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Galaxy redshift surveys are powerful probes of cosmology. Yet, in order to fully

exploit the information contained in galaxy surveys, we need to improve upon our under-

standing of the structure formation in the Universe. Galaxies are formed/observed at late

times when the density field is no longer linear so that understanding non-linearities is es-

sential. In this thesis, we show that, at high redshifts, we can accurately model the galaxy

power spectrum in redshift space by using the standard cosmological perturbation theory.

Going beyond the power spectrum, we can use the three-point function, or the

bispectrum, to gain important information on the early universe as well as on the galaxy

formation via measurements of primordial non-Gaussianity and galaxy bias. We show that

the galaxy bispectrum is more sensitive to primordial non-Gaussianities than previously

recognized, making high-redshift galaxy surveys a particularly potent probe of the physics

of inflation.

Weak lensing offers yet another way of probing cosmology. By cross correlating

the angular position of galaxies with the shear measurement from galaxy lensing or CMB

lensing, we also show that one can obtain the information on cosmological distance scale,

the galaxy bias, and the primordial non-Gaussianity from weak lensing method.
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6.6 Same as Fig. 6.3, but with the expected 1-σ uncertainties for full-sky lens
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Chapter 1

Introduction

We are living in a golden age of cosmology. By ‘golden age’, we mean not only that

all observations converge to the concordance cosmology model and that we can measure

most of the cosmological parameters accurately (Komatsu et al., 2010), but also that we

face many theoretical challenges, mostly on the nature of the constituents of the concordance

model. Among them, the nature of dark matter, of dark energy, and of inflation are the

three biggest questions in modern cosmology.

Inflation (Guth, 1981; Sato, 1981; Albrecht & Steinhardt, 1982; Linde, 1982), which

presumably took place in the very early stages of the universe, was a phase of accelerated

expansion that enlarged the universe by at least 1027 times. With such a large amount of

expansion, inflation naturally provided a flat, homogeneous, and isotropic universe. At the

same time, inflation continually stretched the quantum vacuum fluctuations outside of the

Hubble horizon, seeding the cosmic structures such as galaxies (Guth & Pi, 1982; Hawking,

1982; Starobinsky, 1982; Bardeen et al., 1983). While this idea is attractive, we still do

not know the underlying theory behind such an accelerated expansion. The situation is the

same for dark energy; we, again, do not have any clues as to what it is. The only thing we

know about dark energy is that it is responsible for the current accelerating expansion of

the Universe (Frieman et al., 2008, for a review). For both cases, the clues have to come

from observations.

The large scale structure of the universe is a promising probe of both periods of

cosmic acceleration. The reason is simple: inflation sets the initial conditions, and dark

energy controls the distances and the growth of cosmic structures. 1) The seed perturbations

for cosmic structures are predicted by most inflation models to be nearly scale invariant and

to obey Gaussian statistics. However, the extent to which they deviate from perfectly

scale invariant, Gaussian fluctuations depends on the details of the model. Therefore, by

accurately measuring deviations from scale invariance as well as from Gaussianity, we can

constrain the physics of inflation. 2) Dark energy controls the expansion history of the

universe. Expansion history, in turn, affects how we observe galaxies on the sky: galaxies are
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cataloged by their angular positions and redshifts, and the relation between the coordinates

and physical distances depends on the expansion rate and angular diameter distance. Also,

the expansion rate slows down the gravitational evolution of cosmic structure. Therefore,

by measuring the distances and growth cosmic structures, we can constrain the properties

of dark energy.

In this dissertation, we shall develop the necessary theoretical tools to extract the

information about inflation and dark energy from the large scale structure of the Universe.

Our work is motivated by Hobby-Ebery Telescope Dark Energy eXperiment (HETDEX, Hill

et al., 2008), which will observe about million Ly-α emitters at high redshifts: 1.9 < z < 3.5.

HETDEX will start observing from Fall 2011, and the method we develop throughout this

dissertation will be used to analyze the data from the survey.

The biggest challenge for studying inflation and dark energy from the large scale

structure is the accurate modeling of the non-linearities. While density fluctuations gen-

erated from inflation are very small, ∼ 10−5, the subsequent evolution powered by gravi-

tational instability magnifies them so that the linear theory is applicable only for the very

large scales (k ≲ 0.1 [h/Mpc] at z = 0).

In order to model the nonlinearities, we shall use Eulerian perturbation theory. Over

the last two decades, the non-linear perturbation theory, including modeling of non-linear

galaxy power spectra, had been studied actively (see Bernardeau et al., 2002, for a review).

In particular, a lot of efforts have been devoted into understanding the non-linear power

spectrum at z ∼ 0. However, these earlier works only show that perturbation approach

would not provide accurate descriptions of the power spectrum at z ∼ 0 due to too strong

non-linearity. Therefore, Perturbation Theory had never been applied to the real data such

as Two-degree Field Galaxy Redshift Survey (2dFGRS) (Cole et al., 2005) or the Sloan

Digital Sky Survey (SDSS) (Tegmark et al., 2004; Seljak et al., 2005), as non-linearities

are too strong for Perturbation Theory to be valid at low redshifts, z < 1 (e.g., Meiksin

et al., 1999). For those low redshift surveys, we have to rely on the empirical fitting formula

calibrated to the N-body simulations (Peacock & Dodds, 1996; Smith et al., 2003).

On the other hand, Perturbation Theory is expected to perform better at high

redshifts, i.e., z > 1, because of weaker non-linearity. Plus, Perturbation Theory provides

the natural framework to take into account the nonlinearities in the redshift space distortion

and in the galaxy bias (Chapter 2). Therefore, modeling the nonlinearities at high redshift

Universe with Perturbation Theory is one of the main themes of this dissertation.
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Throughout this dissertation, we shall focus on the statistical correlations of the

galaxy distribution. It is because, from theory, we can only predict the statistical properties

of galaxies thanks to the stochastic nature of the cosmological perturbation.

The galaxy two-point correlation function ξ(r) is defined as an expected mean excess

number of ‘pairs’ at a given separation r. That is, the probability P2 of finding two galaxies

separated by a distance r is given by (Peebles, 1980)

P2(r) = P 2
1 [1 + ξ(r)] , (1.1)

where P1 is the probability of finding one galaxy at a position in the universe. The galaxy

power spectrum, the Fourier transform of the two-point correlation function of galaxy, is

defined as 〈
δ(k)δ(k′)

〉
= (2π)3P (k)δD(k+ k′), (1.2)

where δ(k) is the Fourier transform of δ(x) ≡ ρ(x)/ρ̄− 1 and δD is the Dirac delta function.

The galaxy power spectrum has been widely used for extracting cosmological information

from the galaxy survey data.

Yet, we will not be able to exploit all the information in the large scale structure if

we use the galaxy power spectrum only. The higher order correlation functions also contains

valuable cosmological information. We define the galaxy three-point correlation in a similar

manner to the two-point correlation function. The probability P3 finding three galaxies at

x1, x2 and x3 is given by the sum of the cosmic mean probability P 3
1 , the probability of

having two ‘clustered’ galaxies and one random galaxy P 3
1 ξ, and having three ‘clustered’

galaxies P 3
1 ζ as (Peebles, 1980)

P3(x1,x2,x3) = P 3
1 [1 + ξ(x12) + ξ(x23) + ξ(x31) + ζ(x1,x2,x3)] . (1.3)

The galaxy bispectrum, the Fourier transform of the galaxy three-point correlation function,

is defined as

⟨δ(k1)δ(k2)δ(k3)⟩ = (2π)3B(k1, k2, k3)δ
D(k1 + k2 + k3), (1.4)

and is expected to be a powerful probe of inflation, non-linear structure formation, and

astrophysics such as galaxy formation.

Along with the correlation functions of galaxies, weak gravitational lensing also

provides a powerful probe of the growth of structure as the cosmic shear field is a proxy

for the total matter distribution along the line of sight. Therefore, by using weak lensing

method, we can get a direct information about the total matter distribution without using
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tracers (e.g. galaxies), or by combining the galaxy distribution with weak lensing, we can

test the bias scheme itself.

This dissertation is organized as follows. In the first part (Chapter 2 to 4), we

present the Eulerian perturbation theory modeling of the galaxy power spectrum from the

redshift surveys.

In chapter 2, we review Eulerian cosmological perturbation theory, and calculate

the non-linear galaxy power spectrum we shall observe from galaxy surveys. There are three

non-linearities that changes the galaxy power spectrum different from the linear theory pre-

diction: namely, non-linear growth of density field, non-linear bias, and non-linear redshift

space distortion. We first study these non-linearities separately, and combine the effect at

the end of the chapter. For all cases, we also calculate the leading order correction to the

power spectrum by primordial local non-Gaussianity.

In chapter 3, we test the validity and applicability of Eulerian perturbation theory

at high redshifts by comparing the resulting non-linear matter power spectrum of Eulerian

perturbation theory to the power spectrum measured from a series of N-body simulations,

in both real and redshift space.

In chapter 4, we compare the non-linear galaxy power spectrum calculated from

perturbation theory and local bias ansatz to the Millennium Simulation. As we fit the

power spectrum with the three bias parameters, we also study the effect of such a fitting on

cosmological parameter estimation with a specific example of the distance measurement.

Chapter 5 and 6 consist of the second part of the dissertation, where we discuss

about the signature of the primordial non-Gaussianity in the large scale structure of the

universe.

In chapter 5, we calculate the galaxy bispectrum by using two different methods: the

Matarrese-Lucchin-Bonometto (MLB) formula and the locality of galaxy bias. We include

all the dominant terms of the galaxy bispectrum in the presence of, physically-motivated,

local form of primordial non-Gaussianity in the curvature perturbation, and show that

the signature of the local type primordial non-Gaussianity is much stronger than previous

calculation. This result indicate that the galaxy bispectrum is one of the most powerful

probe of the primordial non-Gaussianity.

In chapter 6, we study the galaxy-galaxy, and galaxy-CMB weak lensing method

on large angular separation for both Gaussian and non-Gaussian initial conditions.
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Finally, in the third part (chapter 7) we present the method of estimating the galaxy

power spectrum and the galaxy bispectrum from both N-body simulation and real galaxy

distribution from galaxy surveys.
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Chapter 2

Eulerian cosmological Perturbation Theory

Cosmological Perturbation Theory (Bernardeau et al., 2002, and references therein)

provides the unique theoretical framework of studying the evolution of the density and

velocity fields of matter fluctuation in the Universe. While the non-linear gravitational

instability breaks down the validity of linear Perturbation Theory on smaller scales (k ≳

0.1 [h/Mpc] at present), we expect to model the non-linear evolution of cosmic matter

field by using higher order Perturbation Theory. Yet, there is a fundamental limitation of

Perturbation Theory: it improves upon the linear theory only in the very small region when

non-linearity is too strong (this happens around z ∼ 0), and breaks down on the scales where

non-perturbative effects such as shell-crossing and violent relaxation take place. Therefore,

we define quasi-nonlinear regime where higher-order Perturbation Theory correctly models

the non-linear evolution of cosmic matter field.

Quasi-nonlinear regime in standard Perturbation Theory satisfies following three

conditions.

• [1] Quasi-nonlinear regime is small compare to the Hubble length so that evolution of

cosmic matter field is governed by Newtonian fluid equations.

• [2] Quasi-nonlinear regime is large enough to neglect baryonic pressure so that we can

treat dark matter and baryon as a single component of pressureless matter.

• [3] In quasi-nonlinear regime, vorticity developed by non-linear gravitational interac-

tion is negligibly small.

With these three conditions, we can approximate cosmic matter field as a pressureless,

single component Newtonian fluid which is completely described by its density contrast and

velocity gradient. In Section 2.1, we shall present the Perturbation Theory calculation of

the non-linear evolution of cosmic matter field based on these conditions.

Extended studies of standard Perturbation Theory by relaxing one of these con-

ditions are also available in literature. Noh & Hwang (2008) have studied the single fluid
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equation in the full General Relativistic context and show that, if one use the proper gauge

(temporal comoving gauge, to be specific), the General Relativistic perturbation equations

exactly coincide with their Newtonian counterparts up to 2nd order; thus, the General Rel-

ativistic correction appears from third order in density perturbation. In Noh et al. (2009),

we showed that the 3rd order General Relativistic correction term is sub-dominant on sub-

horizon scales, so that the Newtonian PT approach is valid on quasi-nonlinear regime. It

is because the purely General Relativistic effect comes through the gravitational potential,

and the gravitational potential is much smaller than the density field on sub-horizon scales.

At the same time, this correction term increases on large scales comparable to the Hubble

radius, because gravitational potential sharply increases as Pϕ ∝ kns−4; thus, it eventually

exceeds the linear power spectrum near horizon scale. Shoji & Komatsu (2009) have in-

cluded a pressureful component to the analysis and have found a perturbative solution of

double-fluid equations up to 3rd order. Finally, Pueblas & Scoccimarro (2009) measures

the vorticity power spectrum from N-body simulations, and show that vorticity effect on

density power spectrum is indeed negligible in the quasi-nonlinear regime.

These studies have indicated that non-linear effects coming from violating three

conditions are not significant on scales which are most relevant for upcoming high redshift

galaxy surveys. One notable exception is when including massive neutrinos. Massive neu-

trinos suppress the linear power spectrum below the neutrino free streaming scale (Takada

et al., 2006), and change nonlinear matter power spectrum, correspondingly. Although the

non-linear effect to the matter power spectrum is marginal due to the small energy fraction

of neutrino, fν ≡ Ων/Ωm, this effect has to be included in order to measure neutrino mass

from galaxy surveys (Shoji & Komatsu, 2009; Saito et al., 2009).

Once we model the non-linear evolution of density field and velocity field of cosmic

matter fluctuation, we can calculate the galaxy power spectrum we would observe from

galaxy surveys. Here, we have to model two more non-linearities: nonlinear redshift space

distortion and nonlinear bias. In order to understand those non-linear effects separately,

we first present the non-linear galaxy power spectrum in real space in Section 2.5, then

present the non-linear redshift space matter power spectrum in Section 2.6. We combine all

the non-linearities and present the non-linear galaxy power spectrum in redshift space in

Section 2.7. For each section, we also analyze the effect of primordial non-Gaussianity on

the power spectrum of large scale structure in the Perturbation Theory framework.

While we focus on the Eulerian Perturbation Theory in this chapter, Lagrangian

Perturbation Theory provide yet another intuition on the non-linear growth of the structure.
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In particular, Lagrangian perturbation theory (or its linear version which is also known as

Zel’dovich approximation) is widely used to generate the initial condition for cosmological

N-body simulations. We review the Lagrangian Perturbation Theory in Appendix E.

Although the material in this chapter is self-contained, we by no means aim for

the complete review. For more detailed review on Perturbation Theory, we refer readers to

Bernardeau et al. (2002).

2.1 Eulerian Perturbation Theory solution

We review calculation of non-linear Eulerian Perturbation Theory following the

pioneering work in the literature (Vishniac, 1983; Fry, 1984; Goroff et al., 1986; Suto &

Sasaki, 1991; Makino et al., 1992; Jain & Bertschinger, 1994; Scoccimarro & Frieman, 1996).

We treat dark matter and baryons as pressureless dust particles, as we are interested in the

scales much larger than the Jeans length. We also assume that peculiar velocity is much

smaller than the speed of light, which is always an excellent approximation, and that the

fluctuations we are interested in are deep inside the horizon; thus, we treat the system as

Newtonian. Then, the evolution of the matter fluctuation, δ(x, τ) ≡ ρ(x, τ)/ρ̄(τ)−1, follows

Newtonian fluid equations in expanding universe:

δ̇ +∇ · [(1 + δ)v] = 0, (2.1)

v̇+ (v · ∇)v = −Hv−∇ϕ, (2.2)

∇2ϕ = 4πGa2ρ̄δ, (2.3)

where the dots denote ∂/∂τ (τ is the conformal time), ∇ denotes ∂/∂x (x is the comoving

coordinate), v = dx/dτ is the peculiar velocity field, and ϕ is the peculiar gravitational

potential field from density fluctuations, and H ≡ d ln a/dτ = aH. As we ignore the

vorticity, v is curl-free, which motivates our using θ ≡ ∇ · v, the velocity divergence field.

In Fourier space, the Newtonian fluid equations become two coupled integro-differential

equations for δk(τ) and θk(τ). Using equation (2.3) and the Friedmann equation, we write
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the continuity equation [Eq. (2.1)] and the Euler equation [Eq. (2.2)] in Fourier space

∂δk
∂τ

(τ) + θk(τ)

=−
∫

d3k1
(2π)3

∫
d3k2δ

D(k1 + k2 − k)
k · k1
k21

θk1(τ), δk2(τ), (2.4)

∂θk
∂τ

(τ) +H(τ)θk(τ) +
3

2
H2(τ)Ωm(τ)δk(τ)

=−
∫

d3k1
(2π)3

∫
d3k2δ

D(k1 + k2 − k)
k2(k1 · k2)
2k21k

2
2

θk1(τ)θk2(τ), (2.5)

respectively. Note that left hand side of equations above are linear in perturbation variables,

and non-linear evolution is described by the right hand side as coupling between different

Fourier modes.

2.1.1 Linear solution for density field and velocity field

When density and velocity fluctuations are small, we can neglect the mode coupling

terms in the right hand side of equation (2.4) and equation (2.5). Then, the continuity and

the Euler equation are linearized as

∂δ1(k, τ)

∂τ
+ θ1(k, τ) = 0, (2.6)

∂θ1(k, τ)

∂τ
+H(τ)θ1(k, τ) +

3

2
H2(τ)Ωm(τ)δ1(k, τ) = 0. (2.7)

Combining these two equations, we have a second order differential equation for δ1(k, τ) as

∂2δ1(k, τ)

∂τ2
+H(τ)

∂δ1(k, τ)

∂τ
+

3

2
H2(τ)Ωm(τ)δ1(k, τ) = 0, (2.8)

whose solution is given by

δ1(k, a) = C+(k)H(a)

∫ a

0

da′

a′3H(a′)3
+ C−(k)H(a). (2.9)

Here, the first term is a growing mode and the second term is a decaying mode.

Let us only consider a growing mode. There are two conventions in the literature

about normalizing a growing mode. One normalization convention is requiring that a grow-

ing mode is equal to the scale factor in the matter dominated epoch: D+(a)|EdS = a. Here,

EdS stands for the ‘Einstein de-Sitter’ Universe which is a flat, matter dominated universe.

Therefore, a growing solution becomes

D+(a) =
5

2
Ωm

H(a)

H0

∫ a

0

da′

[a′H(a′)/H0]
3 , (2.10)
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Figure 2.1: The linear growth factor, D(a), for three different cosmologies: sCDM (Ωm = 1,
ΩΛ = 0) ΛCDM (Ωm = 0.277, ΩΛ = 723) oCDM (Ωm = 0.277, ΩΛ = 0)

where Ωm takes its present value. Another convention is normalizing its value to be unity

at present:

D(a) =
D+(a)

D+(a = 1)
. (2.11)

Throughout this dissertation, we use the later convention, and call D(a) the ‘linear growth

factor’. Note that the two different conventions differ by a factor of 0.765 for the cosmological

parameters in Table 1 (“WMAP+BAO+SN”) of Komatsu et al. (2009).

Figure 2.1 shows the linear growth factor for three different cosmologies: standard

Cold Dark Matter (sCDM) model (Ωm = 1), Cold Dark Matter with cosmological constant

(ΛCDM) model (Ωm = 0.277, ΩΛ = 0.723), and open Cold Dark Matter (oCDM) model

(Ωm = 0.277, ΩΛ = 0). For given density fluctuations today, at high redshifts, the density

fluctuations have to be larger for the oCDM universe, and smaller for sCDM universe com-

pare to the standard ΛCDM universe. It is because in ΛCDM and oCDM universe, energy

density is dominated by dark energy and curvature, respectively; both of them retard the

growth of structure by speeding up the expansion of universe faster than the sCMD universe.

We calculate the velocity gradient field θ1(k, τ) as

θ1(k, τ) = −∂δ1(k, τ)
∂τ

= −δ1(k, τ)
D(τ)

dD(τ)

dτ
= −f(τ)H(τ)δ1(k, τ), (2.12)
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Figure 2.2: The logarithmic derivative of the linear growth factor, f(a) ≡ d lnD/d ln a, for
three different cosmologies: sCDM (Ωm = 1, ΩΛ = 0) ΛCDM (Ωm = 0.277, ΩΛ = 723)
oCDM (Ωm = 0.277, ΩΛ = 0)

where

f(τ) ≡ d lnD

d ln a
=

1

2

(
H0

aH(a)

)2 [
5Ωm

D+(a)
− 3Ωm

a
− 2(1− Ωm − ΩΛ)

]
, (2.13)

is the logarithmic growth rate. Here, Ωm, ΩΛ are the values at present.

Figure 2.2 shows the logarithmic growth rate for three different cosmologies: sCDM

model, ΛCDM model, and oCDM model. When universe is flat, matter dominated, f = 1,

and linear growth is slowing down once cosmological constant start to affect the expansion

in ΛCDM universe. For oCDM universe, the growth rate is always slower than ΛCMD or

sCDM universe.

What about the wave vector k dependence? We can divided the k-dependence

of linear perturbation by two parts: k-dependence due to the generation of primordial

perturbation from inflation, and k-dependence due to the subsequent evolution of density

perturbation to matter epoch.

Inflation stretches the quantum fluctuation outside of horizon, and generate the

primordial curvature perturbation, ζ(k), which is conserved outside of horizon even if the

equation of state w ≡ P/ρ changing (Mukhanov et al., 1992). The Bardeen’s potential, a

11



relativistic generalization of the peculiar gravitational potential1, ΦH(k) is also conserved

outside of horizon, but only for constant w, and for the universe dominated by a perfect

fluid whose equation of state is w, it is related to the primordial curvature perturbation ζ(k)

by

ΦH(k) =
3 + 3w

5 + 3w
ζ(k). (2.14)

When universe is dominated by radiation or matter, expansion of the universe

decelerates, and the wavemodes once stretched outside of horizon by inflation start to re-

enter inside of horizon. As w = 0 for matter, the Bardeen’s potential of the mode which

re-enter the horizon during matter era is ΦH(k) = 3/5ζ(k) at horizon crossing time. Inside

of horizon, the Bardeen’s potential Φ(k, a) is related to the density field2 by the Poisson

equation:

k2Φ(k, a) = 4πGa2ρ̄(a)δ1(k, a) =
3

2
H2

0Ωm(1 + z)δ1(k, a). (2.15)

We denote the time evolution of the peculiar gravitational potential as g(z), and it is ap-

parent from equation (2.15) that

g(z) = (1 + z)D(z). (2.16)

Then, we rewrite the Bardeen’s potential at large scales as

Φ(k, a) = g(z)Φ(k), (2.17)

where Φ(k) is the Bardeen’s potential extrapolated at present epoch3; thus, it is related to

the horizon crossing value as Φ(k)/ΦH(k) = 1/ g(z)|EdS = D+(a = 1) ≃ 0.765. The numer-

ical value is for cosmological parameters in Table 1 (“WMAP5+BAO+SN”) of Komatsu

et al. (2009).

On the other hand, for the wave modes re-enter horizon during radiation era, as

perturbation of dominant component (radiation) cannot grow due to its pressure, peculiar

gravitational potential decays and matter density contrast can only grow logarithmically.

Therefore, the amplitude of sub-horizon perturbations are suppressed relative to the super-

horizon perturbations. Plus, at that time baryons were tightly coupled to photon, and could

not contribute to the growth of matter fluctuation.

1Note that ΦH has an opposite sign of the Newtonian peculiar gravitational potential ϕ we defined earlier.
2To be precise, this equation holds for comoving gauge where δu = 0.
3Throughout this dissertation, we consistently follow this convention: a dynamical quantity, such as Φ,

δ1 PL, written without explicit time (redshift) dependence denotes the quantity extrapolated to its present
value.
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In order to take into account these evolution, we need to solve the perturbed Einstein

equation and Boltzmann equation for coupled dark matter, photon, baryon, neutrino system.

There are many publically available code for calculating such equation systems; among them,

CAMB4 and CMBFAST5 are most widely used in the cosmology community.

These codes calculate so called the ‘transfer function’ T (k). The transfer function

T (k) encodes the evolution of density perturbation throughout the matter-radiation equality

and CMB last scattering. Since transfer function is defined as the relative changes of small

scale modes (which enter horizon earlier) compared to the large scale modes (which enter

horizon during matter dominated epoch), the transfer function is unity on large scales:

T (k) = 1. Therefore, the effects of the retarded growth in the radiation epoch and tight

coupling between baryon-photon can be taken into account by multiplying the transfer

function to the left hand side of equation (2.15):

δ1(k, z) =
2

3

k2T (k)

H2
0Ωm

D(z)Φ(k) ≡ M(k)D(z)Φ(k). (2.18)

Primordial curvature perturbation predicted by the most inflationary models, and

confirmed by observations such as WMAP and SDSS, is characterized by nearly a scale

invariant power spectrum. Therefore, we conventionally parametrize the shape of the pri-

mordial curvature power spectrum as

Pζ(k) = 2π2∆2
R(kp)

(
k

kp

)ns(kp)−4+ 1
2αs ln

(
k
kp

)
, (2.19)

where we use three parameters: amplitude of primordial power spectrum ∆2
R, spectral tilt

ns, and running index αs. Here, kp is a pivot wavenumber6. Note that the perfectly scale

invariant primordial perturbation corresponds to ns = 1, αs = 0.

Combining the primordial power spectrum [Eq (2.19)] and the late time linear

evolution [Eq (2.18)], we calculate the linear matter power spectrum as

PL(k) =
8π2

25

[D+(a = 1)]
2

H4
0Ω

2
m

∆2
R(kp)D

2(z)T 2(k)

(
k

kp

)ns(kp)+
1
2αs ln

(
k
kp

)
. (2.20)

4http://camb.info
5http://www.cmbfast.org
6Different authors, surveys use different value of kp. Komatsu et al. (2009) uses kp ≡ 0.002 [Mpc−1] for

WMAP, while Reid et al. (2010) uses kp ≡ 0.05 [Mpc−1] for SDSS.
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Alternatively, we can also normalize the linear power spectrum by fixing σ8, a r.m.s. den-

sity fluctuation smoothed by the spherical top-hat filter of radius 8 Mpc/h, whose explicit

formula is given by

σ2
8 ≡

∫
d ln k

k3PL(k)

2π2
W 2(kR), (2.21)

where

W (kR) = 3

[
sin(kR)

k3R3
− cos(kR)

k2R2

]
with R = 8 Mpc/h.

2.1.2 Non-linear solution for density field and velocity field

Let us come back to the original non-linear equations. In order to solve these

coupled integro-differential equations, we shall expand δk(τ) and θk(τ) perturbatively by

using the n-th power of linear density contrast δ1(k, τ) as a basis:

δk(τ) =

∞∑
n=1

∫
d3q1
(2π)3

· · ·
∫
d3qn−1

(2π)3

∫
d3qnδ

D(k−
n∑
i=1

qi)

× F (s)
n (q1, q2, · · · , qn, τ)δ1(q1, τ) · · · δ1(qn, τ) (2.22)

θk(τ) =− f(τ)H(τ)

∞∑
n=1

∫
d3q1
(2π)3

· · ·
∫
d3qn−1

(2π)3

∫
d3qnδ

D(k−
n∑
i=1

qi)

×G(s)
n (q1, q2, · · · , qn, τ)δ1(q1, τ) · · · δ1(qn, τ). (2.23)

Here, f(τ) = d lnD/d ln a with the linear growth factor D(a), and F
(s)
n and G

(s)
n are sym-

metrized kernels, which characterize coupling between different wave modes. We introduce

f(τ)H(τ) factor in equation (2.23) motivated by the linear relation between density con-

trast and velocity divergence: θ1(k, τ) = −f(τ)H(τ)δ1(k, τ). In this definition the first order

kernels become unity: F
(s)
1 = G

(s)
1 = 1.

As we know the evolution of δ1(q, τ) from the linear theory, calculating F
(s)
n andG

(s)
n

will complete the solution. The standard procedure (Goroff et al., 1986; Jain & Bertschinger,

1994) is calculating the un-symmetized kernels Fn and Gn first, then symmetrize them under

changing arguments:

F (s)
n (q1, · · · , qn) =

1

n!

∑
σ

Fn(qσ1
, · · · , qσn

) (2.24)

G(s)
n (q1, · · · , qn) =

1

n!

∑
σ

Gn(qσ1
, · · · , qσn

). (2.25)
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Here, sum is taken for all the permutations σ ≡ (σ1, · · · , σn) of the set {1, · · · , n}. By

substituting the perturbative expansion of equation (2.22) and equation (2.23) back into

the original equations, we get the equations of F
(s)
n s and G

(s)
n s. For example, the continuity

equation [Eq. (2.4)] becomes

∞∑
n=1

∫
d3q1
(2π)3

· · ·
∫
d3qn−1

(2π)3

∫
d3qnδ

D(k−
n∑
i=1

qi)δ1(q1, τ) · · · δ1(qn, τ)

×

[
∂F

(s)
n (q1, · · · , qn, τ)

∂τ
+ nHfF (s)

n (q1, · · · , qn, τ)−HfG(s)
n (q1, · · · , qn, τ)

]

=(2π)3Hf

∞∑
m=1

∞∑
l=1

∫
d3q11
(2π)3

· · ·
∫
d3q1m
(2π)3

∫
d3q21
(2π)3

· · ·
∫

d3q2l
(2π)3

× k · (q11 + · · ·+ q1m)

|q11 + · · ·+ q1m|2
G(s)
m (q11, · · · , q1m)F

(s)
l (q21, · · · , q2l)

× δD(k−
m∑
i=1

q1i −
l∑

j=1

q2j)δ11(q1, τ) · · · δ1m(qn, τ)δ21(q1, τ) · · · δ2l(qn, τ).

Here, we use an identity from linear theory ∂δ1/∂τ = fHδ1 to replace the conformal-time

(τ) derivatives. In order to isolate the equation for the kernels, we have to identify qis

to q1is and q2is. In principle, one can takes all possible identifications and symmetrize the

equation itself, but we follow the standard approach where (for given n) indexes are matched

as (q11, · · · , q1m) = (q1, · · · , qm), and (q21, · · · , q2l) = (qm+1, · · · , qn). By matching indexes

this way, the equations are not manifestly symmetric anymore, and as a result the kernels are

not symmetric: we drop the superscript (s) and symmetrize kernels later by using equation

(2.24) and equation (2.25).

Once qis are identified, we can read off the equation for Fn andGn from the equation

above as

1

f(τ)H(τ)

∂Fn(k, τ)

∂τ
+ nFn(k, τ)−Gn(k, τ)

=

n−1∑
m=1

k · k1
k21

Gm(k1, τ)Fn−m(k2, τ), (2.26)

where we use the short hand notation of Fn(k, τ) ≡ Fn(q1, · · · , qn, τ), and Gn(k, τ) ≡
Gn(q1, · · · , qn, τ) with a constraint k = q1+· · ·+qn. Note that from the matching condition

of qis, Gm(k1, τ) = Gn(q1, · · · , qm, τ) and Fn−m(k2, τ) = Fn−m(qm+1, · · · , qn, τ) in the

right hand side of equation (2.26). Also, Dirac delta function dictates k1+k2 = k. Similarly,
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we find

1

f(τ)H(τ)

∂Gn(k, τ)

∂τ
+

[
3

2

Ωm(τ)

f2(τ)
+ n− 1

]
Gn(k, τ)−

3

2

Ωm(τ)

f2(τ)
Fn(k, τ)

=

n−1∑
m=1

k2(k1 · k2)
2k21k

2
2

Gm(k1, τ)Gn−m(k2, τ), (2.27)

from the Euler equation [Eq. (2.5)].

In general, the kernels Fn and Gn depend on time, and we have to solve complicated

differential equations, [Eq. (2.26)] and [Eq. (2.27)]. However, it is well known that the

kernels are extremely insensitive to the underlying cosmology, and the next-to-leading order

correction to P (k) can be correctly modeled as long as one uses the correct growth factor for

δ1(k, τ) (Bernardeau et al., 2002). Therefore, we shall calculate the kernels in the Einstein

de-Sitter (spatially flat, matter-dominated) universe. In Einstein de-Sitter Universe, as

Ωm/f
2 = 1, Fn and Gn are constant in time and equation (2.26) and equation (2.27) reduce

to the algebraic equations. Moreover, Takahashi (2008) has calculated the exact solution up

to third order in general dark energy model, and has concluded that the difference between

the next-to-leading order power spectrum from exact kernels and that from Einstein de-

Sitter kernels is extremely small. It is at most sub-percent level at z = 0, and decreases

as redshift increases to ∼ 10−4 at z = 3. As we are mostly interested in the high redshift

(z > 1), we can safely ignore such a small difference in the kernels.

In Einstein de-Sitter Universe, equation (2.26) and equation (2.27) become

nFn(k)−Gn(k) =
n−1∑
m=1

k · k1
k21

Gm(k1)Fn−m(k2), (2.28)

(2n+ 1)Gn(k)− 3Fn(k) =
n−1∑
m=1

k2(k1 · k2)
k21k

2
2

Gm(k1)Gn−m(k2). (2.29)

By solving the algebraic equations, we find the recursion relations

Fn(q1, · · · , qn) =
n−1∑
m=1

Gm(q1, · · · , qm)

(2n+ 3)(n− 1)

{
(2n+ 1)

k · k1
k21

Fn−m(qm+1, · · · , qn)

+
k2(k1 · k2)
k21k

2
2

Gn−m(qm+1, · · · , qn)
}

(2.30)

Gn(q1, · · · , qn) =
n−1∑
m=1

Gm(q1, · · · , qm)

(2n+ 3)(n− 1)

{
3
k · k1
k21

Fn−m(qm+1, · · · , qn)

+ n
k2(k1 · k2)
k21k

2
2

Gn−m(qm+1, · · · , qn)
}
. (2.31)
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With the recursion relations and the kernels for linear theory, F1 = G1 = 1, we can calculate

F
(s)
n , G

(s)
n for all order. For example, the second order kernels are

F
(s)
2 (k1, k2) =

5

7
+

2

7

(k1 · k2)2

k21k
2
2

+
k1 · k2

2

(
1

k21
+

1

k22

)
, (2.32)

G
(s)
2 (k1, k2) =

3

7
+

4

7

(k1 · k2)2

k21k
2
2

+
k1 · k2

2

(
1

k21
+

1

k22

)
, (2.33)

and third order kernels can be calculated from second order kernels as7

F
(s)
3 (k1, k2, k3) =

2k2

54

[
k1 · k23
k21k

2
23

G
(s)
2 (k2, k3) + (2 cyclic)

]
+

7

54
k ·
[
k12
k212

G
(s)
2 (k1, k2) + (2 cyclic)

]
+

7

54
k ·
[
k1
k21
F

(s)
2 (k2, k3) + (2 cyclic)

]
, (2.34)

and

G
(s)
3 (k1, k2, k3) =

k2

9

[
k1 · k23
k21k

2
23

G
(s)
2 (k2, k3) + (2 cyclic)

]
+

1

18
k ·
[
k12
k212

G
(s)
2 (k1, k2) + (2 cyclic)

]
+

1

18
k ·
[
k1
k21
F

(s)
2 (k2, k3) + (2 cyclic)

]
. (2.35)

In summary, the solution of Eulerian Perturbation Theory consists of the pertur-

bative expansions (Eq. (2.22) and Eq. (2.23)) with kernels calculated by recursion relations

(Eq. (2.30) and Eq. (2.31)) followed by symmetrization (Eq. (2.24) and Eq. (2.25)). By

using this solution, we can describe the non-linear growth of density field and velocity field

of cosmic matter in the quasi-nonlinear regime.

2.2 Statistics of the cosmological density field: Gaussian vs. non-
Gaussian

In the previous section, we calculate the solution for the non-linear evolution of the

density and velocity fields in terms of the linear density field. As the direct observable of the

7For the compactness of the equation, we adopt the short-hand notation of

kijk··· ≡ ki + kj + k+ · · ·

throughout this dissertation.
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cosmological observation is the statistical correlation function such as power spectrum and

bispectrum, in order to compare the non-linear solution to observation, we have to calculate

the statistical correlation of density and velocity field.

Inflationary theories predict that the primordial curvature perturbation obeys a

nearly Gaussian statistics; thus, the linear density field δ1(k), which evolves linearly from

the curvature perturbation [Eq. (2.18)], also obeys the same statistics. Let us first consider

the Gaussian statistics.

In order to describe the statistics of a field, we have to introduce a probability

functional P[δ1(x)], which describes the probability of having a configuration of density field

δ1 whose value is δ1(x) at a point x. Note that statistical homogeneity dictates P [δ1(x)] to

be independent of position x. For Gaussian case, it is given by (Gabrielli et al., 2005)

P [δ1(x)] =
1

Z
exp

[
−1

2

∫
d3y

∫
d3zδ1(y)K(y, z)δ1(z)

]
, (2.36)

where K(y, z) is corresponding to the inverse of the covariance matrix C−1 in the usual

Gaussian statistics of discrete variables, and

Z =

∫
[Dδ1] exp

[
−1

2

∫
d3y

∫
d3zδ1(y)K(y, z)δ1(z)

]
(2.37)

is the normalization constant, and [Dδ1] is the integration measure in the Hilbert space.

By using the probability functional, we calculate the n-point correlation function

of δ1(x) by taking the expectation value as:

⟨δ1(x1) · · · δ1(xn)⟩ =
∫

[Dδ1(x)] δ1(x1) · · · δ1(xn)P[δ1(x)]. (2.38)

A usual technique of calculating the expectation value is by introducing the generating

functional

Z[J ] ≡
〈
ei

∫
d3xJ(x)δ1(x)

〉
, (2.39)

and taking successive functional derivatives with respect to J(xi). Finally, we get the

correlation function by setting J = 0. That is, n-point correlation function is

⟨δ1(x1) · · · δ1(xn)⟩ =
1

in
δnZ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (2.40)

Furthermore, we can also calculate the n-point connected correlation function by

⟨δ1(x1) · · · δ1(xn)⟩c =
1

in
δn lnZ[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (2.41)
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For Gaussian case, we can re-write the generating functional in a closed form:

Z[J ] =
1

Z

∫
[Df ] exp

[
−1

2

∫
d3y

∫
d3zf(y)K(y, z)f(z) + i

∫
d3xJ(x)f(x)

]
. (2.42)

Then, we make the coordinate transformation of

δ′1(x) = δ1(x)− i

∫
d3yK−1(x,y)J(y),

where K−1(x,y) is the functional inverse of K(x,y), which is defined by∫
d3zK(x, z)K−1(z,y) = δD(x− y).

