used in herbal product studies to combat the 
small sample size limitation is partial least squares (PLS). 
PLS models reduce large datasets to smaller components 
that encompass the covariance and correlation of features, 
similar to principal component analysis (PCA). Unlike 
PCA, dependent variables guide the data reduction in PLS 
so that the covariance of sample groups is maximized. 
New samples can then be added to the model to determine 
their classification based on the similarities in metabolite 
profiles [7]. The use of PLS-discriminant analysis (PLS-
DA) in herbal authentication studies has been thoroughly 
reviewed [8–10]; however, linear models like PLS tend to 
overfit data containing more variables than samples (as is the 

case with untargeted metabolomics) [5, 11, 12]. To mitigate 
the limitations of small sample numbers is to add a pen-
alty parameter to the linear model, conservatively biasing 
model parameters towards zero [13]. Least absolute shrink-
age and selection operator (LASSO) regression is a form of 
penalization particularly well suited for producing sparse, 
simple models: in the present context, it encourages models 
where only a small number of metabolites are used to predict 
the outcome [14]. Studies exemplify LASSO as a prefer-
able method for variable selection over other data reduc-
tion techniques, like PLS-DA, for reducing overfitting and 
model complexity [15]. However, Zhu et al. (2017) reported 
that LASSO models had lower prediction accuracies than 
similar penalized regression techniques like elastic net and 
weighted fusion when classifying Ganoderma species [16]. 
Non-linear models, like random forest (RF), are also gaining 
popularity as herbal product authentication tools. RF is an 
ensemble approach that combines the predictive classifica-
tions of multiple decision trees. At each node of a decision 
tree, a different metabolite is considered. Samples are sepa-
rated at each node based on the abundance or presence of the 
specific metabolite, and each sample moves down the tree’s 
nodes until a final classification is made [17]. RF uses the 
principle of majority voting; the most common prediction 
from all decision trees is the final classification [17].

Thus far, few studies have directly evaluated the perfor-
mance of untargeted metabolomics for herbal product iden-
tification studies for their ability to predict and model the 
identity of external, consumer-available products. There is 
a lack of reference materials for most herbal species, and 
acquiring enough samples with reliable identifications is 
complicated. To this end, this study used a controlled green-
house experiment to incorporate inter- and intra-species vari-
ation into the dataset while ensuring a proper sample size for 
modeling is met. We grew thirty-one varieties of Ocimum, 
or basil/Tulsi, belonging to three species, Ocimum gratis-
simum L. (OG), Ocimum tenuiflorum L. (OT), and Ocimum 
basilicum L. (OB), in a greenhouse. These materials were 
ordered based on the claimed identity on the seed distribu-
tors’ websites, and subsequent morphological identification 
was performed on the seeds. Furthermore, samples were also 
analyzed using high-performance thin-layer chromatogra-
phy (HPTLC). HPTLC is one of the most popular analytical 
techniques in compendial methods and regulatory settings 
for botanical identity testing but can also be applied as a 
powerful quantitative tool. Herein, we compared the ability 
of HPTLC and untargeted metabolite profiling to distinguish 
the materials based on claimed species and morphological 
identity, ultimately identifying 4 distinct chemotypes across 
three species of Ocimum that did not necessarily align with 
the species. However, despite the chemotype designation, 
the greenhouse-grown materials were not translatable to 
predict the classification of external materials.
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Experimental

Materials

All solvents and chemicals used, unless otherwise noted, 
were of reagent or spectroscopic grade, as required, and 
obtained from VWR (Radnor, PA, USA) or Sigma-Aldrich 
(St. Louis, MO, USA).

Greenhouse growth

Thirty-one varieties of Ocimum, belonging to three spe-
cies, O. basilicium, O. tenuiflorum, and O. gratissimum, 
were ordered from thirteen sources and stored at 4 °C until 
grown in a greenhouse under controlled environmental 

conditions (Table 1). Seeds were sowed in one-inch germi-
nation squares with common potting soil. Four seeds were 
planted per square, and two plants were allowed to grow fol-
lowing germination. Each variety had a total of five one-inch 
squares for germination. Seedlings were held in a walk-in 
growth chamber at 24 °C and watered every 3 days or when 
the top 0.5 inch of soil was dry. Once seedlings reached 
three internodes, one of the two plants was transferred into a 
four-inch pot with the same common potting soil mixed with 
Miracle-Gro water-soluble fertilizer (The Scotts Company, 
Marysville, OH, USA) and moved to a greenhouse. The 
greenhouse was maintained at 24 °C with an 8:16 light:dark 
cycle and watered every other day. In total, five plants of 
each variety were grown until harvest. The entire growth 
cycle was repeated for three rounds, resulting in 3 biological 

Table 1   Greenhouse-grown 
Ocimum extraction information. 
†Morphological identification 
provided from seed taxonomic 
analysis; missing values indicate 
no reserve seeds available for 
taxonomic verification (for 
images, see Table S2)

Sample name Labeled species Morphological ID† Variety Average extrac-
tion yield ± SD 
(%)

BRS_G O. gratissimum West African Wild Clove 14.49 ± 0.69
CP_G O. gratissimum O. gratissimum n/a 11.3 ± 2.2
CP_S O. tenuiflorum O. tenuiflorum Purple Tulsi 11.6 ± 5.1
FS_G O. gratissimum O. gratissimum n/a 13.9 ± 1.3
FS_S O. gratissimum O. basilicum n/a 15.3 ± 2.8
JS_G O. basilicum O. basilicum Genovese 14.3 ± 2.4
JS_H O. tenuiflorum O. tenuiflorum n/a 11.3 ± 5.0
JS_R O. basilicum O. basilicum Red Rubin 12.3 ± 6.4
JS_S O. basilicum O. basilicum Sweet Thai 14.0 ± 2.4
LSC_T O. gratissimum n/a 15.9 ± 3.1
PGS_A O. basilicum O. basilicum Amethyst Purple 17.2 ± 1.2
PGS_G O. basilicum O. basilicum Genovese 12.5 ± 2.0
PGS_K O. tenuiflorum O. basilicum Kapoor 15.0 ± 1.4
PGS_R O. tenuiflorum O. basilicum Rama 15.3 ± 1.7
PGS_T O. basilicum O. basilicum Thai 11.2 ± 1.5
PGS_V O. gratissimum O. gratissimum Vana 9.3 ± 3.4
SE_K O. tenuiflorum O. basilicum Kapoor 13.1 ± 2.6
SMS_A O. tenuiflorum O. tenuiflorum Amrita 14.6 ± 1.4
SMS_G O. basilicum O. basilicum Genovese 15.75 ± 0.98
SMS_K O. tenuiflorum Krishna 10.4 ± 6.4
SMS_M O. basilicum O. basilicum Mriani 12.8 ± 1.8
SMS_R O. tenuiflorum O. tenuiflorum Rama 15.1 ± 4.3
SMS_S O. basilicum O. basilicum Sweet lettuce leaf 10.4 ± 3.0
SMS_T O. basilicum O. basilicum Thai 13.9 ± 4.1
SMS_V O. gratissimum O. gratissimum Vana 17.4 ± 3.9
SN_S O. tenuiflorum O. tenuiflorum n/a 11.5 ± 2.1
STS_K O. tenuiflorum O. basilicum Kapoor 15.4 ± 3.0
TLM_H O. tenuiflorum O. tenuiflorum Holy green leaf 12.7 ± 3.2
TLS_K O. tenuiflorum O. basilicum Kapoor 14.9 ± 1.8
TLS_V O. gratissimum O. gratissimum Vana 10.5 ± 1.4
TS_G O. tenuiflorum O. tenuiflorum Holy green leaf 16.2 ± 3.0
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replicates (separate greenhouse growth times), with five 
technical replicates (same greenhouse growth time) each.

Once the plants showed their first inflorescence, but 
before full flowering, the leaves were harvested. All leaves 
from each plant were cut using sterile scissors at the base 
and flash frozen in liquid nitrogen before transfer to a − 80 
°C freezer for storage. In the final greenhouse replicate, an 
extra plant was grown of each variety. This plant was mor-
phologically identified as Ocimum and used as a voucher 
specimen. All voucher specimens can be found at the 
Pennsylvania State University Herbarium, or online from 
the Mid-Atlantic Herbaria Consortium (record numbers 
30760376–30760406).

Morphological identification

We used seed characteristics based on the work of Patel et al. 
(2015) [18] as well as the formation of mucilage to con-
firm seed identity [19]. To identify seeds, 3–5 seeds were 
removed from each seed packet. Seeds were examined under 
a stereomicroscope to record shape, color, and texture. Seeds 
were then placed in a Petri dish filled with tap water for a 
minimum of 5 min and observed for the presence of a muci-
laginous coat around the testa. Seeds were identified via the 
following criteria:

•	 Ocimum basilicum: ellipsoid, black seeds with pitted sur-
face texture, forming a thick, cloudy mucilaginous coat 
in the presence of water.