This coordinate transformation does not change the integral measure, as is simple translation

in the functional space. Under the coordinate transformation, exponent in equation (2.42)

becomes

−1

2

∫
d3y

∫
d3zδ′1(y)K(y, z)δ′1(z)−

1

2

∫
d3x

∫
d3yJ(x)K−1(x,y)J(y), (2.43)

where the functional integration of the first term is unity; thus, generating functional for

Gaussian case becomes

Z[J ] = exp

[
−1

2

∫
d3x

∫
d3yJ(x)K−1(x,y)J(y)

]
. (2.44)

Therefore, by using equation (2.41), we calculate the the n-point correlation function. By

taking the functional derivative twice, we find that

δZ[J ]

δJ(x1)
=− 1

2

[∫
d3x

∫
d3yδD(x− x1)K

−1(x,y)J(y)

+

∫
d3x

∫
d3yJ(x)K−1(x,y)δD(y− x1)

]
Z[J ]

=−
[∫

d3xK−1(x,x1)J(x1)

]
Z[J ],

and

δ2Z[J ]

δJ(x1)δJ(x2)
= −K−1(x,x1)Z[J ].

By carefully observing this procedure, we find that any odd-number n-point correlation

function has to vanish when setting J = 0, and any even-number n-point correlation function

is given only by K−1(x,y). Especially, from the calculation above, we can read that the two

point correlation function is given by

ξ(x1,x2) ≡ ⟨δ1(x1)δ1(x2)⟩ = K−1(x1,x2). (2.45)

19



This result is so called Wick’s theorem, which states that “ the average of a product of an

even number of δ1s is the sum over all ways of pairing δ1s with each other of a product of

the average values of the pairs:

⟨δ1(x1)δ1(x2) · · · ⟩ =
∑

pairings

∏
pairs

⟨δ1δ1⟩ , (2.46)

with the sum over pairings not distinguishing those which interchange coordinates in a pair,

or which merely interchange pairs”(Weinberg, 2008). What about the connected correlation

function? From equation (2.41), it is clear that, for Gaussian case, all higher order (n > 2)

connected correlation functions vanish:

⟨δ1(x1) · · · δ1(xn)⟩c = − 1

2in
δn

δJ(x1) · · · δJ(xn)

∫
d3x

∫
d3yJ(x)K−1(x,y)J(y).

From equation (2.45), K(x,y) is related to the correlation function by∫
d3zξ(x, z)K(z,y) = δD(x− y). (2.47)

Let us further investigate on the kernel, K(x,y). Due to the statistical homogeneity and

isotropy of universe, ξ(x, z) andK(x,y) have to depend only on the separation, i.e. ξ(x, z) =

ξ(x− z). Therefore, ∫
d3zξf (x− z)K(z− y) = δD(x− y). (2.48)

Then, Fourier transform of the equation above leads

K(q) =
1

PL(q)
, (2.49)

where PL(q) is the linear power spectrum, which is related to the two-point correlation

function by

ξ(r) =

∫
d3q

(2π)3
PL(q)e

iq·r. (2.50)

That is, K(x− y) is Fourier transform of the inverse of linear power spectrum PL(q). One

can also show that directly by using Fourier space representation of the linear density field

δ1(k). By Fourier transforming the exponent of equation (2.36), we find

− 1

2

∫
d3y

∫
d3zδ1(y)K(y− z)δ1(z)

=− 1

2

∫
d3q1

∫
d3q2δ1(q1)

[
K(q1)

(2π)3
δD(q1 + q2)

]
δ1(q2). (2.51)
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As the structure of the probability functional is the same as that for the real space, we can

simply relate K(q) to the power spectrum by using the analogy. Because the functional

inversion of the Fourier space kernel is[
K(q1)δ

D(q1 + q2)

(2π)3

]−1

=
(2π)3

K(q1)
δD(q1 + q2), (2.52)

the power spectrum is given by

⟨δ1(q1)δ1(q2)⟩ ≡ (2π)3P (q1)δ
D(q1 + q2) =

(2π)3

K(q1)
δD(q1 + q2). (2.53)

By using the second equality, we reproduce equation (2.49). Politzer &Wise (1984) extended

this method to calculate the n-point correlation function of peaks.

As we have shown here, when the linear density field follows the Gaussian statis-

tics, all higher order statistical properties are solely determined by the two point correlation

function, or power spectrum. For non-Gaussian case, however, the connected n-point corre-

lation functions do not vanish, and we have to know the probability functional or generating

functional in order to calculate the statistical quantities. Conversely, if we know the n-point

correlation functions to infinite order, then, we can calculate the generating functional by

inverting equation (2.41):

lnZ[J ] =

∞∑
n=2

in

n!

∫
d3y1 · · ·

∫
d3yn ⟨δ1(y1) · · · δ1(yn)⟩c J(y1) · · · J(yn), (2.54)

thus fully specify the statistics of the linear density field. Matarrese et al. (1986) derives

the n-point correlation function of peaks by using this method (MLB formula), and we shall

calculate the galaxy bispectrum in the presence of primordial non-Gaussianity in Chapter

5 based on this formula. The full derivation of MLB formula is also shown in Appendix K.

2.3 Next-to-leading order power spectrum from the perturbative
solution: the theoretical template

In the following sections, we shall calculate the power spectrum of density contrast

of matter in real space (Section 2.4), matter in redshift space (Section 2.6), galaxies in real

space (Section 2.5), and galaxies in redshift space (Section 2.7). For all cases, we shall

calculate corresponding density contrasts as a function of the matter density contrast δk(τ)

and velocity gradient θk(τ) for which we know the perturbation theory solution.
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Therefore, in most general form, we can also write a quantity X(k, τ), of which we

want to calculate power spectrum, as a sum of the perturbative series

X(k, τ) =X(1)(k, τ) +X(2)(k, τ) +X(3)(k, τ) + · · ·

=

∞∑
n=1

∫
d3q1
(2π)3

· · ·
∫
d3qn−1

(2π)3

∫
d3qnδ

D(k−
n∑
i=1

qi)

×K(s)
n (q1, q2, · · · , qn)δ1(q1, τ) · · · δ1(qn, τ), (2.55)

with a general symmetrized kernel K
(s)
n (q1, · · · , qn), which is given by a combination of F

(s)
n

and G
(s)
n . Here, X(n)(k) denote that the quantity is n-th order in linear density contrast,

δ1(k, τ). For a quantity which can be expanded as equation (2.55), we can calculate next-

to-leading order (called one-loop) power spectrum and bispectrum as a function of linear

order (called tree-level) quantities. In this section, we present these general formulas which

we shall use in the rest of this chapter.

As the power spectrum, PX(k, τ), is a quadratic quantity of X(k, τ) in Fourier

space,

⟨X(k)X(k′)⟩ = (2π)3PX(k)δD(k+ k′), (2.56)

for the expansion in equation (2.55), the left hand side of equation (2.56) becomes

⟨X(k, τ)X(k′, τ)⟩

=⟨X(1)(k, τ)X(1)(k′, τ)⟩+ 2⟨Re
[
X(1)(k, τ)X(2)(k′, τ)

]
⟩

+ ⟨X(2)(k, τ)X(2)(k′, τ)⟩+ 2⟨Re
[
X(1)(k, τ)X(3)(k′, τ)

]
⟩+ · · · . (2.57)

Here, we use the Hermitianity (Reality) condition,

X(i)(k, τ) =
[
X(i)(−k, τ)

]∗
=
[
X(i)(k′, τ)

]∗
,

and Re takes the real part of a complex number. In equation (2.57), we explicitly write

down the terms up to order O(δ41).

2.3.1 One-loop Power spectrum with Gaussian linear density field

When linear density contrast, δ1, is Gaussian, odd power of δ1 vanishes when taking

an ensemble average. Therefore, the next-to-leading order nonlinear power spectrum consists

of ⟨X(1)(k, τ)X(1)(k′, τ)⟩, ⟨X(2)(k, τ)X(2)(k′, τ)⟩ and ⟨X(1)(k, τ)X(3)(k′, τ)⟩ which is often
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denoted as PX,11(k, τ), PX,22(k, τ) and PX,13(k, τ), respectively. We calculate the next-to-

leading order power spectrum by using Wick’s theorem as8

PX(k, τ)

≡PX,11(k, τ) + PX,22(k, τ) + 2PX,13(k, τ)

=
[
K

(s)
1 (k)

]2
PL(k, τ) + 2

∫
d3q

(2π)3
PL(q, τ)PL(|k− q|, τ)

[
K

(s)
2 (q, k− q)

]2
+ 6K

(s)
1 (k)PL(k, τ)

∫
d3q

(2π)3
PL(q, τ)K

(s)
3 (q,−q, k), (2.58)

where PL(k) is the linear power spectrum.

2.3.2 One-loop Power spectrum with non-Gaussian linear density field

When linear density contrast follows non-Gaussian distribution, the second term in

equation (2.57), ⟨X(1)(k)X(2)(k′)⟩, is non-zero, and becomes the leading order non-Gaussian

correction to the power spectrum,

∆PX,NG(k, τ) =2P12(k, τ)

=2K
(s)
1 (k)

∫
d3q

(2π)3
K

(s)
2 (q, k− q)BL(−k, q, k− q, τ). (2.59)

Here, BL is the bispectrum of linear density field. There also are the non-Gaussian correc-

tion term coming from PX,22(k, τ) and PX,13(k, τ) proportional to the linear trispectrum,

TL(k1, k2, k3, k4)
9:

∆PX,22(k, τ) =

∫
d3q1
(2π)3

∫
d3q2
(2π)3

K
(s)
2 (q1, k− q1)K

(s)
2 (q2,−k− q2)

× TL(q1, k− q1, q2,−k− q2, τ) (2.60)

∆PX,13(k, τ) =K
(s)
1 (k)

∫
d3q1
(2π)3

∫
d3q2
(2π)3

K
(s)
3 (q1, q2, k− q1 − q2)

× TL(−k, q1, q2, k− q1 − q2, τ) (2.61)

Therefore, in order to calculate the effect of primordial non-Gaussianity fully in

one-loop level of perturbation theory, we need to know both linear bispectrum and the

linear trispectrum. However, linear trispectrum (TL ∼ M4P 3
ϕ) is parametrically smaller

8For the derivation of PX,22 and PX,13, see Appendix B.1.
9For derivation, see Appendix B.2
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than linear bispectrum (BL ∼ M3P 1
ϕ) in the quasi-nonlinear regime, as the primordial

curvature power spectrum Pϕ sharply decreases as k increases, Pϕ(k) ∼ kns−4. In other

words, linear trispectrum arises from the two-loop contribution of the primordial curvature

perturbation, we shall neglect ∆PX,22 and ∆PX,13 correction terms (Taruya et al., 2008).

However, note that the trispectrum term may be important on the very large scales. Indeed

∆PX,22 term include a term proportional to f2NL/(k
4T 2(k)) which sharply peaks on large

scales (Desjacques & Seljak, 2010). In the rest of the chapter, we shall use equation (2.59)

to calculate the non-Gaussian correction to the one-loop power spectrum.

2.3.2.1 Local primordial non-Gaussianity

Although we can apply equation (2.59) to any kind of non-Gaussianities, we shall

focus on the local type non-Gaussianity. The local type non-Gaussianity is particularly

interesting because of the consistency relation (Maldacena, 2003; Acquaviva et al., 2003;

Creminelli & Zaldarriaga, 2004), which states that the coefficient of the squeezed bispectrum

[Eq. (2.64)], fNL, has to satisfy

fNL =
5

12
(1− ns) (2.62)

for any kind of single field inflation model. Here, ns is the spectral tilt of the primordial

power spectrum [Eq. (2.19)], whose current best estimation is ns = 0.963± 0.012 (68% CL)

from WMAP7 (Komatsu et al., 2010). Therefore, any significant detection of fNL above

the value dictated by the consistency relation fNL ∼ 0.017 will rule out the single field

inflationary models. The current limit from the WMAP 7-year data is fNL = 32 ± 21

(68% CL) (Komatsu et al., 2010), and from the SDSS is fNL = 31+16
−27 (68% CL) (Slosar

et al., 2008). We shall further study the effect of local primordial non-Gaussianity on

the galaxy bispectrum and the galaxy-galaxy, galaxy-CMB weak gravitational lensing in

Chapter 5 and Chapter 6, respectively.

Local type primordial non-Gaussianity is defined by the Bardeen’s potential Φ(x)

[Eq. (2.14)] in real space (Salopek & Bond, 1990; Gangui et al., 1994; Verde et al., 2000;

Komatsu & Spergel, 2001):

Φ(x) = ϕ(x) + fNL

[
ϕ2(x)− ⟨ϕ2⟩

]
+ O(ϕ3), (2.63)

where ϕ(x) is a Gaussian random field. The primordial bispectrum generated by the local
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non-Gaussianity10 is

BΦ(k1, k2, k3) = 2fNL [Pϕ(k1)Pϕ(k2) + (2 cyclic)] . (2.64)

We can find the linear matter bispectrum by linearly evolving the primordial bis-

pectrum [Eq. (2.64)] to present using equation (2.18):

BL(k1, k2, k3; z) = 2fNLD
3(z)M(k1)M(k2)M(k3) [Pϕ(k1)Pϕ(k2) + (2 cyclic)] . (2.65)

Using the linear bispectrum above, we calculate the non-Gaussian correction to the

nonlinear power spectrum as

∆PX,nG(k, z) =4fNLD
3(z)K

(s)
1 (k)M(k)

∫
d3q

(2π)3
M(q)M(|k− q|)

×K
(s)
2 (q, k− q)Pϕ(q) [2Pϕ(k) + Pϕ(|k− q|)] . (2.66)

Note that we ignore the nonlinearity in the linear power spectrum generated by equation

(2.63), and use a linear approximation as

PL(k, z) ≃ M2(k)D2(z)Pϕ(k). (2.67)

This approximation is valid up to slight rescaling of amplitude and slope of the primordial

curvature power spectrum. For more discussion, see, Section II of McDonald (2008).

2.4 Nonlinear matter power spectrum in real space

For a nonlinear matter power spectrum in real space, we can simply use the per-

turbative solution for δk(τ) in equation (2.22). That is,

K
(s)
1 (q1) =1

K
(s)
2 (q1, q2) =F

(s)
2 (q1, q2)

K
(s)
3 (q1, q2, q3) =F

(s)
3 (q1, q2, q3),

where F
(s)
2 and F

(s)
3 are presented in equation (2.32), and equation (2.34), respectively.

10For derivation, see Appendix C.
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2.4.1 Gaussian case

By substituting this kernels and equation (2.58), we calculate the matter power

spectrum in real space as

Pm(k, z) = D2(z)PL(k) +D4(z) [Pm,22(k) + 2Pm,13(k)] , (2.68)

where D(z) is the linear growth factor and

Pm,22(k) =
1

98

k3

(2π)2

∫
drPL(kr)

∫ 1

−1

dxPL(k
√
1 + r2 − 2rx)

[
7x+ 3r − 10rx2

1 + r2 − 2rx

]2
(2.69)

Pm,13(k) =
1

504

k3

(2π)2
PL(k)

∫
drPL(kr)

×
[
12

r2
− 158 + 100r2 − 42r4 +

3

r3
(r2 − 1)3(7r2 + 2) ln

(
r + 1

|r − 1|

)]
. (2.70)

Here, PL(k) is calculated at present where linear growth factor is normalized to be unity.

This form is practical useful as, for given linear power spectrum, we only need to calculate the

integration once for a give redshift. Then, the non-linear matter power spectrum for different

redshifts can be calculated by simple rescaling of P11, P22 and P13 with corresponding powers

of linear growth factor.

We show that, in the quasi-nonlinear regime at high redshift, this analytic expression

accurately models the nonlinear evolution of the matter power spectrum from a series of

N-body simulations we run in Chapter 3. We also verify the result against the matter power

spectrum from Millennium Simulation (Springel et al., 2005) in Section 4.2.

2.4.2 Non-Gaussianity case

We also calculate the leading order non-Gaussian term due to the local type pri-

mordial non-Gaussianity from equation (2.66).

∆Pm,nG(k, z) =
3

7
fNLH

2
0ΩmD

3(z)
k

(2π)2

∫
dr

r

PL(kr)

T (kr)

∫ 1

−1

dx

(
7x+ 3r − 10rx2

1 + r2 − 2rx

)
×

[
2PL(k)(1 + r2 − 2rx)

T (k
√
1 + r2 − 2rx)

T (k)

+
PL(k

√
1 + r2 − 2rx)

1 + r2 − 2rx

T (k)

T (k
√
1 + r2 − 2rx)

]
(2.71)

This equation is first derived from Taruya et al. (2008), and they find that non-Gaussianity

signal in matter power spectrum is so tiny that gigantic space based survey with survey

volume of 100 [Gpc3/h3] only detect with large uncertainty (∆fNL ≃ 300).
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2.5 Nonlinear galaxy power spectrum in real space

In galaxy surveys, what we observe are galaxies, not a matter fluctuation. Since

galaxies are the biased tracers of the underlying matter fluctuation, we have to understand

how galaxy distribution and the matter fluctuation are related. This relation is known to be

very complicated, because we have to understand the complex galaxy formation processes

as well as the dark matter halo formation processes for given matter fluctuation in order to

calculate the relation from the first principle. Both of which are the subject of the forefront

research and need to be investigated further.

We simplify the situation by assuming that the galaxy formation and halo formation

are local processes. This assumption is valid on large enough scale, which may include the

quasi nonlinear scale where PT models the nonlinear evolution very well. Then, the galaxy

over/under density at a given position depends only on the matter fluctuation at the same

position. Therefore, the galaxy density contrast δg(x) can be Taylor-expanded with respect

to the smoothed matter density contrast

δR(x) =

∫
d3yδ(y)WR(x− y)

as

δg(x) = ϵ+ c1δR(x) +
c2
2

[
δ2R(x)−

〈
δ2R
〉]

+
c3
6
δ3R(x) + · · · , (2.72)

where
〈
δ2
〉
is subtracted in order to ensure ⟨δg⟩ = 0 (McDonald, 2006). Here, WR(r) is the

smoothing (filtering) function, and W̃R(k) is its Fourier transform
11. We also introduce the

stochastic parameter ϵ which quantifies the “stochasticity” of galaxy bias, i.e. the relation

between δg(x) and δR(x) is not completely deterministic, but contains some noise with zero

mean, ⟨ϵ⟩ = 0 (e.g., Yoshikawa et al. (2001), and reference therein). We further assume

that the stochasticity is a white noise, and is uncorrelated with the density fluctuations i.e.,

⟨ϵ2(k)⟩ ≡ ϵ20, ⟨ϵδR⟩ = 0. The coefficients of expansion, cn’s, encode the detailed formation

history of galaxies, and may vary for different morphological types, colors, flux limits, etc.

By using a convolution theorem, we calculate the Fourier transform of the local bias

expansion of equation (2.72)

δg(k) = ϵ(k) + c1δR(k) +
c2
2

∫
d3q1
(2π)3

∫
d3q2δR(q1)δR(q2)δD(k− q12)

+
c3
6

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3δR(q1)δR(q2)δR(q3)δD(k− q123), (2.73)

11For the notational simplicity, we shall drop the tilde, but it should be clear from the argument whether
the filtering function is defined in real space or Fourier space.
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in terms of the smoothed non-linear density field δR(k):

δR(k) ≡ WR(k)
[
δ(1)(k) + δ(2)(k) + δ(3)k) + · · ·

]
. (2.74)

Here, δ(n)(k) denotes the n-th order perturbation theory solution in equation (2.22). We

find the kernel for the real space galaxy density contrast by substituting equation (2.74)

into equation (2.73).

K
(s)
1 (q1) =c1WR(q1)

K
(s)
2 (q1, q2) =

c2
2
WR(q1)WR(q2) + c1F

(s)
2 (q1, q2)WR(q12)

K
(s)
3 (q1, q2, q3) =

c3
6
WR(q1)WR(q2)WR(q3) + c1F

(s)
3 (q1, q2, q3)WR(q123)

+
c2
3

[
F

(s)
2 (q1, q2)WR(q3)WR(q12) + (2 cyclic)

]
.

2.5.1 Gaussian case

As we assume that the stochastic parameter ϵ(k) is not correlated with the density

field, we calculate the real space galaxy power spectrum in Gaussian case as

Pg(k, z) = ⟨ϵ2⟩+D2(z)Pg,11(k) +D4(z) [Pg,22(k) + 2Pg,13(k)] , (2.75)

where

Pg,11(k) = c21W
2
R(k)PL(k) (2.76)

is the linear bias term with linear matter power spectrum and Pg,22 and Pg,13 include the

non-linear bias as well as the non-linear growth of the matter density field:

Pg,22(k)

=
c22
2

∫
d3q

(2π)3
W2
R(q)PL(q)W

2
R(|k− q|)PL(|k− q|)

+ 2c1c2WR(k)

∫
d3q

(2π)3
WR(q)PL(q)WR(|k− q|)PL(|k− q|)F (s)

2 (q, k− q)

+ 2c21W
2
R(k)

∫
d3q

(2π)3
PL(q)PL(|k− q|)

[
F

(s)
2 (q, k− q)

]2
(2.77)

Pg,13(k)

=
1

2
c1c3W

2
R(k)PL(k)σ

2
R + 3c21W

2
R(k)PL(k)

∫
d3q

(2π)3
PL(q)F

(s)
3 (q,−q, k)

+ 2c1c2WR(k)PL(k)

∫
d3q

(2π)3
PL(q)WR(q)WR(|k− q|)F2(k,−q). (2.78)
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Here,

σ2
R =

∫
d3q

(2π)3
PL(q)|W̃R(q)|2

is the root-mean-squared (r.m.s.) value of the smoothed linear density contrast at z = 0.

This equation is first derived in Smith et al. (2007) in the context of HaloPT,

but they found the poor agreement between equation (2.75) and the halo power spectrum

directly calculated from N-body simulation. However, it does not necessarily mean that

the local bias ansatz of equation (2.72) is wrong. We rather attribute the failure of their

modeling to the inaccurate modeling of the bias parameters (c1, c2 and c3) from the halo

model. For example, the halo/galaxy power spectrum driven from local bias successfully

models the halo/galaxy power spectrum from Millennium Simulation when fitting nonlinear

bias parameters in Chapter 4.

Instead of using the bias parameters from the halo model, we shall treat the bias

parameters as free parameters, and fit them to the observed galaxy power spectrum12.

In order to convert equation (2.75) into the practically useful form for fitting, we need

to re-parametrize the bias parameters. It is because the theoretical template for fitting

galaxy power spectrum shown in equation (2.75) has a few problems, as it was first pointed

out by McDonald (2006). First, Pg,13(k) in equation (2.75) contains σ2
R, which diverges,

or is sensitive to the details of the small scale treatment, e.g. imposing a cut-off scale,

choosing particular smoothing function, etc. Second, the first term in equation (2.77), one

proportional to c22, approaches to a constant value on large scale limit i.e., k → 0. The

constant value can be large depending on the spectral index, or, again, sensitive to the

small scale treatment.

In order to avoid these problems, we re-define the nonlinear bias parameters such

that all terms sensitive to the small-scale treatment are absorbed into the parametrization.

In other words, as we are interested in the power spectrum on sufficiently large scales,

k ≪ 1/R, we want to make the effect of small scale smoothing to be shown up only through

the value of the bias parameters. On such large scales, we could approximateWR(k) = 1, and

the last term of Pg,13(k) (Eq. [2.78]) is simply proportional to the linear power spectrum,

and the proportionality constant depends only on the smoothing scale R. That is, if we

12For the goodness of the fitting method including the effect of fitting to extracting the cosmological
parameters, see Chapter 4.
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rewrite

2c1c2WR(k)PL(k)

∫
d3q

(2π)3
PL(q)WR(q)WR(|k− q|)F2(k,−q)

≡4c1c2σ
2
RGR(k)W

2
R(k)PL(k), (2.79)

then, GR(k) approaches to the constant value

GR(k) →
13

84
+

1

4σ2
R

∫
d3q

(2π)3
PL(q)WR(q)

sin(qR)

qR
, (2.80)

as k → 013. See Figure 5.7 for the shape of GR(k) for R = 1, 2, 5 and 10 Mpc/h. We also

show the large scale asymptotic value of GR(0) as a function of R in Figure 5.8. With the

definition of GR(k) in equation (2.79) and the non-linear matter power spectrum in equation

(2.68), we rewrite the equation (2.75) as

Pg(k, z) =⟨ϵ2⟩+ c21W
2
R(k)Pm(k, z)

+D2(z)
[
c1c3σ

2
R + 8c1c2σ

2
RGR(k)

]
W2
R(k)PL(k, z)

+
c22
2

∫
d3q

(2π)3
W2
R(q)PL(q, z)W

2
R(|k− q|)PL(|k− q|, z)

+ 2c1c2WR(k)

∫
d3q

(2π)3
WR(q)PL(q, z)

×WR(|k− q|)PL(|k− q|, z)F (s)
2 (q, k− q). (2.82)

We re-parametrize the nonlinear bias parameters as,

P0 =⟨ϵ2⟩+D4(z)
c22
2

∫
dq

2π2
q2
[
PL(q)W

2
R(q)

]2
(2.83)

b21 =c21 +D2(z)
[
c1c3σ

2
R + 8c1c2GR(k)σ

2
R

]
(2.84)

b2 =
c2
b1
, (2.85)

then, the galaxy power spectrum becomes

Pg(k, z) = P0 + b21
[
W2
R(k)Pm(k, z) + b2D

4(z)Pb2(k) + b22D
4(z)Pb22(k)

]
, (2.86)

13For general window function WR(k), as k → 0,∫
d3q

(2π)3
PL(q)WR(q)WR(|k− q|)F (s)

2 (k,−q)

→
17

21
σ2
R +

1

6

∫
d3q

(2π)3
qPL(q)WR(q)

dWR(q)

dq
. (2.81)

Therefore, if we do not employ the smoothing function, i.e. WR(k) = 1, the integration becomes 17/21σ2
R,

and hence, the last term of Pg,13(k) is simply 34/21c1c2σ2PL(k). This result coincides with McDonald
(2006).
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where Pb2(k) and Pb22(k) are given by

Pb2(k) =2WR(k)

∫
d3q

(2π)3
WR(q)PL(q)WR(|k− q|)PL(|k− q|)F (s)

2 (q, k− q) (2.87)

Pb22(k) =
1

2

∫
d3q

(2π)3
W2
R(q)PL(q)

[
W2
R(|k− q|)PL(|k− q|)−W2

R(q)PL(q)
]
. (2.88)

Note that equation (2.86) is the same as the original equation up to next-to-leading order,

e.g. σ2
RPm ≃ σ2

RPL + O(P 3
L). As we have desired, the terms depending on the smoothing

scale R are absorbed into the newly defined bias parameters P0, b1 and b2, and Pm(k),

Pb2(k), Pb22(k) are independent of the smoothing scale on large scales, k ≫ 1/R.

Note that b1 we defined here reduces to the ‘effective bias’ of Heavens et al. (1998)

in the R→ 0 limit, and in k → 0 limit, equation (2.86) approaches to

Pg(k) → P0 + b21Pm(k),

the usual linear bias model plus a constant.

The ‘re-parametrized’ nonlinear bias parameters, P0, b1, b2, encode the complex

galaxy formation processes, which will be very hard to model from the first principle (Smith

et al., 2007). Nevertheless, the nonlinear galaxy power spectrum we calculate here has

to be the ‘right’ prescription as long as the locality of bias assumption is correct in the

quasi-nonlinear regime. In Chapter 4, we tested the nonlinear bias model in equation (2.86)

against the halos/galaxies power spectrum of the Millennium Simulation (Springel et al.,

2005). In order to test the prescription itself, we set P0, b1 and b2 as free parameters,

and fit the measured power spectrum from Millennium simulation with equation (2.86).

We found that nonlinear bias model provides a significantly better fitting than the linear

bias model. In addition to that, we could reproduce the correct distance scales within a

statistical error-bar, when marginalizing over three free nonlinear bias parameters.

2.5.2 Galaxy-matter cross power spectrum

As we shall marginalize over the bias parameters, the more do we add information

about bias parameters, the better can we estimate the other cosmological parameters. The

galaxy-matter cross power spectrum at high redshift can be a source of such an additional

information, as it is proportional to the galaxy density contrast; thus, it also depends on

the bias parameter. We can measure the galaxy-matter cross power spectrum from the

galaxy-galaxy, and galaxy-CMB weak lensing measurements14.

14We study the galaxy-galaxy, and galaxy-CMB weak lensing on large scales in Chapter 6.
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The fastest way of calculating the galaxy-matter cross power spectrum is using the

calculation of galaxy-galaxy power spectrum. Let us abbreviate equation (2.73) as

δg(k) = ϵ(k) + c1δR(k) + c2δ
(2)
g (k) + c3δ

(3)
g (k). (2.89)

Then, we can think of calculating the galaxy-galaxy power spectrum as〈
δg(k)δg(k

′)
〉

= ⟨ϵ2⟩+ c1
〈
δR(k)δg(k

′)
〉
+
〈
(c2δ

(2)
g (k) + c3δ

(3)
g (k))δg(k

′)
〉

= ⟨ϵ2⟩+ c1
〈
δR(k)δg(k

′)
〉
+ c1

〈
[c2δ

(2)
g (k) + c3δ

(3)
g (k)]δR(k

′)
〉
+ · · ·

= ⟨ϵ2⟩+ c1
[〈
δR(k)δg(k

′)
〉
+
〈
δR(k

′)δg(k)
〉
− c1

〈
δR(k)δR(k

′)
〉]

+ · · · . (2.90)

From equation (2.90), it is clear that adding up the terms proportional to c1 in Pg(k) are the

same as c1 [2Pgm(k)− c1Pm(k)]. Therefore, the nonlinear galaxy-matter cross correlation

function is

Pgm(k, z) =c1W
2
R(k)Pm(k, z) +D2(z)

[c3
2
σ2
R + 4c2σ

2
RGR(k)

]
W2
R(k)PL(k, z)

+ c2WR(k)

∫
d3q

(2π)3
WR(q)PL(q, z)

×WR(|k− q|)PL(|k− q|, z)F (s)
2 (q, k− q). (2.91)

We also re-parametrize the bias for this case,

b̄1 = c1 +D2(z)
[c3
2
σ2
R + 4c2σ

2
RGR(k)

]
(2.92)

b̄2 =
c2
b̄1
, (2.93)

so that the galaxy-matter cross power becomes

Pgm(k, z) = b̄1

[
W2
R(k)Pm(k, z) +

b̄2
2
D4(z)Pb2(k)

]
, (2.94)

where Pb2(k) is defined in equation (2.87). Note that when σR ≪ 1, b̄1 ∼ b1 and b̄2 ≃ b2.
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2.5.3 non-Gaussian case

What about the non-Gaussian correction term? We calculate the non-Gaussian

term by substituting the real space galaxy kernels into equation (2.66).

∆Pg,nG(k, z)

=2c1fNLD
3(z)WR(k)M(k)

∫
d3q

(2π)3
M(q)M(|k− q|)Pϕ(q) [2Pϕ(k) + Pϕ(|k− q|)]

×
[
c2WR(q)WR(|k− q|) + 2c1WR(k)F

(s)
2 (q, k− q)

]
=c21W

2
R(k)∆Pm,ng(k, z) + 4c1c2D

3(z)σ2
RfNLWR(k)FR(k)

PL(k)

M(k)
(2.95)

Here, ∆Pm,nG is the non-Gaussian correction to the matter power spectrum, and

FR(k) ≡
1

2σ2
R

∫
d3q

(2π)3
MR(q)MR(|k− q|)Pϕ(q)

[
Pϕ(|k− q|)
Pϕ(k)

+ 2

]
(2.96)

is a function which is unity on large scales (k ≪ 1/R, See, e. g. Matarrese & Verde, 2008).

See Figure 5.6 for the shape of FR(k) for R = 1, 2, 5 and 10 Mpc/h.

The first term in equation (2.95) is simply the non-Gaussian matter power spectrum

multiplied by the linear bias factor. The second term in Eq. (2.95) is the non-Gaussianity

term generated by non-linear bias, and shows the same behavior as the scale dependent

bias from local type primordial non-Gaussianity15. In fact, this term reduces to the result

of MLB formula (Matarrese et al., 1986; Matarrese & Verde, 2008, see, Appendix K.2 for

derivation)

∆Pg,nG(k, z) = 4c1(c1 − 1)δcD(z)αfNLWR(k)FR(k)
PL(k)

M(k)
(2.97)

in the linear regime and for the high-peak limit of the halo model16. It is sufficient to

show that c1c2D
2(z)σ2

R becomes αc1(c1 − 1)δc in the high-peak limit. Consider the bias

parameters from the halo model: (Scoccimarro et al., 2001b)

c1 =1 +
αν2 − 1

δc
+

2p/δc
1 + (αν2)p

(2.98)

c2 =
8

21
(c1 − 1) +

αν2

δ2c

(
αν2 − 3

)
+

2p/δc
1 + (αν2)p

(
1 + 2p

δc
+ 2

αν2 − 1

δc

)
, (2.99)

where δc ≃ 1.686 is the critical overdensity above which halo forms, and ν ≡ δc/(D
2(z)σ2

R).

For Press-Schechter mass function (spherical collapse, Press & Schechter, 1974; Mo &White,

15For the scale dependent bias, see the introduction in Chapter 5, and Appendix I.3.
16α here is the same as q in Carbone et al. (2008). We reserve q for the Fourier space measure.
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1996), α = 1, p = 0, and for Sheth-Tormen mass function (ellipsoidal collapse, Sheth &

Tormen, 1999; Sheth et al., 2001), α = 0.75, p = 0.3. And in the high-peak limit (ν ≫ 1),

we approximate c1 − 1 ≃ αν2/δc, and c2 ≃ α2ν4/δ2c . Therefore,

c1c2D
2(z)σ2

R ≃ c1α
2ν4

(
D2(z)σ2

R

δ2c

)
= c1α

2ν2 ≃ αc1(c1 − 1)δc. (2.100)

This relation motivate us to define a new bias parameter b̃2 ≡ σ2
RD

2(z)c2/c1, which ap-

proaches b̃2 → αδc for the high peak limit of the halo model.

By using a re-parametrized bias, b1 and b̃2, the non-Gaussian correction term be-

comes

∆Pg,nG(k, z)

=b21

[
W2
R(k)∆Pm,ng(k, z) + 6b̃2fNLD(z)WR(k)FR(k)

H2
0ΩmPL(k)

k2T (k)

]
, (2.101)

and on large scales (k ≪ 1/R), for high-peak, the formula reduces to the usual form in

the literature (Dalal et al., 2008; Matarrese & Verde, 2008; Slosar et al., 2008; Afshordi &

Tolley, 2008; Taruya et al., 2008; McDonald, 2008; Sefusatti, 2009):

∆Pg,nG(k, z) = b21

[
∆Pm,ng(k, z) + 6αδcfNLD(z)

H2
0ΩmPL(k)

k2T (k)

]
. (2.102)

Although equation (2.101) coincides with equation (2.102) for high peak limit, it

may not be the dominant contribution of scale-dependent bias for intermediate size peaks

where the nonlinear bias b2 is actually small. Recent study based on Peak Background Split

method (Giannantonio & Porciani, 2010) suggests that for non-Gaussian case, the local

ansatz [Eq. (2.72)] has to be modified to include the effect of Gaussian piece of gravitational

potential ϕ(x) directly as

δg(x) = b10δ(x) + b01ϕ(x) +
1

2!

(
b20δ

2(x) + 2b11δ(x)ϕ(x) + b02ϕ
2(x)

)
+ · · · , (2.103)

where bijs are bias parameters. If this holds, the non-Gaussianity signal from the power

spectrum of very massive clusters (where b̃2 is indeed close to αδc) is expected to be twice

as high as the scale dependent bias in equation (2.102).

2.6 Nonlinear mater power spectrum in redshift space

In the previous sections, we have calculated the matter power spectrum and the

galaxy power spectrum in real space. By real space, we mean an idealistic universe where
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we can observe the true distance of the galaxies (or matter particles) relative to us. With

galaxy survey alone, however, we cannot measure the true distance to the galaxies, as we

infer the distance to a galaxy from the galaxy’s spectral line shift by assuming the Hubble

law. The problem here is that the observed spectral shift depends not only on the position

of the galaxy (as a result of the expansion of the Universe), but also on the peculiar velocity

of the galaxy. As a result, the three-dimensional map of the galaxies generated from galaxy

surveys is different from the real space galaxy distribution. In contrast to the real space, we

call the observed coordinate of galaxies the redshift space, and the radial distortion in the

redshift space due to the peculiar velocity is called redshift space distortion.

We formulate the redshift space position vector s as follow:

s = x+ (1 + z)
vr(x)

H(z)
r̂. (2.104)

Here, x denotes the real space comoving position vector, and z denotes the redshift of galaxy

without peculiar velocity, H(z) is the Hubble parameter at that redshift, and vr denotes

the line-of-sight directional peculiar velocity. As redshift space distortion is due to the

peculiar velocity, we can model it by using the peculiar velocity solution θk(τ) (Eq. [2.23])

of perturbation theory. In this section and the next section, we calculate the matter power

spectrum and the galaxy power spectrum in redshift space, respectively.

How does the real space power spectrum changed under the redshift space distor-

tion? In order to simplify the analysis, we make the plane parallel approximation that the

galaxies are so far away that the radial direction is parallel to the ẑ direction17. Also, we

define the reduced velocity field u ≡ v/(fH) so that equation (2.104) becomes

s = x+ fuz(x)ẑ. (2.105)

As u(k) ≡ v(k)/(fH) = −ikθk(τ)/(k2fH), the Fourier transform of uz(x) becomes

uz(k, τ) =
iµ

k

∞∑
n=1

∫
d3q1
(2π)3

· · ·
∫
d3qn − 1

(2π)3

∫
d3qnδ

D(k−
n∑
i=1

qi)

×G(s)
n (q1, q2, · · · , qn)δ1(q1, τ) · · · δ1(qn, τ) ≡

iµ

k
η(k, τ), (2.106)

where µ = k · ẑ/k is the directional cosine between the wavenumber vector k̂ and the line of

sight direction ẑ. Note that the time evolution of the new variable uz(k) only comes from

the linear density contrast.

17For a redshift space distortion including a light-cone effect, see, e.g. de Lai & Starkman (1998); Ya-
mamoto et al. (1999); Nishioka & Yamamoto (2000); Wagner et al. (2008).
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Let us denote the real space over-density as δr(x), and the redshift space over-

density as δs(s). The mass conservation relates the measure in real space d3r and that in

redshift space d3s as

(1 + δs(s))d
3s = (1 + δr(x))d

3x. (2.107)

By using this relation, we find the exact relation between two over-densities in Fourier space

(Scoccimarro, 2004; Matsubara, 2008).

δs(k) =

∫
d3s [1 + δs(s)] e

−ik·s −
∫
d3xe−ik·x

=

∫
d3x [1 + δr(x)] e

−ik·[x+fuz(x)ẑ] −
∫
d3xe−ik·x

= δr(k) +

∫
d3xe−ik·x

(
e−ikzfuz(x) − 1

)
[1 + δr(x)] (2.108)

In order to calculate the 3rd order power spectrum, we Taylor-expand the exponential

function up to 3rd order:

δs(k) =δr(k) + fµ2η(k)−
∫
d3xe−ik·x

×
[
ikzfuz(x)δr(x) +

1

2
k2zf

2u2z(x) +
1

2
k2zf

2u2z(x)δr(x)−
i

6
k3zf

3u3z(x)

]
. (2.109)

We calculate the 3rd order nonlinear matter kernels in redshift space from equation

(2.109) and using the convolution theorem:

K
(s)
1 (k) =1 + fµ2 (2.110)

K
(s)
2 (q1, q2) =F

(s)
2 (q1, q2) + fµ2G

(s)
2 (q1, q2)

+
fkµ

2

(
q1z
q21

+
q2z
q22

)
+

(fkµ)2

2

q1zq2z
q21q

2
2

(2.111)

K
(s)
3 (q1, q2, q3) =F

(s)
3 (q1, q2, q3) + fµ2G

(s)
3 (q1, q2, q3)

+
(fkµ)2

6

(
q1zq2z
q21q

2
2

+
q2zq3z
q22q

2
3

+
q3zq1z
q23q

2
1

)
+

(fkµ)3

6

q1zq2zq3z
q21q

2
2q

2
3

+
fkµ

3

{
F

(s)
2 (q1, q2)

q3z
q23

+ (2 cyclic)

}
+

(fkµ)2

3

{
G

(s)
2 (q1, q2)

q3zq(1+2)z

q23 |q1 + q2|2
+ (2 cyclic)

}
+
fkµ

3

{
G

(s)
2 (q1, q2)

q(1+2)z

|q1 + q2|2
+ (2 cyclic)

}
. (2.112)
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Note that the kernels we present here coincide those in equation (13) of Heavens et al. (1998)

when setting b1 = 1 and b2 = 0.

Before calculating the power spectrum, it is instructive to compare the result here

with other formulas in the literature. In linear regime, equation (2.109) reduces to

δs(k) = (1 + fµ2)δ(1)(k), (2.113)

and the redshift space matter power spectrum becomes

Ps(k, µ, z) = (1 + fµ2)2D2(z)PL(k), (2.114)

as shown in Kaiser (1987). That is, as a result of non-linear mapping between real and

redshift space, the redshift space matter power spectrum is no longer spherically symmetric.

This is called ‘Kaiser effect’ in the literature. Note that the redshift space distortion effect

is larger for the line of sight direction (µ = 1), and it does not change the power spectrum

along the direction perpendicular to the line of sight (µ = 0).

If we pick up the linear terms in equation (2.109)

δs(k) = δr(k) + fµ2η(k), (2.115)

and use the third order solution of δr(k) and η(k), the redshift space matter power spectrum

reduces to the formula given in Scoccimarro (2004):

Ps(k, µ, z) = Pδδ(k, z) + 2fµ2Pδθ(k, z) + f2µ4Pθθ(k, z). (2.116)

Here, Pδδ(k, z) is the same as the non-linear matter power spectrum Pm(k, z) in real space

[Eq. (2.68)], Pδθ(k, z) is the non-linear density-velocity cross power spectrum

Pδθ(k, z) = D2(z)PL(k) +D4(z) [Pδθ,22(k) + Pδδ,13(k) + Pθθ,13(k)] , (2.117)

and Pθθ(k, z) is the non-linear velocity power spectrum

Pθθ(k, z) = D2(z)PL(k) +D4(z) [Pθθ,22(k) + 2Pθθ,13(k)] , (2.118)
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where Pδδ,13(k) is shown in equation (2.70), and

Pδθ,22(k) =2

∫
d3q

(2π)3
PL(q)PL(|k− q|)F (s)

2 (q, k− q)G
(s)
2 (q, k− q),

=
1

98

k3

(2π)2

∫
drPL(kr)

∫ 1

−1

dxPL(k
√
1 + r2 − 2rx)

× (7x+ 3r − 10rx2)(7x− r − 6rx2)

(1 + r2 − 2rx)2
, (2.119)

Pθθ,22(k) =2

∫
d3q

(2π)3
PL(q)PL(|k− q|)

[
G

(s)
2 (q, k− q)

]2
=

1

98

k3

(2π)2

∫
drPL(kr)

∫ 1

−1

dxPL(k
√
1 + r2 − 2rx)

[
7x− r − 6rx2

1 + r2 − 2rx

]2
, (2.120)

Pθθ,13(k) =3PL(k)

∫
d3q

(2π)3
PL(q)G

(s)
3 (q, k,−q)

=
1

504

k3

(2π)2
PL(k)

∫
drPL(kr)

×
[
36

r2
− 246 + 12r2 − 18r4 +

9

r3
(r2 − 1)3(r2 + 2) ln

(
1 + r

|1− r|

)]
. (2.121)

2.6.1 Gaussian case

Substituting these kernels into equation (2.58), we find the 3rd order nonlinear

redshift space matter power spectrum. The integration becomes particularly easier when

we align q̂z (or ϕ̂q in spherical polar coordinate) parallel to the direction of the wavenumber

vector, k̂. With this coordinate choice, the line of sight component of q can be written as

qz = q(µx−
√
1− µ2

√
1− x2 cosϕq),

where x denotes the directional cosine between q and k, and we can integrate some part of

angular integration analytically (Matsubara, 2008). After the analytical angular integration,

the 3rd order matter power spectrum in redshift space becomes

Ps(k, µ, z) = D2(z)Ps,11(k, µ) +D4(z) [Ps,22(k, µ) + 2Ps,13(k, µ)] , (2.122)
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where

Ps,11(k, µ) =(1 + fµ2)2PL(k), (2.123)

Ps,22(k, µ) =
∑
n,m

µ2nfm
k3

(2π)2

∫ ∞

0

dr PL(kr)

∫ 1

−1

dx

× PL

(
k(1 + r2 − 2rx)1/2

) Anm(r, x)

(1 + r2 − 2rx)2
, (2.124)

Ps,13(k, µ) =(1 + fµ2)PL(k)
∑
n,m

µ2nfm
k3

(2π)2

∫
drPL(kr)Bnm(r), (2.125)

with

A00 =
1

98
(3r + 7x− 10rx2)2

A11 =
2

49
(3r + 7x− 10rx2)2

A12 =
1

28
(1− x2)(7− 6r2 − 42rx+ 48r2x2)

A22 =
1

196
(−49 + 114r2 + 714rx+ 637x2 − 942r2x2 − 1890rx3 + 1416r2x4)

A23 =
1

14
(1− x2)(7− 6r2 − 42rx+ 48r2x2)

A24 =
3

16
r2(x− 1)2(x+ 1)2

A33 =
1

14
(−7 + 6r2 + 54rx+ 35x2 − 66r2x2 − 110rx3 + 88r2x4)

A34 =
1

8
(1− x2)(2− 3r2 − 12rx+ 15r2x2)

A44 =
1

16
(−4 + 3r2 + 24rx+ 12x2 − 30r2x2 − 40rx3 + 35r2x4)

and

B00 =
1

504

[
2

r2
(6− 79r2 + 50r4 − 21r6) +

3

r3
(r2 − 1)3(2 + 7r2) ln

(
1 + r

|1− r|

)]
B11 = 3B00

B12 =
1

336

[
2

r2
(9− 89r2 − 33r4 + 9r6)− 9

r3
(r2 − 1)4 ln

(
1 + r

|1− r|

)]
B22 =

1

336

[
2

r2
(9− 109r2 + 63r4 − 27r6) +

9

r3
(r2 − 1)3(1 + 3r2) ln

(
1 + r

|1− r|

)]
B23 = −1

3
.

This non-linear redshift space power spectrum shows more complicated angular dependence

than Kaiser effect.
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In Section 3.3, we compare the redshift power spectrum in equation (2.122) with

redshift space matter power spectrum we measured from a series of N-body simulations.

2.6.2 non-Gaussian case

We calculate the non-Gaussian correction to the matter power spectrum in redshift

space by substituting the kernels in equation (2.110) and equation (2.111) into equation

(2.66):

∆Ps(k, µ, z)

=4fNLD
3(z)(1 + fµ2)M(k)

∫
d3q

(2π)3
M(q)M(|k− q|)

× Pϕ(q) [2Pϕ(k) + Pϕ(|k− q|)]
[
F

(s)
2 (q, k− q) + fµ2G

(s)
2 (q, k− q)

+
fkµ

2

{
qz
q2

+
kµ− qz
|k− q|2

}
+

(fkµ)2

2

qz(kµ− qz)

q2|k− q|2

]
. (2.126)

As is the case for the non-Gaussianity correction to the matter power spectrum in real

space, equation (2.126) is parametrically smaller than the non-linear terms: Ps,22(k, µ) and

Ps,13(k, µ).

2.7 Nonlinear galaxy power spectrum in redshift space

Finally, in this section, we combine all three non-linear effects on the galaxy power

spectrum we shall measure from galaxy surveys: the galaxy power spectrum in redshift

space. As real to redshift mapping is the same for the total matter and the galaxies, the

redshift space density contrast is also given by equation (2.109), but changing the real space

density contrast δr(k) to the real space galaxy density contrast δg(k):

δgs(k) =δg(k) + fµ2η(k)−
∫
d3xe−ik·x

×
[
ikzfuz(x)δg(x) +

1

2
k2zf

2u2z(x) +
1

2
k2zf

2u2z(x)δg(x)−
i

6
k3zf

3u3z(x)

]
, (2.127)

again, µ ≡ kz/k is the cosine between wave vector k and the line of sight direction, and

η(k) is defined as ũz(k) ≡ iµη(k)/k (see, equation (2.106)). Note that the first two terms in

equation (2.127) lead the linear (Kaiser, 1984) and nonlinear (Scoccimarro, 2004) redshift

space power spectrum which has been studied before.
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We find the 3rd order kernels of the galaxy density contrast in redshift space by

substituting equation (2.73) into equation (2.127). The kernels are

K
(s)
1 (k) =c1WR(k) + fµ2 (2.128)

K
(s)
2 (q1, q2) =

c2
2
WR(q1)WR(q2) + c1WR(q12)F

(s)
2 (q1, q2) + fµ2G

(s)
2 (q1, q2)

+ c1
fkµ

2

[
q1z
q21

WR(q2) +
q2z
q22

WR(q1)

]
+

(fkµ)2

2

q1zq2z
q21q

2
2

(2.129)

K
(s)
3 (q,−q, k) =

c3
6
W2
R(q)WR(k) + c1WR(k)F

(s)
3 (q,−q, k)

+
c2
3
WR(q)

[
WR(|k+ q|)F (s)

2 (q, k) +WR(|k− q|)F (s)
2 (−q, k)

]
+ fµ2

[
G

(s)
3 (q,−q, k) +

c2
6
W2
R(q)

]
+ c1

fkµ

3

[
WR(|k− q|)F (s)

2 (−q, k)
qz
q2

−WR(|k+ q|)F (s)
2 (q, k)

qz
q2

+ WR(q)

{
G

(s)
2 (−q, k)

kz − qz
|k− q|2

+G
(s)
2 (q, k)

kz + qz
|k+ q|2

}]
+

(fkµ)2

3

[
−c1

2

q2z
q4

WR(k) +G
(s)
2 (−q, k)

qz(kz − qz)

q2|k− q|2

− G
(s)
2 (q, k)

qz(kz + qz)

q2|k+ q|2

]
− (fkµ)3

6

q2zkz
q4k2

. (2.130)

Note that we only show K
(s)
3 (q,−q, k), as it is what we need to calculate the third order

power spectrum. The kernels in equation (2.128)∼(2.130), when setting WR ≡ 1, coincide

those shown in Heavens et al. (1998)18, and also reduces to the kernels for the redshift space

matter density contrast, equation (2.110)∼(2.112) when setting c1 = 1 and c2 = c3 = 0.

For µ = 0, it reduces to the kernels for the galaxy density contrast in real space, as redshift

space distortion does not affect the perpendicular directional wave modes.

As is the case for the mater power spectrum, we can reproduce the formulas widely

used in the literature by taking the linear terms in equation (2.127):

δgs(k) = δg(k) + fµ2η(k). (2.131)

18Except that the real space kernels, J3 and K3, presented in Heavens et al. (1998) have to be replaced

by F
(s)
3 s and G

(s)
3 s in equation (2.34) and equation (2.35), respectively.
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By keeping only linear order of δg(k) and η(k), and setting WR(k) = 1, we find the linear

galaxy power spectrum in redshift space (Kaiser, 1987)

Pgs(k, µ, z) = b2(1 + βµ2)2D2(z)PL(k), (2.132)

where b is the linear bias parameter and β ≡ f/b. Also, including third order density field

and velocity field, while keeping bias linear, we find the formula used in Shoji et al. (2009):

Pgs(k, µ, z) = b2
[
Pδδ(k) + 2βµ2Pδθ(k) + β2µ4Pθθ(k)

]
, (2.133)

where Pδδ(k), Pδθ(k) and Pθθ(k) are shown in equation (2.68), equation (2.117) and equation

(2.118), respectively.

2.7.1 Gaussian case

Finally, we obtain the 3rd order galaxy power spectrum in redshift space by substi-

tuting these kernels into equation (2.58):

Pgs(k, z) = ⟨ϵ2⟩+D2(z)Pgs,11(k) +D4(z) [Pgs,22(k) + 2Pgs,13(k)] , (2.134)

where

Pgs,11(k) = (c1WR(k) + fµ2)2PL(k) (2.135)

is the same as the linear galaxy power spectrum in the redshift space (linear redshift space

distortion with linear bias, Kaiser, 1987), and non-linear terms are

Pgs,22(k) =2

∫
d3q

(2π)3
PL(q)PL(|k− q|)

[
K

(s)
2 (q, k− q)

]2
=2

∫
d3q

(2π)3
PL(q)PL(|k− q|)

[(
fµ2G

(s)
2 (q, k− q)

)2
+
(c2
2
WR(q)WR(|k− q|) + c1F

(s)
2 (q, k− q)WR(k)

)2
+ 2c1fµ

2WR(k)F
(s)
2 (q, k− q)G

(s)
2 (q, k− q)

]
+ P

(rest)
gs,22 (k, µ; c1, c2), (2.136)
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Pgs,13(k, µ) =3(c1WR(k) + fµ2)PL(k)

∫
d3q

(2π)3
PL(q)K

(s)
3 (q,−q, k)

=3(c1WR(k) + fµ2)PL(k)

∫
d3q

(2π)3
PL(q)

×
[
c3
6
W2
R(q)WR(k) + c1WR(k)F

(s)
3 (q,−q, k)

+
c2
3
WR(q)

{
WR(|k+ q|)F (s)

2 (q, k) +WR(|k− q|)F (s)
2 (−q, k)

}
+ fµ2

{
G

(s)
3 (q,−q, k) +

c2
6
W2
R(q)

}]
+P

(rest)
gs,13 (k, µ; c1). (2.137)

Here, we only show terms which we can be explicitly identified as terms from non-linear

evolution of matter (Pm,22(k) or Pm,13(k)), from non-linear bias (Pb2(k) or Pb22(k)), or from

non-linear redshift space distortion (Pθθ(k) or Pδθ(k)). Terms which cannot fall into those

categories are called P
(rest)
gs,22 (k, µ; c1, c2) and P

(rest)
gs,13 (k, µ; c1).

Combining equation (2.135) to (2.137), we calculate the galaxy power spectrum in

redshift space

Pgs(k, µ, z)

=
〈
ϵ2
〉
+ c21W

2
R(k)Pδδ(k, z) +D2(z)

[
c1c3σ

2
R + 8c1c2σ

2
RGR(k)

]
W2
R(k)PL(k, z)

+ c22D
4(z)Pb22(k, z) +D4(z)

c22
2

∫
d3q

(2π)3
W2
R(q)P

2
L(q) + c1c2D

4(z)Pb2(k)

+ 2fµ2

[
c1WR(k)Pδθ(k, z) +

1

2
D2(z)

{
c3σ

2
R + 8c2σ

2
RGR(k)

}
WR(k)PL(k, z)

+
1

2
D2(z)c1c2σ

2
RWR(k)PL(k)

]
+f2µ4

[
Pθθ(k, z) + c2D

2(z)σ2
RPL(k, z)

]
+D4(z)

[
P

(rest)
gs,22 (k, µ; c1, c2) + 2P

(rest)
gs,13 (k, µ; c1)

]
, (2.138)

where, Pδδ(k), Pb2(k), Pb22(k), Pδθ(k), Pθθ(k) are defined in equation (2.68), equation (2.87),

equation (2.88), equation (2.117), and equation (2.118), respectively.

Following the discussion in Section 2.5, we shall absorb the small scale dependent

quantities in equation (2.138) by re-defining the bias parameters: P0, b1 and b2 as is in

equation (2.83), equation (2.84) and equation (2.85), respectively. In addition, we also

introduce the new bias parameter bθ:

b2θ = 1 + c2D
2(z)σ2

R, (2.139)

so that additional σ2
R term can be absorbed. By using the re-defined bias parameters, the
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galaxy power spectrum in redshift space becomes

Pgs(k, µ, z) =P0 + b21
[
W2
R(k)Pm(k, z) + b2D

4(z)Pb2(k) + b22D
4(z)Pb22(k)

]
+ 2fµ2b1bθWR(k)Pδθ(k, z) + f2µ4b2θPθθ(k, z)

+D4(z)
[
P

(rest)
gs,22 (k, µ; b1, b2) + 2P

(rest)
gs,13 (k, µ; b1)

]
. (2.140)

In quasi-nonlinear regime, r.m.s. density fluctuation is small σ2
R ≪ 1; thus we make following

approximations

b1 ≃c1 +
1

2
D2(z)

[
c3σ

2
R + 8c2σ

2
RGR(k)

]
(2.141)

bθ ≃1 +
c2
2
D2(z)σ2

R, (2.142)

and

σ2
RPL ≃ σ2

RPδδ(k) ≃ σ2
RPδθ(k) ≃ σ2

RPθθ(k),

which are true up to the fourth order in the linear density contrast. We also replace c1 in

the rest terms, P
(rest)
gs,22 (k, µ, f ; c1, c2) and P

(rest)
gs,13 (k, µ, f ; c1), to b1, as it is consistent up to

the same order. However, we set c2 to be free, as this may allow us to check the consistency:

c2 = b1b2.

Note that the new bias parameter bθ is multiplied to the velocity divergence field,

θk, thus we call it velocity bias. However, it does not mean that the velocity field itself is

biased. The velocity bias is the bias introduced when ignoring the coupling between the

density field and the velocity field in equation (2.127). For example, if one uses equation

(2.133) as an estimator for the velocity power spectrum, then the measured velocity will be

biased by at least a factor of 1+ bθ, and the bias factor will increase when we also take ‘rest’

terms into account.

The ‘rest’ terms P
(rest)
gs,22 (k, µ, f ; c1, c2) P

(rest)
gs,13 (k, µ, f ; c1) are defined as the collection

of terms which cannot be simplified as either previously known terms or cannot be absorbed

in the re-defined bias parameters. We show the explicit functional formula for the rest terms

in Appendix D.
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2.7.2 non-Gaussian case

We calculate the non-Gaussian correction to the galaxy power spectrum in redshift

space as

∆P sg (k, µ, z)

=2fNLD
3(z)(c1WR(k) + fµ2)M(k)

×
∫

d3q

(2π)3
M(q)M(|k− q|)Pϕ(q) [2Pϕ(k) + Pϕ(|k− q|)]

[
c2WR(q)WR(|k− q|)

+ 2c1WR(k)F
(s)
2 (q, k− q) + 2fµ2G

(s)
2 (q, k− q) + (fkµ)2

qz(kµ− qz)

q2|k− q|2

+ b1(fkµ)

{
WR(|k− q|)qz

q2
+WR(q)

kµ− qz
|k− q|2

}]
. (2.143)

We, again, find that the non-Gaussianity term comes from the non-linear redshift space

mapping is parametrically small, and the dominant term is

∆P sg (k, µ, z) ≃2fNLD
3(z)(c1WR(k) + fµ2)M(k)

× c2

∫
d3q

(2π)3
MR(q)MR(|k− q|)Pϕ(q) [2Pϕ(k) + Pϕ(|k− q|)]

= 4fNLD
3(z)(c1WR(k) + fµ2)c2σ

2
RFR(k)

PL(k)

M(k)
. (2.144)

By using b̃2 ≡ σ2
RD

2(z)c2/c1 we define in Section 2.5.3, the correction term becomes

∆P sg (k, µ, z) = 4fNLD(z)c1(c1WR(k) + fµ2)b̃2FR(k)
PL(k)

M(k)
. (2.145)

On large scales (k ≪ 1/R), FR(k) = WR(k) = 1, and for the highly biased tracers, b̃2 ≃
αδc

19, we can rewrite the non-Gaussian term as

∆P sg (k, µ, z) = 6αδcfNLD(z)c1(c1 + fµ2)
H2

0ΩmPL(k)

k2T (k)
. (2.146)

Therefore, on large scale, the non-Gaussian galaxy power spectrum in redshift space

is given by

Pgs(k, µ, z) =
[
b1 + fµ2

]2
PL(k) + 6αfNLδcb1(b1 + fµ2)

H2
0ΩmPL(k)

k2T (k)
+ P0. (2.147)

Here, we approximate b1 ≃ c1 as the equation is written in the linear order.

19α = 1 for Press-Schechter mass function, and α = 0.75 for Sheth-Tormen mass function. For more
discussion, see Section 2.5.3.
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2.8 Summary

In this chapter, we calculate the nonlinear galaxy power spectrum in redshift space

within Eulerian perturbation theory framework. After defining three conditions in the quasi

non-linear regime, 1) sub-Horizon, 2) pressureless, 3) curl-free, we find the perturbative

solutions for the non-linear evolution of the density field and velocity field of cosmic matter

field. By using the perturbation theory solution, we calculate the matter power spectrum

and the galaxy power spectrum in both real and redshift space. For each case, we also

calculate the leading order correction to the power spectrum from the local primordial non-

Gaussianity.

2.8.1 On the smoothing of density field

When applying the locality of bias assumption, we assume that the galaxy density

contrast is a local function of the smoothed matter density contrast. While it is not certain

if locality of bias works for the real density contrast or the smoothed density contrast, we

intentionally adopt the smoothing function as it facilitates to access the effect of the small

scale smoothing on the large scale power spectrum.

As we are mainly interested in the power spectrum on sufficiently large scales,

k ≪ 1/R, we want to absorb the effect of small scale smoothing into the value of the free

bias parameters; thus, our theoretical template of the galaxy power spectrum in redshift

space should not depend on the smoothing scale R. We test that every term in equation

(2.140) is indeed independent on the smoothing scale as we desire.

In short, in the light of the re-definition of bias parameters, the smoothing does not

affect the power spectrum on large scales; smoothing scale (or halo mass) will only changes

the exact value of the bias parameters. Therefore, we show the unsmoothed equations in

the summary below:

2.8.2 Summary of equations

The galaxy power spectrum in redshift space on the quasi-nonlinear scales is given

by

Pgs(k, µ, z) =P0 + b21
[
Pm(k, z) + b2D

4(z)Pb2(k) + b22D
4(z)Pb22(k)

]
+ 2fµ2b1bθPδθ(k, z) + f2µ4b2θPθθ(k, z)

+D4(z)
[
P

(rest)
gs,22 (k, µ; b1, b2) + 2P

(rest)
gs,13 (k, µ; b1)

]
, (2.148)
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where P0, b1, b2, bθ, c2 are free bias parameters, and the components of nonlinear power

spectrum are listed as follow.

Pm(k, z) = D2(z)
[
PL(k) +D2(z) {Pm,22(k) + 2Pm,13(k)}

]
(2.149)

Pb2(k) = 2

∫
d3q

(2π)3
PL(q)PL(|k− q|)F (s)

2 (q, k− q) (2.150)

Pb22(k) =
1

2

∫
d3q

(2π)3
PL(q) [PL(|k− q|)− PL(q)] (2.151)

Pδθ(k, z) = D2(z)
[
PL(k) +D2(z) {Pδθ,22(k) + Pδδ,13(k) + Pθθ,13(k)}

]
(2.152)

Pθθ(k, z) = D2(z)
[
PL(k) +D2(z) {Pθθ,22(k) + 2Pθθ,13(k)}

]
(2.153)

The P22 and P13 terms in Pm, Pδθ, Pθθ are

Pm,22(k) =
1

98

k3

(2π)2

∫
drPL(kr)

∫ 1

−1

dxPL(k
√

1 + r2 − 2rx)

[
7x+ 3r − 10rx2

1 + r2 − 2rx

]2
(2.154)

Pm,13(k) =
1

504

k3

(2π)2
PL(k)

∫
drPL(kr)

×
[
12

r2
− 158 + 100r2 − 42r4 +

3

r3
(r2 − 1)3(7r2 + 2) ln

(
r + 1

|r − 1|

)]
(2.155)

Pδθ,22(k) =
1

98

k3

(2π)2

∫
drPL(kr)

∫ 1

−1

dxPL(k
√
1 + r2 − 2rx)

× (7x+ 3r − 10rx2)(7x− r − 6rx2)

(1 + r2 − 2rx)2
(2.156)

Pθθ,22(k) =
1

98

k3

(2π)2

∫
drPL(kr)

∫ 1

−1

dxPL(k
√
1 + r2 − 2rx)

[
7x− r − 6rx2

1 + r2 − 2rx

]2
(2.157)

Pθθ,13(k) =
1

504

k3

(2π)2
PL(k)

∫
drPL(kr)

×
[
36

r2
− 246 + 12r2 − 18r4 +

9

r3
(r2 − 1)3(r2 + 2) ln

(
1 + r

|1− r|

)]
, (2.158)

and the ‘rest’ terms P
(rest)
gs,22 (k, µ, f ; b1, c2) P

(rest)
gs,13 (k, µ, f ; b1) are shown in Appendix D (ex-

cept that now we set all smoothing function to be unity; WR = 1).

By setting appropriate bias parameters and an angle parameter µ, one can reproduce

the result for different cases we study in this chapter. If setting P0 = 0 b1 = 1, b2 = 0,

bθ = 0, equation (2.148) reduces to the non-linear matter power spectrum in redshift space,

whose µ = 0 slice is the non-linear matter power spectrum in real space, and, for bθ = 0,

µ = 0, equation (2.148) reduces to the non-linear galaxy power spectrum in real space.
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Finally, on large scales, the dominant correction of galaxy power spectrum due to

primordial local non-Gaussianity is given by

∆P sg (k, µ, z) = 6αδcfNLD(z)b1(b1 + fµ2)
H2

0ΩmPL(k)

k2T (k)
. (2.159)
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Chapter 3

Perturbation Theory Reloaded: analytical calculation of
the non-linear matter power spectrum in real and

redshift space

How accurately can we model the non-linear evolution of the density and velocity

fields of cosmic matter fluctuation by using Eulerian Perturbation Theory? How large is the

quasi-nonlinear regime at high redshifts? Is Third order Perturbation Theory good enough

to model the non-linear mapping between real space and redshift space? In this chapter1,

we shall address these questions by comparing the nonlinear matter power spectrum from

Eulerian Perturbation Theory2 against a series of N-body simulations, in both real and

redshift space.

3.1 N-body simulations and analysis method

We use the TVD (Ryu et al., 1993) code to simulate the evolution of δ(x, τ). The

TVD code uses the Particle-Mesh scheme for gravity, and the Total-Variation-Diminishing

(TVD) scheme for hydrodynamics, although we do not use hydrodynamics in our calcula-

tions. To increase the dynamic range of the derived power spectrum and check for conver-

gence of the results, we use four box sizes, Lbox = 512, 256, 128, and 64 h−1 Mpc, with

the same number of particles, N = 2563. (We use 5123 meshes for doing FFT.) We use the

following cosmological parameters: Ωm = 0.27, Ωb = 0.043, ΩΛ = 0.73, h = 0.7, σ8 = 0.8,

and ns = 1. We output the simulation data at z = 6, 5, 4, 3, 2 and 1 for 512, 256 and

128 h−1 Mpc, while only at z = 6, 5, 4 and 3 for 64 h−1 Mpc.

We suppress sampling variance of the estimated P (k, z) by averaging P (k, z) from

60, 50, 20, and 15 independent realizations of 512, 256, 128, and 64 h−1 Mpc simulations,

respectively. We calculate the density field on 5123 mesh points from the particle distribution

1Previous versions of Sections 3.1 and 3.2 of this chapter were published in Jeong, D. & Komatsu, E.
2006, Astrophys. J., 651, 619.

2For the analytic calculation of the non-linear power spectrum, see Chapter 2.
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by the Cloud-In-Cell (CIC) mass distribution scheme. We then Fourier transform the density

field and average |δk(τ)|2 within k − ∆k/2 ≤ |k| < k + ∆k/2 over the angle to estimate

P (k, z). Here, ∆k = 2π/Lbox. Finally, we correct the estimated P (k) for loss of power due

to the CIC pixelization effect using the window function calculated from 100 realizations of

random particle distributions.

We use the COSMICS package (Bertschinger, 1995) to calculate the linear transfer

function (with linger) and generate the input linear matter power spectrum and initial

conditions (with grafic). We have increased the number of sampling points for the transfer

function in k space from the default value of COSMICS, as the default sampling rate is too

low to sample the baryonic acoustic oscillations accurately. (The default rate resulted in an

artificial numerical smoothing of the oscillations.) We locate initial particles on the regular

grid (i.e., we do not randomize the initial particle distribution), and give each particle the

initial velocity field using the Zel’dovich approximation. This procedure suppresses shot

noise in the derived power spectrum, which arises from randomness of particle distribution.

We have checked this by comparing P (k, z) from the initial condition to the input linear

spectrum. However, some shot noise would arise as density fluctuations grow over time.

While it is difficult to calculate the magnitude of shot noise from the structure formation,

we estimate it by comparing P (k, z) from large-box simulations with that from small-box

simulations. We do not find any evidence for shot noise at z ≥ 1; thus, we do not subtract

shot noise from the estimated P (k, z). To be conservative, we use 512, 256, 128, and

64 h−1 Mpc simulations to obtain P (k, z) at k ≤ 0.24 h Mpc−1, 0.24 < k ≤ 0.5 h Mpc−1,

0.5 < k ≤ 1.4 h Mpc−1, and 1.4 < k ≤ 5 h Mpc−1, respectively, to avoid the residual CIC

pixelization effect and potential contaminations from unaccounted shot noise terms as well

as artificial “transients” from initial conditions generated by the Zel’dovich approximation

(Scoccimarro, 1998; Crocce et al., 2006). The initial redshifts are zinitial = 27, 34, 42, and

50 for 512, 256, 128, and 64 h−1 Mpc simulations, respectively. In Section 3.2.3 we show

more on the convergence test (see Fig. 3.6 and Fig. 3.7).

3.2 Non-linear Matter Power spectrum in Real Space

3.2.1 Two theories: Halo Fit vs. Perturbation Theory

The next-to-leading order correction to P (k) we calculate in Chapter 2 is

Pm(k, z) = D2(z)Pm,11(k) +D4(z)[2Pm,13(k) + Pm,22(k)], (3.1)
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where

Pm,22(k) = 2

∫
d3q

(2π)3
P11(q)P11(|k− q|)

[
F

(s)
2 (q,k− q)

]2
, (3.2)

F
(s)
2 (k1,k2) =

5

7
+

2

7

(k1 · k2)
2

k21k
2
2

+
k1 · k2

2

(
1

k21
+

1

k22

)
, (3.3)

2Pm,13(k) =
2πk2

252
P11(k)

∫ ∞

0

dq

(2π)3
P11(q)

×

[
100

q2

k2
− 158 + 12

k2

q2
− 42

q4

k4

+
3

k5q3
(q2 − k2)3(2k2 + 7q2) ln

(
k + q

|k − q|

)]
. (3.4)

While F
(s)
2 (k1,k2) should be modified for different cosmological models, the difference van-

ishes when k1 ∥ k2. The biggest correction comes from the configurations with k1 ⊥ k2,

for which [F
(s)
2 (ΛCDM)/F

(s)
2 (EdS)]2 ≃ 1.006 and ≲ 1.001 at z = 0 and z ≥ 1, respectively.

Here, F
(s)
2 (EdS) is given by equation (3.3), while F

(s)
2 (ΛCDM) contains corrections due to

Ωm ̸= 1 and ΩΛ ̸= 0 (Matsubara, 1995; Scoccimarro et al., 1998), and we used Ωm = 0.27

and ΩΛ = 0.73 at present. The information about different background cosmology is thus

almost entirely encoded in the linear growth factor.

In principle, modeling of matter power spectrum may be developed using N -body

simulations. This approach has been widely used in the literature. One method builds on

the so-called HKLM formalism (Hamilton et al., 1991), which interpolates between the linear

regime on large scales and the stable clustering regime on small scales using a fitting function

to N -body simulations. The HKLM method was further elaborated by Peacock & Dodds

(1996). The other method builds on the so-called halo model (Scherrer & Bertschinger,

1991), which was further elaborated by e.g., Seljak (2000); Smith et al. (2003).

We also compare the N-body data with the latest fitting formula for the nonlinear

matter power spectrum in Appendix C of Smith et al. (2003). Motivated from the halo

model, they divide the power spectrum by two parts:

∆2
NL(k) = ∆2

Q(k) + ∆2
H(k), (3.5)

where

∆2(k) ≡ k3P (k)

2π2
(3.6)
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is the dimensionless power spectrum. The one halo term, ∆2
H , and two halo term, ∆2

Q(k),

are given by fitting formula as follow. First, the fitting formula for two halo term is

∆2
Q(k) = ∆2

L(k)

{ [
1 + ∆2

L

]βn

1 + αn∆2
L(k)

}
exp

[
−y
4
− y2

8

]
, (3.7)

where y ≡ k/kσ, and kσ is the nonlinear scale defined by σ(k−1
σ ) = 1. Here, σ(R) is the

r.m.s. value of smoothed linear density fluctuation with smoothing radius R:

σ2(R) ≡
∫
d ln k∆2

L(k) exp
[
−k2R2

]
.

The fitting formula for one halo term is

∆2
H(k) =

any
3f1(Ωm)

(1 + µny−1 + νny−2)(1 + bnyf2(Ωm) + [cnf3(Ωm)y]3−γn)
. (3.8)

The coefficients (an, bn, cn, γn, αn, βn, µn, νn) depend on the spectral properties: effective

spectral index

neff ≡ −3− d lnσ2(R)

d lnR

∣∣∣∣
σ=1

, (3.9)

and the spectral curvature

C ≡ − d ln2 σ2(R)

d lnR2

∣∣∣∣
σ=1

. (3.10)

They are

log10 an =1.4861 + 1.83693neff + 1.67618n2eff + 0.7940n3eff

+ 0.1670756n4eff − 0.620695C (3.11)

log10 bn =0.9463 + 0.9466neff + 0.3084n2eff − 0.940C (3.12)

log10 cn =− 0.2807 + 0.6669neff + 0.3214n2eff − 0.0793C (3.13)

γn =0.86485 + 0.2989neff + 0.1631C (3.14)

αn =1.38848 + 0.3701neff − 0.1452n2eff (3.15)

βn =0.8291 + 0.9854neff + 0.3400n2eff (3.16)

log10 µn =− 3.54419 + 0.19086neff (3.17)

log10 νn =0.95897 + 1.2857neff . (3.18)

Finally, for ΛCDM model, f1(Ωm), f2(Ωm), f3(Ωm) are given by

f1(Ωm) =fmΩ−0.0307
m + (1− fm)Ω−0.0732

m (3.19)

f2(Ωm) =fmΩ−0.0585
m + (1− fm)Ω−0.1423

m (3.20)

f3(Ωm) =fmΩ0.0743
m + (1− fm)Ω0.0725

m , (3.21)

where fm = ΩΛ/(1− Ωm). Note that fm = 1 for flat-ΛCMD universe.

52



3.2.2 Results

Figure 3.1 compares P (k, z) at z = 1, 2, 3, 4, 5 and 6 (from top to bottom) from

simulations (dashed lines), PT (solid lines), and linear theory (dot-dashed lines). The PT

predictions agree with simulations so well that it is actually difficult to see the difference

between PT and simulations in Figure 3.1. The simulations are significantly above the linear

theory predictions at high k.

To facilitate the comparison better, we show ∆2(k, z) [Eq. (3.6)] in Figure 3.2. We

find that the PT predictions (thin solid lines) agree with simulations (thick solid lines) to

better than 1% accuracy for ∆2(k, z) ≲ 0.4. On the other hand, the latest predictions from

halo approach (Smith et al., 2003) (dotted lines) perform significantly worse then PT. This

result suggests that one must use PT to model non-linearity in the weakly non-linear regime.