•	 Ocimum gratissimum: rounded, brown seeds with pebbly 
surface texture, not mucilaginous in water.

•	 Ocimum tenuiflorum: ellipsoid, yellow seeds with streaks 
of black, surface smooth, forming a thin, translucent 
mucilaginous coat in the presence of water.

Metabolite extraction

The five technical replicates were combined for each growth 
replicate, resulting in three samples per variety. After the 
final harvest, samples were lyophilized at the Pennsylvania 
State University CSL Behring Fermentation Facilities. Lyo-
philized samples were then ground to a fine powder with a 
mortar and pestle under liquid nitrogen. Powdered samples 
were weighed, combined with 80% aqueous methanol with 
0.1% formic acid, and shaken at 200 rpm at room tempera-
ture for 16–18 h. Following extraction, the solid material 
was separated via vacuum filtration with 0.2 um filter paper, 
and the solvent was dried to completion with a Buchi roto-
evaporator. Final extracts were stored at room temperature 
in sealed vials until mass spectrometry preparation. Extract 
yields can be found in Table 1.

Obtaining consumer‑available Ocimum products 
and Ocimum reference materials

Reference materials

Eleven reference materials were obtained through online 
retailers to construct an external validation set. Four sam-
ples were ordered from herbal product suppliers and arrived 
with certificates of analysis (COAs) verifying their species 
identification (two O. tenuiflorum and two O. gratissimum). 
Two samples (one O. tenuiflorum and one O. gratissimum) 
were donated from the University of Georgia Medicinal Plant 
Farm and were morphologically identified with an associated 
publication [20]. An O. tenuiflorum VRBM was obtained 
from ChromaDex (Torrance, CA, USA), and a “Holy Basil” 
reference standard was obtained from USP (however, no spe-
cific species was listed). Two out-group reference materials 
were added to the external validation set—one Salvia ros-
marinus L. (rosemary) standard (USP) and one Salvia offici-
nalis L. (sage) leaf reference material (ChromaDex). One O. 
basilicum sample was obtained from an organic farm and 
morphologically identified on-site prior to shipment. Sam-
ples were extracted following the method described above for 
greenhouse sample extractions, except materials that arrived 
as a powder were not ground with liquid nitrogen prior to 
extraction. VRBMs and USP reference standards were only 
extracted once due to limited sample size. All samples were 
stored at room temperature in the dark until use, and final 
extracts were stored at room temperature in sealed vials until 
mass spectrometry preparation. See Table 2 for a complete 
list of reference materials and extraction yields.

Consumer products

Seventeen consumer products were ordered online from a 
variety of retailers. Eleven products were bulk, dried herbs 
from organic farms, herbal product suppliers (with no asso-
ciated COAs), or eBay retailers. Two were tinctures or liq-
uid softgels, two were O. gratissimum and O. tenuiflorum 
tea blends, and two were culinary products. There were six 
O. basilicum products, six O. tenuiflorum products, two O. 
gratissimum, and three “holy basil” products with no species 
identification. Dried leaves and powdered materials were 
prepared as described above. Most products were extracted 
in triplicate, but some only underwent a single extraction 
due to limited sample quantity. Liquid samples were not 
further extracted, and their mass spectrometry preparation 
is described below. All samples were stored at room tem-
perature in the dark until extraction, and the final extracts 
were stored at room temperature in sealed vials until mass 
spectrometry preparation. See Table 2 for a complete list of 
consumer products and extraction yields.
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Ultraperformance liquid chromatography tandem 
mass spectrometry analysis

All samples were prepared at a concentration of 1 mg/
mL in LCMS grade methanol with 1 uM chlorpropamide 
(Stanta Cruz Biotechnology, Dallas, TX, USA) as an internal 
standard.

Untargeted metabolomic analyses were performed on 
a Vanquish Duo UHPLC system connected to a Thermo 
Orbitrap Fusion Lumos Mass Spectrometer (ThermoFisher 
Scientific, Waltham, MA). A Waters Acquity UPLC BEH 
C18 (1.7 µm, 2.1 × 150 mm) column was used with a flow 
rate of 0.1 mL/min at 55 °C. Solvent A was 0.1% formic acid 
(v/v) in LC–MS water and solvent B was 0.1% formic acid 
(v/v) in LC–MS acetonitrile. The mobile phase gradient of 
solvent B was as follows: 3% for 0.01 min, 45% for 10 min, 
75% for 2 min, 100% for 4.5 min, and 3% for 0.2 min. A 2 
uL injection was used for all samples [21, 22].

Mass spectrometry was conducted using an electrospray 
ionization source with a positive ion spray voltage of 3500 V, 

sheath gas pressure of 25 Arb, auxiliary gas pressure of 5 
Arb, ion transfer temperature of 275 °C, and vaporizer tem-
perature of 75 °C. MS1 data was acquired with an Orbitrap 
resolution of 120,000, a scan range of 100–1000 Da, and an 
RF lens of 50% in the profile mode. MS2 data was collected 
in a data-dependent manner using an intensity threshold of 
2.5e4 and dynamic exclusion (ions excluded after 1 detec-
tion for 30 s).

Data processing and preparation

The UPLC-MS/MS data were analyzed and processed using 
MZmine 3.1 software [23]. Peaks were detected with a noise 
level of 5.5E5 counts, minimum peak duration of 0.25 min, 
and 25% tolerance for m/z intensity variation. The ADAP algo-
rithm was used to build chromatograms with the following 
parameters: minimum group size = 5, group intensity thresh-
old = 5.5E5, minimum highest intensity = 5.5E5, and scan-to-
scan accuracy = 0.05 Da or 10.0 ppm. Chromatograms were 
resolved using the ADAP intensity window chromatogram 

Table 2   Reference material (EVS) and consumer product (C) information

Sample name Set Type Species Average extrac-
tion yield ± SD 
(%)

B1 C Dried herb O. tenuiflorum 18.4 ± 6.9
B2 C Dried herb O. tenuiflorum 10.8 ± 1.3
B3 C Dried herb O. gratissimum 14.36 ± 0.68
B4 C Dried herb O. tenuiflorum 26.7 ± 2.4
B5 C Dried herb O. gratissimum 17.53 ± 0.87
B6 C Dried herb O. tenuiflorum 14.25 ± 0.91
B7 C Dried herb O. tenuiflorum 15.0 ± 1.6
B8 C Dried herb O. basilicum 24.2 ± 2.1
B9 C Dried herb O. basilicum 21.3 ± 1.3
B10 C Dried herb O. tenuiflorum 16.19 ± 0.16
B11 C Dried herb O. basilicum 18.6 ± 3.5
B12 C Culinary herb O. tenuiflorum 16.97
B13 C Culinary herb O. basilicum 30.91
B14 C Tulsi tea, mix O. tenuiflorum and O. gratissimum 17.57
B15 C Holy basil extract gel capsule O. tenuiflorum 38.42
B16 C Holy basil tincture O. tenuiflorum n/a
B17 C Tulsi tea, mix O. gratissimum and O. tenuiflorum 22.77
VS1 EVS Dried herb—COA O. gratissimum 15.1 ± 1.2
VS2 EVS Dred herb—COA O. tenuiflorum 11.8 ± 4.1
VS3 EVS Dried herb—publication O. tenuiflorum 16.9 ± 2.6
VS4 EVS Dried herb—publication O. gratissimum 14.1 ± 2.0
VS5 EVS Holy basil VRBM O. tenuiflorum n/a
VS6 EVS Rosemary USP reference standard Non-target n/a
VS7 EVS Sage leaf USP reference material Non-target n/a
VS8 EVS Holy basil USP reference material O. tenuiflorum or O. gratissimum n/a
VS9 EVS Dried herb—morphological ID O. basilicum 21.2 ± 1.4
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resolution feature with a signal/noise threshold of 7, mini-
mum feature height of 80, coefficient/area threshold of 110, 
peak duration range of 0.00–0.10 min, and RT wavelet range 
of 0.00 to 0.10 min. Isotopes were filtered before integrating 
all features with the join aligner algorithm with the following 
parameters: m/z tolerance = 0.05 Da or 10.00 ppm, weight for 
m/z = 50, RT tolerance = 0.25 min, weight for RT = 50, and 
mobility weight = 1.00.

Features not present at an intensity greater than fivefold 
the average intensity compared to the blank samples were 
removed. Additionally, all samples not present in at least 3 rep-
licates were removed. Then, the three replicates of each vari-
ety were averaged for further data analysis. Raw spectral data 
was deposited in the MASSive database (ID: MSV000094012, 
https://​doi.​org/​10.​25345/​C5V98​0317). The final dataset con-
tained 1123 features after all processing steps.