The baryonic features in the matter power spectrum provide a powerful tool to

constrain the equation of state of dark energy. This method uses the fact that the CMB

angular power spectrum sets the physical acoustic scale, and thus the features in the matter

power spectrum seen on the sky and in redshift space may be used as the standard ruler,

giving us the angular diameter distance out to the galaxy distribution at a given survey

redshift as well as H(z) (Matsubara & Szalay, 2003; Hu & Haiman, 2003; Seo & Eisenstein,

2003; Blake & Glazebrook, 2003). In order for this method to be viable, however, it is crucial

to understand distortion on the baryonic acoustic oscillations caused by non-linearity. This

has been investigated so far mostly using direct numerical simulations (Meiksin et al., 1999;

Springel et al., 2005; White, 2005; Seo & Eisenstein, 2005). Meiksin et al. (1999) also

compared the PT prediction with their N -body simulations at z = 0, finding that PT was

a poor fit. This is because non-linearity at z = 0 is too strong to model by PT. Figure 3.4

shows that PT provides an accurate analytical account of non-linear distortion at z > 1: even

at z = 1, the third peak at k ≃ 0.18 h Mpc−1 is modeled at a few percent level. At z > 2,

all the oscillatory features are modeled to better than 1% accuracy. A slight deficit in power

from N -body simulations at k ∼ 0.2 hMpc−1 relative to the perturbation theory predictions

at z = 2 may be due to artificial transient modes from the Zel’dovich approximation used

to generate initial conditions. One may eliminate such an effect by either using a smaller

box-size or a better initial condition from the second-order Lagrangian perturbation theory

(Crocce et al., 2006). As the power spectrum at k > 0.24 h Mpc−1 from 256 h−1 Mpc

simulations at z = 2 agrees with the perturbation theory predictions very well, we conclude

that this small deficit in power at k ∼ 0.2 h Mpc−1 is a numerical effect, most likely the

transients in low-resolution simulations.
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Figure 3.1: Power spectrum at z = 1, 2, 3, 4, 5 and 6 (from top to bottom), derived
from N -body simulations (dashed lines), perturbation theory (solid lines), and linear theory
(dot-dashed lines). We plot the simulation data from 512, 256, 128, and 64 h−1 Mpc
simulations at k ≤ 0.24 h Mpc−1, 0.24 < k ≤ 0.5 h Mpc−1, 0.5 < k ≤ 1.4 h Mpc−1, and
1.4 < k ≤ 5 h Mpc−1, respectively. Note that we did not run 64 h−1 Mpc simulations at
z = 1 or 2.
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Figure 3.2: Dimensionless power spectrum, ∆2(k). The solid and dashed lines show pertur-
bation theory calculations and N -body simulations, respectively. The dotted lines show the
predictions from halo approach (Smith et al., 2003). The dot-dashed lines show the linear
power spectrum.
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Figure 3.3: Residuals of Figure 3.2. The errorbars show the N -body data divided by the
perturbation theory predictions minus one, while the solid curves show the halo model
calculations given in Smith et al. (2003) divided by the perturbation theory predictions
minus one. The perturbation theory predictions agree with simulations to better than 1%
accuracy for ∆2(k) ≲ 0.4.
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Figure 3.4: Non-linearity in baryonic acoustic oscillations. All of the power spectra have been
divided by a smooth power spectrum without baryonic oscillations from equation (29) of
Eisenstein & Hu (1998). The errorbars show N -body simulations, while the solid lines show
perturbation theory calculations. The dot-dashed lines show the linear theory predictions.
Perturbation theory describes non-linear distortion on baryonic oscillations very accurately
at z > 1. Note that different redshift bins are not independent, as they have grown from
the same initial conditions. The N -body data at k < 0.24 and k > 0.24 h Mpc−1 are from
512 and 256 h−1 Mpc box simulations, respectively.
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Figure 3.5: Non-linearity and the amplitude of matter fluctuations, σ8. In each panel the
lines show the linear spectrum and non-linear spectrum with σ8 = 0.7, 0.8, 0.9 and 1.0 from
bottom to top.

How do the predicted non-linear power spectra depend on the amplitude of matter

fluctuations? As the non-linear contributions to the power spectrum are given by the linear

spectrum squared, a non-linear to linear ratio grows in proportion to σ2
8 . In Fig 3.5 we show

how the non-linear contributions increase as one increases σ8 from 0.7 to 1.0. This figure

may be useful when one compares our results with the previous work that uses different

values of σ8.

3.2.3 Convergence test

To test convergence of the power spectra derived from simulations and determine

the valid range in wavenumber from each simulation box, we have run N -body simulations

with four different box sizes, Lbox = 512, 256, 128, and 64 h−1 Mpc, with the same number
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Figure 3.6: Convergence test. Fractional differences between the power spectra from N -
body simulations in Lbox = 512, 256, and 128 h−1 Mpc box (from bottom to top lines) and
the perturbation theory predictions in k < 1.5 h Mpc−1.
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Figure 3.7: Convergence test. The same as left panel, but for simulations in Lbox = 512, 256,
128, and 64 h−1 Mpc box (from bottom to top lines) in the expanded range in wavenumber,
k < 5 h Mpc−1.
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of particles, N = 2563. The initial redshifts are zinitial = 27, 34, 42, and 50 for 512, 256,

128, and 64 h−1 Mpc simulations, respectively.

Figure 3.6 and 3.7 shows that simulations with a larger box size lack power on

larger scales due to the lack of resolution, as expected, while they have better statistics on

large scales than those with a smaller box size. This figure helps us to determine the valid

range in wavenumber from each simulation box. We find that one can use 512, 256, 128,

and 64 h−1 Mpc simulations to calculate reliable estimates of the power spectrum in k ≤
0.24 h Mpc−1, 0.24 < k ≤ 0.5 h Mpc−1, 0.5 < k ≤ 1.4 h Mpc−1, and 1.4 < k ≤ 5 h Mpc−1,

respectively.

3.3 Non-linear Matter Power spectrum in Redshift Space

In order to simulate the redshift space distortion from the N-body simulation, we

displace the position of particles along the line of sight direction (n̂) according to the particle

velocity of that direction (v · n̂) as

s = x+ (1 + z)
v · n̂
H(z)

n̂, (3.22)

where z and H(z) are the redshift and the Hubble parameter at the snapshot of N-body

simulation. For given simulation realization and redshift, we estimate three redshift space

power spectra for n̂ = x̂, ŷ, ẑ in order to increase the number of samples. Then, we follow

the same procedure of estimating matter power spectrum described in Section 3.1. Note that

the plane parallel approximation is exact in simulated redshift space defined by equation

(3.22).

3.3.1 Three theories: Kaiser, Scoccimarro, and 3PT

We calculate the redshift space matter density contrast by expanding the exact

relation [Eq. (2.108)]

δs(k, τ) = δr(k, τ) +

∫
d3xe−ik·x

(
e−ikzfuz(x,τ) − 1

)
[1 + δr(x, τ)] (3.23)

up to third order in δ1(k), [Eq. (2.109)]. Here, we rescale the velocity as u(x) = (1 +

z)v(x)/(f(z)H(z)). Then, the matter power spectrum in redshift space depends on both

wavenumber k and angular cosine between wave vector and the line of sight direction µ,

and is given by

Ps(k, µ, z) = D2(z)Ps,11(k, µ) +D4(z) [Ps,22(k, µ) + 2Ps,13(k, µ)] , (3.24)
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where

Ps,11(k, µ) =(1 + fµ2)2PL(k), (3.25)

Ps,22(k, µ) =
∑
n,m

µ2nfm
k3

(2π)2

∫ ∞

0

dr PL(kr)

∫ 1

−1

dx

× PL

(
k(1 + r2 − 2rx)1/2

) Anm(r, x)

(1 + r2 − 2rx)2
, (3.26)

Ps,13(k, µ) =(1 + fµ2)PL(k)
∑
n,m

µ2nfm
k3

(2π)2

∫
drPL(kr)Bnm(r), (3.27)

where the functions Anm(r, x) and Bnm(r) are given below equation (2.125). This formula

is also given in Matsubara (2008), and is the same as b1 = 1, b2 = 0 case of Heavens et al.

(1998).

In this section, we shall compare this full next-to-leading order power spectrum

with two other formula which are widely used in the literature: linear redshift space power

spectrum (Kaiser, 1987), and non-linear redshift space power spectrum from Scoccimarro

(2004). Expanding equation (3.23) up to linear order leads

δs(k, τ) = δ(k, τ) + µ2f2η(k, τ), (3.28)

where δ(k) and η(k) are defined as

δ(k, τ) =
∞∑
n=1

∫
d3q1
(2π)3

· · ·
∫
d3qn−1

(2π)3

∫
d3qnδ

D(k−
n∑
i=1

qi))

× F (s)
n (q1, · · · , qn)δ1(q1, τ) · · · δ1(qn, τ), (3.29)

η(k, τ) =
∞∑
n=1

∫
d3q1
(2π)3

· · ·
∫
d3qn−1

(2π)3

∫
d3qnδ

D(k−
n∑
i=1

qi))

×G(s)
n (q1, · · · , qn)δ1(q1, τ) · · · δ1(qn, τ). (3.30)

By using linear δ(k, τ) and η(k, τ), we calculate the linear redshift space power spectrum

(Kaiser, 1987):

PKaiser
s (k, µ, z) = (1 + fµ2)2D2(z)PL(k). (3.31)

If we use δ(k, τ) and η(k, τ) up to third order, we can also reproduce the nonlinear

redshift space power spectrum of Scoccimarro (2004):

P Scoccimarro
s (k, µ, z) = Pδδ(k, z) + 2fµ2Pδθ(k, z) + f2µ4Pθθ(k, z), (3.32)
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where Pδδ(k, z) is the same as the matter power spectrum in real space Pm(k, z), and

Pδθ(k, τ)

=PL(k, τ) + 2

∫
d3q

(2π)3
PL(q, τ)PL(|k− q|, τ)F (s)

2 (q, k− q)G
(s)
2 (q, k− q)

+ 3PL(k, τ)

∫
d3q

(2π)3
PL(q, τ)

[
F

(s)
3 (q,−q, k) +G

(s)
3 (q,−q, k)

]
, (3.33)

Pθθ(k, τ)

=PL(k, τ) + 2

∫
d3q

(2π)3
PL(q, τ)PL(|k− q|, τ)

[
G

(s)
2 (q, k− q)

]2
+ 6PL(k, τ)

∫
d3q

(2π)3
PL(q, τ)G

(s)
3 (q,−q, k), (3.34)

are the density-velocity cross power spectrum, and velocity-velocity power spectrum, re-

spectively. The explicit functional form of Pδθ and Pθθ are shown in equation (2.152) and

equation (2.153), respectively.

3.3.2 Result

We first compare the angular averaged (monopole) redshift space power spectrum,

Pred(k) =
1

2

∫ 1

−1

dµPs(k, µ), (3.35)

from three theories (Kaiser, Scoccimarro, 3PT) to N-body simulation. Figure 3.8 shows the

angular averaged redshift space power spectrum from N-body simulations (blue, dashed line)

and three different theoretical power spectra at 6 different redshifts (z = 1, 2, 3, 4, 5, 6,

top to bottom) : linear redshift space power spectrum (green, dot-dashed line, Kaiser, 1987),

nonlinear redshift space power spectrum from (olive, dotted line Scoccimarro, 2004), and

full third order nonlinear redshift space power spectrum in equation (3.24) (red, solid line).

On very large scales k ≲ 0.05 [h/Mpc], all power spectra agree with the prediction

of Kaiser (1987): angular averaged redshift space power spectrum is boosted relative to the

real space power spectrum by a factor of (1 + 2f/3 + f2/5) ≃ 28/15. Linear theory power

spectrum, however, deviate from the other curves on smaller scales, k ≳ 0.2 [h/Mpc] even for

z = 6 (bottom most) case. On smaller scales, two non-linear redshift power spectra are well

above the linear theory prediction for all redshifts, and the Full third order redshift space

power spectrum is larger than the non-linear power spectrum from Scoccimarro (2004).

To facilitate the comparison better, we show ∆2
red(k, z), the dimensionless power

spectrum [Eq. (3.6)], for each redshift in Figure 3.9. For higher redshifts, the full third

63



Figure 3.8: Comparing the angular averaged redshift space power spectrum for three dif-
ferent models at redshift z = 1, 2, 3, 4, 5, 6 (top to bottom). dashed line (blue) is the
redshift space power spectrum calculated from the N-body simulations. Linear Kaiser P(k)
(dot dashed, green line), Scoccimarro’s non-linear P(k) (dotted, olive line), and full 3rd
order non-linear redshift space P(k) (solid, red line) are compared. Note that Finger of God
effect is not yet included in the model and one can clearly see the suppression of the power
on smaller scales. We plot the N-body power spectrum using the same data we used to draw
Figure 3.1, so the k-range and the box size are all the same.
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Figure 3.9: Dimensionless power spectrum, ∆2
red(k), of redshift space for six different red-

shifts. The solid and dashed lines show full non-linear PT calculations and N-body simu-
lations, respectively. The dotted line shows the Scoccimarro’s formula and the dot-dashed
line represents the linear kaiser spectrum. PT prediction agree with simulations very well
at redshift z = 6 up to k ≃ 0.8 h Mpc−1, and at redshift z = 5 up to k ≃ 0.5 h Mpc−1.
On low redshifts, however, N-body result shows power suppression relative to the PT power
spectrum. It may be the Finger of God suppression. Note that the Scoccimarro’s formula
and linear kaiser spectrum are lower than the N-body result in the intermediate scale.
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order perturbation theory models the non-linear redshift space distortion very accurately:

k ≲ 0.8 h Mpc−1, k ≲ 0.5 h Mpc−1, for z = 6, z = 5, respectively. However, for redshift

z < 4, it cannot model the N-body power spectrum at all for the scale smaller than where

linear theory works. Unlike the case for the real space matter power spectrum (Figure 3.2),

where PT underpredicts the non-linear power spectrum, the redshift space N-body power

spectrum always shows the power suppression relative to the perturbation theory calculation.

In particular, at z = 1, the power suppression occurs even on the very larger scales k ∼
0.1 h Mpc−1. We attribute this suppression to the small scale velocity dispersion effect,

which is called ‘Finger of God’ effect (Jackson, 1972) in the literature. We shall model this

effect in the next section. On the other hand, the linear redshift space power spectrum and

the non-linear power spectrum of Scoccimarro (2004) are below the N-body redshift space

power spectrum for z > 2 and z > 4, respectively.

We compare the Baryonic Acoustic Oscillations for each redshift in Figure 3.10. As

we have already mentioned in section 4.1., we can measure the angular diameter distance

and Hubble parameter by using BAO. Especially BAO provide an essential geometrical test

of the expansion history of the universe; thus, we can constrain the dark energy equation of

state by accurately measuring them.

For redshift higher than 3, we can actually model the baryonic oscillation up to

third peak using PT. However, we can only model up to second peak for z = 2 due to severe

power loss in the larger scale. PT modeling of the baryonic oscillations in z = 1 is even

worse, and we can only model the first peak and trough. Again, the problem is the small

scale power loss.

3.3.3 Modeling Finger of God effect

In the previous section, we show that third order perturbation theory fails to model

the non-linear redshift space power spectrum even in the region it models the non-linear

real space power spectrum [Fig. (3.8)-(3.10)]. When it fails, we clearly see the power loss of

the N-body power spectrum compare to the perturbation theory prediction on the smaller

scale at all redshifts.

Such a small scale suppression in redshift space is often called ‘Finger of God’ effect

(Jackson, 1972). A folk-lore is that Finger of God only affect the power spectrum on very

small scales as the effect is caused by a velocity dispersion inside of virialized halos. However,

by comparing against the N-body simulation, we find that the suppression of power happens

on fairly large scales in the previous section.
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Figure 3.10: Nonlinearity in baryonic acoustic oscillations due to the redshift space distor-
tion. Note that we don’t include the Finger of God effect in the modeling power spectrum
yet. All the power spectra have been divided by a smooth power spectrum without bary-
onic oscillations from equation (29) of Eisenstein & Hu (1998). The errorbars show N-body
simulations, while solid line show PT calculations. The dot-dashed line show the linear
theory predictions, and dotted line show the power spectrum from Scoccimarro’s formula.
PT describes nonlinear distortion on BAO in the redshift space very accurately at z > 3,
up to third peak, and at z = 2 up to second peak. Although peak position is preserved, at
z = 1, we loose almost all the information on the amplitude. It clearly shows that we need
to model the power suppression. The N-body data at k < 0.24 and > 0.24 h Mpc−1 are
from 512 and 256 h Mpc−1 box simulations, respectively.
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What causes the suppression of the power on large scale? As Scoccimarro (2004)

points out, it may be related to the velocity dispersion on large scale. As cosmological

density field and velocity field are generated from inflation, they are naturally a ‘random’

field. Therefore, even on large scales, velocity field is not solely ‘coherent’, but includes a

certain dispersion. In this section, we study the large scale suppression of redshift space

power spectrum relating to such velocity dispersions.

Let us first consider the two-point correlation function in redshift space. If the

velocity field is perfectly coherent, then the correlation function in real space will be re-

mapped onto the corresponding redshift space position; thus, resulting a ‘squashed’ redshift

space correlation function (Hamilton, 1998). Now, let us add the dispersion to the velocity

field. The main effect of velocity dispersion is simply blurring the real-to-redshift space

mapping along the radial direction. If the velocity distribution does not depend on scales,

we can simply model it by the convolution of the line of sight directional pairwise velocity

distribution function (PVDF) to the ‘coherent’ redshift space correlation function (Ballinger

et al., 1996). Schematically,

ξtotals (s⊥, s
′
∥) = ξcoherents (s⊥, s∥) ⋆ Pv(s

′
∥ − s∥), (3.36)

where s⊥, s∥ are redshift space position parallel and perpendicular to the line of sight

direction, respectively. We use ⋆ symbol for convolution.

In Fourier space, by convolution theorem, the effect of velocity dispersion becomes

a multiplication of the Fourier transform of PVDF:

P total
s (k⊥, k∥) = P coherent

s (k⊥, k∥)Pv(k∥), (3.37)

where k⊥, k∥ are wavenumber perpendicular and parallel to the line of sight direction. It is

Pv(k∥) which suppress the power spectrum along the line of sight direction; thus, responsible

for the Finger of God effect.

We shall model the Finger of God effect by using an ansatz based on equation (3.37).

For a coherent power spectrum, we use the non-linear perturbation theory calculation of the

redshift space power spectrum [Eq. (3.24)] as it successfully model the non-linear evolution

at high redshifts (z > 4). Note that the linear kaiser spectrum and Scoccimarro’s formula

are both smaller than the N-body power spectrum; thus multiplying the suppression factor

will only make the disagreement larger.

What about Pv(k∥)? For Pv, we have to model a Pairwise Velocity Distribution

Function (PVDF). There are two widely used models of PVDF in the literature. If dark
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matter particles within a halo is thermalized, then PVDF may be Gaussian (Maxwell-

Boltzmann); thus the Finger of God suppression factor is given by,

Pv(k∥) = exp(−f2k2∥σ
2
p). (3.38)

If PVDF follow the exponential distribution, the factor becomes Lorentzian (Fourier trans-

form of exponential) in k-space.

Pv(k∥) =
1

1 + f2k2∥σ
2
p

. (3.39)

Here, σ2
p is the line of sight pairwise velocity dispersion. In the literature, σp = σv/

√
2 is

widely used where σ2
v is the linear velocity dispersion:

σ2
v =

1

3

∫
d3k

(2π)3
P (k)

k2
. (3.40)

Note that these two formulas are the same in the limit where f2k2zσ
2
v is small. The measured

PVDF from simulations, however, turns out to be well approximated by the exponential

distribution (e.g. see, Figure 1 of Scoccimarro (2004)). Therefore, we use equation (3.40)

for modeling Finger of God effect.

We first use the conventional value of σp = σv/
√
2, and compare with N-body power

spectrum, but it suppress the power spectrum too much, especially for higher redshifts. By

noticing that σp is not a value derived from the first principle, but a fitted value to the

simulation, we fit σ2
p value to the N-body power spectrum in two dimensional Fourier-space

(k⊥, k∥):

P total
s (k⊥, k∥) = P coherent

s (k⊥, k∥)
1

1 + f2k2∥σ
2
p

. (3.41)

In Table 3.3.3, we summarize the resulting best-fitting values of σ2
p and its 1-σ in-

terval (or 68.27% confidence interval) for six different redshifts (z = 6, 5, 4, 3, 2, and 1), and

for three different box sizes (Lbox = 512, 256, and 128 [Mpc/h]). Note that in most of cases,

kmax’s are set by the resolution of each simulation boxes: kmax = 0.24, 0.5 , 1.4 h Mpc−1

for 512, 256, 128 h−1 Mpc, respectively3. However, when kmax set by the simulation box

resolution is higher than the kmax set by PT (the maximum wavenumber below which PT

is proven to be valid in real space (Section 3.2.2), we choose the latter. We also fit for the

highly non-linear regime (k < 1.4 for z = 2, and k < 0.5, k < 1.4 for z = 1) in order to show

the Finger of God ansatz does not work when non-linearity is too strong,

3For the discussion on the box resolution, see Section 3.1
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redshift k-range [σ2
v ] [σ2

p] ratio χ2
red d.o.f.

[h/Mpc] [Mpc/h]2 [Mpc/h]2 [σ2
p]/[σ

2
v ]

6 k < 0.24 1.1530 0.4964±0.1151 0.431 1.102 318
k < 0.5 1.1686 0.1769±0.0279 0.151 1.152 345
k < 1.4 1.1574 0.1009±0.0034 0.0871 1.580 667

5 k < 0.24 1.5778 0.6096±0.1156 0.386 1.091 318
k < 0.5 1.5989 0.3013±0.0284 0.188 1.149 345
k < 1.4 1.5832 0.2166±0.0039 0.136 1.502 667

4 k < 0.24 2.2427 0.8306±0.1171 0.370 1.086 318
k < 0.5 2.2707 0.5895±0.0294 0.260 1.144 345
k < 1.4 2.2506 0.5155±0.0049 0.229 1.411 667

3 k < 0.24 3.5667 1.3945±0.1205 0.391 1.079 318
k < 0.5 3.4785 1.4445±0.0333 0.415 1.155 345
k < 1.2 3.5427 1.5606±0.0118 0.441 1.442 494

2 k < 0.24 6.0760 3.4408±0.1338 0.566 1.144 318
k < 0.33 6.1519 4.2194±0.1553 0.686 1.053 154
k < 1.4 6.0887 5.0000±0.0167 0.821 2.431 667

1 k < 0.15 12.8654 10.2650±0.8443 0.798 1.149 131
k < 0.5 12.6851 19.8754±0.0975 1.567 2.292 345
k < 1.4 12.6543 23.8262±0.0598 1.883 10.335 667

Table 3.1: The best-fit [σ2
p] parameter for 6 different redshifts and 3 different kmax’s for

each redshift. Note that in most of cases, kmax’s are set by the resolution of each simulation
boxes : kmax = 0.24, 0.5 , 1.4 h Mpc−1 for 512, 256, 128 h−1 Mpc, respectively. However,
when kmax set by the resolution is higher than the kmax we get from the valid k region of
the nonlinear PT in real space, we choose the later. The higher values of χ2

red in the case of
k < 1.4 at z = 2, and k < 0.5, k < 1.4 at z = 1 show the failure of the fitting in the highly
nonlinear region. Note that [σ2

v ] from equation (3.40) is always larger than the best-fit value
when perturbation theory ansatz give rise to the small χ2

red.
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We notice that the measured σ2
p value on largest scales, k < 0.24 [h/Mpc], are

systematically larger than the σ2
p from smaller scale for z > 4, while this trend reverses for

lower redshifts. The latter cases (for lower redshifts z ≤ 4) are reasonable, as we resolve

more particle per clump in the high resolution simulation. On the other hand, we think the

former cases (for higher redshifts z > 4) is an artifact, and it is simply a result from that

changing power spectrum on large scale requires larger σ2
p. For example, we can see how

small the Finger of God effect at z = 6 on large scale (left top panel of Figure 3.11).

We test the goodness of fitting by calculating the reduced-χ2 (χ2
red). The reduced

χ2 values are close to 1 in the k-region where PT works well, but they become larger

in the strongly nonlinear region at lower redshifts. Thus, the FoG prescription based on

the exponential Pairwise Velocity Distribution Function can be an effective modeling of the

Finger of God effect. We also find that the conventional velocity dispersion values σ2
p = σ2

v/2

are always larger than the best-fitting σ2
p values when χ

2
red is close to unity; the conventional

Finger of God ansatz over-suppress the power.

From Figure 3.11 to Figure 3.13, we show the contour of three 2-dimensional power

spectra: power spectrum from N-body simulation (blue, solid line), power spectrum from

non-linear PT (red, dot-dashed line), and power spectrum from non-linear PT multiplied by

Finger of God ansatz (red, solid line). Figure 3.11 shows the result from the 512 h−1 Mpc

box simulation, and we fit only for |k| < 0.24 h Mpc−1, except for z = 1, where we use

kmax = 0.15 h Mpc−1 which is the maximum wavenumber determined from real space

power spectrum. On such large scales, Finger of God does not affect at high redshifts

(z > 3), and we start to see the difference from z = 3. Figure 3.12 shows the result from

the 256 h−1 Mpc box simulation, and fitting is done for |k| < 0.5 h Mpc−1, except for z = 2

(kmax = 0.33 h Mpc−1). The Finger of God effect (difference between dot-dashed line and

blue solid line) is large for low redshifts (z ≲ 2) that we start to see the contour being

‘squashed’. Figure 3.13 shows the result from the 128 h−1 Mpc box simulation, and fitting

is done for |k| < 1.4 h Mpc−1, except for z = 3 (kmax = 1.2 h Mpc−1). For z = 1, the

Finger of God effect is so strong that its suppression dominates over the non-linear power

spectrum from PT.

How does angular averaged power spectrum look now? In Figure 3.14, we compare

four angular averaged power spectra: the N-body power spectrum (blue, dashed line), the

linear redshift space power spectrum (green, dot-dashed line), the non-linear power spectrum

from Full third order theory (red, dots-dashed line), and the non-linear PT + Lorentzian

Finger of God model. We find that the agreement between the non-linear power spectrum
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Figure 3.11: Result of 2-dimensional fitting of σ2
p using 512 h−1Mpc box. N-body power

spectrum (blue line) in redshift space, PT power spectrum + Finger of God ansatz (red
line), and PT power spectrum (red dot-dashed line) is shown. Note that we fit only for
|k| < 0.24 h Mpc−1, except for z = 1, where we use kmax = 0.15 h Mpc−1 which is the
maximum wavenumber below which PT works well [Section 3.2.2]

72



Figure 3.12: Same as Figure 3.11, but for 256 h−1Mpc box. Note that we fit only for
|k| < 0.5 h Mpc−1, except for z = 2 (kmax = 0.33 h Mpc−1).
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Figure 3.13: Same as Figure 3.11, but for 128 h−1Mpc box. Note that we fit only for
|k| < 1.4 h Mpc−1, except for z = 3 (kmax = 1.2 h Mpc−1).
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Figure 3.14: Same as Figure 3.8, but with the PT+Finger of God fitting result (red, solid
line). Finger of God modeling improves the agreement between PT and N-body power
spectrum dramatically.

75



Figure 3.15: FoG effect on the angular averaged baryonic oscillations. This figure is the same
as Figure 3.10, except for the PT+FoG plot (solid line). Note that the overall suppression
of baryonic oscillation at z = 1 is modeled quite correctly up to the second peak.
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and the N-body power spectrum is improved dramatically by including the Finger of God

ansatz.

We also show the angular averaged baryonic oscillations in Figure 3.15. This figure

is the same as Figure 3.10, except for one more line: the non-linear perturbation theory +

Finger of God ansatz. By comparing PT+FoG with N-body spectrum, we see that the over-

all suppression of baryonic oscillation at z = 1 is modeled quite correctly up to the second

peak. Note that, for low redshifts, there is a discontinuity around k ∼ 0.24 h Mpc−1. This

may suggest that the Finger of God effect also depends on the resolution of the simulation

in a way that the suppression is larger for the higher resolution simulation.

Although the Finger of God modeling of equation (3.41) fits the observed power

spectrum, there is a few caveats. First, the decomposition of ‘coherent’ and ‘dispersion’

part is not clear in reality. As a non-linear perturbative solution of the exact relation

[Eq. 3.23], the non-linear redshift space power spectrum from PT may also include the

term which is responsible for the velocity dispersion. Second, we assume that the Pairwise

Velocity Distribution Function (PVDF) is constant over the scales in which we are interested.

However, the measured PVDF from simulation does depend on scales, and in fact, the shape

is quite different for different scales. For the scale dependent PVDF, the simple convolution

does not work. Instead, we may have to model the Full PVDF, and use so called Streaming

moel (Scoccimarro, 2004), which relate the correlation function in real space and redshift

space by

1 + ξs(s⊥, s∥) =

∫ ∞

−∞
dr⊥ [1 + ξ(r)]P(r⊥ − s⊥, r), (3.42)

where P(r⊥ − s⊥, r) is the scale (which is parametrized by r) dependent PVDF.

3.4 Discussion and Conclusions

The next-to-leading order correction to the matter power spectrum calculated an-

alytically from 3rd-order PT provides an almost exact description of the matter power

spectrum in real space in the weakly non-linear regime, where ∆2(k) ≲ 0.4 (Fig. 3.2). The

next-to-leading order correction to the matter power spectrum in redshift space is also an-

alytic, but models only limited range in k-space at very high redshifts z ≳ 5. However,

by using an empirically motivated, exponential Pairwise Velocity Distribution Function and

fitting to the effective velocity dispersion parameter σ2
p, we find that the theory provides a

reasonably good fitting to N-body data for the wavenumber ranges where PT models well

for the real space matter power spectrum.
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The most important implications of our results for the planned high-z galaxy surveys

are that we can use PT to calculate (a) non-linearity in the baryonic acoustic oscillations

(Fig. 3.4), which should reduce systematics in constraining dark energy properties, and (b)

the matter power spectrum up to much higher k than that was accessible before, which

should vastly increase our ability to measure the shape of the primordial power spectrum

as well as the mass of neutrinos (Takada et al., 2006).

Of course, these surveys measure the galaxy power spectrum in redshift space; thus,

the future work should include PT calculations of non-linearity in redshift space distortion,

and halo biasing (Fry & Gaztanaga, 1993; Heavens et al., 1998) at the same time, as well

as an extensive comparison with numerical simulations. PT also allows one to calculate the

higher-order statistics such as the bispectrum, which has been shown to be a powerful tool

to check for systematics in our understanding of non-linear galaxy bias (Matarrese et al.,

1997; Verde et al., 1998). We should therefore “reload” cosmological perturbation theory

and make a serious assessment of its validity in light of the planned high-z galaxy surveys

constraining properties of dark energy, inflation, and neutrinos.
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Chapter 4

Perturbation Theory Reloaded II: Non-linear Bias,
Baryon Acoustic Oscillations and Millennium

Simulation In Real Space

In the previous chapter, we show that non-linear Eulerian perturbation theory can

model the non-linear matter power spectrum in both real and redshift space. In this section,

we shall extend the analysis into the galaxy bias, and show that non-linear perturbation

theory combined with the locality of bias ansatz can model the non-linear power spectrum

of biased tracers1.

4.1 Non-linear galaxy power spectrum from perturbation theory

4.1.1 Locality Assumption

Galaxies are biased tracers of the underlying density field (Kaiser, 1984), which im-

plies that the distribution of galaxies depends on the underlying matter density fluctuations

in a complex way. This relation must depend upon the detailed galaxy formation processes,

which are not yet understood completely.

However, on large enough scales, one may approximate this function as a local

function of the underlying density fluctuations, i.e., the number density of galaxies at a

given position in the universe is given solely by the underlying matter density at the same

position. With this approximation, one may expand the density fluctuations of galaxies,

δg, in terms of the underlying matter density fluctuations, as (Fry & Gaztanaga, 1993;

McDonald, 2006)

δg(x) = ϵ+ c1δ(x) +
1

2
c2δ

2(x) +
1

6
c3δ

3(x) + . . . , (4.1)

1Previous version of this chapter was published in Jeong, D. & Komatsu, E. 2009 Astrophys. J., 691,
569.
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where cn are the galaxy bias parameters, and ϵ is a random variable that represents the

“stochasticity” of the galaxy bias, i.e., the relation between δg(x) and δ(x) is not determinis-

tic, but contains some noise (e.g., Yoshikawa et al., 2001, and references therein). We assume

that the stochasticity is white noise, and is uncorrelated with the density fluctuations, i.e.,

⟨ϵδ⟩ = 0. While both of these assumptions should be violated at some small scales, we

assume that these are valid assumptions on the scales that we are interested in – namely, on

the scales where the 3rd-order PT describes the non-linear matter power spectrum with 1%

accuracy. Since both bias parameters and stochasticity evolve in time (Fry, 1996; Tegmark

& Peebles, 1998), we allow them to depend on redshifts.

One obtains the traditional “linear bias model” when the Taylor series expansion

given in Eq. (4.1) is truncated at the first order and the stochasticity is ignored.

The precise values of the galaxy bias parameters depend on the galaxy formation

processes, and different types of galaxies have different galaxy bias parameters. However,

we are not interested in the precise values of the galaxy bias parameters, but only interested

in extracting cosmological parameters from the observed galaxy power spectra with all the

bias parameters marginalized over.

4.1.2 3rd-order PT galaxy power spectrum

The analysis in this paper adopts the framework of McDonald (2006), and we briefly

summarize the result for clarity. We shall use the 3rd-order PT; thus, we shall keep the

terms up to the 3rd order in δ. The resulting power spectrum can be written in terms of the

linear matter power spectrum, PL(k), and the 3rd order matter power spectrum, Pδδ(k), as

Pg(k) = P0 + b21

[
Pδδ(k) + b2Pb2(k) + b22Pb22(k)

]
, (4.2)

where Pb2 and Pb22 are given by

Pb2 = 2

∫
d3q

(2π)3
PL(q)PL(|k− q|)F (s)

2 (q,k− q),

and

Pb22 =
1

2

∫
d3q

(2π)3
PL(q)

[
PL(|k− q|)− P (q)

]
,

respectively, with F
(2)
2 given by

F
(s)
2 (q1,q2) =

5

7
+

2

7

(q1 · q2)
2

q21q
2
2

+
q2 · q2

2

(
1

q21
+

1

q22

)
.
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We use the standard formula for Pδδ (see Eq. (14) of Paper I and references therein).

Here, b1, b2, and P0 are the non-linear bias parameters2, which are given in terms of the

original coefficients for the Taylor expansion as

b21 = c21 + c1c3σ
2 +

68

21
c1c2σ

2,

b2 =
c2
b1
, (4.3)

P0 = ⟨ϵ2⟩+ 1

2
c22

∫
k2dk

2π2
P 2
L(k),

where σ is the r.m.s. of density fluctuations.

We will never have to deal with the original coefficients, c1, c2, c3, or ϵ.
3 Instead,

we will only use the re-parametrized bias parameters, b1, b2, and P0, as these are related

more directly to the observables. As shown by McDonald (2006), in the large-scale limit,

k → 0, one finds

Pg(k) → P0 + b21PL(k). (4.4)

Therefore, in the large-scale limit one recovers the traditional linear bias model plus the

constant term. Note that b1 is the same as what is called the “effective bias” in Heavens

et al. (1998).

Throughout this paper we shall use Eq. (4.2) for calculating the non-linear galaxy

power spectra.

4.1.3 Why we do not care about the precise values of bias parameters

The precise values of the galaxy bias parameters depend on the details of the galaxy

formation and evolution, as well as on galaxy types, luminosities, and so on.

However, our goal is to extract the cosmological information from the observed

galaxy power spectra, without having to worry about which galaxies we are using as tracers

of the underlying density field.

Therefore, we will marginalize the likelihood function over the bias parameters,

without ever paying attention to their precise values. Is this approach sensible?

2These parameters correspond to b1, b2, and N in the original paper by McDonald (2006).
3For the expression of Pg(k) with the original coefficients, see equation (2.134). It is also shown in

literature such as Heavens et al. (1998); Smith et al. (2007).
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One might hope that one should be able to calculate the bias parameters for given

properties of galaxies from the first principles using, e.g., sophisticated numerical simula-

tions.

Less numerically expensive way of doing the same thing would be to use the semi-

analytical halo model approach, calibrated with a smaller set of numerical simulations (see

Cooray & Sheth, 2002, for a review). Using the peak-background split method (Sheth &

Tormen, 1999) based upon the excursion set approach (Bond et al., 1991), one can calculate

b1, b2, b3, etc., the coefficients of the Taylor series expansion given in Eq. (4.1), for the density

of dark matter halos. Once the bias parameters for dark matter halos are specified, the

galaxy bias parameters may be calculated using the so-called Halo Occupation Distribution

(HOD) (Seljak, 2000).

Smith et al. (2007) have attempted this approach, and shown that it is difficult to

calculate even the power spectrum of dark matter halos that matches N -body simulations.

The halo-model predictions for bias parameters are not yet accurate enough, and we do not

yet have a correct model for P0.

The situation would be even worse for the galaxy power spectrum, as we would

have to model the HOD in addition to the halo bias. At the moment the form of HOD

is basically a free empirical function. We therefore feel that it is dangerous to rely on our

limited understanding of these complications for computing the bias parameters.

This is the reason why we have decided to give up predicting the precise values

of bias parameters entirely. Instead, we shall treat 3 bias parameters, b1, b2, and P0, as

free parameters, and fit them to the observed galaxy power spectra simultaneously with the

cosmological parameters.

The most important question that we must ask is the following, “using the 3rd-order

PT with 3 bias parameters, can we extract the correct cosmological parameters from the

galaxy power spectra?” If the answer is yes, we will not have to worry about the precise

values of bias parameters anymore.

4.2 Dark Matter Power spectrum from Millennium Simulation

In this section we show that the matter power spectrum computed from the 3rd-

order PT agrees with that estimated from the Millennium Simulation (Springel et al., 2005).

This result confirms our previous finding (Paper I).
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Using the result obtained in this section we define the maximum wavenumber,

kmax, below which the 3rd-order PT may be trusted. The matter power spectrum gives an

unambiguous definition of kmax, which will then be used thereafter when we analyze power

spectra of halos and galaxies in § 4.3.

4.2.1 Millennium Simulation

The Millennium simulation (Springel et al., 2005) is a large N -body simulation with

the box size of (500 Mpc/h)3 and 21603 dark matter particles. The cosmological parameters

used in the simulation are (Ωdm,Ωb,ΩΛ, h) = (0.205, 0.045, 0.75, 0.73).

The primordial power spectrum used in the simulation is the scale-invariant Peebles-

Harrison-Zel’dovich spectrum, ns = 1.0, and the linear r.m.s. density fluctuation smoothed

with a top-hat filter of radius 8 h−1Mpc is σ8 = 0.9. Note that these values are significantly

larger than the latest values found from the WMAP 5-year data, σ8 ≃ 0.8 and ns ≃
0.96 (Dunkley et al., 2009; Komatsu et al., 2010), which implies that non-linearities in the

Millennium Simulation should be stronger than those in our Universe.

The Millennium Simulation was carried out using the GADGET code (Springel et al.,

2001; Springel, 2005). The GADGET uses the tree Particle Mesh (tree-PM) gravity solver,

which tends to have a larger dynamic range than the traditional PM solver for the same box

size and the same number of particles (and meshes)(Heitmann et al., 2007). Therefore, the

matter power spectrum from the Millennium Simulation does not suffer from an artificial

suppression of power as much as those from the PM codes.

The initial particle distribution was generated at the initial redshift of zini = 127

using the standard Zel’dovich approximation. While the initial conditions generated from

the standard Zel’dovich approximation tend to produce an artificial suppression of power at

later times, and the higher-order scheme such as the second-order Lagrangian perturbation

theory usually produces better results (Scoccimarro, 1998; Crocce et al., 2006), the initial

redshift of the Millennium Simulation, zini = 127, is reasonably high for the resulting power

spectra to have converged in the weakly non-linear regime.