Metabolomics data analysis

Data preprocessing was performed in R version 4.1.1. Preproc-
essing settings were selected based on the greenhouse data 
and applied to the external validation and consumer product 
datasets in future steps (see “Supervised predictive models” 
section). Features were Hellinger transformed (square root) to 
transform from heteroscedastic to homoscedastic noise and 
auto-scaled (sample intensity—average feature intensity/fea-
ture intensity standard deviation) to limit the dependence of 
the variation on the mean concentration and improve biologi-
cal relevance [24]. The R script is available at: https://​github.​
com/​kello​ggres​earch​group/​Metab​olomi​csAna​lysis/

After transformation, a permutational multivariate 
analysis of variance (PerMANOVA) was performed using 
the pairwise.adonis() function in the vegan package using 
Euclidean distances and Benjamini & Hochberg p-value 
adjustment to determine if a statistical difference exists 
between the overall metabolomes of the three species [25].

Unsupervised PCA

An unsupervised principal component analysis (PCA) was 
performed to visualize potential metabolite patterns between 
the three species in the greenhouse data and the variation 
between the greenhouse, external validation set, and con-
sumer products. For all three PCAs, the key components 
were selected using scree plots generated with the viz_con-
rtib() tool within the factoextra package.

Supervised predictive models

General ensemble approach

We designed three predictive models (PLS-DA, LASSO, 
and RF) to dually classify samples as a given species (e.g., 

“is O. basilicum” or “is not O. basilicum”), developing a 
Monte Carlo training scheme for each model to evaluate 
multiple test and training set combinations. This resulted 
in an ensemble approach that allows probabilistic predic-
tions. The model workflow (Fig. 1) was performed 100 
times to evaluate the distribution of validation parameters 
and determine the species predictions within the exter-
nal validation set and consumer products set based on the 
probability (out of 100) that a sample is or is not the speci-
fied species.

PLS‑DA  Binary partial least squares—discriminatory 
analysis (PLS-DA) models were constructed in R with 
the splsda() function in the mixOmics package [26]. The 
tune.splsda() function was used to optimize the model 
with the training set with a fivefold cross-validation 
method to select the ideal number of components and 
variables. The test, external validation, and consumer sets 
were predicted using the predict() function, and valida-
tion scores and classification rates were generated using 
the confusionMatrix() function from the caret package. 
The entire process was repeated 100 times. Final predic-
tions of the external validation and consumer products 
sets were made by evaluating the probability that each 
sample is “positive” over the 100 predictions and choos-
ing the species with the highest probability out of the 
three separate binary models. The distribution of valida-
tion scores was expressed as the average and standard 
deviation over 100 runs.

LASSO  Binary LASSO regression models were built using 
the glmnet package in R [27]. The key parameter of LASSO 
models is the regularization parameter lambda (λ), which 
controls the amount of shrinkage the coefficients receive. 
Larger λ values result in more zero coefficients, and thus a 
simpler model. However, a smaller λ yields less bias with 
more features [14]. Lambda was chosen to minimize tenfold 
cross validation error on the training set using cv.glmnet(). 
The lambda that resulted in the lowest mean validation error 
was used to build the LASSO model with the glmnet() func-
tion. The test, external validation, and consumer sets were 
predicted using the predict() function, and model evalua-
tion and final predictions over 100 runs were conducted as 
described in the PLS-DA section.

Random forest  Random forest ensemble models were con-
structed using the randomForest() function from the ran-
domForest package in R [28]. Each model was constructed 
from 500 individual trees. A bootstrap approach was used 
to evaluate model performance on the training set, and the 
test, external validation, and consumer sets were predicted 
as described above.

https://doi.org/10.25345/C5V980317
https://github.com/kelloggresearchgroup/MetabolomicsAnalysis/
https://github.com/kelloggresearchgroup/MetabolomicsAnalysis/
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Model comparisons and validation parameters

Model performance was evaluated by directly comparing 
each model’s specificity, sensitivity, balanced accuracy, 
and correct classification rate (CCR) over 100 runs. Each 
of these measurements considers the true positives (TP), 
true negatives (TN), false positives (FP), and false nega-
tives (FN) in the model’s prediction.

Specificity is the model’s ability to determine FNs (e.g., 
a model’s ability to predict that a not-O. basilicum sample 
is not-O. basilicum):

Sensitivity is the opposite of specificity; it is the mod-
el’s ability to predict TPs (e.g., correctly predicting O. 
basilicum samples):

Balanced accuracy is a combination of specificity and 
sensitivity, with an adjustment to account for the uneven 
distribution of classes in the predicted dataset.

We further evaluated the predictions from each model. 
The probability of a sample being positive or negative 
(OB or nOB, for example) was calculated based on the 
number of each prediction over the 100 runs. Using this 

Specificity = TN∕(TN + FP)

Sensitivity = TP∕(TP + FN)

Balanced accuracy = (specificity + sensitivity)∕2

information, we calculated the correct classification rate 
(CCR) of each model:

High‑performance thin‑layer chromatography

Standards and test solutions

Stock solutions for quercetin, rutin, and chlorogenic acid 
were prepared at 1 mg/mL in methanol. Chlorogenic acid 
and quercetin were further diluted at 200 µg/mL while rutin 
was prepared at 400 µg/mL. The universal HPTLC mix 
(UHM) was prepared in-house and used as a system suit-
ability test (SST) [29]. Sample extracts were prepared at 
10 mg/mL in methanol.

Instrumentation

HPTLC analyses were conducted with an HPTLC system 
(CAMAG), equipped with a TLC-Visualizer 2, Automatic 
TLC Sampler 4, Automatic Developing Chamber 2, TLC 
Scanner 4, TLC Plate Heater III, and a Derivatizer. Analyses 
were run and data was processed using the software vision-
CATS version 3.2. HPTLC parameters were in agreement 
with the United States Pharmacopoeia (USP) general chap-
ter 203 [30].

CCR = (TP + TN)∕(TP + FP + TN + FN)

Fig. 1   Monte-Carlo based resampling workflow for supervised model 
construction. A Assign binary variable names, B split data into bal-
anced test and training sets, C auto-scale all data based on the mean 
and standard deviations of each variable in the training set, D build 

predictive model with training set, E use model to predict species of 
each new sample in the test, external validation, and consumer prod-
uct sets, F repeat steps B–E 100 times, G evaluate validation param-
eters and predictions over 100 runs
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Application, development, and detection

Two microliters of the reference standards and UHM 
and 8 µL of the sample were applied onto an HPTLC Si 
60 F254 plate (Supelco), then developed with n-butyl 
acetate:methanol:water:formic acid (7.5:2:1:1, v/v) [31]. 
The detection was performed under shortwave UV (254 nm), 
longwave UV (350 nm broad band), and white light in reflec-
tion + transmission (RT) prior to derivatization and in long-
wave UV and white light RT after derivatization with natural 
product reagent (NP), and anisaldehyde (AS) subsequently 
to NP (NP + AS).

Reagent preparation and spraying

Natural product reagent was prepared by dissolving 1 g 
of 2-aminoethyl diphenylborinate in 200 mL of methanol. 
The plate was heated at 100 ℃ for 3 min, then cooled down 
to room temperature and sprayed with 3 mL of the solu-
tion using a Derivatizer with a green nozzle, set at level 3. 
Images were recorded after 2 min.

Anisaldehyde in sulfuric acid reagent was prepared as 
follows: 170 mL of cooled methanol were slowly mixed with 
20 mL of acetic acid and 10 mL of sulfuric acid. The mix-
ture was cooled down to room temperature, then 0.5 mL of 
anisaldehyde (p-methoxy benzaldehyde) was added. Three 
milliliters of the solution was sprayed onto the plate using a 
Derivatizer with a blue nozzle at level 4, then the plate was 
heated at 100 °C for 3 min and the images were recorded.

Results and discussion

Ocimum growth and variation

This study utilized the natural variation within Ocimum, or 
basil/Tulsi, to investigate the application of statistical models 
in natural product studies. Ocimum has been widely culti-
vated worldwide for centuries. There are over 60 reported 
species of Ocimum, each with a number of cultivars and 
chemotypes [19]. This extensive taxonomic collection, along 
with morphological overlap between varieties, results in 
convoluted Ocimum identification. O. tenuiflorum, often 
called O. sanctum, is the most common therapeutic spe-
cies of Ocimum. O. tenuiflorum cultivars include Krishna 
and Rama and are typically characterized by strong, spicy 
scents and fuzzy leaves, although wide morphological vari-
ation is reported among O. tenuiflorum varieties [32]. O. 
gratissimum also contains valuable therapeutic proper-
ties. Vana is a common O. gratissimum cultivar, and other 
names for O. gratissimum include African and Clove Tulsi 
[33]. O. basilicum, or sweet basil, possesses high economic 
value, mainly for its culinary uses. O. basilicum is widely 

cultivated, resulting in numerous cultivars, including Thai 
basil, Purple basil, Genovese basil, and more. The extensive 
collection of common names and Ocimum varieties often 
results in misclassification upon harvest and the potential 
substitution of rare types with cheaper varieties [34]. For 
example, the O. basilicum variety purple basil can easily be 
confused with O. tenuiflorum due to the similarity in leaf 
colors. This makes Ocimum an ideal model system for inves-
tigating the potential for predictive models to differentiate 
between closely related herbal species.

The commercial seeds were labeled as O. basilicum (10), 
O. tenuiflorum (13), or O. gratissimum (8); however, based 
on morphological investigations using seed characteristics, 
our dataset contained 5 O. gratissimum, 7 O. teniflorum, and 
16 O. basilicum materials. We observed no species-based 
trends in biomass, leaf dry weight, or growth patterns (data 
not shown). We found that morphological identification 
based on leaf and floral characteristics was quite tedious and 
challenging, and we posit a potential reason for the misclas-
sification of commercially available seeds. To better charac-
terize the samples, we used seed morphology (Supplemental 
Table 2) to highlight differences between the three species’ 
seeds. All mislabeled seeds were O. basilicum characterized 
as a holy basil species, highlighting the extent of cultivation 
and morphological variation within O. basilicum which can 
complicate taxonomic evaluation.

Unsupervised evaluation of sample relationships

Before developing predictive models, we investigated the 
relationships between the greenhouse-grown Ocimum spe-
cies. Permutational multivariate analysis of variance (Per-
MANOVA) is a Euclidian-distance-based measurement that 
evaluates group differences within a multivariate space with 
multiple permutations which accommodates the covariates 
and unbalanced datasets common to metabolomics studies 
[29]. We compared the relationships of the labeled species 
(the species on the seed packet) and the morphologically 
ID’d species to investigate the chemical differences with dif-
ferent classifications. Among the greenhouse samples, there 
was a significant difference between all three labeled species 
(Table 3). O. basilicum–labeled materials differed the most 
from the other two species, with a p-value of 0.0001 for both 
O. basilicum vs O. tenuiflorum and O. gratissimum. O. ten-
uiflorum vs O. gratissimum resulted in a p-value of 0.0014, 
demonstrating that the three species as listed on the seed 
packets have unique metabolite profiles and are chemically 
distinct when grown in a controlled setting. PerMANOVA 
based on the morphological identification show similar 
results; all three species are significantly different from each 
other (Table 3).

There were distinct clusters of the materials labeled and 
morphologically ID’d as O. basilicum in the PCA scores 
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plots (Fig. 2). O. basilicum, commonly called sweet basil, 
differs from holy basil in its chemical properties, bioactive 
potential, and intended cultivation as a culinary, not ther-
apeutic, herb [35]. While there is a significant difference 
between all three species based on claimed ID and morpho-
logical ID, there was an unexpected overlap seen in the PCA 
scores plots (Fig. 2). Figure 2a shows that 5 O. basilicum 
materials are more chemically similar to the O. gratissimum 
materials, and Fig. 2b highlights that these same materials 
are all labeled as O. tenuiflorum by the seed distributors. 
Four of the five samples were labeled as “Kapoor” varie-
ties, which is taxonomically ambiguous; some sources list 
Kapoor as a variety of O. tenuiflorum [36], while others 
classify it as O. africanum [37, 38]. This confusion extends 
to commercial seed labels, as most “Kapoor” seeds were 
labeled as O. tenuiflorum when ordered in 2021, but their 
label has since changed to O. africanum. Upon further 
investigation via HPTLC, we confirmed that these materi-
als belong to a unique cultivar separate from O. tenuiflo-
rum and O. gratissimum (Fig. 2e). Possible explanations for 
this overlap include potential gene flow, local adaptation, 
or hybridization. However, this is beyond the focus of this 
study, and therefore further studies investigating evolution-
ary history and hybridization could clarify the classification 
of these materials. However, the current study highlights 
the benefits of orthogonal chemical approaches—i.e., untar-
geted LC–MS metabolomics and HPTLC with multivariate 
modeling—that are capable of identifying hidden patterns 
between materials that morphological evaluation (whether 
by leaf or seed) alone may be overlooked.

Together, these results indicate that while conclusive tax-
onomic classification is difficult, there are three chemotypes 
among the greenhouse materials based on the untargeted 
metabolomics information, and a potential fourth chemical 
group based on the HPTLC fingerprints. Since we observed 
such distinct chemical groupings, we further investigated if 
chemotype groupings are more reliable for classifying new 
materials than species identification. While straying from 
traditional identification categories, chemotype classifica-
tions can be informative for consumers and herbal supple-
ment manufacturers since chemical diversity drives differ-
ences in therapeutic effects.

Regardless of the classification approach, an essential 
question surrounding botanical authentication is to know if 

“reference materials” (i.e., the greenhouse-grown samples) 
are a reliable predictive model for external samples. Thus, 
we evaluated the chemical variation between the green-
house and commercial samples, including reference materi-
als and consumer products (Table 3). PerMANOVA results 
revealed that the greenhouse samples (all three species com-
bined) were significantly different from both the external 
validation samples (p = 0.0001) and the consumer products 
(p = 0.0001). However, the consumer and external valida-
tion profiles did not significantly differ (p = 0.53330). Simi-
larly, consumer and validation set samples were positioned 
close together on the PCA scores plot (Fig. 3a). The three 
consumer products that were separated from the remain-
ing samples (in the upper right quadrant) were the two tea 
blends—B14 and B17—and a product marketed for culinary 
use—B13. While it is difficult to conclude why these prod-
ucts are so unique, we can hypothesize the chemical profile 
was altered as a result of processing, harvest, or formula-
tion conditions. These results are supported with HPTLC 
fingerprints, where the consumer product fingerprints are 
much more complicated than the greenhouse-grown materi-
als (Fig. 3b).

These findings agreed with the original hypotheses: 
greenhouse samples had highly controlled growth and 
processing conditions, which reduced sources of variation 
typical of herbal product manufacturing. When introducing 
external conditions, like temperature, moisture, drying con-
ditions, and storage, Ocimum chemical profiles experience 
large variations [39, 40]. Since the conditions under which 
the ordered samples were grown, processed, packaged, and 
shipped were unknown (as is typical in a regulatory testing 
environment), we could not introduce all potentially relevant 
variables into our dataset. This is representative of industry 
conditions in which having such a varied collection of sam-
ples for any species would be quite time- and cost-intensive.

Predictive model construction and evaluation

The PerMANOVA and PCA results clearly demonstrated 
that the greenhouse samples are chemically distinct from 
the commercial samples. Adding in a supervision com-
ponent could potentially leverage the known metadata to 
improve the predictive capabilities of the metabolomics 
datasets; thus, we evaluated if the greenhouse-produced 

Table 3   PerMANOVA results 
comparing the untargeted 
metabolite profiles of species 
and sample source. P = 0.05

Greenhouse-only morphological ID OB vs OG OB vs OT OG vs OT
Adjusted P-value 0.0008 0.0003 0.0018
Greenhouse-only labeled species OB vs OG OB vs OT OG vs OT
Adjusted P-value 0.0001 0.0001 0.0014
All samples GH vs consumer GH vs EVS Consumer vs EVS
Adjusted P-value 0.0001 0.0001 0.5333
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“reference materials” could predict the identity of com-
mercial samples when employing a supervised machine 
learning approach. To this end, we chose three models to 

evaluate predictive capabilities: LASSO, PLS-DA, and RF. 
LASSO and PLS-DA are both linear models that are quite 
common in the herbal product literature. RF is increasingly 

Fig. 2   Principal component analysis (PCA) scores plots of the untar-
geted metabolomics profiling of Ocimum samples from greenhouse-
produced samples. PCA scores plot of greenhouse samples coded by 

a morphological ID, b labeled species, c LC–MS-based chemotype 
(3 groups), d HPTLC-based chemotype, as demonstrated by HPTLC 
fingerprints (e)



Application of predictive modeling tools for the identification of Ocimum spp. herbal products﻿	

popular, especially considering the often non-linear relation-
ship of metabolites. We constructed binary models (e.g., 
each sample was classified as “is O. basilicum” or “is not O. 
basilicum”) for all evaluations. We had the additional goal of 
determining if classification based on chemotype or species 
is more reliable when building predictive models. All data 
shown is based on the seed morphological identity of the 
materials, not the provided commercial label identification.