The mass of each dark matter particle in the simulation is Mdm = 8.6× 108M⊙/h.

They require at least 20 particles per halo for their halo finder, and thus the minimum

mass resolution of halos is given by Mhalo ≥ 20Mdm ≃ 1.7 × 1010 M⊙/h. Therefore, the

Millennium Simulation covers the mass range that is relevant to real galaxy surveys that

would detect galaxies with masses in the range of M ≃ 1011 − 1012 M⊙. This property

83



distinguishes our study from the previous studies on non-linear distortion of BAOs due to

galaxy bias (e.g., Smith et al., 2007; Huff et al., 2007), whose mass resolution was greater

than ∼ 1012 M⊙.

In addition to the dark matter halos, the Millennium database4 also provides galaxy

catalogues from two different semi-analytic galaxy formation models (De Lucia & Blaizot,

2007; Croton et al., 2006; Bower et al., 2006; Benson et al., 2003; Cole et al., 2000). These

catalogues give us an excellent opportunity for testing validity of the non-linear galaxy power

spectrum model based upon the 3rd-order PT with the unprecedented precision.

4.2.2 3rd-order PT versus Millennium Simulation: Dark Matter Power Spec-
trum

First, we compare the matter power spectrum from the Millennium simulation with

the 3rd-order PT calculation. The matter power spectrum we use here was measured directly

from the Millennium simulation on the fly.5

Table 4.1: Maximum wavenumbers, kmax, for the Millennium Simulation

z kmax k̃max

[h/Mpc] [h/Mpc]
6 1.5 1.99
5 1.3 1.37
4 1.2 1.02
3 1.0 0.60
2 0.25 0.35
1 0.15 0.20

z: redshift

kmax: the maximum wavenumber for the simulated Pm(k) to agree with the PT calculation at 2% accuracy

within the statistical error of the Millennium Simulation

k̃max: k̃max is defined by ∆2
m(k̃max) = 0.4 which is the criteria recommended in Paper I.

Figure 4.1 shows the matter power spectrum from the Millennium simulation (dashed

lines), the 3rd-order PT calculation (solid lines), and the linear PT (dot-dashed lines) for

seven different redshifts, z = 0, 1, 2, 3, 4, 5, and 6. The analytical calculation of the

3rd-order PT reproduces the non-linear matter power spectrum from the Millennium Simu-

lation accurately at high redshifts, i.e., z > 1, up to certain maximum wavenumbers, kmax,

4http://www.g-vo.org/MyMillennium2/
5We thank Volker Springel for providing us with the matter power spectrum data.
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Figure 4.1: Matter power spectrum at z = 0, 1, 2, 3, 4, 5 and 6 (from top to bottom)
derived from the Millennium Simulation (dashed lines), the 3rd-order PT (solid lines), and
the linear PT (dot-dashed lines).
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Figure 4.2: Dimensionless matter power spectrum, ∆2(k), at z = 1, 2, 3, 4, 5, and 6.
The dashed and solid lines show the Millennium Simulation data and the 3rd-order PT
calculation, respectively. The dot-dashed lines show the linear power spectrum.
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Figure 4.3: Fractional difference between the matter power spectra from the 3rd-order PT
and that from the Millennium Simulation, P simm (k)/PPTm − 1 (dots with errorbars). The
solid lines show the perfect match, while the dashed lines show ±2% accuracy. We also
show kmax(z), below which we trust the prediction from the 3rd-order PT, as a vertical
dotted line.
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Figure 4.4: Distortion of BAOs due to non-linear matter clustering. All of the power spectra
have been divided by a smooth power spectrum without baryonic oscillations from eq. (29)
of Eisenstein & Hu (1998). The error bars show the simulation data, while the solid lines
show the PT calculations. The dot-dashed lines show the linear theory calculations. The
power spectrum data shown here have been taken from Figure 6 of Springel et al. (2005).
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that will be specified below. To facilitate the comparison better, we show the dimensionless

matter power spectrum, ∆2
m(k) ≡ k3Pm(k)/2π2, in Figure 4.2.

We find the maximum wavenumber, kmax(z), below which we trust the prediction

from the 3rd-order PT, by comparing the matter power spectrum from PT and the Millen-

nium Simulation. The values of kmax found here will be used later when we analyze the

halo/galaxy power spectra.

In Paper I we have defined kmax such that the fractional difference between PT

and the average of ∼ 100 simulations is 1%. Here, we have only one realization, and thus

the results are subject to statistical fluctuations that might be peculiar to this particular

realization. Therefore, we relax our criteria for kmax: we define kmax such that the fractional

difference between PT and the Millennium Simulation is 2%.

Figure 4.3 shows the fractional differences at z = 1, 2, 3, 4, 5, and 6. Since we

have only one realization, we cannot compute statistical errors from the standard deviation

of multiple realizations. Therefore, we derive errors from the leading-order 4-point function

assuming Gaussianity of the underlying density fluctuations (see Appendix F.1), σP (k) =

P (k)/
√
Nk, where Nk is the number of independent Fourier modes per bin at a given k

shown in Figure 4.3.

We give the values of kmax in Table 4.1. We shall use these values when we fit

the halo/galaxy power spectrum in the next section. Note that kmax decreases rapidly

below z = 2. It is because P (k)/PPT (k) − 1 is not a monotonic function of k. The dip in

P (k)/PPT (k)−1 is larger than 2% at lower redshift, z < 2, while it is inside of the 2% range

at z ≥ 3. Therefore, our criteria of 2% make that sudden change. This feature is due to the

limitation of the standard 3rd order PT. However, we can remove this feature by using the

improved perturbation theory, e.g. using renormalization group techniques. (See, Figure 9

of Matarrese & Pietroni (2007).)

We also give the values of k̃max, for which ∆2
m(k̃max) = 0.4 (criteria recommended

in Paper I). The difference between kmax and k̃max is probably due to the fact that we have

only one realization of the Millennium Simulation, and thus estimation of kmax is noisier.

Note that the values of k̃max given in Table 4.1 are smaller than those given in Paper I. This

is simply because σ8 of the Millennium Simulation (σ8 = 0.9) is larger than that of Paper I

(σ8 = 0.8).

In Figure 4.4 we show the matter power spectra divided a smooth spectra without

BAOs (Eq. (29) of Eisenstein & Hu, 1998). The results are consistent with what we have
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found in Paper I: although BAOs in the matter power spectrum are distorted heavily by

non-linear evolution of matter fluctuations, the analytical predictions from the 3rd-order

PT capture the distortions very well at high redshifts, z > 2.

At lower redshifts, z ∼ 1, the 3rd-order PT is clearly insufficient, and one needs

to go beyond the standard PT. This is a subject of recent studies (Crocce & Scoccimarro,

2008; Matarrese & Pietroni, 2007; Taruya & Hiramatsu, 2008; Valageas, 2007; Matsubara,

2008; McDonald, 2007).

4.3 HALO/GALAXY POWER SPECTRUM AND THE NON-
LINEAR BIAS MODEL

In this section we compare the 3rd-order PT galaxy power spectrum with the power

spectra of dark matter halos and galaxies estimated from the Millennium Simulation. After

briefly describing the analysis method in § 4.3.1, we analyze the halo bias and galaxy bias

in § 4.3.2 and § 4.3.3, respectively. We then study the dependence of bias parameters on

halo/galaxy mass in § 4.3.4.

4.3.1 Analysis method

Table 4.2: Summary of six snapshots from the Millennium Simulation

z zshow Nh 1/nh NMg 1/nMg NDg 1/nDg

([Mpc/h]3) ([Mpc/h]3) ([Mpc/h]3)
5.724 6 5,741,720 21.770 6,267,471 19.944 4,562,368 27.398
4.888 5 8,599,981 14.535 9,724,669 12.854 7,604,063 16.439
4.179 4 11,338,698 11.024 13,272,933 9.418 10,960,404 11.405
3.060 3 15,449,221 8.091 19,325,842 6.468 17,238,935 7.251
2.070 2 17,930,143 6.972 23,885,840 5.233 22,962,129 5.444
1.078 1 18,580,497 6.727 26,359,329 4.742 27,615,058 4.527

z: the exact redshift of each snapshot

zshow: the redshift we quote in this paper

Nh: the number of MPA halos in each snapshot; 1/nh: the corresponding Poisson shot noise

NMg : the number of MPA galaxies in each snapshot; 1/nMg : the corresponding Poisson shot noise

NDg : the number of Durham galaxies in each snapshot; 1/nDg : the corresponding Poisson shot noise

We choose six redshifts between 1 ≤ z ≤ 6 from 63 snapshots of the Millennium

Simulation, and use all the available catalog of halos (MPA Halo (MHalo), hereafter ‘halo’)

and two galaxy catalogues (MPA Galaxies, hereafter ‘Mgalaxy’; Durham Galaxies, hereafter
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‘Dgalaxy’) at each redshift. The exact values of redshifts and the other relevant information

of chosen snapshots are summarized in Table 4.2.

Halos are the groups of matter particles found directly from the Millennium Simu-

lation. First, the dark matter groups (called FOF group) are identified by using Friends-of-

Friends (FoF) algorithm with a linking length equal to 0.2 of the mean particle separation.

Then, each FoF group is divided into the gravitationally bound local overdense regions,

which we call halos here.

Mgalaxies and Dgalaxies are the galaxies assigned to the halos using two different

semi-analytic galaxy formation codes: L-Galaxies (Mgalaxies, De Lucia & Blaizot, 2007;

Croton et al., 2006) and GALFORM (Dgalaxies, Bower et al., 2006; Benson et al., 2003;

Cole et al., 2000).

While both models successfully explain a number of observational properties of

galaxies like the break shape of the galaxy luminosity function, star formation rate, etc,

they differ in detailed implementation. For example, while the L-Galaxies code uses the

halo merger tree constructed by MHalos, the GALFORM code uses different criteria for

identifying subhalos inside the FOF group, and thus uses a different merger tree. Also, two

models use different gas cooling prescriptions and different initial mass functions (IMF) of

star formation: L-Galaxies and GALFORM define the cooling radius, within which gas has a

sufficient time to cool, by comparing the cooling time with halo dynamical time and the age

of the halo, respectively. Cold gas turns into stars with two different IMFs: the L-Galaxies

code uses IMF from Chabrier (2003) and the GALFORM code uses Kennicutt (1983). In

addition to that, they treat AGN (Active Galactic Nucleus) feedback differently: the L-

Galaxies code introduces a parametric model of AGN feedback depending on the black hole

mass and the virial velocity of halo, and the GALFORM code imposes the condition that

cooling flow is quenched when the energy released by radiative cooling (cooling luminosity)

is less than some fraction (which is modeled by a parameter, ϵSMBH) of Eddington luminosity

of the black hole. For more detailed comparison of the two model, we refer readers to the

original papers cited above.

We compute the halo/galaxy power spectra from the Millennium Simulation as

follows:

(1) Use the Cloud-In-Cell (CIC) mass distribution scheme to calculate the density field

on 10243 regular grid points from each catalog.
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(2) Fourier-transform the discretized density field using FFTW6.

(3) Deconvolve the effect of the CIC pixelization and aliasing effect. We divide P (k, z) ≡
|δ(k, z)|2 at each cell by the following window function (Jing, 2005):

W (k) =

3∏
i=1

[
1− 2

3
sin2

(
πki
2kN

)]
, (4.5)

where k = (k1, k2, k3), and kN ≡ π/H is the Nyquist frequency, (H is the physical

size of the grid).7

(4) Compute P (k, z) by taking the angular average of CIC-corrected P (k, z) ≡ |δ(k, z)|2

within a spherical shell defined by k − ∆k/2 < |k| < k + ∆k/2. Here, ∆k =

2π/500 [h/Mpc] is the fundamental frequency that corresponds to the box size of

the Millennium Simulation.

From the measured power spectra we find the maximum likelihood values of the

bias parameters using the likelihood function approximated as a Gaussian:

L(b1, b2, P0) =
∏

ki<kmax

1√
2πσ2

Pi

exp

[
− (Pobs,i − Pg,i)

2

2σ2
Pi

]
, (4.6)

where ki’s are integer multiples of the fundamental frequency ∆k, Pobs,i is the measured

power spectrum at k = ki, Pg,i is the theoretical model given by Eq. (4.2), and σPi is the

statistical error in the measured power spectrum.

We estimate σPi in the same way as in § 4.2 (see also Appendix F.1). However, the

power spectrum of the point-like particles like halos and galaxies includes the Poisson shot

noise, 1/n, where n is the number density of objects, on top of the power spectrum due to

clustering. Therefore, σPi must also include the shot-noise contribution. We use

σPi = σP (ki) =

√
1

Nki

[
Pg(ki) +

1

n

]
, (4.7)

where

Nki = 2π

(
k

∆k

)2

(4.8)

6http://www.fftw.org
7Note that Eq. (4.5) is strictly valid for the flat (white noise) power spectrum, P (k) = constant. Never-

theless, it is still accurate for our purposes because, on small scales, both the halo and galaxy power spectra
are dominated by the shot noise, which is also given by P (k) = constant.
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is the number of independent Fourier modes used for estimating the power spectrum and

Pg(ki) is the halo/galaxy power spectrum at k = ki. Here, ∆k = 2π/(500 h−1 Mpc) is

the fundamental wavenumber of the Millennium Simulation. Note that we subtract the

Poisson shot noise contribution, Pshot = 1/n, from the observed power spectrum before the

likelihood analysis.

Eq. (4.7) shows that the error on Pobs(k) depends upon the underlying Pg(k). For

the actual data analysis one should vary Pg(k) in the numerator of Eq. (4.6) as well as

that in σPi, simultaneously. However, to simplify the analysis, we evaluate the likelihood

function in an iterative way: we first find the best-fitting Pg(k) using σPi with Pg(k) in

Eq. (4.7) replaced by Pobs(k). Let us call this P̃g(k). We then use P̃g(k) in Eq. (4.7) for

finding the best-fitting Pg(k) that we shall report in this paper. Note that we iterate this

procedure only once for current study.

Finally, we compute the 1-d marginalized 1-σ interval (or the marginalized 68.27%

confidence interval) of each bias parameter by integrating the likelihood function (Eq. (4.6)),

assuming a flat prior on the bias parameters (see also Appendix G).

We first analyze the power spectrum of halos (in § 4.3.2) as well as that of galaxies

(in § 4.3.3) using all the halos and all the galaxies in the Millennium halo/galaxy catalogues.

We then study the mass dependence of bias parameters in § 4.3.4.

In order to show that the non-linear bias model (Eq. 4.2) provides a much better

fit than the linear bias model, we also fit the measured power spectra with two linear bias

models: (i) linear bias with the linear matter power spectrum, and (ii) linear bias with

the non-linear matter power spectrum from the 3rd-order PT. When fitting with the linear

model, we use kmax = 0.15 [h/Mpc] for all redshift bins.

4.3.2 Halo power spectra

4.3.2.1 Measuring non-linear halo bias parameters

Figure 4.5 shows the best-fitting non-linear (solid lines) and linear bias models

(dashed and dot-dashed lines), compared with the halo spectra estimated from the Millen-

nium Simulation (points with errorbars). The smaller panels show the residuals of fits. The

maximum wavenumber used in the fits, kmax(z), are also marked with the arrows (bigger

panels), and the vertical lines (smaller panels). We find that the non-linear bias model

provides substantially better fits than the linear bias models.
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Figure 4.5: Halo power spectra from the Millennium Simulation at z = 1, 2, 3, 4, 5, and
6. Also shown in smaller panels are the residual of fits. The points with errorbars show
the measured halo power spectra, while the solid, dashed, and dot-dashed lines show the
best-fitting non-linear bias model (Eq. (4.2)), the best-fitting linear bias with the non-
linear matter power spectrum, and the best-fitting linear bias with the linear matter power
spectrum, respectively. Both linear models have been fit for kmax,linear = 0.15 [h Mpc−1],
whereas kmax(z) given in Table 4.1 (also marked in each panel) have been used for the
non-linear bias model.
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Figure 4.6: One-dimensional marginalized distribution of non-linear bias parameters at
z = 6: from top to bottom panels, P0, b2, and b1. Different lines show the different values of
kmax used for the fits. The dashed and solid lines correspond to 0.3 ≤ kmax/[hMpc−1] ≤ 1.0
and 1.0 < kmax/[h Mpc−1] ≤ 1.5, respectively. The double-peak structure disappears for
higher kmax.
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Figure 4.7: Same as Figure 4.6, but for a Monte Carlo simulation of a galaxy survey with a
bigger box size, Lbox = 1.5 Gpc/h.
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Figure 4.8: One-dimensional marginalized constraints and two-dimensional joint marginal-
ized constraint of 2-σ (95.45% CL) range for bias parameters (b1,b2,P0). Covariance matrices
are calculated from the Fisher information matrix (Eq. (4.9)) with the best-fitting bias pa-
rameters for halo at z = 4.
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Figure 4.9: Distortion of BAOs due to non-linear matter clustering and non-linear halo
bias. All of the power spectra have been divided by a smooth power spectrum without
baryonic oscillations from equation (29) of Eisenstein & Hu (1998). The errorbars show the
Millennium Simulation, while the solid lines show the PT calculations. The dashed lines
show the linear bias model with the non-linear matter power spectrum, and the dot-dashed
lines show the linear bias model with the linear matter power spectrum. Therefore, the
difference between the solid lines and the dashed lines shows the distortion solely due to
non-linear halo bias.
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Table 4.3: Non-linear halo bias parameters and the corresponding 68% interval estimated
from the MPA halo power spectra

z b1 b2 P0 bL1 bLL
1 bST

1 bST
2

([Mpc/h]3)
6 3.41±0.01 1.52±0.03 141.86±3.73 3.50±0.03 3.51±0.03 3.69 2.10
5 2.76±0.01 0.91±0.03 57.77±2.84 2.79±0.03 2.80±0.03 3.16 1.70
4 2.27±0.01 0.52±0.03 22.65±1.88 2.28±0.02 2.29±0.02 2.77 1.40
3 1.52±0.01 -1.94±0.05 329.42±10.6 1.62±0.01 1.63±0.01 2.23 1.07
2 1.10±0.06 -2.12±0.65 507.25±214.7 1.19±0.01 1.20±0.01 1.84 0.76
1 0.74±0.09 -3.05±1.49 1511.46±526.7 0.88±0.01 0.90±0.01 1.54 0.58

z: redshift

b1, b2, P0: non-linear bias parameters

bL1 : linear bias parameter for the linear bias model with the 3rd-order matter power spectrum

bLL
1 : linear bias parameter for the linear bias model with the linear power spectrum

bST
1 , bST

2 : non-linear bias parameters calculated from the Sheth-Tormen model, bST
2 =bST

2 /b1

Caution: We estimate 1-σ ranges for the low redshift (z ≤ 3) only for the peak which involves the maximum

likelihood value. If two peaks in maginalized likelihood function are blended, we use only unblended side of

the peak to estimate the 1-σ range.

We find that all of non-linear bias parameters, b1, b2, and P0, are strongly degen-

erate, when the maximum wavenumbers used in the fits, kmax, are small. In Figure 4.6 we

show the one-dimensional marginalized distribution of bias parameters at z = 6, as a func-

tion of kmax. For lower kmax, 0.3 ≤ kmax/[h Mpc−1] ≤ 1.0, the marginalized distribution

has two peaks (dashed lines), indicating strong degeneracy with the other parameters. The

double-peak structure disappears for 1.0 < kmax/[h Mpc−1] ≤ 1.5 (solid lines).

We find that the origin of degeneracy is simply due to the small box size of the

Millennium Simulation, i.e., the lack of statistics, or too a large sampling variance. To show

this, we have generated a mock Monte Carlo realization of halo power spectra, assuming

a much bigger box size, Lbox = 1.5 h−1 Gpc, which gives the fundamental frequency of

∆k = 5.0 × 10−4 h Mpc−1. Note that this volume roughly corresponds to that would

be surveyed by the HETDEX survey (Hill et al., 2004). We have used the same non-linear

matter power spectrum and the best-fitting bias parameters from the Millennium Simulation

(MPA halos) when creating Monte Carlo realizations. The resulting marginalized likelihood

function at z = 6 is shown in Figure 4.7. The double-peak structure has disappeared even

for low kmax, kmax = 0.3 h Mpc−1. Therefore, we conclude that the double-peak problem

can be resolved simply by increasing the survey volume.

The best-fitting non-linear halo bias parameters and the corresponding 1-σ intervals
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are summarized in Table 4.3. Since we know that the double-peak structure is spurious, we

pick one peak that corresponds to the maximum likelihood value, and quote the 1-σ interval.

At z ≤ 2, the bias parameters are not constrained very well because of lower kmax and the

limited statistics of the Millennium Simulation, and hence the two peaks are blended; thus,

we estimate 1-σ range only from the unblended side of the marginalized likelihood function.

Two linear bias parameters, one with the linear matter power spectrum and another with

the non-linear PT matter power spectrum, are also presented with their 1-σ intervals.

4.3.2.2 Degeneracy of bias parameters

In order to see how strongly degenerate bias parameters are, we calculate the co-

variance matrix of each pair of bias parameters. We calculate the covariance matrix of each

pair of bias parameters by using the Fisher information matrix, which is the inverse of the

covariance matrix. The Fisher information matrix for the galaxy power spectrum can be

approximated as (Tegmark, 1997) 8

Fij =
∑
n

1

σ2
P (kn)

∂P (kn, θ)

∂θi

∂P (kn, θ)

∂θj
(4.9)

where θ is a vector in the parameter space, θi = b1, b2 ,P0, for i = 1, 2, 3, respectively.

We calculate the marginalized errors on the bias parameters as following. We first calculate

the full Fisher matrix and invert it to estimate the covariance matrix. Then, we get the

the covariance matrices of any pairs of bias parameters by taking the 2 by 2 sub-matrix

of the full covariance matrix. Figure 4.8 shows the resulting 2-σ (95.45% interval) contour

for the bias parameters at z = 4. We find the strong degeneracy between P̃0 and b2.

8Eq. (4.9) is equivalent to Eq. (6) in Tegmark (1997). The number of k mode in real space power
spectrum from a survey of volume V is (See Appendix F.1 for notations.)

Nkn =
4πk2nδkn

2(δkn)3
=

V k2nδkn

4π2
.

Then, the variance of power spectrum (Eq. (4.7)) becomes

σ2
P (kn) =

4π2

V k2nδkn

[
P (kn) +

1

n

]2
=

4π2P (kn)2

k2nδkn

1

Veff(kn)
,

where Veff is the constant density version of Eq. (5) of Tegmark (1997). Finally, the elements of Fisher
matrix are given by

Fij =
∑
n

1

σ2
P (kn)

∂P (kn, θ)

∂θi

∂P (kn, θ)

∂θj
=

1

4π2

∑
n

∂P (kn, θ)

∂θi

∂P (kn, θ)

∂θj

Veff(kn)k
2
nδkn

P (kn)2

which is the same as Eq. (6) in Tegmark (1997).

100



We also find that b1 is degenerate with the other two parameters. On top of the error

contours for the Millennium Simulation, we show the expected contour from the HETDEX

like survey (1.5 Gpc/h). Since the volume of HETDEX like survey is 27 times bigger, the

likelihood functions and the error-contours are about a factor of 5 smaller than those from

the Millennium Simulation. Other than that, two contours follow the same trend. Results

are the same for the other redshifts.

4.3.2.3 Comparison with the halo model predictions

The effective linear bias, b1, is larger at higher redshifts. This is the expected result,

as halos of mass greater than ∼ 1010M⊙ were rarer in the earlier time, resulting in the larger

bias.

From the same reason, we expect that the non-linear bias parameters, b2 and P0, are

also larger at higher z. While we observe the expected trend at z ≥ 4, the results from z ≤ 3

are somewhat peculiar. This is probably due to the large sampling variance making the fits

unstable: for z ≤ 3 the maximum wavenumbers inferred from the matter power spectra are

less than 1.0 h Mpc−1 (see Table 4.1), which makes the likelihood function double-peaked

and leaves the bias parameters poorly constrained.

How do these bias parameters compare with the expected values? We use the

halo model for computing the mass-averaged bias parameters, bST1 and bST2 , assuming that

the minimum mass is given by the minimum mass of the MPA halo catalog, Mmin =

1.72× 1010M⊙/h:

bSTi =

∫Mmax

Mmin

dn
dMMbi(M)dM∫Mmax

Mmin

dn
dMMdM

, (4.10)

where dn/dM is the Sheth-Tormen mass function and bi(M) is the i-th order bias parameter

from Scoccimarro et al. (2001a).

There is one subtlety. The halo model predicts the coefficients of the Taylor series

(Eq. (4.1)), whereas what we have measured are the re-parametrized bias parameters given

by Eq. (4.3). However, the formula for b1 includes the mass variance, σ2, which depends

on our choice of a smoothing scale that is not well defined. This shows how difficult it is

to actually compute the halo power spectrum from the halo model. While the measured

values of b1 and the predicted bST1 compare reasonably well, it is clear that we cannot use

the predicted bias values for doing cosmology.
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For b2, we compute bST2 = bST2 /b1 where b1 is the best-fitting value from the Mil-

lennium Simulation. This would give us a semi apple-to-apple comparison. Nevertheless,

while the agreement is reasonable at z ≥ 4, the halo model predictions should not be used

for predicting b2 either.

4.3.2.4 Comments on the bispectrum

While the degeneracy between bias parameters may appear to be a serious issue,

there is actually a powerful way of breaking degeneracy: the bispectrum, the Fourier trans-

form of the 3-point correlation function (Matarrese et al., 1997). The reduced bispectrum,

which is the bispectrum normalized properly by the power spectrum, depends primarily

on two bias parameters, b1 and b2, nearly independent of the cosmological parameters (Se-

fusatti et al., 2006). Therefore, one can use this property to fix the bias parameters, and use

the power spectrum for determining the cosmological parameters and the remaining bias

parameter, P0. Sefusatti & Komatsu (2007) have shown that the planned high-z galaxy

surveys would be able to determine b1 and b2 with a few percent accuracy.

We have begun studying the bispectrum of the Millennium Simulation. Our pre-

liminary results show that we can indeed obtain better constraints on b1 and b2 from the

bispectrum than from the power spectrum, provided that we use the same kmax for both the

bispectrum and power spectrum analysis. Therefore, even when the non-linear bias parame-

ters are poorly constrained by the power spectrum alone, or have the double-peak likelihood

function from the power spectrum for lower kmax, we can still find tight constraints on b1

and b2 from the bispectrum. These results will be reported elsewhere.

4.3.2.5 Effects on BAOs

In Figure 4.9 we show the distortion of BAO features due to non-linear matter

clustering and non-linear bias. To show only the distortions of BAOs at each redshift, we

have divided the halo power spectra by smooth power spectra without baryonic oscillations

from equation (29) of Eisenstein & Hu (1998) with b21 multiplied. Three theoretical models

are shown: the non-linear bias model (solid line), a linear bias model with the 3rd-order

matter power spectrum (dashed line), and a linear bias model with the linear matter power

spectrum (dot-dashed line). Therefore, the difference between the solid lines and the dashed

lines is solely due to non-linear halo bias.

The importance of non-linear bias affecting BAOs grows with z; however, as the

matter clustering is weaker at higher z, the 3rd-order PT still performs better than at lower
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z. In other words, the higher bias at higher z does not mean that surveys at higher z

are worse at measuring BAOs; on the contrary, it is still easier to model the halo power

spectrum at higher z than at lower z. For z ≥ 3, where kmax is larger than the BAO scale,

the distortion of BAOs is modeled very well by the non-linear bias model, while the linear

bias models fail badly.

The sampling variance of the Millennium Simulation at k ≲ 0.15 h Mpc−1 is too

large for us to study the distortion on the first two BAO peaks. Since the PT performs well

at higher k, we expect that the PT describes the first two peaks even better. However, to

show this explicitly one would need to run a bigger simulation with a bigger volume with

the same mass resolution as the Millennium Simulation, which should be entirely doable

with the existing computing resources.

4.3.3 Galaxy power spectra

4.3.3.1 Measuring non-linear galaxy bias parameters

Table 4.4: Non-linear halo bias parameters and the corresponding 68% interval estimated
from the MPA galaxy power spectra

z b1 b2 P0 bL1 bLL
1 bST

1 bST
2

([h/Mpc]3)
6 3.55±0.01 1.70±0.03 194.23±4.45 3.67±0.03 3.68±0.03 3.10 1.03
5 2.93±0.01 1.08±0.03 94.08±3.71 2.97±0.03 2.98±0.03 2.55 0.59
4 2.46±0.01 0.68±0.03 47.79±2.84 2.47±0.02 2.48±0.02 2.13 0.28
3 1.69±0.01 -2.12±0.04 486.69±12.7 1.83±0.02 1.83±0.02 1.58 -0.12
2 1.28±0.08 -2.16±0.64 738.22±291.3 1.40±0.01 1.40±0.01 1.19 -0.34
1 0.89±0.11 -2.97±1.60 2248.35±786.13 1.09±0.01 1.10±0.01 0.91 -0.45

z: redshift

b1, b2, P0: non-linear bias parameters

bL1 : linear bias parameter for the linear bias model with the 3rd-order matter power spectrum

bLL
1 : linear bias parameter for the linear bias model with the linear power spectrum

bST
1 , bST

2 : non-linear bias parameters calculated from the Sheth-Tormen model, bST
2 =bST

2 /b1

Caution: We estimate 1-σ ranges for the low redshift (z ≤ 3) only for the peak which involves the maximum

likelihood value. If two peaks in maginalized likelihood function are blended, we use only unblended side of

the peak to estimate the 1-σ range.

Figures 4.10 and 4.11 show the galaxy power spectra estimated from the MPA

(Mgalaxy) and Durham (Dgalaxy) galaxy catalogues, respectively. Here, we basically find

the same story as we have found for the halo power spectra (§ 4.3.2): for k < kmax the

non-linear bias model fits both galaxy power spectra (Mgalaxy and Dgalaxy), whereas the
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Figure 4.10: Same as Figure 4.5, but for the MPA galaxy catalogue (Mgalaxy).
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Figure 4.11: Same as Figure 4.5, but for the Durham galaxy catalogue (Dgalaxy).
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Figure 4.12: Same as Figure 4.9, but for the MPA galaxy power spectrum (Mgalaxy).
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Figure 4.13: Same as Figure 4.9, but for the Durham galaxy power spectrum (Dgalaxy).

107



Table 4.5: Non-linear halo bias parameters and the corresponding 68% interval estimated
from the Durham galaxy power spectra

z b1 b2 P0 bL1 bLL
1 bST

1 bST
2

([h/Mpc]3)
6 3.73±0.01 1.96±0.03 288.39±5.82 3.90±0.04 3.90±0.04 3.10 0.98
5 3.07±0.01 1.26±0.03 143.15±4.81 3.15±0.03 3.15±0.03 2.55 0.56
4 2.57±0.01 0.83±0.03 78.97±3.93 2.60±0.02 2.61±0.02 2.13 0.26
3 1.75±0.01 -2.26±0.04 604.65±13.8 1.92±0.02 1.93±0.02 1.58 -0.11
2 1.36±0.08 -2.14±0.65 843.49±331.4 1.49±0.01 1.50±0.01 1.19 -0.32
1 0.96±0.11 -2.94±1.62 2640.20±960.32 1.18±0.01 1.20±0.01 0.91 -0.42

z: redshift

b1, b2, P0: non-linear bias parameters

bL1 : linear bias parameter for the linear bias model with the 3rd-order matter power spectrum

bLL
1 : linear bias parameter for the linear bias model with the linear power spectrum

bST
1 , bST

2 : non-linear bias parameters calculated from the Sheth-Tormen model, bST
2 =bST

2 /b1

Caution: We estimate 1-σ ranges for the low redshift (z ≤ 3) only for the peak which involves the maximum

likelihood value. If two peaks in maginalized likelihood function are blended, we use only unblended side of

the peak to estimate the 1-σ range.

linear bias models fit neither.

The galaxy bias parameters extracted from Mgalaxy and Dgalaxy are summarized

in Table 4.4 and 4.5, respectively. While the bias parameters are different for halo, Mgalaxy

and Dgalaxy, they follow the same trend: (i) b1 becomes lower as the redshift becomes lower,

and (ii) b2 also becomes lower as the redshift becomes lower when z > 3, but suddenly

changes to large negative values at z ≤ 3. As we have already pointed out in § 4.3.2, this

sudden peculiar change is most likely caused by the double-peak nature of the likelihood

function, owing to the poor statistical power for lower kmax at lower z. In order to study

b2 further with better statistics, one needs a bigger simulation.

4.3.3.2 Comparison with the simplest HOD predictions

To give a rough theoretical guide for the galaxy bias parameters, we assume that

each dark matter halo hosts one galaxy above a certain minimum mass. This specifies the

form of the HOD completely: ⟨N |M⟩ = 1, with the same lower mass cut-off as the minimum

mass of the halo, Mmin = 1.72× 1010M⊙/h.

This is utterly simplistic, and is probably not correct for describing Mgalaxy or

Dgalaxy. Nevertheless, we give the resulting values in Table 4.4 and 4.5, which have been
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computed from

bSTi =

∫Mmax

Mmin

dn
dM bi(M)⟨N |M⟩dM∫Mmax

Mmin

dn
dM ⟨N |M⟩dM

, (4.11)

where dn/dM is the Sheth-Tormen mass function and bi(M) is the i-th order bias parameter

from Scoccimarro et al. (2001a). To compare with the non-linear bias parameters, we also

calculate b2 = bST2 /b1.

While these “predictions” give values that are reasonably close to the ones obtained

from the fits, they are many σ away from the best-fitting values. The freedom in the choice of

the HOD may be used to make the predicted values match the best-fitting values; however,

such an approach would require at least as many free parameters as the non-linear bias

parameters. Also, given that the halo bias prediction fails to fit the halo power spectra, the

HOD approach, which is still based upon knowing the halo bias, is bound to fail as well.

4.3.3.3 Effects on BAOs

In Figures 4.12 and 4.13 we show how non-linear galaxy bias distorts the structure

of BAOs. Again, we find the same story as we have found for the halo bias: the galaxy

bias distorts BAOs more at higher z because, for a given mass, galaxies were rarer at higher

redshifts and thus more highly biased, while the quality of the fits is better at higher z

because of less non-linearity in the matter clustering.

In all cases (halo, Mgalaxy and Dgalaxy) the non-linear bias model given by Eq. (4.2)

provides very good fits, and describes how bias modifies BAOs.

4.3.4 Mass dependence of bias parameters and effects on BAOs

So far, we have used all the available halos and galaxies in the Millennium catalogues

for computing the halo and galaxy power spectra. In this section we divide the samples into

different mass bins given by M < 5 × 1010M⊙/h, 5 × 1010M⊙/h < M < 1011M⊙/h,

1011M⊙/h < M < 5 × 1011M⊙/h, 5 × 1011M⊙/h < M < 1012M⊙/h, and study how the

derived bias parameters depend on mass.

The power spectra of the selected halos and galaxies in a given mass bin are cal-

culated and fit in the exactly same manner as before. Note that we shall use only the halo

and Mgalaxy, as we expect that Dgalaxy would give similar results to Mgalaxy.

Figures 4.14 and 4.15 show the results for the halo and galaxies, respectively. To

compare the power spectra of different mass bins in the same panel, and highlight the effects
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Figure 4.14: Mass dependence of distortion of BAOs due to non-linear bias. Four mass bins,
M < 5× 1010M⊙/h, 5× 1010M⊙/h < M < 1011M⊙/h, 10

11M⊙/h < M < 5× 1011M⊙/h,
and 5 × 1011M⊙/h < M < 1012M⊙/h, are shown. (M10 stands for M/(1010M⊙).) All of
the power spectra have been divided by a smooth power spectrum without baryonic oscil-
lations from equation (29) of Eisenstein & Hu (1998). The errorbars show the Millennium
Simulation data, while the solid lines show the PT calculation.
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Figure 4.15: Same as Figure 4.14, but for the MPA galaxy catalogue (Mgalaxy).
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on BAOs at the same time, we have divided the power spectra by a non-oscillating matter

power spectrum from equation (29) of Eisenstein & Hu (1998) with the best-fitting b21 from

each mass bin multiplied. These figures show the expected results: the larger the mass is,

the larger the non-linear bias becomes. Nevertheless, the 3rd-order PT calculation captures

the dependence on mass well, and there is no evidence for failure of the PT for highly biased

objects.

In Tables 4.6 and 4.7 we give values of the measured bias parameters as well as the

“predicted” values. For all redshifts we see the expected trend again: the higher the mass

is, the larger the effective linear bias (b1) is. The same is true for b2 for z > 3, while it is

not as apparent for lower redshifts, and eventually becomes almost fuzzy for z = 1. Again,

these are probably due to the lack of statistics due to lower values of kmax at lower z, and

we need a bigger simulation to handle these cases with more statistics.

The high values of bias do not mean failure of PT. The PT galaxy power spectrum

model fails only when ∆2
m(k, z) exceeds ∼ 0.4 (Paper I), or the locality of bias is violated.

Overall, we find that the non-linear bias model given by Eq. (4.2) performs well for halos and

galaxies with all mass bins, provided that we use the data only up to kmax determined from

the matter power spectra. This implies that the locality assumption is a good approximation

for k < kmax; however, is it good enough for us to extract cosmology from the observed

galaxy power spectra?

4.4 Cosmological parameter estimation with the non-linear bias
model

In the previous sections we have shown that the 3rd-order PT galaxy power spec-

trum given by Eq. (4.2) provides good fits to the galaxy power spectrum data from the

Millennium Simulation.

However, we must not forget that Eq. (4.2) contains 3 free parameters, b1, b2, and

P0. With 3 parameters it may seem that it should not be so difficult to fit smooth curves

like those shown in, e.g., Figure 4.10.

While the quality of fits is important, it is not the end of story. We must also

show that Eq. (4.2) can be used for extracting the correct cosmological parameters from the

observed galaxy power spectra.

In this section we shall extract the distance scale from the galaxy power spectra

of the Millennium Simulation, and compare them with the input values that were used to
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generate the simulation. If they do not agree, Eq. (4.2) must be discarded. If they do, we

should proceed to the next level by including non-linear redshift space distortion.

4.4.1 Measuring Distance Scale

4.4.1.1 Background

Dark energy influences the expansion rate of the universe as well as the growth of

structure (see Copeland et al., 2006, for a recent review).

The cosmological distances, such as the luminosity distance, DL(z), and angular

diameter distance, DA(z), are powerful tools for measuring the expansion rates of the uni-

verse, H(z), over a wide range of redshifts. Indeed, it was DL(z) measured out to high-z

(z ≤ 1.7) Type Ia supernovae that gave rise to the first compelling evidence for the existence

of dark energy (Riess et al., 1998; Perlmutter et al., 1999). The CMB power spectrum pro-

vides us with a high-precision measurement of DA(z∗) out to the photon decoupling epoch,

z∗ ≃ 1090 (see Komatsu et al., 2010, for the latest determination from the WMAP 5-year

data).