A common hindrance to metabolomics-based predictive 
modeling is building a representative training set with a 
small sample size. The most common solution is randomly 
selecting a subset of data to serve as a training set; while 
this is adequate for large datasets with balanced groups, it 
becomes complicated with small, unbalanced groups [41]. 
Consider, for example, using 80% of the overall data as the 

training set for the O. gratissimum model. However, less than 
20% of the samples were O. gratissimum, and therefore it is 
possible that no O. gratissimum samples would be selected 
to build its own model! Thus, we used a Monte Carlo–based 
ensemble approach which randomly generated a training set 
that is balanced based on the number of samples in the “pos-
itive” group with the remaining samples placed in the test 
set (Fig. 1). The model was built and optimized as described 
in the experimental section, and the process was repeated 
for 100 iterations. Notably, this ensemble approach allowed 
the final prediction of new samples to be probability-based; 
the final prediction was based on the probability the sample 
belonged to each class over the 100 generated models. We 
evaluated model performance by comparing the distribution 
(average and standard deviation) of selectivity, specificity, 

Fig. 3   a PCA scores plot 
profiling Ocimum samples from 
greenhouse-produced and exter-
nal products. b HPTLC finger-
prints of consumer products are 
more complex than greenhouse 
fingerprints (Fig. 2e)
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balanced accuracy, and CCR over 100 runs (Table 4, stand-
ard deviations can be found in Supplemental Table 1).

Predictive models classify new greenhouse samples 
with varying success

We first evaluated three supervised models’ ability to clas-
sify new greenhouse samples based on species and chemo-
type; LASSO (Fig. 4a), PLS-DA (Fig. 4b), and RF (Fig. 4c). 
Overall, the models based on species had higher accura-
cies and correct classification rates (CCRs) than the models 
based on chemotype. The lowest accuracy (0.62) based on 
species resulted from the O. gratissumum binary LASSO 
model, whereas the lowest accuracy based on chemotype 
was 0.28 with the C3 LASSO model. We originally hypoth-
esized that the chemotype classifications would be more reli-
able than morphological species for classifying new materi-
als. However, these results indicate that even though there 
are interspecies chemical overlaps, species classifications 
provide more accurate predictions for new materials. These 
chemical relationships could be further investigated in future 
studies by expanding the sample size of all three species.

Within the species classifications, there are O. basilicum 
materials with high chemical similarity to O. gratissium 
which could have confounded the results. Indeed, the O. 
gratissimum models resulted in lower accuracies than the 
O. tenuiflorum and O. basilicum models. O. tenuiflorum and 
O. basilicum models resulted in high balanced accuracies 
(above 0.85), meaning all three models were mostly able 
to correctly predict the species identity of unseen samples. 
The CCR highlights that the LASSO models resulted in the 
most correct classifications for all three species—O. basili-
cum (100%), O. tenuiflorum (100%), and O. gratissimum 
(95%) (Table 4). It is of note that the CCR was often higher 
than the average balanced accuracy over the 100 runs, sug-
gesting that a probability-based prediction scheme could 

be useful for optimizing prediction results. Taken together, 
these results indicate that a LASSO predictive model can 
successfully predict the species, but not chemotype, of new 
materials that were grown in the same controlled setting.

Developed models are not applicable to external 
samples

Before evaluating consumer products with the developed 
models, we assessed each model’s ability to predict the spe-
cies identity of validated external reference materials. This 
external validation set included certified reference materi-
als from USP and Chromadex, as well as dried herbs from 
well-established sources with accompanying certificates of 
analyses (COAs) or publications to confirm species identity. 
We also included sage (Salvia officinalis L.) and rosemary 
(Salvia rosmarinus L.) materials to determine if the model 
can identify non-Ocimum samples. One note, only one O. 
basilicum sample was included in the external validation set 
due to a lack of available reference materials.

Overall, none of the three models performed well in 
classifying the reference materials (Table 4, Fig. 5 (row 
2)). The LASSO model for O. basilicum had the highest 
balanced accuracy at 71%. Both the PLS-DA and RF had 
low balanced accuracies overall, and there was no indi-
cation that the models built with greenhouse materials 
could successfully predict the species of external materials 
(Table 5). When considering specificity and sensitivity, we 
observed inverse relationships between O. basilicum and 
O. gratissimum/O. tenuiflorum; as O. basilicum’s sensitiv-
ity increased, the other two species’ sensitivity decreased. 
So, when a model determined a new material was O. 
basilicum, its ability to reliably recognize the other species 
decreased. Similarly, when a model correctly predicted if 
a new material was not O. basilcum, it could not recog-
nize if a material was not the other two species. However, 

Table 4   Average validation 
scores across 100 runs of each 
supervised model (LASSO, 
PLS-DA, and RF) in predicting 
the greenhouse test sets based 
on species and chemotype

Species
LASSO PLS-DA RF
OB OT OG OB OT OG OB OT OG

  Sensitivity 0.91 1.00 0.37 0.91 1.00 0.82 0.96 1.00 0.99
  Specificity 0.97 0.96 0.87 0.94 0.99 0.56 0.92 0.71 0.50
  Accuracy 0.94 0.98 0.62 0.92 0.99 0.69 0.94 0.86 0.75
  CCR​ 1.00 1.00 0.95 1.00 1.00 0.63 1.00 0.76 0.58

Chemotype
LASSO PLS-DA RF
C1 C2 C3 C1 C2 C3 C1 C2 C3

  Sensitivity 0.54 0.13 0.05 0.83 0.80 1.00 0.83 0.87 1.00
  Specificity 0.92 0.73 0.52 0.93 0.42 0.93 0.87 0.73 0.78
  Accuracy 0.73 0.43 0.28 0.88 0.61 0.97 0.90 0.80 0.88
  CCR​ 0.87 0.42 0.64 1.00 0.55 1.00 1.00 1.00 0.79
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irrespective of the models’ accuracies, when the three spe-
cies’ models were combined for overall probability-based 
predictions, it was rare that the final prediction was correct 
(Table 6). The LASSO model, which was the most reliable 
for predicting new greenhouse materials, resulted in a final 
assignment that over half of the materials are not one of 
the three Ocimum species at all (Table 6).

These results are not all together unexpected; a botani-
cal’s chemical profile is greatly impacted by environmen-
tal, harvesting, and processing conditions. The untargeted 
metabolomics PCA scores plots combined with HPTLC 
fingerprints confirmed that the greenhouse materials were 
not chemically representative of the external materials, 
and introducing a supervised aspect via multivariate pre-
dictive modeling did not improve this relationship.

Consumer product identity predictions

While no model built on the greenhouse samples was able to 
adequately distinguish external reference samples, they were 
evaluated for their abilities to classify consumer-available 
products. It should be noted that these samples were not ver-
ified materials, so their actual species identity has not been 
confirmed. Thus, reporting sensitivity, specificity, and bal-
anced accuracy was our best estimate of model performance.

While in most cases the balanced accuracies were 
slightly higher with the consumer products than the vali-
dation set predictions, they were still too low for reliable 
identification in an industry setting. For example, the 
highest balanced accuracy for consumer product predic-
tions is 71% (RF, O. tenuiflorum model), accompanied by 

Fig. 4   Validation scores bar plots for a LASSO, b PLS-DA, c RF. Validation scores are represented as the average and standard deviation over 
100 runs of each model predicting the greenhouse test set based on chemotype (left) and species (right)
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Fig. 5   Validation scores bar plots for a LASSO, b PLS-DA, c RF. Validation scores are represented as the average and standard deviation over 
100 runs of each model predicting the external validation set (left) and consumer product set (right) based on species

Table 5   Average validation 
scores across 100 runs of each 
supervised model (LASSO, 
PLS-DA, and RF) in predicting 
the greenhouse test sets based 
on species and chemotype

External validation
LASSO PLS-DA RF
OB OT OG OB OT OG OB OT OG

  Sensitivity 0.68 0.27 0.21 0.06 0.51 0.93 0.42 0.68 0.99
  Specificity 0.74 0.74 0.93 0.80 0.34 0.28 0.77 0.16 0.34
  Accuracy 0.71 0.52 0.57 0.43 0.43 0.60 0.56 0.42 0.68
  CCR​ 0.89 0.67 0.67 0.22 0.44 0.44 0.67 0.44 0.56

Consumer products
LASSO PLS-DA RF
OB OT OG OB OT OG OB OT OG

  Sensitivity 0.62 0.24 0.01 0.49 0.57 0.62 0.62 0.89 0.60
  Specificity 0.66 0.92 0.90 0.71 0.74 0.37 0.79 0.52 0.36
  Accuracy 0.64 0.58 0.48 0.60 0.66 0.49 0.71 0.70 0.48
  CCR​ 0.76 0.53 0.76 0.35 0.76 0.41 0.76 0.71 0.29
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a 76% CCR. If approximately 30% of the time the model 
incorrectly identifies the product, this would translate to 
a 30% chance of mislabeled products reaching the market 
or unnecessary supply chain investigations.

Taken together, these results cast a doubtful light on the 
usefulness of controlled-environment samples serving as 
the foundation of machine learning and predictive mod-
eling in herbal product identification studies. Overall, the 
models developed based on controlled greenhouse sam-
ples could not be applied to these external samples. These 
results were congruent with the unsupervised analysis, in 
which the external samples were separated from the green-
house samples in the PCA scores plot (Fig. 2d). Recently, 
Harnly and Upton reported similar findings when using 
chemometrics models to investigate variation between 
Actaea racemosa L. reference materials and commercial 
standards [42]. These authors investigated multiple pre-
treatment approaches and model manipulation techniques 
to ultimately report that statistical modeling results in gen-
erally high sensitivity and low specificity when assessing 
the species of new materials, even when looking at a con-
served subset of compounds. In our current study, samples 
in the external validation set were reference standards; 
they all originated from different sources, locations, and 
growing conditions that can influence their chemical pro-
files. These studies together suggest that external factors 
play a major role in metabolite composition and highlight 
the crucial need for the inclusion of more data from envi-
ronmental, processing, and other external variables into 
predictive models before integrating such approaches into 
identification or authentication applications.

Conclusions

Multivariate modeling is a primary method for analyz-
ing untargeted metabolomics data and is well-suited to 
discover patterns within complex chemical profiles. Che-
mometric approaches are instrumental in identifying and 
authenticating botanical materials due to their independ-
ence from a small subset of specific chemical markers, 
as well as their ability to incorporate numerous validated 
samples with inter- and intraspecies variation. As machine 
learning and predictive modeling become more popular 
across scientific disciplines, the limitations and applica-
bility of new models in the herbal product space must be 
critically evaluated.

This study demonstrated that using chemometric mod-
els built on untargeted metabolomics data from controlled 
greenhouse samples could aid in classifying new O. ten-
uiflorum and O. basilicum greenhouse samples. Since the 
greenhouse samples all had the same environmental and 
processing conditions, this loosely resembled the condi-
tions that a raw material grower would face. Thus, it is 
conceivable that using a LASSO model would be accept-
able as an internal material verification system to confirm 
whether the chemical composition of the plants grown/
processed under similar conditions conforms as expected 
or if there is unusual metabolite variation between batches.

Ultimately, chemometric modeling of controlled ref-
erence materials was not able to accurately predict the 
identity of commercially available products, as it was evi-
dent that there were significant differences in chemical 

Table 6   Probabilities of each 
external validation material 
belonging to each species over 
100 runs of each model

LASSO
Actual sample ID: OG OT OT OG OT Non-target Non-target OT or OG OB
OB 0.01 0.23 0.79 0.02 0.08 0.37 0.46 0.09 0.68
OG 0.2 0.00 0.00 0.42 0.20 0.00 0.20 0.00 0.00
OT 0.16 0.06 0.06 0.05 0.92 0.00 0.07 0.89 0.00
Predicted ID: None None OT None OT None None OT OB
PLS-DA
Actual sample ID: OG OT OT OG OT Non-target Non-target OT or OG OB
OB 1.00 0.97 0.68 0.99 0.83 0.93 0.04 0.96 0.94
OG 0.89 0.82 0.66 0.89 0.89 0.77 0.73 1.00 0.46
OT 1.00 0.06 0.36 0.49 1.00 0.49 0.62 1.00 0.32
Predicted ID: All OB OB OB OT OB OG OG or OT OB
RF
Actual sample ID: OG OT OT OG OT Non-target Non-target OT or OG OB
OB 0.00 0.21 0.61 0.00 0.00 0.02 1.00 0.00 0.42
OG 0.98 0.67 1.00 1.00 0.88 0.99 0.02 1.00 0.29
OT 1.00 0.82 0.88 0.90 1.00 0.82 0.00 1.00 0.46
Predicted ID: OG OG OT OG OG OG OB OG or OT OG
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composition between the greenhouse and commercial 
samples. This suggests that environmental variation is a 
large driver of Ocimum diversity, potentially greater than 
taxonomic classifications; this is borne out by other recent 
botanical studies. While this has been extensively reported 
upon in agricultural and crop science studies, the relation-
ship between genetics, metabolomics, and environmental 
interactions in herbal products has not been thoroughly 
investigated [43]. Including more variation in the original 
models, such as different post-harvest drying conditions 
or water and nutrient levels, may improve their ability to 
predict external samples. Attempting to encompass all 
potential sources of variation would result in a large and 
complex study requiring extensive data collection stages; 
however, smaller studies could potentially identify spe-
cific factors driving the shifts in chemistry and yield more 
successful predictive models. Therefore, more studies are 
needed to determine which of these myriad factors have 
the greatest impact on chemical diversity.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00216-​025-​05735-0.

Acknowledgements  We would like to thank Dr. Justin Silverman for 
his guidance in statistical model construction and editorial review. 
We would also like to thank the Pennsylvania State University Her-
barium for their support in Ocimum identification and voucher speci-
men preparation, and the Huck Institutes’ Metabolomics Core Facility 
(RRID:SCR_023864) for use of the ThermoFisher Orbitrap Fusion 
Lumos LC-MS. Finally, we would like to thank Scott DiLoreto and 
the Pennsylvania State University Greenhouses for their guidance and 
assistance with growing Ocimum.

Author contribution  Conceptualization: Evelyn Abraham, Joshua 
Kellogg. Methodology: Evelyn Abraham, Joshua Kellogg. Valida-
tion: Evelyn Abraham, R. Teal Jordan, Wilmer Perera, Sarah Cha-
merlain. Formal analysis: Evelyn Abraham, R. Teal Jordan, Wilmer 
Perera, Joshua Kellogg. Investigation: Evelyn Abraham, R. Teal Jor-
dan, Wilmer Perera, Sarah Chamerlain. Resources: Evelyn Abraham, 
Wilmer Perera, Joshua Kellogg. Data curation: Evelyn Abraham, 
Joshua Kellogg. Writing—original draft: Evelyn Abraham, Joshua 
Kellogg. Writing—review and editing: Evelyn Abraham, Sarah Cham-
berlain, Wilmer Perera, R. Teal Jordan, Joshua Kellogg. Visualization: 
Evelyn Abraham, R. Teal Jordan, Wilmer Perera. Supervision: Joshua 
Kellogg. Project administration: Wilmer Perera, Joshua Kellogg. Fund-
ing acquisition: Evelyn Abraham, Joshua Kellogg.

Funding  This work was funded by the National Institute of Health, 
National Center for Complementary and Integrative Health grant num-
ber 1F31AT01213-01A1 and supported by the USDA National Insti-
tute of Food and Agriculture and Hatch Appropriations under Project 
#PEN04956 and Accession #7006496. Additional funding was pro-
vided by the Anne C. Chatham Fellowship in Medicinal Botany from 
the Garden Club of America.

Declarations 

Competing interests  Evelyn Abraham receives a salary from Eurofins 
Food and Feed Testing, where she is a marketing content writer, but 
her work with Eurofins is independent and unrelated to research at 
Pennsylvania State University. Eurofins is not a collaborator or finan-

cial supporter of Josh Kellogg’s research. All other authors have no 
potential conflicts of interest related to the current manuscript.

References

	 1.	 Applequist WL, Miller JS. Selection and authentication of botani-
cal materials for the development of analytical methods. Anal 
Bioanal Chem. 2013;405(13):4419–28. https://​doi.​org/​10.​1007/​
s00216-​012-​6595-1.

	 2.	 Spinardi A, Cola G, Gardana CS, Mignani I. Variation of antho-
cyanin content and profile throughout fruit development and 
ripening of highbush blueberry cultivars grown at two different 
altitudes. Front Plant Sci. 2019;10:1045. https://​doi.​org/​10.​3389/​
fpls.​2019.​01045.

	 3.	 Wang H, Cao X, Yuan Z, Guo G. Untargeted metabolomics cou-
pled with chemometrics approach for Xinyang Maojian green tea 
with cultivar, elevation and processing variations. Food Chem. 
2021;352:129359. https://​doi.​org/​10.​1016/j.​foodc​hem.​2021.​
129359.

	 4.	 Perez De Souza L, Alseekh S, Naake T, Fernie A. Mass spec-
trometry-based untargeted plant metabolomics. CP Plant Biol. 
2019;4(4):e20100. https://​doi.​org/​10.​1002/​cppb.​20100.