The galaxy power spectrum can be used for measuring DA(z) as well as H(z) over

a wider range of redshifts. From galaxy surveys we find three-dimensional positions of

galaxies by measuring their angular positions on the sky as well as their redshifts. We can

then estimate the two-point correlation function of galaxies as a function of the angular

separation, ∆θ, and the redshift separation, ∆z. To convert ∆θ and ∆z into the comoving

separations perpendicular to the line of sight, ∆r⊥, and those along the line of sight, ∆r∥,

one needs to know DA(z) and H(z), respectively, as

∆r⊥ = (1 + z)DA(z)∆θ, (4.12)

∆r∥ =
c∆z

H(z)
, (4.13)

where (1 + z) appears because DA(z) is the proper (physical) angular diameter distance,

whereas ∆r⊥ is the comoving separation. Therefore, if we know ∆r⊥ and ∆r∥ a priori, then

we may use the above equations to measure DA(z) and H(z).

The galaxy power spectra contain at least three distance scales which may be used

in the place of ∆r⊥ and ∆r∥: (i) the sound horizon size at the so-called baryon drag epoch,

zdrag ≃ 1020, at which baryons were released from the baryon-photon plasma, (ii) the

photon horizon size at the matter-radiation equality, zeq ≃ 3200, and (iii) the Silk damping

scale (see, e.g., Eisenstein & Hu, 1998).
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In Fourier space, we may write the observed power spectrum as (Seo & Eisenstein,

2003)

Pobs(k∥, k⊥, z) =

(
DA(z)

DA,true(z)

)2(
Htrue(z)

H(z)

)
Ptrue

(
DA,true(z)

DA(z)
k⊥,

H(z)

Htrue(z)
k∥, z

)
, (4.14)

where k⊥ and k∥ are the wavenumbers perpendicular to and parallel to the line of sight,

respectively, and Ptrue(k), DA,true(z), and Htrue(z) are the true, underlying values. We

then vary DA(z) and H(z), trying to estimate DA,true(z) and Htrue(z).

There are two ways of measuring DA(z) and H(z) from the galaxy power spectra:

(1) Use BAOs. The BAOs contain the information of one of the standard rulers, the sound

horizon size at zdrag. This method relies on measuring only the phases of BAOs, which

are markedly insensitive to all the non-linear effects (clustering, bias, and redshift

space distortion) (Seo & Eisenstein, 2005; Eisenstein et al., 2007; Nishimichi et al.,

2007; Smith et al., 2008a; Angulo et al., 2008; Sanchez et al., 2008; Seo et al., 2008;

Shoji et al., 2009), despite the fact that the amplitude is distorted by non-linearities

(see Figures 4.4, 4.9, 4.12, and 4.13). Therefore, BAOs provide a robust means to

measure DA(z) and H(z), and they have been used for determining D2
AH

−1 out to

z = 0.2 from the SDSS main galaxy sample and 2dFGRS, as well as to z = 0.35 from

the SDSS Luminous Red Galaxy (LRG) sample (Eisenstein et al., 2005; Percival et al.,

2007); however, since they use only one standard ruler, the constraints on DA(z) and

H(z) from the BAO-only analysis are weaker than the full analysis (Shoji et al., 2009).

(2) Use the entire shape of the power spectrum. This approach gives the best determi-

nation (i.e., the smallest error) of DA(z) and H(z), as it uses all the standard rulers

encoded in the galaxy power spectrum; however, one must understand the distortions

of the shape of the power spectrum due to non-linear effects. The question is, “is the

3rd-order (or higher) PT good enough for correcting the key non-linear effects?”

In this paper we show, for the first time, that we can extract the distance scale using the

3rd-order PT galaxy power spectrum in real space. While we have not yet included the

effects of redshift space distortion, this is a significant step towards extracting DA(z) and

H(z) from the entire shape of the power spectrum of galaxies. We shall address the effect

of non-linear redshift space distortion in the future work.
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4.4.1.2 Method: Measuring “Box Size” of the Millennium Simulation

In real space simulations (as opposed to redshift space ones), there is only one dis-

tance scale in the problem: the box size of the simulation, Lbox, which is L
(true)
box = 500 Mpc/h

for the Millennium simulation. Then, “estimating the distance scale from the Millen-

nium Simulation” becomes equivalent to “estimating Lbox from the Millennium Simulation.

Eq. (4.14) now leads:

Pobs(k, Lbox) =

(
Lbox

L
(true)
box

)3

Ptrue

(
L
(true)
box

Lbox
k

)
. (4.15)

As we estimate the variance of power spectrum from the observed power spectrum,

we need to rescale the variance when the normalization of the observed power spectrum

changes :

σ2
Pi(Lbox) =

(
Lbox

L
(true)
box

)6

σ2
Pi(L

(true)
box ) (4.16)

We estimate Lbox using the likelihood function given by

L(b1, b2, P0, Lbox) =
∏

ki<kmax

1√
2πσ2

Pi(Lbox)
exp

[
−
{
Pobs(ki/α)− Pg(ki/α)/α

3
}2

2σ2
P (ki/α)

]
,

(4.17)

where α = Lbox/L
(true)
box .

The likelihood function, Eq. (4.17), still depends upon the bias parameters that

we wish to eliminate. Therefore we marginalize the likelihood function over all the bias

parameters with flat priors.9 We obtain (see also Appendix G):

L(Lbox) =

∫ ∞

0

db21

∫ ∞

−∞
db2

∫ ∞

−∞
dP0 L(b1, b2, P0, Lbox). (4.18)

Hereafter, we shall simply call Lbox as D for ‘distance scale’. D is closely related to

the angular diameter distance, DA(z), and the expansion rate, H(z), in real surveys. (See,

§5.1.1)
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Figure 4.16: Distance scale extracted from the Millennium Simulation using the 3rd-order
PT galaxy power spectrum given by Eq. (4.2), divided by the true value. The mean of the
likelihood (stars), and the maximum likelihood values (filled circles) and the corresponding
1-σ intervals (errorbars), are shown as a function of maximum wavenumbers used in the fits,
kmax. We find D/Dtrue = 1 to within the 1-σ errors from all the halo/galaxy catalogues
(“halo,” “Mgalaxy,” and “Dgalaxy”) at all redshifts, provided that we use kmax estimated
from the matter power spectra, kmax = 0.15, 0.25, 1.0, 1.2, 1.3, and 1.5 at z = 1, 2, 3, 4,
5, and 6, respectively (see Table 4.1). Note that the errors on D do not decrease as kmax
increases due to degeneracy between D and the bias parameters. See Figure (4.18) and
(4.19) for further analysis.
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Figure 4.17: Same as Figure 4.8, but including the distance scale D/Dtrue.
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4.4.1.3 Results: Unbiased Extraction of the distance scale from the Millennium
Simulation

In Figure 4.16 we show D(z)/Dtrue(z) estimated from the halo, Mgalaxy, and

Dgalaxy catalogues at z = 1, 2, 3, 4, 5, and 6. The maximum likelihood values (filled

circles) and the corresponding 1-σ intervals (errorbars), as well as the mean of the likeli-

hood (stars) are shown. We find D(z)/Dtrue(z) = 1 to within the 1-σ errors from all of the

halo/galaxy catalogues at all redshifts, provided that we use Pobs(k) only up to kmax that

has been determined unambiguously from the matter power spectrum (see Table 4.1). Not

only does this provide a strong support for the validity of Eq. (4.2), but also it provides a

practical means for extracting D from the full shape of the observed galaxy power spectra.

Despite a small volume of the Millennium Simulation and the use of flat priors on

the bias parameters upon marginalization, we could determine D to about 2.5% accuracy.

In addition, we also find that the error on D hardly decreases even though kmax

increases. It is because of the degeneracy between D and the bias parameters. In order to

see how strongly degenerate they are, we calculate correlations between pairs of parameters

(b1,b2,P0,D/Dtrue) by the Fisher information matrix from Eq. (4.9).

Figure 4.17 shows both one-dimensional marginalized constraints and two-dimensional

joint marginalized constraints of 2-σ range (95.45% CL) for the bias parameters and the

distance scale. This figure indicates that when we include the distance scale, the correla-

tions between bias parameters become milder. It is mainly due to the correlation between

the distance scale and b1 making the constraint on b1 weaker. On the other hand, the

one-dimensional marginalized likelihood functions for b2 and P0 are hardly changed. The

remaining degeneracies are those between (b2,P0) and (b1,D/Dtrue). These degeneracies

would be broken when we include the information from the bispectrum, as the bispectrum

will measure b1 and b2.

4.4.1.4 Optimal estimation of the distance scale

The constraint we find from the previous subsection will get better when we include

the bispectrum, as the reduced bispectrum provides independent and strong constraints on

b1 and b2 (Sefusatti et al., 2006).

9Note that this is the most conservative analysis one can do. In reality we can use the bispectrum for
measuring b1 and b2, which would give appropriate priors on them (see § 4.3.2.4). We shall report on the
results from this analysis elsewhere.
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Figure 4.18: Same as Figure 4.16, but with b1 and b2 fixed at the best-fitting values. The
1-σ ranges for D are 1.5% and 0.15% for kmax = 0.2 h/Mpc and kmax = 1.5 h/Mpc,
respectively. The errors on D decrease as kmax increases, but the scaling is still milder than

1/
√∑

k<kmax
Nk.
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Figure 4.19: Same as Figure 4.16, but with b1, b2 and P0 fixed at the best-fitting values.
The 1-σ ranges for D are 0.8% and 0.05% for kmax = 0.2 h/Mpc and kmax = 1.5 h/Mpc,

respectively. The errors on D decrease as kmax increases as 1/
√∑

k<kmax
Nk.
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How much will it be better? First, let us assume that we know the exact values of

b1 and b2. In this case, we get the error on D by marginalizing only over P0 while setting

b1 and b2 to be the best-fitting values, i.e.

Lfix b1b2(D) =

∫ ∞

−∞
dP0L(b

bf
1 , b

bf
2 , P0, D) (4.19)

where bbf1 and bbf2 denote the best-fitting values of b1 and b2 for each kmax, respectively.

In Figure 4.18, we show D/Dtrue estimated from Eq. (4.19). This figure shows that we

can extract D to about 1.5% accuracy even for the low kmax = 0.2 h/Mpc, and the error

decreases further to 0.15% for kmax = 1.5 h/Mpc. Note that the uncertainties on D/Dtrue

decrease as kmax increases as expected. The reason is because fixing b1 and b2 breaks the

degeneracy between them and the distance scale.

In reality, the bias parameters estimated from the bispectrum have finite errors, and

thus the accuracy of extracting D will be somewhere in between Figure 4.16 and Figure 4.18.

The result of the full analysis including both power spectrum and bispectrum of Millennium

Simulation will be reported elsewhere.

In the ideal situation where we completely understand the complicated halo/galaxy

formation, we may be able to calculate the three bias parameters from the first principle.

This ideal determination of bias parameters will provide more accurate constraints on the

distance scale D. In this case, we get the likelihood function by fixing all the bias parameters

to their best-fitting values :

Lfix bias(D) = L(bbf1 , b
bf
2 , P

bf
0 , D) (4.20)

By knowing all the bias parameters, we can extract the distance scale D to 0.8% accuracy

for kmax = 0.2 h/Mpc. The error decreases further to 0.05% for kmax = 1.5 h/Mpc. (See

Figure (4.19))

4.4.1.5 Forecast for a HETDEX-like survey

The planned future surveys would cover a larger volume than the Millennium Sim-

ulation. Also, since the real surveys would be limited by their continuum/flux sensitivity,

they would not be able to detect all galaxies that were resolved in the Millennium Simu-

lation. In this subsection we explore how the constraints would be affected by the volume

and the number of objects.

To simulate the mock data, we take a simplified approach: we take our best-fitting

power spectrum at z = 3, i.e., Eq. (4.2) fit to the power spectrum of MPA halos in the
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Figure 4.20: Projected constraints on D at z = 3 from a HETDEX-like survey with the
survey volume of (1.5 Gpc/h)3. We have used the best-fitting 3rd-order PT power spectrum
of MPA halos in the Millennium Simulation for generating a mock simulation data. We
show the results for the number of objects of Ngalaxy = 2× 105, 106, 2× 106, and 109, from
the top to bottom panels, respectively, for which we find the projected 1-σ errors of 2.5%,
1.5%, 1%, and 0.3%, respectively.
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Millennium Simulation at z = 3, and add random Gaussian noise to it with the standard

deviation given by Eq. (4.7). To compute the standard deviation we need to specify the

survey volume, which determines the fundamental wavenumber, ∆k, as ∆k = 2π/V
1/3
survey.

We use the volume that would be surveyed by the HETDEX survey (Hill et al., 2004),

Vsurvey = (1.5 Gpc/h)3, which is 27 times as large as the volume of the Millennium Simu-

lation. We then vary the number of galaxies, Ngalaxy, which determines the shot noise as

Pshot = 1/n = Vsurvey/Ngalaxy. We have generated only one realization, and repeated the

same analysis as before to extract DA from the mock HETDEX data.

In Figure 4.20 we show D/Dtrue as a function of kmax and Ng. For Ngalaxy = 109,

which gives the same number density as the Millennium Simulation, the projected error on

D is 0.3%, or 8 times better than the original result presented in Figure 4.16. Since the

volume is 27 times bigger, the statistics alone would reduce the error by a factor of about 5.

The other factor of about 1.5 comes from the fact that the variance of the dis-

tance scale estimated from the Millennium Simulation lies on the tail of the distribution

of the variance of the distance scale, (See, appendix C) while the error estimated from the

HETDEX volume mock is close to the peak of PDF of the variance.

However, real surveys will not get as high the number density as the Millennium

Simulation. For example, the HETDEX survey will detect about one million Lyα emitting

galaxies, i.e., Ngalaxy = 106. In Figure 4.20 we show that the errors on D increase from 0.3%

for Ngalaxy = 109 to 1%, 1.5%, and 3% for Ngalaxy = 2×106, 106, and 2×105, respectively.

Finally, we note that these forecasts are not yet final, as we have not included

the effect of non-linear redshift space distortion. Also, eventually one needs to repeat this

analysis using the “super Millennium Simulation” with a bigger volume.

4.5 Discussion and Conclusions

Two main new results that we have presented in this paper are:

• The 3rd-order PT galaxy power spectrum given by Eq. (4.2), which is based upon

the assumption that the number density of galaxies at a given location is a local

function of the underlying matter density at the same location (Fry & Gaztanaga,

1993) plus stochastic noise (McDonald, 2006), fits the halo as well as galaxy power

spectra estimated from the Millennium Simulation at high redshifts, 1 ≤ z ≤ 6, up to

the maximum wavenumber, kmax, that has been determined from the matter power

spectrum.
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• When 3 galaxy bias parameters, b1, b2, and P0, are marginalized over, the 3rd-order PT

galaxy power spectrum fit to the Millennium Simulation yields the correct (unbiased)

distance scale to within the statistical error of the simulation, ∼ 3%.

These results suggest that the 3rd-order PT provides us with a practical means to extract

the cosmological information from the observed galaxy power spectra at high redshifts, i.e.,

z > 1, accurately.

We would like to emphasize that our approach does not require simulations to

calibrate the model. The 3rd-order PT is based upon the solid physical framework, and the

only assumption made for the galaxy formation is that it is a local process, at least on the

scales where the 3rd-order PT is valid, i.e., k < kmax. The only serious drawback so far is

that the 3rd-order PT breaks down at low redshifts, and thus it cannot be applied to the

current generation of survey data such as 2dFGRS and SDSS. However, the planned future

high-z surveys would benefit immensely from the PT approach.

The practical application of our approach may proceed as follows:

(1) Measure the galaxy power spectra at various redshifts. When we have N redshift bins,

the number of bias parameters is 3N , as the bias parameters evolve with z.

(2) Calculate kmax(z) from the condition, ∆2
m(kmax, z) = 0.4, where ∆2

m(k, z) = k3Pδδ(k, z)/(2π
2)

is computed from the fiducial cosmology, e.g., the WMAP 5-year best-fitting param-

eters. The results should not be sensitive to the exact values of kmax(z).

(3) Fit Eq. (4.2) to the observed galaxy spectra up to kmax(z) at all z simultaneously for

extracting the cosmological parameters.

In addition to this, we should be able to improve upon the accuracy of parameter deter-

minations by including the bispectrum as well, as the bispectrum basically fixes b1 and b2

(Sefusatti & Komatsu, 2007). Therefore, the step (3) may be replaced by

(3’) Fit Eq. (4.2) to the observed galaxy spectra up to kmax(z), and fit the PT bispectrum

to the observed galaxy bispectra up to the same kmax(z), at all z simultaneously for

extracting the cosmological parameters.

We are currently performing a joint analysis of the galaxy power spectra and bispectra on

the Millennium Simulation. The results will be reported elsewhere.

124



There are limitations in our present study, however. First, a relatively small volume

of the Millennium Simulation does not allow us to make a precision test of the 3rd-order PT.

Also, this limitation does not allow us to study constraints on more than one cosmological

parameter. We have picked D as the representative example because this parameter seems

the most interesting one in light of the future surveys whose primary goal is to constrain the

properties of dark energy. In the future we must use larger simulations to show convincingly

that the bias in cosmological parameters is much lower than 1% level. Second, we have found

that, due to the limited statistics of a small volume and the smaller kmax due to stronger

non-linearities, the bias parameters are not determined very well from the galaxy power

spectra alone at z ≤ 3. This issue should disappear by including the bispectrum in the joint

analysis. Last and foremost, our study has been restricted to the real space power spectra:

we have not addressed the non-linearities in redshift space distortion. This is a subject of

the future study.

125



Table 4.6: Mass dependence of non-linear halo bias parameters (MPA halos)

z Mmin Mmax b1 b2 P0 bST
1 bST

2
(M⊙/h) (M⊙/h) ([h/Mpc]3)

6 1.7E+10 5.0E+10 3.19±0.01 1.28±0.03 88.76±2.97 2.96 0.93
5.0E+10 1.0E+11 3.90±0.02 1.91±0.04 288.18±8.02 3.52 1.36
1.0E+11 5.0E+11 4.66±0.03 3.04±0.05 1029.19±18.84 4.41 2.28
5.0E+11 1.0E+12 6.41±0.14 5.76±0.21 6910.17±200.74 5.95 3.59

5 1.7E+10 5.0E+10 2.55±0.01 0.71±0.03 31.51±2.06 2.41 0.48
5.0E+10 1.0E+11 3.09±0.01 1.19±0.04 120.84±5.69 2.84 0.81
1.0E+11 5.0E+11 3.78±0.02 1.79±0.04 402.11±12.40 3.55 1.48
5.0E+11 1.0E+12 5.14±0.07 3.55±0.11 2805.48±94.53 4.71 2.44

4 1.7E+10 5.0E+10 2.08±0.01 0.38±0.04 10.90±1.19 2.01 0.15
5.0E+10 1.0E+11 2.51±0.01 0.66±0.04 42.34±3.52 2.33 0.40
1.0E+11 5.0E+11 3.05±0.01 1.08±0.04 161.22±8.11 2.90 0.92
5.0E+11 1.0E+12 3.80±0.05 -4.08±0.09 3431.19±64.81 3.79 1.77

3 1.7E+10 5.0E+10 1.39±0.01 -1.83±0.05 241.59±9.58 1.47 -0.25
5.0E+10 1.0E+11 1.75±0.01 0.11±0.05 2.48±0.29 1.67 -0.10
1.0E+11 5.0E+11 2.09±0.01 0.35±0.04 20.95±3.22 2.04 0.19
5.0E+11 1.0E+12 2.78±0.02 0.82±0.06 171.31±21.03 2.57 0.60

2 1.7E+10 5.0E+10 1.01±0.05 -1.98±0.68 373.60±149.24 1.11 -0.46
5.0E+10 1.0E+11 1.14±0.07 -2.30±0.63 627.69±204.69 1.23 -0.40
1.0E+11 5.0E+11 1.31±0.08 -2.34±0.63 869.30±272.06 1.44 -0.28
5.0E+11 1.0E+12 1.62±0.11 -2.53±0.69 1566.40±476.07 1.75 -0.05

1 1.7E+10 5.0E+10 0.68±0.09 -3.12±1.46 1315.40±447.14 0.86 -0.58
5.0E+10 1.0E+11 0.75±0.10 -3.24±1.46 1699.76±571.75 0.92 -0.56
1.0E+11 5.0E+11 0.85±0.09 -2.80±1.65 1783.07±683.57 1.02 -0.53
5.0E+11 1.0E+12 0.99±0.11 -2.82±1.95 2443.76±972.16 1.17 -0.47

z: redshift

Mmin: minimum mass for a given bin

Mmax: maximum mass for a given bin

b1, b2, P0: non-linear bias parameters

bST
1 , bST

2 : bias parameters from the Sheth-Tormen model, bST
2 =bST

2 /b1

Caution: We estimate 1-σ ranges for the low redshift (z ≤ 3) only for the peak which involves the maximum

likelihood value. If two peaks in maginalized likelihood function are blended, we use only unblended side of

the peak to estimate the 1-σ range.
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Table 4.7: Mass dependence of non-linear galaxy bias parameters (MPA galaxies)

z Mmin Mmax b1 b2 P0 bST
1 bST

2
(M⊙/h) (M⊙/h) ([h/Mpc]3)

6 1.7E+10 5.0E+10 3.37±0.01 1.50±0.03 136.39±3.69 2.91 0.82
5.0E+10 1.0E+11 3.96±0.02 2.00±0.04 325.38±8.44 3.49 1.31
1.0E+11 5.0E+11 4.69±0.03 3.09±0.05 1078.72±19.25 4.23 2.01
5.0E+11 1.0E+12 6.43±0.14 5.79±0.20 7046.28±201.94 5.89 3.49

5 1.7E+10 5.0E+10 2.77±0.01 0.93±0.03 63.17±2.99 2.38 0.40
5.0E+10 1.0E+11 3.16±0.01 1.27±0.04 144.20±6.16 2.82 0.77
1.0E+11 5.0E+11 3.81±0.02 1.84±0.04 432.51±12.80 3.41 1.28
5.0E+11 1.0E+12 5.15±0.07 3.60±0.11 2897.95±95.17 4.67 2.37

4 1.7E+10 5.0E+10 2.33±0.01 0.58±0.03 32.25±2.25 1.98 0.11
5.0E+10 1.0E+11 2.59±0.01 0.74±0.04 56.91±4.08 2.32 0.37
1.0E+11 5.0E+11 3.09±0.02 1.13±0.04 179.81±8.52 2.79 0.77
5.0E+11 1.0E+12 3.83±0.05 -4.09±0.09 3507.05±64.85 3.76 1.71

3 1.7E+10 5.0E+10 1.62±0.01 -2.07±0.05 431.79±12.04 1.45 -0.22
5.0E+10 1.0E+11 1.84±0.01 0.19±0.04 7.04±1.04 1.66 -0.10
1.0E+11 5.0E+11 2.14±0.01 0.38±0.04 27.64±3.67 1.96 0.12
5.0E+11 1.0E+12 2.80±0.02 0.84±0.06 191.24±21.65 2.55 0.57

2 1.7E+10 5.0E+10 1.26±0.07 -2.09±0.66 683.11±240.40 1.10 -0.37
5.0E+10 1.0E+11 1.21±0.08 -2.35±0.62 738.09±231.05 1.22 -0.38
1.0E+11 5.0E+11 1.35±0.09 -2.32±0.63 919.65±288.79 1.40 -0.29
5.0E+11 1.0E+12 1.65±0.11 -2.50±0.69 1602.17±480.23 1.74 -0.06

1 1.7E+10 5.0E+10 0.91±0.11 -2.96±1.59 2344.13±802.55 0.86 -0.43
5.0E+10 1.0E+11 0.79±0.11 -3.28±1.51 1956.42±657.89 0.92 -0.53
1.0E+11 5.0E+11 0.87±0.10 -2.88±1.63 1964.64±738.71 1.00 -0.51
5.0E+11 1.0E+12 1.01±0.11 -2.80±2.01 2550.21±1007.23 1.16 -0.46

z: redshift

Mmin: minimum mass for a given bin

Mmax: maximum mass for a given bin

b1, b2, P0: non-linear bias parameters

bST
1 , bST

2 : bias parameters from the Sheth-Tormen model, bST
2 =bST

2 /b1

Caution: We estimate 1-σ ranges for the low redshift (z ≤ 3) only for the peak which involves the maximum

likelihood value. If two peaks in maginalized likelihood function are blended, we use only unblended side of

the peak to estimate the 1-σ range.
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Chapter 5

Primordial non-Gaussianity, scale-dependent bias, and
the bispectrum of galaxies

Why study non-Gaussianity1? For many years it was recognized that the sim-

ple inflationary models based upon a single slowly-rolling scalar field would predict nearly

Gaussian primordial fluctuations. In particular, when we parametrize the magnitude of

non-Gaussianity in the primordial curvature perturbations ζ, which gives the observed tem-

perature anisotropy in the Cosmic Microwave Background (CMB) in the Sachs–Wolfe limit

as ∆T/T = −ζ/5, using the so-called non-linear parameter fNL (Komatsu & Spergel, 2001)

as ζ(x) = ζL(x) + (3fNL/5)ζ
2
L(x), then the bispectrum of ζ is given by2 Bζ(k1, k2, k3) =

(6fNL/5) [Pζ(k1)Pζ(k2) + (2 cyclic terms)], where Pζ(k) ∝ kns−4 is the power spectrum of

ζ and ns is the tilt of the power spectrum, constrained as ns = 0.963±0.012 by the WMAP

7-year data (Komatsu et al., 2010). This form of the bispectrum has the maximum signal

in the so-called squeezed triangle for which k3 ≪ k2 ≈ k1 (Babich et al., 2004). In this limit

we obtain

Bζ(k1, k1, k3 → 0) =
12

5
fNLPζ(k1)Pζ(k3). (5.1)

The earlier calculations showed that fNL from single-field slow-roll inflation would be of

order the slow-roll parameter, ϵ ∼ 10−2 (Salopek & Bond, 1990; Falk et al., 1993; Gangui

et al., 1994). However, it is not until recent that it is finally realized that the coefficient

of Pζ(k1)Pζ(k3) from the simplest single-field slow-roll inflation with the canonical kinetic

term in the squeezed limit is given precisely by Maldacena (2003); Acquaviva et al. (2003)

Bζ(k1, k1, k3 → 0) = (1− ns)Pζ(k1)Pζ(k3). (5.2)

Comparing this result with the form predicted by the fNL model, one obtains fNL =

(5/12)(1− ns).

1A significant fraction of this chapter was published in Jeong, D. & Komatsu, E. 2009, Astrophys. J.,
703, 1230.

2Definition of the bispectrum in terms of Fourier coefficients of ζ is ⟨ζk1
ζk2

ζk3
⟩ = (2π)3δ(k1 + k2 +

k3)Bζ(k1, k2, k3). Throughout this paper we shall order ki such that k3 ≤ k2 ≤ k1.
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Perhaps, the most important theoretical discovery regarding primordial non-Gaussianity

from inflation over the last few years is that, not only models with the canonical kinetic term,

but all single-inflation models predict the bispectrum in the squeezed limit given by Eq. (5.2),

regardless of the form of potential, kinetic term, slow-roll, or initial vacuum state (Creminelli

& Zaldarriaga, 2004; Seery & Lidsey, 2005; Chen et al., 2007; Cheung et al., 2008). There-

fore, the prediction from all single-field inflation models is fNL = (5/12)(1 − ns) = 0.017

for ns = 0.96. A convincing detection of fNL well above this level is a breakthrough in our

understanding of the physics of very early universe (Bartolo et al., 2004; Komatsu et al.,

2009). The current limit from the WMAP 7-year data is fNL = 32±21 (68% CL) (Komatsu

et al., 2010).

There are many ways of measuring fNL. The most popular method has been the

bispectrum of CMB (Verde et al., 2000; Wang & Kamionkowski, 2000; Komatsu & Spergel,

2001; Komatsu et al., 2002, 2003) (also see Komatsu (2001) for a pedagogical review). The

other methods include the trispectrum of CMB (Okamoto & Hu, 2002; Kogo & Komatsu,

2006).

The large-scale structure of the universe can also provide alternative ways of probing

primordial non-Gaussianity through abundances and clustering properties of galaxies and

clusters of galaxies (Lucchin & Matarrese, 1988; Matarrese et al., 2000; Sefusatti et al.,

2007; LoVerde et al., 2008). However, as the large-scale structure of the universe is more

non-linear than CMB, it was generally thought that CMB would be the most promising way

of constraining primordial non-Gaussianity (Verde et al., 2000).

On the other hand, Sefusatti & Komatsu (2007) have shown that observations

of the large-scale structure of the universe in a high-redshift universe, i.e., z > 1, can

provide competitive limits on primordial non-Gaussianity, as the other non-linear effects are

weaker in a high redshift universe. Specifically, they calculate the bispectrum of the three-

dimensional distribution of galaxies, Bg(k1, k2, k3),
3 on large scales as (see also Scoccimarro

3The bispectrum, the Fourier transform of the three-point correlation function, is defined as
⟨δ(k1)δ(k2)δ(k3)⟩ ≡ (2π)3B(k1, k2, k3)δD(k1 + k2 + k3).
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et al. (2004))

Bg(k1, k2, k3, z)

= 3b31fNLΩmH
2
0

[
Pm(k1, z)

k21T (k1)

Pm(k2, z)

k22T (k2)

k23T (k3)

D(z)
+ (2 cyclic)

]
+ 2b31

[
F

(s)
2 (k1, k2)Pm(k1, z)Pm(k2, z) + (2 cyclic)

]
+ b21b2 [Pm(k1, z)Pm(k2, z) + (2 cyclic)] , (5.3)

where H0 and Ωm are the present-day value of Hubble’s constant and the matter density

parameter, respectively, Pm(k, z) is the power spectrum of linear matter density fluctuations,

D(z) is the linear growth factor, T (k) is the linear transfer function whose limit is T (k) → 1

as k → 0, and F
(s)
2 (k1, k2) is a known mathematical function given in equation (2.32)

F
(s)
2 (k1, k2) =

5

7
+

k1 · k2
2k1k2

(
k1
k2

+
k2
k1

)
+

2

7

(
k1 · k2
k1k2

)2

. (5.4)

This function vanishes in the squeezed limit, k1 = −k2 (the triangles with the maximum

angle, i.e., π, between k1 and k2, and |k1| = |k2|), and takes on the maximum value,

F
(s)
2 = (α + 1)2/(2α) ≥ 2, in the opposite limit, k1 = αk2 where α ≥ 1 (the triangles with

the vanishing angle between k1 and k2).

Here, b1 and b2 are the linear and non-linear galaxy bias parameters, respectively,

which relate the underlying matter density contrast, δm, to the galaxy density contrast, δg,

as (Fry & Gaztanaga, 1993)

δg(x) = b1δm(x) +
b2
2

[
δ2m(x)− σ2

]
+ · · · , (5.5)

where σ2 ≡ ⟨δ2m⟩, which ensures ⟨δg⟩ = 0.

The last two terms in Eq. (5.3) are the well-known results for Gaussian initial

conditions (see Bernardeau et al., 2002, for a review), whereas the first term is the effect of

the primordial non-Gaussianity of the “local type”.

However, Sefusatti & Komatsu’s equation, Eq. (5.3), may require modifications, in

light of recent analytical (Dalal et al., 2008; Matarrese & Verde, 2008; Slosar et al., 2008;

Afshordi & Tolley, 2008; Taruya et al., 2008; McDonald, 2008) and numerical (Dalal et al.,

2008; Desjacques et al., 2009; Pillepich et al., 2008; Grossi et al., 2009) studies of the effects of

primordial non-Gaussianity on the galaxy power spectrum. These studies have discovered

an unexpected signature of primordial non-Gaussianity in the form of a scale-dependent
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galaxy bias4, i.e., Pg(k, z) = b21(z)Pm(k, z) → [b1(z) + ∆b(k, z)]2Pm(k, z), where

∆b(k, z) =
3(b1(z)− 1)fNLΩmH

2
0δc

D(z)k2T (k)
, (5.6)

and δc ≃ 1.68 is the threshold linear density contrast for a spherical collapse of an overdensity

region. The k2 factor in the denominator of ∆b(k) shows that this effect is important only

on very large scales. Highly biased tracers are more sensitive to fNL.

Then, several questions arise: can we still use Eq. (5.3) for the bispectrum? Should

we replace b1 by b1+∆b(k)? Does the first line in Eq. (5.3) somehow give the same correction

as ∆b(k)? How about b2? We are going to address these questions in this paper.

5.1 Bispectrum of Dark Matter Halos

In this section, we derive the galaxy bispectrum for non-Gaussian initial conditions

by using two different methods. In §5.1.1, we shall use the “functional integration method”

for computing n-point correlation functions of peaks of the cosmological density fluctuations

(Politzer & Wise, 1984; Grinstein & Wise, 1986). In §5.1.2, we shall present an alternative

derivation of the same result by using a local bias assumption.

5.1.1 Matarrese-Lucchin-Bonometto (MLB) method

We shall use the Matarrese-Lucchin-Bonometto (MLB) formula (Matarrese et al.,

1986) which allows one to calculate the n-point correlation functions of peaks for non-

Gaussian initial conditions. This approach is especially well suited for our purposes, as

Matarrese & Verde (2008) have applied the MLB formula to compute the scale-dependent

bias of the galaxy power spectrum. We shall apply the MLB formula to compute the galaxy

bispectrum for general non-Gaussian initial condition.

We study the three-point correlation function of the spatial distribution of dark

matter halos. Let us consider the probability of finding three halos within three arbitrary

volume elements: dV1, dV2, and dV3, which are at x1, x2, and x3, respectively, as (Peebles,

1980)

P (x1,x2,x3) = n̄3 [1 + ξh(x12) + ξh(x23) + ξh(x31)

+ζh(x1,x2,x3)] dV1dV2dV3, (5.7)

4For the derivation of the scale dependent bias, see Appendix I.3.
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where xij ≡ |xi − xj |, and ξh and ζh are the two- and three-point correlation functions of

halos, respectively.

The next step is to relate the correlation functions of halos, ξh and ζh, to those of

the underlying matter distribution function. The locations of halos coincide with those of

the peaks of the matter density fluctuations; thus, one can compute ξh and ζh by computing

the correlation functions of peaks above a certain threshold, above which the peaks collapse

into halos.

We shall assume that halos would be formed in the region where the smoothed

linear density contrast exceeds δc. For a spherical collapse in an Einstein-de Sitter universe

δc = 3(12π)2/3/20 ≃ 1.68, and one can find other values in the ellipsoidal collapse in

arbitrary cosmological models (see, e.g., Cooray & Sheth, 2002, for a review). The mass of

halos is determined by the smoothing radius, R, i.e., M = (4π/3)ρmR
3, where ρm is the

average mass density of the universe. The smoothed density contrast, δR, is related to the

underlying mass fluctuations, δm, as δR(x) =
∫
d3x′WR(|x− x′|)δm(x′), where WR(x) is a

smoothing function. We shall use a top-hat filter with radius R for WR(x).

Using the MLB formula5, we find

1 + ξh(x12) + ξh(x23) + ξh(x31) + ζh(x1,x2,x3)

= exp

1
2

ν2

σ2
R

∑
i̸=j

ξ
(2)
R (xij) +

∞∑
n=3

{
n∑

m1=0

n−m1∑
m2=0

νnσ−n
R

m1!m2!m3!

×ξ(n)R

(
x1, · · · ,x1, x2, · · · ,x2, x3, · · · ,x3
m1 times m2 times m3 times

)
−3

νnσ−n
R

n!
ξ
(n)
R

(
x, · · · ,x
n times

)}]
, (5.8)

where m3 ≡ n − m1 − m2, ν ≡ δc/σR, σ
2
R is the variance of matter density fluctuations

smoothed by a top-hat filter with radius R, and ξ
(n)
R denotes the connected parts of the

n-point correlation functions of the underlying matter density fields smoothed by a top-hat

filter of radius R. Here, we have assumed that we are dealing with high density peaks, i.e.,

ν ≫ 1, which are equivalent to highly biased galaxies, b1 ≫ 1.

As ξ
(n)
R ≪ 1 on the large scales that we are interested in, we expand the exponential

in Eq. (5.8). We keep the terms up to the four-point function, as this term provides the

5MLB formula is summarized in Appendix K.
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dominant contribution to the three-point function. We find

ζh(x1,x2,x3) =
ν3

σ3
R

ξ
(3)
R (x1,x2,x3)

+
ν4

σ4
R

[
ξ
(2)
R (x12)ξ

(2)
R (x23) + (2 cyclic)

]
+

ν4

2σ4
R

[
ξ
(4)
R (x1,x1,x2,x3) + (2 cyclic)

]
. (5.9)

The bispectrum of halos in Lagrangian space, BLh (k1, k2, k3), is the Fourier transform of

ζh(x1,x2,x3):

BLh (k1, k2, k3)

=
ν3

σ3
R

[
BR(k1, k2, k3) +

ν

σR
{PR(k1)PR(k2) + (2 cyclic)}

+
ν

2σR

∫
d3q

(2π)3
TR(q, k1 − q, k2, k3) + (2 cyclic)

]
, (5.10)

where TR is the trispectrum, Fourier transform of ξ
(4)
R . Here, we call BLh the Lagrangian

space bispectrum, as it relates the halo over-density to the initial matter overdensity with

its amplitude extrapolated to the present epoch. If we assume that the halos move in the

same way as matter, the observed bispectrum in Eulerian space, Bh, would be the same

expression with Eq. (5.10), except for the coefficients:

Bh(k1, k2, k3)

= b31

[
BR(k1, k2, k3) +

b2
b1

{PR(k1)PR(k2) + (2 cyclic)}

+
δc
2σ2

R

∫
d3q

(2π)3
TR(q, k1 − q, k2, k3) + (2 cyclic)

]
. (5.11)

Here, b1 is the so-called linear Eulerian bias parameter, b1 = 1 + ν/σR, and b2 =

(ν/σR)
2 is the non-linear bias parameter 6.

5.1.2 Alternative derivation

In this section, we present an alternative derivation of the galaxy bispectrum,

Eq. (5.11). On large enough scales, we may approximate the relation between the galaxy dis-

6Note that these expressions, b1 = 1+ ν/σR and b2 = (ν/σR)2 agree with the linear halo bias parameter
derived by Mo & White (1996); Mo et al. (1997), b1 = 1 + bL1 and b2 = (ν2 − 3)/σ2

R + 8bL1 /21 for high

density peaks, ν ≫ 1. Here, bL1 = (ν − 1/ν)/σR is the Lagrangian bias parameter.
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tribution and the underlying density fluctuation as a local function. We then Taylor-expand

this local function in a power series of δm (see Eq. (5.5)).

When computing the correlation functions of halos of a given mass M , we may

smooth the matter density field with the same filter over the corresponding length scale R,

WR(|x − x′|), which was defined in the previous section. We then Taylor-expand δg in a

power series of the smoothed density field, δR(x), as

δg(x) = b1δR(x) +
b2
2

[
δ2R(x)− σ2

R

]
+ · · · . (5.12)

In Fourier space, one finds

δg(k) = b1δR(k)

+
b2
2

[∫
d3q

(2π)3
δR(k− q)δR(q)− σ2

Rδ
D(k)

]
+ · · · , (5.13)

where δD is the Dirac delta function. We calculate the bispectrum of galaxies directly from

Eq. (5.13):

⟨δg(k1)δg(k2)δg(k3)⟩

= b31⟨δR(k1)δR(k2)δR(k3)⟩

+
b21b2
2

[∫
d3q

(2π)3
⟨δR(k1 − q)δR(q)δR(k2)δR(k3)⟩

−σ2
Rδ

D(k1)⟨δR(k2)δR(k3)⟩+ (2 cyclic)

]
. (5.14)

The first term of Eq. (5.14) is the matter bispectrum,

⟨δR(k1)δR(k2)δR(k3)⟩ = (2π)3BR(k1, k2, k3)δ
D(k123),

where k123 ≡ k1 + k2 + k3. We further calculate the ensemble average of the four-point

function in the second term of Eq. (5.14). For non-Gaussian density fields, four-point func-

tion is given by a sum of connected (trispectrum) and unconnected (products of the power

spectra) parts as

⟨δR(k1 − q)δR(q)δR(k2)δR(k3)⟩

= (2π)6PR(q)PR(k2)δ
D(k1)δ

D(k2 + k3)

+(2π)6PR(k2)PR(k3)δ
D(k2 + q)δD(k3 + k1 − q)

+(2π)6PR(k2)PR(k3)δ
D(k3 + q)δD(k2 + k1 − q)

+(2π)3TR(k1 − q, q, k2, k3)δ
D(k123),
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where TR is the matter trispectrum. Note that the first term in the above equation cancels

the last term in Eq. (5.14). Combining the above equations, Eq. (5.14) becomes

Bh(k1, k2, k3)

= b31

[
BR(k1, k2, k3) +

b2
b1

{PR(k1)PR(k2) + (2 cyclic)}

+
1

2

b2
b1

∫
d3q

(2π)3
TR(q, k1 − q, k2, k3) + (2 cyclic)

]
. (5.15)

Therefore, we find that the MLB method and the locality bias assumption give

formally the same results.

Although the Eq. (5.11) and Eq. (5.15) are the same, there is a subtle difference

between them: the coefficient in the last term of Eq. (5.15) does not include σ2
R explicitly

. By evaluating the last cyclic term in Eq. (5.15) for the local type of non-Gaussianity,

we find that the integration of the smoothed trispectrum depends on the smoothing scale,

R, up to a constant factor of 1/σ2
R on large scales, say, k < 0.1 h/Mpc. For example, the

bottom right panel of Fig. 5.11 shows that BnG
f2
NL

and BnGgNL
, which are defined in Eq. (5.31)

and Eq. (5.32), respectively, do not depend on the smoothing scale R, as they include 1/σ2
R

in their definitions.

Therefore, it is physically more sensible to include σ2
R explicitly in the equation

such that the dependence on smoothing scales on large scales can be absorbed by the bias

parameters. This motivates our writing the final form of the halo bispectrum, derived from

the local bias assumption, as

Bh(k1, k2, k3)

= b31

[
BR(k1, k2, k3) +

b2
b1

{PR(k1)PR(k2) + (2 cyclic)}

+
b̃2
b1

1

2σ2
R

∫
d3q

(2π)3
TR(q, k1 − q, k2, k3) + (2 cyclic)

]
,

(5.16)

with three bias parameters: b1, b2 and b̃2 ≡ b2σ
2
R. Note that b̃2/b1 → δc for the MLB

formula. Although δc is known to be 1.68 for the spherically collapsed halo in the flat

matter dominated universe, its precise value, in this context, needs to be tested against

N-body simulations.

Eqs. (5.11) and (5.16) are the first main results of this paper, which are general

and can be applied to any models of non-Gaussianities, once we know the bispectrum and
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trispectrum of the underlying matter density field. Note that Eq. (5.16) was also obtained

independently by Sefusatti (2009).

In principle both b1 and b2 are calculable from the theory of collapse of halos (see,

e.g., Cooray & Sheth, 2002, for a review); however, in practice it is more convenient and

safe to treat them as free parameters that one should marginalize over when extracting the

cosmological information, such as fNL. See Jeong & Komatsu (2009) for the same argument

applied to the galaxy power spectrum.

5.2 Effects of Local-type Primordial non-Gaussianity on The Halo
Bispectrum

In this section we shall evaluate Eq. (5.16) for the local-type primordial non-

Gaussianity with a high-order term added:

Φ(x) = ϕ(x) + fNL

[
ϕ2(x)− ⟨ϕ2⟩

]
+ gNLϕ

3(x). (5.17)

The cubic-order term does not generate the bispectrum of CMB anisotropy or the matter

density fluctuations at the leading order; however, it does generate the trispectrum, and the

CMB trispectrum has been calculated by Okamoto & Hu (2002); Kogo & Komatsu (2006).

On the other hand, the bispectrum of halos receives the contribution from the trispectrum

(see the last term in Eq. (5.16)), and thus it is necessary to include gNL.

To calculate various components of the bispectra shown in Eq. (5.16), we calculate

the transfer function, T (k), and the power spectra with the cosmological parameters in

Table 1 (“WMAP+BAO+SN”) of Komatsu et al. (2009).

As for the smoothing scale, we use R = 1 h−1 Mpc. Although the smoothing scale

explicitly appears in the equation, it makes negligible differences for the bispectrum on large

scales, k ≪ 1/R.

Note that we shall adopt the non-standard convention in which Φ(x) is Bardeen’s

curvature perturbation extrapolated to the present epoch, z = 0, using the linear growth

factor of Φ, g(z) ≡ (1 + z)D(z). Therefore, our fNL and gNL in this paper are different

from those in the literature on the CMB non-Gaussianity by a factor of g(1090)/g(0), i.e.,

fNL = [g(1090)/g(0)]fCMB
NL and gNL = [g2(1090)/g2(0)]gCMB

NL
7.

7The ratio g(1090)/g(0) is 1.308 for the cosmological parameters in Table 1 (“WMAP+BAO+SN”) of
Komatsu et al. (2009).
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The bispectrum and trispectrum of Φ are given by

BΦ(k1, k2, k3) = 2fNL [Pϕ(k1)Pϕ(k2) + (2 cyclic)] , (5.18)

and

TΦ(k1, k2, k3, k4)

= 6gNL [Pϕ(k1)Pϕ(k2)Pϕ(k3) + (3 cyclic)] + 2f2NL

× [Pϕ(k1)Pϕ(k2) {Pϕ(k13) + Pϕ(k14)}+ (11 cyclic)] , (5.19)

with kij = |ki + kj |, respectively.

While Eq. (5.19) is the consequence of Eq. (5.17), general multi-field inflation mod-

els do not necessarily relate the coefficients of the trispectrum to that of the bispectrum.

Therefore, one may generalize Eq. (5.19) by replacing f2NL with a new parameter, τNL, which

may or may not be related to fNL:

TΦ(k1, k2, k3, k4)

= 6gNL [Pϕ(k1)Pϕ(k2)Pϕ(k3) + (3 cyclic)] +
25

18
τNL

× [Pϕ(k1)Pϕ(k2) {Pϕ(k13) + Pϕ(k14)}+ (11 cyclic)] . (5.20)

Note that the coefficient of τNL reflects the definition of τNL introduced by Boubekeur &

Lyth (2006). This opens up an exciting possibility that the galaxy bispectrum can test

whether τNL = (6fNL/5)
2 or other predictions for the relation between τNL and fNL are

satisfied observationally.

We transform these spectra to those of the smoothed linear density contrasts, using

the Poisson equation,

δ
(1)
R (k) =

2

3

k2T (k)

H2
0Ωm

W̃R(k)Φ(k) ≡ MR(k)Φ(k), (5.21)

where W̃R(k) is the Fourier transform of the top-hat filter with radiusR. Note that W̃R(k) →
1 as k → 0. In general W̃R(k) ≃ 1 for k ≪ 1/R. Then, we calculate the n-point function of

the matter density fields from the corresponding correlator of curvature perturbations by

⟨δ(1)R (k1) · · · δ(1)R (kn)⟩ =
n∏
i=1

MR(ki)⟨Φ(k1) · · ·Φ(kn)⟩.
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5.2.1 Known Terms

5.2.1.1 Formula

The first term in Eq. (5.16) contains the bispectrum of matter density fluctuations,

BR, which consists of two pieces: (i) the non-linear evolution of gravitational clustering

(BGm) and (ii) primordial non-Gaussianity (BnG0
fNL

)8:

BR(k1, k2, k3) = BGm(k1, k2, k3) + fNLB
nG0
fNL

(k1, k2, k3), (5.22)

where

BGm(k1, k2, k3) ≡ W̃R(k1)W̃R(k2)W̃R(k3)2F
(s)
2 (k1, k2)

×Pm(k1)Pm(k2) + (2 cyclic), (5.23)

with F
(s)
2 given by Eq. (5.4), and

BnG0
fNL

(k1, k2, k3)

≡ 2

3∏
i=1

MR(ki) [Pϕ(k1)Pϕ(k2) + (2 cyclic)]

= 2
PR(k1)

MR(k1)

PR(k2)

MR(k2)
MR(k3) + (2 cyclic). (5.24)

One finds that Eqs. (5.24) and (5.23) agree with the first and the second terms in Eq. (5.3)

on the scales much larger than the smoothing scale, i.e., k ≪ 1/R, for which W̃R → 1.

One might wonder if it is OK to include the bispectrum from non-linear evolution

of density fluctuations in the MLB formula, as Eq. (5.11) is usually used for the Lagrangian

density fluctuations, i.e., “initial” fluctuations. However, it is perfectly OK to use the evolved

density fluctuations in this formula, as one can always use the evolved density fluctuations

as the initial data. For example, we can think of starting our calculation at z = 10, and ask

the MLB formula to take the initial condition at z = 10, including non-linear correction.

Since we know how to compute the bispectrum, trispectrum, etc., of the underlying mass

distribution at z = 10 (including non-linear effects), we can use this information in the MLB

8We ignore the following term in BR(k1, k2, k3):

3∏
i=1

W̃R(ki)

∫
d3q

(2π)3
F

(s)
2 (q, k1 − q)T (q, k1 − q, k2, k3) + (2 cyclic),

where T is the unfiltered primordial trispectrum which contains f2
NL and gNL. This term is negligibly small

(Scoccimarro et al., 2004).
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formula. In other words, the “initial” distribution does not need to be primordial. We can

provide the evolved density field as the initial data, and compute the peak statistics. The

MLB formula does not care whether the source of non-Gaussianity is truly primordial or

not: the only conditions that we must respect for Eq. (5.11) to be valid are (i) high peaks

(ν ≫ 1), and (ii) n-point correlation functions are much less than unity, ξ
(n)
R ≪ 1, so that

the exponential in Eq. (5.8) can be Taylor-expanded. In this case one would lose an ability

to calculate the bias parameters, b1 and b2, using, e.g., a halo model; however, this is not a

disadvantage, as the halo model calculations of the galaxy bias parameter, b1 and b2, are at

best qualitative even for Gaussian initial conditions (see, e.g., Jeong & Komatsu, 2009). In

our approach the coefficients of individual terms in Eqs. (5.11) and (5.16), including δc, are

free parameters, and need to be determined from observations themselves.

5.2.1.2 Shape Dependence: Non-linear Gravitational Evolution and Non-linear
Galaxy Bias

How about the shape dependence? First, let us review the structure ofBGm(k1, k2, k3)

(Eq. (5.23)), which has been studied extensively in the literature (see Bernardeau et al., 2002,

for a review).

Here, let us offer a useful way of visualizing the shape dependence of the bispectrum.

We can study the structure of the bispectrum by plotting the magnitude of BGm as a function

of k2/k1 and k3/k1 for a given k1, with a condition that k1 ≥ k2 ≥ k3 is satisfied. In

order to classify various shapes of the triangles, let us use the following names: squeezed

(k1 ≃ k2 ≫ k3), elongated (k1 = k2 + k3), folded (k1 = 2k2 = 2k3), isosceles (k2 = k3), and

equilateral (k1 = k2 = k3). See (a)–(e) of Fig. 5.1 for the visual representations of these

triangles.

The top-left panel of Fig. 5.2 shows BGm for k1 = 0.01 h Mpc−1. In this regime

PR(k1) is an increasing function of k1 (recall that PR(k) peaks at k ≈ 0.02 h Mpc−1).

Let us then pick the first term in Eq. (5.23), F
(s)
2 (k1, k2)PR(k1)PR(k2), and ignore the

cyclic terms for the moment. It follows from Eq. (5.4) and the descriptions below it that

F
(s)
2 (k1, k2) vanishes in the squeezed limit (k1 = −k2) and reaches the maximum in the

opposite limit (k1 = αk2). Therefore, we would expect this term to give large signals in

the “elongated configurations,” k1 = k2 + k3; however, as PR(k) at k ≲ 0.02 h Mpc−1

is an increasing function of k, one can also get large signals when k1 and k2 are equally

large, k1 = k2. As we have zero signal in the squeezed limit, k3 = 0, it follows that we can

find a large signal in the equilateral configuration, k1 = k2 = k3. A similar argument also
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applies to the cyclic terms. As a result, for k1 = 0.01 h Mpc−1, we find the largest signal

in the equilateral configuration, and then the signal decreases as we approach the squeezed

configuration, i.e., the signal decreases as we go from (e) to (a) in Fig. 5.1.

The top-right panel of Fig. 5.2 shows BGm for k1 = 0.05 h Mpc−1. In this regime

PR(k1) is a decreasing function of k1, and thus the equilateral configurations are no longer

as important as the folded ones. Instead we have large signals in the folded configurations as

well as in the elongated configurations. Note that the exact squeezed limit is still suppressed

due to the form of F
(s)
2 .

In summary, BGm usually has the largest signal in the folded and elongated (or

equilateral, depending on the wavenumber) configurations, with the squeezed configurations

suppressed relative to the others. The suppression of the squeezed configurations is a generic

signature of the causal mechanism such as the non-linear gravitational evolution that F
(s)
2

describes.

The bispectrum from the non-linear bias term, the second term in Eq. (5.11), has

the same structure as BGm, but it does not contain F
(s)
2 . As a result the non-linear bias term

does not have as much suppression as BGm has in the squeezed configuration. In addition,

as F
(s)
2 enhances the signal in the elongated configurations, the non-linear bias term does

not have as much enhancement as BGm has in the elongated configurations. These properties

explain the bottom panels of Fig. 5.2.

As BGm and the non-linear bias term contain products of PR(k1)PR(k2) and the

cyclic terms, it is often more convenient to deal with Qh(k1, k2, k3) given by (Peebles, 1980)

Qh(k1, k2, k3) ≡
Bh(k1, k2, k3)

PR(k1)PR(k2) + (2 cyclic)
, (5.25)

to reduce the dependence on the shape of the power spectrum. This combination is constant

and equal to b21b2 for the non-linear bias term (see the second term in Eq. (5.11)).

The left and right panels of Fig. 5.3 show BGm(k1, k2, k3)/[PR(k1)PR(k2)+(2 cyclic)]

for k1 = 0.01 h Mpc−1 and 0.05 h Mpc−1, respectively. We find that Qh better reflects

the shape dependence of F
(s)
2 irrespective of k1: it has the largest signal in the folded and

elongated configurations in both large and small scales. The squeezed configurations are

still heavily suppressed relative to the others.
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Figure 5.1: Visual representations of triangles forming the bispectrum, B(k1, k2, k3), with
various combinations of wavenumbers satisfying k3 ≤ k2 ≤ k1.
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Figure 5.2: Shape of the bispectrum, B(k1, k2, k3). Each panel shows the amplitude of
the bispectrum as a function of k2/k1 and k3/k1 for a given k1, with a condition that
k3 ≤ k2 ≤ k1 is satisfied. The amplitude is normalized such that it is unity at the point
where the bispectrum takes on the maximum value. For the visual representations of the
triangle names such as the squeezed, elongated, folded, isosceles, and equilateral, see Fig. 5.1.
(Top Left) The bispectrum from the non-linear gravitational evolution, BGm (Eq. (5.23)), for
k1 = 0.01 hMpc−1. (Top Right) BGm for k1 = 0.05 hMpc−1. (Bottom Left) The bispectrum
from the non-linear galaxy biasing, PR(k1)PR(k2)+(2 cyclic) (the second term in Eq. (5.16)),
for k1 = 0.01 h Mpc−1. (Bottom Right) PR(k1)PR(k2) + (2 cyclic) for k1 = 0.05 h Mpc−1.

Figure 5.3: Same as the top panels of Fig. 5.2, but for BGm/[PR(k1)PR(k2) + (2 cyclic)]
(Eq. (5.25)).
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Figure 5.4: Same as Fig. 5.2, but for the terms proportional to fNL. (Top) the BnGm term
(Eq. (5.35)), (Middle) the BnG0

fNL
term (Eq. (5.24)), and (Bottom) the BnG1

fNL
term (Eq. (5.41)).

Note that the non-Gaussian terms diverge in the exact squeezed limit, k3 → 0; thus, we show
these terms normalized to be unity at k3/k1 = 10−2. In order to facilitate the comparison
better, we draw the dotted contour for all six panels.
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Figure 5.5: Same as Fig. 5.2, but for (Top) the gNL term (Eq. (5.32)), and (Bottom) the f2NL

term (Eq. (5.33)). Note that the non-Gaussian terms diverge in the exact squeezed limit,
k3 → 0; thus, we show these terms normalized to be unity at k3/k1 = 10−2. In order to
facilitate the comparison better, we draw the dotted contour for top panels.

5.2.1.3 Shape Dependence: fNL Term

How about the fNL term, BnG0
fNL

(k1, k2, k3)? This term has a completely different

structure. Let us pick the first term, MR(k1)Pϕ(k1)MR(k2)Pϕ(k2)MR(k3), in Eq. (5.24).

The important point is that the power spectrum of ϕ is always a decreasing function of

k, i.e., Pϕ(k) ∝ 1/k3 for a scale-invariant spectrum. On the other hand, on large scales

we have T (k) → 1 and MR(k) ∝ k2. Therefore, collecting all the cyclic terms, we find

BnG0
fNL

(k1, k2, k3) ∝ k23/(k1k2) + k22/(k1k3) + k21/(k2k3) = (k31 + k32 + k33)/(k1k2k3). In other

words, it has the largest signal when one of k’s is very small, i.e., the squeezed configura-

tions, which is opposite to the structures of BGm and the non-linear bias term. The middle

panels of Fig. 5.4 show BnG0
fNL

for k1 = 0.01 h Mpc−1 and 0.05 h Mpc−1, and we find the

largest signals in the squeezed configurations. We also find that Qh from the fNL term,

BnG0
fNL

(k1, k2, k3)/[PR(k1)PR(k2) + (2 cyclic)], still has the largest signal in the squeezed

configurations.

These properties allow us to distinguish between the primordial non-Gaussianity

and the other effects such as the non-linear gravitational evolution and non-linear bias.

Sefusatti & Komatsu (2007) have studied in detail how well one can separate these effects
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using Qh.

5.2.2 New Term

5.2.2.1 Formula

Now, we shall evaluate the new term, the third term in Eq. (5.16), which was not

considered in Sefusatti & Komatsu (2007). The trispectrum is generated by the primordial

non-Gaussianity, as well as by the non-linear evolution of matter density fluctuations. The

non-linear evolution of matter density fluctuations on large scales is given by perturbation

theory (see Bernardeau et al., 2002, for a review). Let us expand the filtered non-linear

matter density field in Fourier space as

δR(k) = W̃R(k)
[
δ(1)(k) + δ(2)(k) + δ(3)(k) + · · ·

]
, (5.26)

where δ(n)(k) is the n-th order quantity of the linear density contrast, δ(1)(k). Then, the

connected matter density trispectrum is given by

TR(k1, k2, k3, k4)

= T 1111
R (k1, k2, k3, k4) +

{
T 1112
R (k1, k2, k3, k4) + (3 cyclic)

}
+
{
T 1113
R (k1, k2, k3, k4) + (3 cyclic)

}
+
{
T 1122
R (k1, k2, k3, k4) + (5 cyclic)

}
+ O(ϕ8), (5.27)

with T ijklR given by

(2π)3δD(k1234)T
ijkl
R (k1, k2, k3, k4)

≡
4∏

n=1

W̃R(kn)⟨δ(i)(k1)δ(j)(k2)δ(k)(k3)δ(l)(k4)⟩c. (5.28)

The leading contributions of all the terms shown in Eq. (5.27) are order of ϕ6.

The first term, T 1111
R , is the linearly evolved primordial trispectrum calculated from

Eq. (5.19), and thus it contains the terms proportional to f2NL and gNL. The second term,

T 1112
R , has a coupling between the primordial non-Gaussianity (linear in fNL) and the non-

linear gravitational evolution (linear in F
(s)
2 ). These two terms are important on large

scales.

The other terms, T 1113
R and T 1122

R , do not have contributions from fNL or gNL at

the leading-order level, but solely come from the non-linear gravitational coupling; thus,
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they may be ignored on large scales we are considering in this paper. Sefusatti (2009) also

derived and studied T 1112
R as well as T 1113

R and T 1122
R .

Therefore, we approximate the integration in the third term of Eq. (5.16) as

1

2σ2
R

∫
d3q

(2π)3
[TR(q, k1 − q, k2, k3) + (2 cyclic)]

≈ 1

2σ2
R

{∫
d3q

(2π)3

[
T

(1)
R (q, k1 − q, k2, k3) + (2 cyclic)

]
+

∫
d3q

(2π)3

[
T

(2)
R (q, k1 − q, k2, k3) + (2 cyclic)

]}
, (5.29)

where “cyclic” denotes the cyclic combinations of k1, k2, and k3, and T
(1)
R and T

(2)
R denote

T
(1)
R (k1, k2, k3, k4) = T 1111

R (k1, k2, k3, k4), and T
(2)
R (k1, k2, k3, k4) = T 1112

R (k1, k2, k3, k4) +

(3 cyclic), respectively.

The first term in Eq. (5.29) is the integration of the linearly evolved primordial

curvature trispectrum, which contains two pieces: one proportional to f2NL and another to

gNL (see Eq. (5.19)). Therefore, we symbolically write the first line in Eq. (5.29) as

1

2σ2
R

∫
d3q

(2π)3

[
T

(1)
R (q, k1 − q, k2, k3) + (2 cyclic)

]
= gNLB

nG
gNL

(k1, k2, k3) + f2NLB
nG
f2
NL

(k1, k2, k3), (5.30)
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where

BnGf2
NL

(k1, k2, k3)

≡ 1

2σ2
R

[
4MR(k2)MR(k3)

∫
d3q

(2π)3
MR(q)MR(|k1 − q|)Pϕ(q)

× [Pϕ(|k1 − q|)Pϕ(|k2 + q|) + Pϕ(|k1 − q|)Pϕ(|k3 + q|)] + (2 cyclic)

+ 8MR(k2)MR(k3)Pϕ(k2)

×
∫

d3q

(2π)3
MR(q)MR(|k1 − q|)Pϕ(q)Pϕ(|k3 + q|) + (2 cyclic)

+ 8MR(k2)MR(k3)Pϕ(k3)

×
∫

d3q

(2π)3
MR(q)MR(|k1 − q|)Pϕ(q)Pϕ(|k2 + q|) + (2 cyclic)

+ 8MR(k2)MR(k3)Pϕ(k1) [Pϕ(k2) + Pϕ(k3)]

×
∫

d3q

(2π)3
MR(q)MR(|k1 − q|)Pϕ(q) + (2 cyclic)

+ 4MR(k2)MR(k3)Pϕ(k2)Pϕ(k3)

∫
d3q

(2π)3
MR(q)MR(|k1 − q|)

× [Pϕ(|k2 + q|) + Pϕ(|k3 + q|)] + (2 cyclic)

]
, (5.31)

BnGgNL
(k1, k2, k3) ≡ 1

2σ2
R

[
6MR(k2)MR(k3) [Pϕ(k2) + Pϕ(k3)]

×
∫

d3q

(2π)3
MR(q)MR(|k1 − q|)Pϕ(q)Pϕ(|k1 − q|) + (2 cyclic)

+ 12MR(k2)MR(k3)Pϕ(k2)Pϕ(k3)∫
d3q

(2π)3
MR(q)MR(|k1 − q|)Pϕ(q) + (2 cyclic)

]
. (5.32)

We find that the first three cyclic terms in Eq. (5.31) are parametrically small on large scales

and may be ignored for k ≲ 0.1 h Mpc−1. Therefore, one may just calculate the last two

cyclic terms:

BnGf2
NL

(k1, k2, k3) ≈ 1

2σ2
R

[
8MR(k2)MR(k3)Pϕ(k1) [Pϕ(k2) + Pϕ(k3)]

×
∫

d3q

(2π)3
MR(q)MR(|k1 − q|)Pϕ(q) + (2 cyclic)

+ 4MR(k2)MR(k3)Pϕ(k2)Pϕ(k3)

∫
d3q

(2π)3
MR(q)MR(|k1 − q|)

× [Pϕ(|k2 + q|) + Pϕ(|k3 + q|)] + (2 cyclic)

]
. (5.33)
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Next, the second term of Eq. (5.29) contains a cross-correlation between the non-

linearly evolved density field (δ(2) ∼ F
(s)
2 [δ(1)]2) and the primordial bispectrum, and thus it

is linearly proportional to fNL and F
(s)
2 . We present the explicit functional form of T 1112

R

as well as the full expression of the second term of Eq. (5.29) in Appendix J. Here, we only

show the final result. We write it as

1

2σ2
R

∫
d3q

(2π)3
T

(2)
R (q, k1 − q, k2, k3) + (2 cyclic)

= fNL

[
BnGm (k1, k2, k3) +BnG1

fNL
(k1, k2, k3)

+4BnG0
fNL

(k1, k2, k3) {GR(k1) + GR(k2) + GR(k3)}
]
, (5.34)

where

BnGm (k1, k2, k3)

≡ 4WR(k1)WR(k2)WR(k3)

×
{[

FR(k1)

MR(k1)
+

FR(k2)

MR(k2)

]
Pm(k1)Pm(k2)F

(s)
2 (k1, k2) + (2 cyclic)

}
, (5.35)

and

BnG1
fNL

(k1, k2, k3)

≡ 1

2σ2
R

[
8WR(k2)WR(k3)M(k3)Pm(k2)

∫
d3q

(2π)3
WR(|k1 − q|)WR(q)

×M(|k1 − q|)M(|k2 + q|)F (s)
2 (−k2, k2 + q)

×{Pϕ(k3)Pϕ(|k1 − q|) + Pϕ(k3)Pϕ(|k2 + q|) + Pϕ(|k1 − q|)Pϕ(|k2 + q|)}

+(5 permutation)

+8WR(k2)WR(k3)M(k3)

∫
d3q

(2π)3
WR(|k1 − q|)WR(q)

×M(|k1 − q|)M(|k2 + q|)Pm(q)F
(s)
2 (−q, k2 + q)

×{Pϕ(|k1 − q|)Pϕ(k3) + Pϕ(|k1 − q|)Pϕ(|k2 + q|) + Pϕ(k3)Pϕ(|k2 + q|)}

+(5 permutation)

+8 (WR(k2)WR(k3))
2
Pm(k3)M(k2)

∫
d3p

(2π)3
M(p)M(|k2 − p|)Pϕ(p)

×{Pϕ(|k2 − p|) + 2Pϕ(k2)}F (s)
2 (p, k2 − p) + (5 permutation)

]
. (5.36)

Here, M(k) ≡ MR(k)/WR(k).
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In the above equations we have defined two functions, FR(k) and GR(k), which are

given by

FR(k) ≡ 1

2σ2
R

∫
d3q

(2π)3
Pϕ(q)MR(q)MR(|k− q|)

[
Pϕ(|k− q|)
Pϕ(k)

+ 2

]
, (5.37)

GR(k) ≡ 1

2σ2
R

∫
d3q

(2π)3
WR(q)WR(|k− q|)

WR(k)
Pm(q)F

(s)
2 (k,−q). (5.38)

As shown in Fig. 5.6 and Fig. 5.7, both FR(k) and GR(k) are almost constant on large scales.

If we do not have a smoothing, i.e., R → 0, the large scale asymptotic value of GR(k) is

17/42. However, the presence of filter changes this asymptotic value. As k → 0,

GR(k) →
13

84
+

1

4σ2
R

∫
d3q

(2π)3
WR(q)Pm(q)

sin(qR)

qR
, (5.39)

whose value depends on the smoothing scale, R, as shown in Fig. 5.8.

Let us study the structure of each term in Eq. (5.34). The first piece is BnGm . On

very large scales, where WR(k) → 1 and FR(k) → 1, BnGm becomes a product of the usual

matter bispectrum for Gaussian initial conditions, BGm, and the scale dependent bias shown

in Eq. (5.6), as
2fNLFR(k)

MR(k)
=

3fNLH
2
0Ωm

k2T (k)

FR(k)

WR(k)
→ 3fNLH

2
0Ωm

k2T (k)
, (5.40)

as k → 0. Therefore, we can interpret this term as a scale dependent bias multiplying the

usual matter bispectrum for Gaussian initial conditions; however, this behavior is not generic

– in fact, the other terms cannot be expressed in terms of products of the scale-dependent

bias and the results in the continuous limit, Eq. (5.3).

The next piece is BnG1
fNL

(k1, k2, k3). By numerically calculating Eq. (5.36), we find

that the terms that contain F
(s)
2 (q, k − q) are parametrically small on large scales, and

that the dominant contributions come from the first permutation terms. Therefore, we

approximate Eq. (5.36) on large scale (k ≲ 0.1hMpc−1) as

BnG1
fNL

(k1, k2, k3)

≈ 1

2σ2
R

[
8WR(k2)WR(k3)Pm(k2)M(k3)Pϕ(k3)∫

d3q

(2π)3
WR(|k1 − q|)WR(q)M(|k1 − q|)M(|k2 + q|)

× [Pϕ(|k2 + q|) + Pϕ(|k1 − q|)]F (s)
2 (−k2, k2 + q) + (5 permutation)

]
. (5.41)
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Figure 5.6: Shape of the function, FR(k), defined in Eq. (5.37). We show FR(k) for four
different smoothing lengths: R = 1, 2, 5, 10 Mpc/h.

How about the last term of Eq. (5.34), 4BnG0
fNL

(k1, k2, k3){GR(k1)+GR(k2)+GR(k3)}?
As GR(k) → constant on large scales (Fig. 5.7), this piece becomes BnG0

fNL
multiplied by a

constant factor whose exact value depends on the smoothing scale, R (Fig. 5.8).

In summary, we have derived the new terms in the galaxy bispectrum, which arise

from the integration of the matter trispectrum. While we find one term, BnGm , includes the

scale-dependent bias which appears on the galaxy power spectrum, we also find that there

are more terms contributing to the galaxy bispectrum.

Eq. (5.30) along with Eqs. (5.31)–(5.33), and Eq. (5.34) along with Eqs. (5.35),

(5.36), (5.41) are the second main results of this paper. In the next sections, we shall

present the detailed assessment of the new terms we have derived in this section.

5.2.2.2 Shape Dependence

Let us consider the shape dependence. First of all, the last term of Eq. (5.34) has

the same shape dependence as BnG0
fNL

, as GR(k) is almost constant on large scale. Thus, it

peaks at the squeezed configurations as BnG0
fNL

does. How about the shape dependence of

the other terms?
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Figure 5.7: Shape of the function, GR(k), defined in Eq. (5.38). We show GR(k) for four
different smoothing lengths: R = 1, 2, 5, 10 Mpc/h.

Figure 5.8: Large-scale asymptotic value of GR(k) as a function of the smoothing scale R.
The value for R = 1 [Mpc/h], which is used for generating Figs. 5.10 to 5.14, is 0.3718.
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All terms in Eqs. (5.32), (5.33), (5.41) have Pϕ(ki) outside of the integral, and

Eq. (5.35) contains 1/MR(k) ∝ k−2, which suggests that all of BnGgNL
, BnG

f2
NL

, BnG1
fNL

, and BnGm

peak at the squeezed configurations. For sufficiently large scales in which T (k) ≈ 1, and for

a scale-invariant spectrum (Pϕ(k) ∝ 1/k3), we may write down Eqs. (5.35), (5.41), (5.33),

and (5.32), as

BnGm (k1, k2, k3) ∝
(
k2
k1

+
k1
k2

)[
5

7
+

k1 · k2
2k1k2

(
k1
k2

+
k2
k1

)
+

2

7

(
k1 · k2
k1k2

)2
]

+(2 cyclic), (5.42)

BnG1
fNL

(k1, k2, k3) ∝ k2
k3

∫
d3q

q
q3
(
|k1 − q|2

|k2 + q|
+

|k2 + q|2

|k1 − q|

)
WR(|k1 − q|)WR(q)

×T (|k1 − q|)T (|k2 + q|)F (s)
2 (−k2, k2 + q)

+(5 permutation), (5.43)

BnGf2
NL

(k1, k2, k3) ∝ 4

k2k3

[
2(k32 + k33)

k31

∫
d3q

q
|k1 − q|2T (q)W̃R(q)

×T (|k1 − q|)W̃R(|k1 − q|) +
∫
d3q q2|k1 − q|2

×
(

1

|k2 + q|3
+

1

|k3 + q|3

)
T (q)W̃R(q)

×T (|k1 − q|)W̃R(|k1 − q|)
]
+(2 cyclic), (5.44)

BnGgNL
(k1, k2, k3) ∝ 6

k2k3

[
(k32 + k33)

∫
d3q

q

1

|k1 − q|
T (q)W̃R(q)

×T (|k1 − q|)W̃R(|k1 − q|) + 2

∫
d3q

q
|k1 − q|2T (q)W̃R(q)

×T (|k1 − q|)W̃R(|k1 − q|)
]
+(2 cyclic), (5.45)

respectively. For a given k1, all of these terms have the largest signals when k3 is small, i.e.,

the squeezed configurations. Note that we do not use the exact scale-invariant spectrum for

the numerical calculation, but use the WMAP 5-year best-fitting value reported in Table 1

(“WMAP+BAO+SN”) of Komatsu et al. (2009).

The top-left and bottom-left panels of Fig. 5.4 show BnGm and BnG1
fNL

as a function

of k2/k1 and k3/k1, respectively, for k1 = 0.01 h Mpc−1. The top-right and bottom-right
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panels of Fig. 5.4 show the same quantities for k1 = 0.05 h Mpc−1. We also show BnGgNL
and

BnG
f2
NL

in the top-left and bottom-left panels of Fig. 5.5 for k1 = 0.01 h Mpc−1, and top-right

and bottom-right for for k1 = 0.05 h Mpc−1. In all cases we find that BnGm , BnG1
fNL

, BnGgNL

and BnG
f2
NL

peak at the squeezed configurations, as expected from the above argument.

We find that the shape dependence of BnG0
fNL

and that of BnG1
fNL

, BnGgNL
are quite

similar, whereas that of BnGm is higher toward the elongated triangles, and that of BnG
f2
NL

is

more sharply peaked at the squeezed configuration.

We can understand this behavior analytically as follows. In order to simplify

the analysis, we consider a scale-invariant curvature power spectrum, Pϕ = Pϕ0/k
3, on

large scales where Eqs. (5.43), (5.42), (5.44), and (5.45) are valid. On such a large scale,

MR(k) can be approximated as MR(k) ≃ 2k2/(3H2
0Ωm) ≡ M0k

2, where M0 ≃ 2.16 ×
107 (0.277/Ωm) [Mpc/h]2 is a constant. We focus on the squeezed triangle, k1 = k2 =

αk3 ≡ k (α ≫ 1), where the signals of all the primordial non-Gaussianity terms are maxi-

mized. The triangles in this configuration lie on the upper side of the triangular region of

(k3/k1, k2/k1) plane in Fig. 5.4 and Fig. 5.5, and the triangle approaches the exact squeezed

limit as α → ∞. With this parametrization, we compare the dominant contributions of

each of these primordial non-Gaussianity terms.

First, we shall analyze the terms proportional to fNL: BnG0
fNL

, BnGm , and BnG1
fNL

.

The largest contribution to BnG0
fNL

in the squeezed configurations occurs when k3 is in the

denominator:

BnG0
fNL

= 2M3
0P

2
ϕ0

(
k21
k2k3

+
k22
k3k1

+
k23
k1k2

)
≃ 2M3

0P
2
ϕ0

(
k21
k2k3

+
k22
k3k1

)
= 4αM3

0P
2
ϕ0. (5.46)

To compute BnGm , which contains F
(s)
2 , we note that, in the squeezed limit, the

angular cosines between two wave vectors are k1 · k2/(k1k2) = −1 + 1/α2 ≃ −1 and k2 ·
k3/(k2k3) = k1 · k3/(k1k3) = −1/(2α). We thus find

BnGm = 8M3
0P

2
ϕ0

(
α+

1

α

)[
5

7
− 1

4α

(
α+

1

α

)
+

1

14α2

]
≃ 26

7
αM3

0P
2
ϕ0. (5.47)

The detailed analysis for BnG1
fNL

is more complicated, as Eq. (5.41) involves a non-

trivial integration. We simplify the situation by only analyzing the dominant term, which
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can be written as

BnG1
fNL

≈ 8M3
0P

2
ϕ0

[
k2
k3

H(k1, k2) +
k1
k3

H(k2, k1)

]
= 8αM3

0P
2
ϕ0 [H(k1, k2) +H(k2, k1)] , (5.48)

where H(k1, k2) is the integration that appears in Eq. (5.41) including 1/(2σ2
R) pre-factor.

Note that this integration depends only on the magnitudes of two vectors and the angle

between them; thus, for the squeezed configuration we are interested in here, H(k2, k1)

depends only weakly on α – they depend on α only through the inner product of k1 · k2 =

k2(−1 + 1/α2).