	 5.	 Abraham EJ, Kellogg JJ. Chemometric-guided approaches for 
profiling and authenticating botanical materials. Front Nutr. 
2021;8:780228.

	 6.	 Hosbas Coskun S, Wise SA, Kuszak AJ. The importance of refer-
ence materials and method validation for advancing research on 
the health effects of dietary supplements and other natural prod-
ucts. Front Nutr. 2021;8:786261. https://​doi.​org/​10.​3389/​fnut.​
2021.​786261.

	 7.	 Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool 
of chemometrics. Chemom Intell Lab Syst. 2001;58(2):109–30. 
https://​doi.​org/​10.​1016/​S0169-​7439(01)​00155-1.

	 8.	 Walkowiak A, Ledziński Ł, Zapadka M, Kupcewicz B. Detection 
of adulterants in dietary supplements with Ginkgo biloba extract 
by attenuated total reflectance Fourier transform infrared spectros-
copy and multivariate methods PLS-DA and PCA. Spectrochim 
Acta Part A Mol Biomol Spectrosc. 2019;208:222–8. https://​doi.​
org/​10.​1016/j.​saa.​2018.​10.​008.

	 9.	 Sarkar R, Chatterjee N, Shaikh N, et al. Authentication of Tinos-
pora cordifolia derived herbal supplements using high resolution 
mass spectrometry-based metabolomics approach – a pilot study. 
Ind Crops Prod. 2023;200:116835. https://​doi.​org/​10.​1016/j.​indcr​
op.​2023.​116835.

	10.	 Barbosa S, Saurina J, Puignou L, Núñez O. Classification and 
authentication of paprika by UHPLC-HRMS fingerprinting and 
multivariate calibration methods (PCA and PLS-DA). Foods. 
2020;9(4):486. https://​doi.​org/​10.​3390/​foods​90404​86.

	11.	 Gad HA, El-Ahmady SH, Abou-Shoer MI, Al-Azizi MM. Appli-
cation of chemometrics in authentication of herbal medicines: 
a review. Phytochem Anal. 2013;24(1):1–24. https://​doi.​org/​10.​
1002/​pca.​2378.

	12.	 Babyak MA. What you see may not be what you get: a brief, 
nontechnical introduction to overfitting in regression-type models. 
Psychosom Med. 2004;66:411–21.

	13.	 Tibshirani R. Regression shrinkage and selection via the lasso. J 
Roy Stat Soc: Ser B (Methodol). 1996;58(1):267–88. https://​doi.​
org/​10.​1111/j.​2517-​6161.​1996.​tb020​80.x.

	14.	 Ranstam J, Cook JA. LASSO regression. Br J Surg. 
2018;105(10):1348–1348. https://​doi.​org/​10.​1002/​bjs.​10895.

	15.	 Bujak R, Daghir-Wojtkowiak E, Kaliszan R, Markuszewski MJ. 
PLS-based and regularization-based methods for the selection of 

https://doi.org/10.1007/s00216-025-05735-0
https://doi.org/10.1007/s00216-012-6595-1
https://doi.org/10.1007/s00216-012-6595-1
https://doi.org/10.3389/fpls.2019.01045
https://doi.org/10.3389/fpls.2019.01045
https://doi.org/10.1016/j.foodchem.2021.129359
https://doi.org/10.1016/j.foodchem.2021.129359
https://doi.org/10.1002/cppb.20100
https://doi.org/10.3389/fnut.2021.786261
https://doi.org/10.3389/fnut.2021.786261
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/j.saa.2018.10.008
https://doi.org/10.1016/j.saa.2018.10.008
https://doi.org/10.1016/j.indcrop.2023.116835
https://doi.org/10.1016/j.indcrop.2023.116835
https://doi.org/10.3390/foods9040486
https://doi.org/10.1002/pca.2378
https://doi.org/10.1002/pca.2378
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1002/bjs.10895


Application of predictive modeling tools for the identification of Ocimum spp. herbal products﻿	

relevant variables in non-targeted metabolomics data. Front Mol 
Biosci. 2016;3. https://​doi.​org/​10.​3389/​fmolb.​2016.​00035.

	16.	 Zhu Y, Tan TL, Cheang WK. Penalized logistic regression for 
classification and feature selection with its application to detection 
of two official species of Ganoderma. Chemom Intell Lab Syst. 
2017;171:55–64. https://​doi.​org/​10.​1016/j.​chemo​lab.​2017.​09.​019.

	17.	 Breiman L. Random Forests. Mach Learn. 2001;45(1):5–32. 
https://​doi.​org/​10.​1023/A:​10109​33404​324.

	18.	 Patel RP, Singh R, Saikia SK, et al. Phenotypic characteriza-
tion and stability analysis for biomass and essential oil yields 
of fifteen genotypes of five Ocimum species. Ind Crops Prod. 
2015;77:21–9. https://​doi.​org/​10.​1016/j.​indcr​op.​2015.​08.​043.

	19.	 Zahran EM, Abdelmohsen UR, Khalil HE, et al. Diversity, phyto-
chemical and medicinal potential of the genus Ocimum L. (Lami-
aceae). Phytochem Rev. 2020;19(4):907–53. https://​doi.​org/​10.​
1007/​s11101-​020-​09690-9.

	20.	 Fuller NJ, Pegg RB, Affolter J, Berle D. Variation in growth and 
development, and essential oil yield between two Ocimum species 
(O. tenuiflorum and O. gratissimum) grown in Georgia. Horts. 
2018;53(9):1275–82. https://​doi.​org/​10.​21273/​HORTS​CI131​
56-​18.

	21.	 Kellogg JJ, Todd DA, Egan JM, et al. Biochemometrics for natural 
products research: comparison of data analysis approaches and 
application to identification of bioactive compounds. J Nat Prod. 
2016;79(2):376–86. https://​doi.​org/​10.​1021/​acs.​jnatp​rod.​5b010​
14.

	22.	 Kellogg JJ, Alonso MN, Jordan RT, et al. A methoxylated flavone 
from Artemisia afra kills Mycobacterium tuberculosis; preprint. 
Microbiology. 2023. https://​doi.​org/​10.​1101/​2023.​10.​11.​561885.

	23.	 Schmid R, Heuckeroth S, Korf A, et al. Integrative analysis of 
multimodal mass spectrometry data in MZmine 3. Nat Biotechnol. 
2023;41(4):447–9. https://​doi.​org/​10.​1038/​s41587-​023-​01690-2.

	24.	 Van Den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, 
Van Der Werf MJ. Centering, scaling, and transformations: 
improving the biological information content of metabolomics 
data. BMC Genomics. 2006;7(1):142. https://​doi.​org/​10.​1186/​
1471-​2164-7-​142.

	25.	 Oksanen J, Simpson GL, Blanchet FG, et al. vegan: Commu-
nity Ecology Package.  R package version 2.6-4. 2022. https://​
CRAN.R-​proje​ct.​org/​packa​ge=​vegan

	26.	 Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R 
Package for ‘omics feature selection and multiple data integra-
tion. PLoS Comput Biol. 2017;13(11):e1005752. https://​doi.​org/​
10.​1371/​journ​al.​pcbi.​10057​52.

	27.	 Friedman JH, Hastie T, Tibshirani R. Regularization paths for 
generalized linear models via coordinate descent. J Stat Soft. 
2010;33(1):1–22. https://​doi.​org/​10.​18637/​jss.​v033.​i01.

	28.	 Liaw A, Wiener M. Classification and regression by randomFor-
est. R News. 2002;2/3:18–22.

	29.	 Do TKT, Schmid M, Phanse M, et al. Development of the first 
universal mixture for use in system suitability tests for high-
performance thin layer chromatography. J Chromatogr A. 
2021;1638:461830. https://​doi.​org/​10.​1016/j.​chroma.​2020.​461830.

	30.	 U. S. Pharmacopeia. 203 High-performance thin-layer chromatog-
raphy procedure for identification of articles of botanical origin. 
First Supplement to USP 38–NF 33. 2017:7044-7045.

	31.	 Perera WH, Frommenwiler DA, Sharaf MHM, Reich E. An 
improved high-performance thin-layer chromatographic method 
to unambiguously assess Ginkgo biloba leaf finished products. 

JPC-J Planar Chromat. 2021;34(6):559–60. https://​doi.​org/​10.​
1007/​s00764-​021-​00146-0.

	32.	 Malav P, Pandey A, Bhatt KC, Gopala Krishnan S, Bisht IS. Mor-
phological variability in holy basil (Ocimum tenuiflorum L.) from 
India. Genet Resour Crop Evol. 2015;62(8):1245–56. https://​doi.​
org/​10.​1007/​s10722-​015-​0227-5.

	33.	 Kumar N, editor. Biotechnological approaches for medicinal and 
aromatic plants: conservation, genetic improvement and utiliza-
tion. Singapore: Springer Singapore; 2018. https://​doi.​org/​10.​
1007/​978-​981-​13-​0535-1.

	34.	 Bhamra SK, Heinrich M, Johnson MRD, Howard C, Slater A. 
The cultural and commercial value of Tulsi (Ocimum tenuiflorum 
L.): multidisciplinary approaches focusing on species authentica-
tion. Plants. 2022;11(22):3160. https://​doi.​org/​10.​3390/​plant​s1122​
3160.

	35.	 Novak J, Blüthner W-D (Eds) Medicinal, aromatic and stimulant 
plants; Handbook of plant breeding. Cham: Springer International 
Publishing. 2020;12. https://​doi.​org/​10.​1007/​978-3-​030-​38792-1.

	36.	 Parveen A, Wang Y-H, Fantoukh O, et al. Development of a 
chemical fingerprint as a tool to distinguish closely related Tino-
spora species and quantitation of marker compounds. J Pharm 
Biomed Anal. 2020;178:112894. https://​doi.​org/​10.​1016/j.​jpba.​
2019.​112894.

	37.	 Srivastava S, Lal RK, Maurya R, et al. Chemical diversity of 
essential oil among basil genotypes (Ocimum viride Willd.) across 
the years. Ind Crop Prod. 2021;173:114153. https://​doi.​org/​10.​
1016/j.​indcr​op.​2021.​114153.

	38.	 Maurya S, Sangwan NS. Profiling of essential oil constituents 
in Ocimum species. Proc Natl Acad Sci India Sect B Biol Sci. 
2020;90(3):577–83. https://​doi.​org/​10.​1007/​s40011-​019-​01123-8.

	39.	 Ekren S, Sönmez Ç, Özçakal E, et al. The effect of different irri-
gation water levels on yield and quality characteristics of purple 
basil (Ocimum basilicum L.). Agric Water Manag. 2012;109:155–
61. https://​doi.​org/​10.​1016/j.​agwat.​2012.​03.​004.

	40.	 Abozeed A, El Shafey R, Osman Y. Effect of location and envi-
ronmental conditions on growth, yields and chemical constituents 
of sweet basil (Ocimum basilicum L.). J Agric Chem Biotechnol. 
2015;6(1):1–13. https://​doi.​org/​10.​21608/​jacb.​2015.​43961.

	41.	 Beleites C, Salzer R. Assessing and improving the stability of 
chemometric models in small sample size situations. Anal Bio-
anal Chem. 2008;390(5):1261–71. https://​doi.​org/​10.​1007/​
s00216-​007-​1818-6.

	42.	 Harnly J, Upton R. Variation in botanical reference materials: 
similarity of Actaea Racemosa analyzed by flow injection mass 
spectrometry. J AOAC Int. 2023:qsad137. https://​doi.​org/​10.​1093/​
jaoac​int/​qsad1​37.

	43.	 Napier JD, Heckman RW, Juenger TE. Gene-by-environment 
interactions in plants: molecular mechanisms, environmental 
drivers, and adaptive plasticity. Plant Cell. 2023;35(1):109–24. 
https://​doi.​org/​10.​1093/​plcell/​koac3​22.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.3389/fmolb.2016.00035
https://doi.org/10.1016/j.chemolab.2017.09.019
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.indcrop.2015.08.043
https://doi.org/10.1007/s11101-020-09690-9
https://doi.org/10.1007/s11101-020-09690-9
https://doi.org/10.21273/HORTSCI13156-18
https://doi.org/10.21273/HORTSCI13156-18
https://doi.org/10.1021/acs.jnatprod.5b01014
https://doi.org/10.1021/acs.jnatprod.5b01014
https://doi.org/10.1101/2023.10.11.561885
https://doi.org/10.1038/s41587-023-01690-2
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.chroma.2020.461830
https://doi.org/10.1007/s00764-021-00146-0
https://doi.org/10.1007/s00764-021-00146-0
https://doi.org/10.1007/s10722-015-0227-5
https://doi.org/10.1007/s10722-015-0227-5
https://doi.org/10.1007/978-981-13-0535-1
https://doi.org/10.1007/978-981-13-0535-1
https://doi.org/10.3390/plants11223160
https://doi.org/10.3390/plants11223160
https://doi.org/10.1007/978-3-030-38792-1
https://doi.org/10.1016/j.jpba.2019.112894
https://doi.org/10.1016/j.jpba.2019.112894
https://doi.org/10.1016/j.indcrop.2021.114153
https://doi.org/10.1016/j.indcrop.2021.114153
https://doi.org/10.1007/s40011-019-01123-8
https://doi.org/10.1016/j.agwat.2012.03.004
https://doi.org/10.21608/jacb.2015.43961
https://doi.org/10.1007/s00216-007-1818-6
https://doi.org/10.1007/s00216-007-1818-6
https://doi.org/10.1093/jaoacint/qsad137
https://doi.org/10.1093/jaoacint/qsad137
https://doi.org/10.1093/plcell/koac322


Supplemental Information for 

Application of Predictive Modeling Tools for the Identification of Ocimum spp. Herbal Products 

Abraham, Evelyn J., Chamberlain, Sarah J., Perera, Wilmer H., Jordan, R Teal, Kellogg, Joshua J. 

 

Supplemental Table 1: Validation scores’ standard deviations across 100 runs of each supervised model 
(LASSO, PLS-DA, and RF) in predicting the greenhouse test sets, external validation set, and consumer 
product set. 

 
Greenhouse Species 

 LASSO PLS-DA RF 

 OB OT OG OB OT OG OB OT OG 

Sensitivity 0.15 0.00 0.49 0.15 0.00 0.39 0.079 0.00 0.310 

Specificity 0.11 0.14 0.16 0.13 0.025 0.24 0.14 0.10 0.15 

Accuracy 0.084 0.16 0.19 0.087 0.013 0.13 0.075 0.050 0.089 

 
Greenhouse Chemotype 

 LASSO PLS-DA RF 

 C1 C2 C3 C1 C2 C3 C1 C2 C3 

Sensitivity 0.45 0.23 0.20 0.28 0.21 0.00 0.26 0.19 0.00 

Specificity 0.090 0.21 0.21 0.076 0.31 0.11 0.045 0.25 0.027 

Accuracy 0.22 0.090 0.12 0.16 0.11 0.055 0.14 0.14 0.013 

 
External validation - Species 

 LASSO PLS-DA RF 

 OB OT OG OB OT OG OB OT OG 

Sensitivity 0.47 0.10 0.27 0.24 0.21 0.21 0.50 0.15 0.047 

Specificity 0.16 0.093 0.13 0.13 0.25 0.24 0.10 0.19 0.17 

Accuracy 0.23 0.088 0.08 0.13 0.084 0.10 0.23 0.058 0.083 

 Consumer Products - Species 

 LASSO PLS-DA RF 

 OB OT OG OB OT OG OB OT OG 

Sensitivity 0.35 0.15 0.10 0.11 0.16 0.34 0.15 0.13 0.24 

Specificity 0.25 0.24 0.11 0.16 0.16 0.23 0.14 0.19 0.24 



Accuracy 0.080 0.048 0.048 0.082 0.075 0.095 0.059 0.056 0.060 

 

Supplemental Figure 1: Representative Voucher Specimens. A) O. basilicum (sweet basil) B) O. 
gratissimum (Vana) C) O. tenuiflorum (Kapoor) D) O. tenuiflorum (Rama) 
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Supplemental Table 2: Seed morphological determination, based upon microscopy images 

   
CP_G (O. gratissimum) CP_S (O. tenuiflorum) FS_G (O. gratissimum) 

   
FS_S (O. basilicum)* JS_G (O. basilicum) JS_H (O. tenuiflorum) 

   
JS_R (O. basilicum) JS_S (O. basilicum) PGS_A (O. basilicum) 

   
PGS_G (O. basilicum) PGS_K (O. basilicum)* PGS_R (O. bascilicum)* 

   
PGS_T (O. basilicum) PGS_V (O. gratissimum) SE_K (O. bascilicum)* 



   
SMS_A (O. tenuiflorum) SMS_G (O. basilicum) SMS_M (O. basilicum) 

   
SMS_R (O. tenuiflorum) SMS_S (O. basilicum) SMS_T (O. basilicum) 

   
SMS_V (O. gratissimum) SN_S (O. tenuiflorum) STS_K (O. basilicum)* 

   
TLM_H (O. tenuiflorum) TLS_K (O. basilicum)* TLS_V (O. gratissimum) 

 

  

TS_G (O. tenuiflorum)   
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