Second, we analyze BnGgNL
. We find that the first cyclic terms in Eq. (5.32) are small

in the squeezed limit, and the dominant contribution to BnGgNL
is given by

BnGgNL
= 12M2

0P
2
ϕ0

[
I(k1)

k2k3
+

I(k2)

k3k1
+

I(k3)

k1k2

]
≃ 12M2

0P
2
ϕ0

[
I(k1)

k2k3
+

I(k2)

k3k1

]
, (5.49)

where we have defined

I(k) ≡ 1

2σ2
R

∫
d3q

(2π)3
MR(q)MR(|k− q|)Pϕ(q). (5.50)

We find that I(k) ≃ 0.5 and is almost independent of k on large scales (e.g., k ≲ 0.03 hMpc−1

for R = 1.0 Mpc/h; see Fig. 5.9). Therefore, by writing I(k) = I0, we obtain

BnGgNL
≃ 24αM2

0P
2
ϕ0

I0

k2
. (5.51)

These results show that all the terms we have analyzed analytically so far, BnG0
fNL

,

BnGm , BnG1
fNL

, and BnGgNL
, have the same shape (i.e., α) dependence in the squeezed config-

urations: they both increase linearly as α increases. This explains the shape dependence

computed from the full numerical calculations presented in Fig. 5.4 and the top panels of

Fig. 5.5.

Finally, we analyze BnG
f2
NL

. We find that the second cyclic terms in Eq. (5.33) are
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Figure 5.9: Shape of the integration that appears in the dominant term of BnG
f2
NL

and BnGgNL
,

Eq. (5.50). We use four different smoothing scales: R = 1 , 2, 5, and 10 Mpc/h.

small in the squeezed configurations. The dominant terms are:

BnGf2
NL

= 8M2
0P

2
ϕ0

×
[
k32 + k33
k2k3k31

I(k1) +
k33 + k31
k3k1k32

I(k2) +
k31 + k32
k1k2k33

I(k3)

]
≃ 8M2

0P
2
ϕ0

k31 + k32
k1k2k33

I(k3)

≃ 16α3M2
0P

2
ϕ0

I0

k2
. (5.52)

Therefore, BnG
f2
NL

increases more sharply as it approaches the squeezed limit, BnG
f2
NL

∝ α3.

This sharp increase of BnG
f2
NL

relative to the other terms, and that there are many new

terms that are of the same order of magnitude as BnG0
fNL

, imply that the formula derived by

Sefusatti & Komatsu (2007) may not be valid in the squeezed configuration, where BnG
f2
NL

may

dominate over BnGfNL
. This is particularly important because it is the squeezed configuration

that gives the largest signal from the primordial non-Gaussianity. We shall study this point

in more detail in the next section.

A careful inspection of Eq. (5.44) shows that the second term within the square

bracket diverges when k2+q = 0 or k3+q = 0. This is due to the fact that Pϕ(k) ∝ 1/k4−ns
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Figure 5.10: Scale and shape dependence of the galaxy bispectrum terms that are linearly
proportional to fNL, as a function of k1. Except for the bottom-right panel, we use R =
1 Mpc/h. (Top Left) The squeezed triangles with k1 = k2 = 100k3, (Top Right) the
elongated triangles with k1 = k2 + k3 and k2 = 3k3, (Middle Left) the folded triangles
with k1 = 2k2 = 2k3, (Middle Right) the isosceles triangles with 3k1 = 4k2 = 4k3, and
(Bottom Left) the equilateral triangles with k1 = k2 = k3. The thick dot-dashed, dashed,
solid, and dotted lines show the contributions from the primordial non-Gaussianity: the
BnG0
fNL

(Eq. (5.24)), b̃2/b1B
nG
m (Eq. (5.35)), 4(b̃2/b1) [GR(k1) + GR(k2) + GR(k3)]B

nG0
fNL

(GR(k)

defined in Eq. (5.38)), and b̃2/b1B
nG1
fNL

(Eq. (5.41)) terms, respectively. The thin dotted and

dashed lines show the non-linear effects: BGm (Eq. (5.23)) and the non-linear bias (the second
term in Eq. (5.11)), respectively. We use the standard value of b̃2/b1 ≡ δc ≃ 1.686 from
spherical collapse model. (Bottom Right) Dependence of the squeezed bispectrum on the
smoothing scale, R, showing that the dependence is negligible for k1 ≪ 1/R.
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Figure 5.11: Scale and shape dependence of various bispectrum terms, B(k1, k2, k3), as a
function of k1. For the figure except for the bottom right, we use R = 1 Mpc/h. (Top Left)
The squeezed triangles with k1 = k2 = 100k3, (Top Right) the elongated triangles with k1 =
k2+k3 and k2 = 3k3, (Middle Left) the folded triangles with k1 = 2k2 = 2k3, (Middle Right)
the isosceles triangles with 3k1 = 4k2 = 4k3, and (Bottom Left) the equilateral triangles
with k1 = k2 = k3. The thick dot-dashed, triple-dot-dashed, and solid lines show the
contributions from the primordial non-Gaussianity: the fNLB

tot
fNL

(Eq. (5.53)), b̃2/b1gNLB
nG
gNL

(Eq. (5.32)), and b̃2/b1f
2
NLB

nG
f2
NL

(Eq. (5.33)) terms, respectively. The thin dotted and dashed

lines show the non-linear effects: BGm (Eq. (5.23)) and the non-linear bias (the second term
in Eq. (5.11)), respectively. We use the standard value of b̃2/b1 ≡ δc ≃ 1.686 from spherical
collapse model. (Bottom Right) Dependence of the squeezed bispectrum on the smoothing
scale, R, showing that the dependence is negligible for k1 ≪ 1/R.
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Figure 5.12: Same as Fig. 5.11, but for squeezed triangles with different ratios: α = 50
and α = 10. (Top) All the parameters are the same as in Fig. 5.11. (Middle) z = 3 and
b2/b1 = 1.5. The non-Gaussianity parameters, fNL = 40 and gNL = 104, are the same as in
Fig. 5.11. (Bottom) z = 3 and b2/b1 = 1.5. The non-Gaussianity parameters, fNL = 4 and
gNL = 100.
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and thus Pϕ(k) diverges as k → 0 for ns < 4. To avoid the divergence we set Pϕ(k) = 0 at

k ≤ kmin, and use kmin = 10−6 hMpc−1. Fortunately the divergence is mild and the results

on the squeezed configurations, for which BnG
f2
NL

gives the most important contribution, are

insensitive to kmin: changing kmin = 10−6 h Mpc−1 to kmin = 10−9 h Mpc−1 results in

negligible changes in the squeezed configurations.

On the other hand, the folded and equilateral configurations are more sensitive

to kmin, and we find that the difference between kmin = 10−6 h Mpc−1 and kmin =

10−9 h Mpc−1 is scale-dependent: at k1 = 0.01 h Mpc−1 the differences are negligible

for all shapes, whereas the differences reach ∼ 40% at k ∼ 1 h Mpc−1. (Note that the

difference in the squeezed configuration reaches 1% at k ∼ 1 h Mpc−1, being totally negligi-

ble on larger scales.) While this divergence does not have much observational consequences

(because the signals in the other configurations at k ≳ 0.01 h Mpc−1 would be dominated

by the other non-linear effects: BGm, non-linear bias and terms proportional to fNL, as we

show in the next section), there may be a better treatment of the divergence than setting

Pϕ(k) = 0 at k ≤ kmin.

5.2.3 Scale Dependence

How important are the primordial non-Gaussianity terms, BnG0
fNL

, BnG1
fNL

, BnGm , BnG
f2
NL

,

and BnGgNL
, relative to BGm and the non-linear bias term? Which one is the most dominant

of the primordial terms, terms proportional to fNL, B
nG
f2
NL

, or BnGgNL
? How about the scale-

dependence? How about the shape dependence?

We collect all the terms proportional to fNL, and call it BtotfNL
:

BtotfNL
≡ BnG0

fNL
+
b̃2
b1

[
BnGm +BnG1

fNL

+ 4 (GR(k1) + GR(k2) + GR(k3))B
nG0
fNL

]
. (5.53)

Throughout this section, we use the standard value of b̃2/b1 = 3(12π)2/3/20 ≃ 1.68 from a

spherical collapse model.

Figure 5.10 shows the scale and shape dependence of each term in Eq. (5.53) eval-

uated at z = 0. For all configurations shown in this figure, the primordial non-Gaussian

term calculated in Sefusatti & Komatsu (2007) is the smallest among four fNL terms, which

means that the non-Gaussian signal on large scales is much bigger than recognized before.

For the squeezed triangle, all of the terms in Eq. (5.53) depend on k1 in a similar
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way. We find their ratios by comparing Eqs. (5.46), (5.47), and (5.48):

BnG0
fNL

: BnGm : BnG1
fNL

≃ 1 :
26

28
: 2.96. (5.54)

Note that we have used the numerical value of H(k1, k2) ≃ 0.741 for α = 100, and this value

slightly increases when α decreases9. Therefore, for the squeezed triangle, we find a simple

and illuminating result:

BtotfNL
(k1, k2, k3) ≃ 15BnG0

fNL
(k1, k2, k3). (5.55)

This is an important result, showing that the statistical error on fNL from the galaxy

bispectrum will be smaller by at least a factor of 15, compared to what was obtained in

Sefusatti & Komatsu (2007). Note that this result is valid only for the high-density peak

limit, i.e., ν ≫ 1, which implies b̃2/b1 = 1.68. For lower density peaks we would find a

smaller factor.

Figure 5.11 and the top panels of Figure 5.12 show various bispectrum terms in

various triangle configurations (see Fig. 5.1 for the visual representations of the triangles),

evaluated at z = 0. As an example we use the following bias and non-Gaussianity parame-

ters: b2/b1 = 0.5, fNL = 40, and gNL = 104. The value of the linear bias, b1, is irrelevant

here as it does not change the relative importance of terms in Eq. (5.16), and thus we show

the bispectrum terms divided by b31.

The message is quite simple: it is the squeezed configuration that provides the best

window into the primordial non-Gaussianity. The other non-linear effects become more and

more dominant as we move from the squeezed to the equilateral, i.e., (a) to (e) in Fig. 5.1.

Even with this generous amount of non-Gaussian signals, fNL = 40 and gNL = 104, only

fNL term can be visible in the isosceles and equilateral configurations on large scales.

For the the non-squeezed configurations, the f2NL and gNL terms with the above

chosen parameters are comparable and the fNL term is order of magnitude greater than the

f2NL and gNL terms; however, the f2NL term is the most dominant of all on large scales in

the squeezed configuration (α > 10).

We can understand these results analytically by comparing Eqs. (5.55), (5.46),

(5.51), and (5.52). For the squeezed triangles with k1 = k2 = αk3 (α ≫ 1) and a scale-

9On large scales, k < 0.01 h/Mpc, the numerical ratio BnG1
fNL

/BnG0
fNL

is constant, and is equal to 3.15,

3.06, 3.00, and 2.98 for α = 10, 20, 50, and 100, respectively.
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invariant spectrum, Pϕ ∝ k−3, we find

fNLB
tot
fNL

f2NLB
nG
f2
NL

≃ 15

fNLα2

M0k
2

4I0(b̃2/b1)

≃ 0.0240

(
100

α

)2
40

fNL

(
k

0.01 h Mpc−1

)2

, (5.56)

gNLB
nG
gNL

f2NLB
nG
f2
NL

≃ 3

2α2

gNL

f2NL

≃ 0.000938

(
100

α

)2(
40

fNL

)2
gNL

104
, (5.57)

fNLB
tot
fNL

gNLBnGgNL

≃ 15
fNL

gNL

M0k
2

6I0

≃ 25.6
fNL

40

104

gNL

(
k

0.01 h Mpc−1

)2

. (5.58)

These estimates confirm that Bf2
NL

dominates over BfNL
and BgNL

in the squeezed configu-

rations on large scales, k ≲ 0.05 h Mpc−1 for α = 100, and k ≲ 0.03 h Mpc−1 for α = 50.

For α = 10, f2NL term dominates only on the extremely large scales: k ≲ 0.006 h Mpc−1.

Note that for a given configuration (for a given α), BnGfNL
/BnG

f2
NL

∝ k2 andBnGfNL
/BnGgNL

∝
k2 while BnGgNL

/BnG
f2
NL

is independent of k, which is consistent with what we show in Fig. 5.11

on k ≲ 0.1 h Mpc−1.

In summary, the most unexpected and important results of our study are as follows.

• The terms that are linearly proportional to fNL, derived in Sefusatti & Komatsu

(2007), receive additional contributions, and are enhanced by a factor of ∼ 15 for the

squeezed triangles (see Eq. (5.55)).

• The f2NL (or τNL) term actually dominates over the fNL term by a large factor for the

squeezed triangles (see the top-left panel of Fig. 5.11).

This suggests that the galaxy bispectrum is more sensitive to fNL than previously recognized

by Sefusatti & Komatsu (2007), greatly enhancing our ability to detect the primordial non-

Gaussianity of local type. On very large scales, k1 ≪ 0.01 h Mpc−1, even the gNL term

(with gNL = 104) dominates over the fNL term, giving us a hope that perhaps we can obtain

a meaningful limit on this term using the galaxy bispectrum.
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5.2.4 Redshift Dependence

The quantities we have calculated so far are evaluated at the present epoch, z = 0.

At higher redshift, each quantity needs to be scaled with some powers of the linear growth

factor D(z), which is normalized to 1 at the present epoch. We find PR ∝ D2(z), BGm ∝
D4(z), BnG0

fNL
∝ D3(z), BnGm ∝ D3(z), BnG1

fNL
∝ D3(z), BnG

f2
NL

∝ D2(z), and BnGgNL
∝ D2(z).

Therefore, the final result for the halo bispectrum from the local type non-Gaussianity is

Bg(k1, k2, k3, z)

= b31(z)D
4(z)

[
BGm(k1, k2, k3) +

b2(z)

b1(z)
{PR(k1)PR(k2) + (2 cyclic)}

+
fNL

D(z)
BnG0
fNL

(k1, k2, k3) +
b̃2(z)

b1(z)

{
fNL

D(z)

(
BnGm (k1, k2, k3)

+4 (GR(k1) + GR(k2) + GR(k3))B
nG0
fNL

(k1, k2, k3) +BnG1
fNL

(k1, k2, k3)

)
+

f2NL

D2(z)
BnGf2

NL
(k1, k2, k3) +

gNL

D2(z)
BnGgNL

(k1, k2, k3)

}]
, (5.59)

where BGm, PR, B
nG0
fNL

, BnGm , BnG1
fNL

, BnG
f2
NL

, and BnGgNL
are evaluated at z = 0.

From equation (5.59) it is clear that the contributions from non-Gaussian initial

conditions become more and more important as we go to higher redshifts. The new terms

that we have derived in this paper, the BnG
f2
NL

and BnGgNL
terms, are even more important than

the term derived by Sefusatti & Komatsu (2007), BnG0
fNL

, This property makes high-redshift

galaxy surveys particularly a powerful probe of primordial non-Gaussianity.

Fig. 5.13 and the middle panel of Fig. 5.12 show the bispectrum terms at z = 3.

Note that we use a larger value for the non-linear bias, b2/b1 = 1.5, in accordance with a

halo model (Cooray & Sheth, 2002). At this redshift, with fNL = 40 and gNL = 104, the

gNL and f2NL terms dominate over the non-linear effects also in the elongated, folded and

isosceles configurations at k ≲ 0.01 h Mpc−1, as well as in the squeezed ones. The fNL

terms dominate over the non-linear effects on even smaller scales, and the importance of the

f2NL and gNL terms relative to the fNL term is greater, as expected from their dependence

on D(z).

5.3 Discussion and Conclusions

Let us come back to this question, “can we still use Sefusatti & Komatsu’s equation,

Eq. (5.3), with b1 replaced by the scale-dependent bias, Eq. (5.6)?” The answer is clearly
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Figure 5.13: Same as Fig. 5.11, but for z = 3 and b2/b1 = 1.5. The non-Gaussianity
parameters, fNL = 40 and gNL = 104, are the same as in Fig. 5.11.
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no: the primordial non-Gaussianity gives the largest signal in the squeezed limit, whereas

the non-linear gravitational evolution and non-linear bias give the minimal signals in the

same limit. This means that these effects are physically totally distinct, and thus a mere

scale-dependent rescaling of one effect does not give another. Therefore, replacing b1 in

Eq. (5.3) with the scale-dependent bias in Eq. (5.6) results in an incorrect prediction. For

example, even though we have a term similar to that of the scale-dependent bias, BnGm , in

our final expression of the galaxy bispectrum for the local-type primordial non-Gaussianity,

there are many more terms that do not look like the scale-dependent bias that appears in

the galaxy power spectrum. Furthermore, BnGm is by no means the most dominant term.

In this paper, we have derived a general expression for the bispectrum of density

peaks in the presence of primordial non-Gaussianity (Eq. (5.11)), using the MLB formula

as well as using the local bias ansatz. This result is general as long as we consider the

bispectrum of high density peaks, i.e., ν = δc/σR ≫ 1, which is equivalent to highly biased

galaxy populations, b1 ≫ 1, on large scales in which the n-point correlation functions

are much smaller than unity. (This condition was necessary for us to Taylor expand the

exponential in Eq. (5.8).)

We have applied our formula to the local form of primordial non-Gaussianity in

Bardeen’s curvature perturbations, Φ = ϕ+ fNLϕ
2 + gNLϕ

3, and found new terms that are

proportional to fNL, f
2
NL and gNL, which were absent in the formula derived by Sefusatti &

Komatsu (2007). We have examined the shape and scale dependence of these new terms as

well as those of the known terms, and found that the primordial non-Gaussianity contribu-

tions yield the largest signals in the squeezed triangle configurations, where the non-linear

gravitational evolution and non-linear bias yield the minimal signals. This is a good news:

this property enables us to distinguish the primordial and non-primordial effects easily.

The effects of primordial non-Gaussianity on the galaxy bispectrum are more im-

portant in a high redshift universe, and thus high-redshift galaxy surveys are particularly a

potent probe of the physics of inflation via measurements of primordial non-Gaussianity.

The most significant conclusion of this paper is that, in the squeezed configurations,

the f2NL term actually dominates over the fNL term by a large factor, and, on large scales,

newly derived fNL term dominates over the non linear terms for all configurations. Because

of this, the galaxy bispectrum should be more sensitive to fNL than previously recognized:

in the high density peak limit, we have found a factor of ∼ 15 enhancement for the fNL term

studied in Sefusatti & Komatsu (2007). In addition it is also sensitive to a new term, gNL.

Figure 5.14 and the bottom panel of Fig. 5.12 shows the bispectrum at z = 3 with much
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reduced primordial non-Gaussianity parameters, fNL = 4 and gNL = 100. In the squeezed

configurations (α = 100), the f2NL term is still well above the usual terms from Gaussian

initial conditions at k ≲ 0.1 h Mpc−1, the fNL term is above at k ≲ 0.4 Mpc−1, and the

gNL term is above at k ≲ 0.01 h Mpc−1. Even with the milder squeezed limit for α = 10,

the fNL term still is above the Gaussian term at k ≲ 0.02 Mpc−1.

The fact that the f2NL term dominates in the squeezed limit is particularly interest-

ing, as it provides us with the unique window into the physics of inflation in the following

way. Recently, a number of groups (e.g., Boubekeur & Lyth, 2006; Huang & Shiu, 2006;

Byrnes et al., 2006; Buchbinder et al., 2008) have shown that the primordial trispectrum

can in general be written as

TΦ(k1, k2, k3, k4)

= 6gNL [Pϕ(k1)Pϕ(k2)Pϕ(k3) + (3 cyclic)] +
25

18
τNL

× [Pϕ(k1)Pϕ(k2) {Pϕ(k13) + Pϕ(k14)}+ (11 cyclic)] , (5.60)

instead of Eq. (5.19). Different models of the early universe predict different relations

between τNL and fNL. Therefore, separately detecting the τNL (i.e., f2NL) and fNL terms can

be a powerful tool for constraining the model of the early universe.

How well can one constrain these parameters with the current or planned future

high-redshift galaxy surveys? As we based our analysis in this paper on the assumption of

high density peaks, i.e., ν ≫ 1, the relative importance of the new terms depends on how

high the peaks (in which the observed galaxies reside) are. For example, for SDSS-LRG

sample (z = 0.315, ng = 1.36 × 10−4 [h/Mpc]3) where δc/σR ≃ 1.57, the halo model (See

Sefusatti & Komatsu, 2007, for a detailed method) gives b̃2/b1 ≃ 0.5, which is about a third

of the value from the high peak limit that we have used in this paper. Therefore, we expect

that the non-Gaussian signal for the SDSS-LRG bispectrum is smaller by the same factor.

Detailed analysis will be presented in a forthcoming paper.

5.4 Summary of Equations

As various terms contributing to the galaxy bispectrum are scattered over various

places in the paper, we collect them together in this Appendix. For galaxies of size R

(or mass M = (4π/3)R3ρ̄m, where ρ̄m is the cosmic mean matter density), the galaxy
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Figure 5.14: Same as Fig. 5.13, but for smaller non-Gaussianity parameters, fNL = 4 and
gNL = 100.
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bispectrum at redshift z is given by

Bg(k1, k2, k3, z)

= b31(z)D
4(z)

[
BGm(k1, k2, k3) +

b2(z)

b1(z)
{PR(k1)PR(k2) + (2 cyclic)}

+
fNL

D(z)
BnG0
fNL

(k1, k2, k3) +
b̃2(z)

b1(z)

{
fNL

D(z)

(
BnGm (k1, k2, k3)

+4 (GR(k1) + GR(k2) + GR(k3))B
nG0
fNL

(k1, k2, k3) +BnG1
fNL

(k1, k2, k3)

)
+

f2NL

D2(z)
BnGf2

NL
(k1, k2, k3) +

gNL

D2(z)
BnGgNL

(k1, k2, k3)

}]
, (5.61)

where b1(z) and b2(z) are the linear and non-linear bias parameters, respectively. As we

mentioned in §2, b̃2(z)/b1(z) would be equal to δc within the context of the MLB formalism,

but the precise value has to be measured from N-body simulations.

Note that the redshift evolution of each term in explicitly given by the powers of

the linear growth factor D(z), and various contributions, BGm, PR, B
nG
m , BnG0

fNL
, BnG1

fNL
, BnG

f2
NL

,

and BnGgNL
, are evaluated at z = 0 with

BGm(k1, k2, k3) = 2F
(s)
2 (k1, k2)WR(k1)WR(k2)WR(k3)Pm(k1)Pm(k2)

+(2 cyclic) (5.62)

BnG0
fNL

(k1, k2, k3) = 2
PR(k1)

MR(k1)

PR(k2)

MR(k2)
MR(k3) + (2 cyclic) (5.63)

BnGm (k1, k2, k3) = 4WR(k1)WR(k2)WR(k3)

[
FR(k1)

MR(k1)
+

FR(k2)

MR(k2)

]
×Pm(k1)Pm(k2)F

(s)
2 (k1, k2) + (2 cyclic) (5.64)
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BnG1
fNL

(k1, k2, k3) ≈ 1

2σ2
R

[
8WR(k2)WR(k3)Pm(k2)M(k3)Pϕ(k3)

×
∫

d3q

(2π)3
WR(|k1 − q|)WR(q)M(|k1 − q|)M(|k2 + q|)

× [Pϕ(|k2 + q|) + Pϕ(|k1 − q|)]F (s)
2 (−k2, k2 + q)

+(5 permutation)

]
(5.65)

BnGf2
NL

(k1, k2, k3) ≈ 1

2σ2
R

[
8MR(k2)MR(k3)Pϕ(k1) [Pϕ(k2) + Pϕ(k3)]

∫
d3q

(2π)3

×MR(q)MR(|k1 − q|)Pϕ(q) + (2 cyclic)

+4MR(k2)MR(k3)Pϕ(k2)Pϕ(k3)

∫
d3q

(2π)3
MR(|k1 − q|)

×MR(q) [Pϕ(|k2 + q|) + Pϕ(|k3 + q|)] + (2 cyclic)

]
(5.66)

BnGgNL
(k1, k2, k3) =

1

2σ2
R

[
6MR(k2)MR(k3) [Pϕ(k2) + Pϕ(k3)]

∫
d3q

(2π)3

×MR(q)MR(|k1 − q|)Pϕ(q)Pϕ(|k1 − q|) + (2 cyclic)

+ 12MR(k2)MR(k3)Pϕ(k2)Pϕ(k3)

∫
d3q

(2π)3
MR(q)

×MR(|k1 − q|)Pϕ(q) + (2 cyclic)

]
. (5.67)

Note that we show only dominant terms for BnG1
fNL

and BnG
f2
NL

on large scales. One can find

the exact definitions in Eq. (5.31) and Eq. (5.36). Finally, FR(k) and GR(k) are defined as

follows.

FR(k) ≡ 1

2σ2
R

∫
d3q

(2π)3
Pϕ(q)MR(q)MR(|k− q|)

[
Pϕ(|k− q|)
Pϕ(k)

+ 2

]
(5.68)

GR(k) ≡ 1

2σ2
R

∫
d3q

(2π)3
WR(q)WR(|k− q|)

WR(k)
Pm(q)F

(s)
2 (k,−q) (5.69)
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Chapter 6

Galaxy-CMB and galaxy-galaxy lensing on large scales:
sensitivity to primordial non-Gaussianity

We can also probe the scale dependent bias generated from Primordial non-Gaussianity

by the weak gravitational lensing (see Bartelmann & Schneider (2001) for a review)1. The

scale-dependent bias2 was theoretically discovered when the authors of Dalal et al. (2008)

studied the form of the cross-correlation power spectrum between the dark matter halos

and the underlying matter density fluctuations, Phm(k) = [b1 +∆b(k)]Pm(k), where Pm(k)

is the power spectrum of matter density fluctuations, and

∆b(k) =
3(b1 − 1)fNLΩmH

2
0δc

D(z)k2T (k)
. (6.1)

Here, D(z) and T (k) are the growth rate and the transfer function for linear matter density

fluctuations, respectively, and δc = 1.68 is the threshold linear density contrast for a spheri-

cal collapse of an overdensity region. The k2 factor in the denominator of ∆b(k) shows that

this effect is important only on very large scales. Highly biased tracers are more sensitive

to fNL.

We can observe Phm(k) by cross-correlating the locations of galaxies or clusters of

galaxies with the matter density fluctuations traced by the weak gravitational lensing. In this

chapter, we study the modification of two-point cross-correlation statistics of weak lensing

- galaxy-galaxy lensing and galaxy-Cosmic Microwave Background (CMB) cross-correlation

- due to fNL
3.
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Figure 6.1: Coordinate system and γ1 and γ2. The shear along e1 has γ1 > 0 and γ2 = 0,
whereas the shear along e2 has γ1 < 0 and γ2 = 0. The shear along e1 + e2 has γ1 = 0 and
γ2 > 0, whereas The shear along e1 − e2 has γ1 = 0 and γ2 < 0.
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6.1 Halo-mass correlation from galaxy-galaxy lensing

6.1.1 Formula

One efficient way of measuring Phm(k) is to use the so-called galaxy-galaxy lensing

technique Tyson et al. (1984); Brainerd et al. (1996); McKay et al. (2001); Guzik & Seljak

(2002); Sheldon et al. (2004); Mandelbaum et al. (2006b,a): choose one lens galaxy at

a redshift zL, and measure the mean of tangential shears in images of lensed (source or

background) galaxies around the chosen central lensing galaxy as a function of radii from

that central galaxy. Finally, average those mean tangential shears over all lensing galaxies

at the same redshift, zL.

We begin with the definition of the tangential shear, γt, on the flat sky4

γt(θ) = −γ1(θ) cos(2ϕ)− γ2(θ) sin(2ϕ), (6.2)

where θ = (θ cosϕ, θ sinϕ), and γ1 and γ2 are components of the shear field. 5 The

coordinate system and the meaning of γ1 and γ2 are explained in Fig. 6.1. For purely

tangential shears shown in Fig. 6.1, γt is always positive. This property allows us to average

γt over the ring around the origin to estimate the mean tangential shear, γt:

γt(θ) ≡
∫ 2π

0

dϕ

2π
γt(θ, ϕ). (6.3)

On the flat sky, γ1 and γ2 are related to the projected mass density fluctuation in Fourier

space, κ(l), as

γ1(θ) =

∫
d2l

(2π)2
κ(l) cos(2φ)eil·θ, (6.4)

γ2(θ) =

∫
d2l

(2π)2
κ(l) sin(2φ)eil·θ, (6.5)

1Previous version of this chapter was published in Jeong, D., Komatsu, E. & Jain, B. 2009, Phys. Rev.
D, 80, 123527.

2For the derivation of the scale dependent bias, see Appendix I.3.
3A significant fraction of this chapter has been published in Jeong, D., Komatsu, E., & Jain B. 2009

Phys. Rev. D, 80, 123527.
4For an all-sky analysis, this relation needs to be replaced with the exact relation using the spin-2

harmonics Stebbins (1996).
5As the shear has two independent components, we are ignoring another linear combination of γ1 and

γ2 by only focusing on the tangential shear. In particular, on large scales there is information in the other
component of the shear, and thus the full analysis including both shear components (not just tangential
one) yields a modest (smaller than a factor of

√
2) improvement in the signal-to-noise ratio. Moreover,

using magnification (in addition to shears), which is proportional to the convergence field κ, can also yield
a modest improvement.
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where φ is the angle between l and e1, i.e., l = (l cosφ, l sinφ). Using Eqs. (6.4) and (6.5)

in Eq. (6.2), we write the tangential shear in terms of κ(l) as

γt(θ) = −
∫

d2l

(2π)2
κ(l) cos[2(ϕ− φ)]eilθ cos(ϕ−φ). (6.6)

The mean tangential shear (Eq. (6.3)) is then given by

γt(θ) = −
∫

d2l

(2π)2
κ(l)

∫ 2π

0

dϕ

2π
cos[2(ϕ− φ)]eilθ cos(ϕ−φ)

=

∫
d2l

(2π)2
κ(l)J2(lθ). (6.7)

Here, we have used the identity

Jm(x) =

∫ 2π+α

α

dψ

2π
ei(mψ−x sinψ), (6.8)

with m = 2, ψ = ϕ− φ− π/2, α = φ+ π/2, and
∫ 2π

0
dψ sin(2ψ)eix cosψ = 0.

The ensemble average of the mean tangential shear vanishes, i.e., ⟨γt⟩ = 0, as

⟨κ⟩ = 0. This simply means that the average of the mean tangential shears, measured

with respect to random points on the sky, vanishes. We obtain non-zero values when we

average the mean tangential shears measured with respect to the locations of halos (galaxies

or clusters of galaxies). This quantity, called the galaxy-galaxy lensing or cluster-galaxy

lensing, can be used to measure the halo-mass cross correlation.

While clusters of galaxies may be identified directly with dark matter halos of a

given mass, how are galaxies related to halos? Some galaxies (“field galaxies”) may also

be identified directly with dark matter halos; however, galaxies residing within groups or

clusters of galaxies should be identified with subhalos moving in a bigger dark matter halo.

For such subhalos our argument given below may not be immediately used. However, it

is observationally feasible to identify the central galaxies in groups or clusters of galaxies

and measure the mean tangential shear around them. A number of studies of Luminous

Red Galaxies (LRGs) extracted from the the Sloan Digital Sky Survey (SDSS) have shown

that these are typical central galaxies in galaxy groups Mandelbaum et al. (2006a); Sheldon

et al. (2007); Johnston et al. (2007). Scalings such as the mass-luminosity scaling imply

that LRGs provide a useful proxy for the halos within which they reside. We will assume

in this study that such tracers will enable the halo-shear cross-correlation to be measured.

There are some caveats such as bimodal mass distributions in galaxy groups Johnston et al.
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(2007) and the extrapolation to higher redshift, but we will leave a detailed exploration to

real galaxy tracers for later work.

The ensemble average of the mean tangential shears relative to the locations of halos

at a given redshift zL, denoted as ⟨γht ⟩(θ, zL), is related to the angular cross-correlation power

spectrum of halos and κ, Chκl , as Hu & Jain (2004)

⟨γht ⟩(θ, zL) =
∫
ldl

2π
Chκl (zL)J2 (lθ) . (6.9)

We give the derivation of this result in Appendix L.1.

With the lens redshift zL known (from spectroscopic observations), we can calculate

the comoving radius, R, corresponding to the angular separation on the sky, θ, as R =

θdA(0; zL) where dA(0; zL) is the comoving angular diameter distance from z = 0 to z = zL.

Using Limber’s approximation (Limber, 1954; Kaiser, 1992) on the flat sky relating Chκl to

Phm(k),6 we can write Eq. (6.9) as Hu & Jain (2004)

⟨γht ⟩(R, zL) =
ρ0

Σc(zL)

∫
kdk

2π
Phm(k, zL)J2(kR). (6.10)

Here, ρ0 is the mean comoving mass density of the universe, and Σc(zL) is the so-called

critical surface density:

Σ−1
c (zL) =

4πG

c2
(1 + zL)dA(0; zL)

∫ ∞

zL

dzS p(zS)
dA(zL; zS)

dA(0; zS)
, (6.11)

where p(zS) is the redshift distribution of sources normalized to unity,
∫
dzp(z) = 1, and

dA(0; z) and dA(z; zS) are the comoving angular diameter distances out to z and between z

and zS , respectively. The numerical value of 4πG/c2 is 6.01×10−19 Mpc/M⊙, and 4πGρ0/c
2

is 1.67× 10−7(Ωmh
2) Mpc−2.

Eq. (6.10) is often written as

⟨γht ⟩(R, zL) =
∆Σ(R, zL)

Σc(zL)
. (6.12)

To simplify the analysis, let us define the “effective source redshift” of a given survey from

the following equation:

dA(zL; zS,eff)

dA(0; zS,eff)
≡
∫ ∞

zL

dzS p(zS)
dA(zL; zS)

dA(0; zS)
. (6.13)

6As we are dealing with correlations on very large angular scales, one may worry about the validity of
Limber’s approximation. In Appendix M we give a detailed study of the validity and limitation of Limber’s
approximation for the galaxy-galaxy lensing.
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Figure 6.2: Critical surface density, Σc(zL; zS), as a function of the source redshift, zS , for
various lens redshifts that roughly correspond to the Two Degree Field Galaxy Redshift
Survey (2dFGRS; zL = 0.1, solid), the main sample of the Sloan Digital Sky Survey (SDSS;
zL = 0.2, dotted), the Luminous Red Galaxies (LRGs) of SDSS (zL = 0.3, dashed), and
the Large Synoptic Survey Telescope (LSST; zL = 0.5 and 0.8, dot-dashed and triple-dot-
dashed, respectively).
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Henceforth we shall use zS to denote zS,eff , and write

Σ−1
c (zL; zS) =

4πG

c2
(1 + zL)dA(0; zL)

dA(zL; zS)

dA(0; zS)
. (6.14)

Fig. 6.2 shows Σc for zL = 0.1 (2dFGRS, Two Degree Field Galaxy Redshift Survey),

0.2 (SDSS main), 0.3 (SDSS LRG), and 0.5 and 0.8 (both LSST, Large Synoptic Survey

Telescope). The smaller Σc is, the larger the observed mean tangential shear is.

6.1.2 Results

We can now calculate the observable, ∆Σ(R, zL), for various values of fNL. We use

∆Σ(R, zL)

= ρ0b1

∫
kdk

2π
Pm(k, zL)J2(kR)

+ρ0

∫
kdk

2π
∆b(k, zL)Pm(k, zL)J2(kR), (6.15)

where the scale-dependent bias, ∆b(k, z), is given by Eq. (6.1). As we are interested in large

scales, i.e., R > 10 h−1 Mpc, we shall use the linear matter spectrum for Pm(k).

Fig. 6.3 shows, for the Gaussian initial condition (fNL = 0), ∆Σ(R, zL) from R = 50

to 200 h−1 Mpc. We have chosen the bias parameters and lens redshifts to represent the

existing data sets as well as the future ones: b1 = 2 at zL = 0.3 (similar to the observed

values from SDSS LRGs (Tegmark et al., 2006), top-left), b1 = 2 at zL = 0.5 (higher-z

LRGs (Schlegel et al., 2009), top-right), b1 = 2 at zL = 0.8 (galaxies that can be observed

by LSST, (Zhan, 2006), bottom-left), and b1 = 5 at zL = 0.8 (clusters of galaxies that can

be observed by LSST, bottom-right). While LSST is an imaging survey, we assume that we

can obtain spectroscopic redshifts of some (∼ 106) lens galaxies by follow-up observations.

It is also straightforward to extend our analysis to lenses selected by photometric redshifts.

At R ∼ 110 h−1 Mpc we see a clear “shoulder” due to the baryonic feature in the

linear matter power spectrum (often called Baryon Acoustic Oscillations; BAO). The sound

horizon at the drag epoch (which is more relevant to the matter power spectrum than the

photon decoupling epoch for the CMB power spectrum) calculated from the cosmological

model that we use, the “WMAP+BAO+SN ML” parameters in Table 1 of Komatsu et al.

(2009), is 106.9 h−1 Mpc, as shown as the vertical line in this figure. The magnitude

of ∆Σ on this scale is ∼ 0.1 h M⊙ pc−2. Assuming a range of Σc from future surveys,

Σc ∼ 1000− 4000 h M⊙ pc−2 (see Fig. 6.2), this value corresponds to the mean tangential

shear of order 2.5× 10−5 to 10−4. Is this observable?
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Figure 6.3: The baryonic feature in the matter power spectrum, as seen in the galaxy-galaxy
lensing, ∆Σ(R), for several populations of lens galaxies with b1 = 2 at zL = 0.3 (similar
to SDSS LRGs, solid), b1 = 2 at zL = 0.5 (higher-z LRGs, dotted), b1 = 2 at zL = 0.8
(galaxies that can be observed by LSST, dashed), and b1 = 5 at zL = 0.8 (clusters of
galaxies that can be observed by LSST, dot-dashed). The vertical line shows the location
of the baryonic feature, RBAO = 106.9 h−1 Mpc, calculated from the “WMAP+BAO+SN
ML” parameters in Table 1 of Komatsu et al. (2009). Note that we have used the linear
matter power spectrum and the Gaussian initial condition (fNL = 0) for this calculation.
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Figure 6.4: Imprints of the local-type primordial non-Gaussianity in the galaxy-galaxy lens-
ing, ∆Σ(R), for the same populations of lens galaxies as in Fig. 6.3. The solid, dashed, and
dotted lines show fNL = 0, ±50, and ±100, respectively.
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Figure 6.5: Fractional differences between ∆Σ(R) from non-Gaussian initial conditions and
the Gaussian initial condition, |∆Σ(R; fNL)/∆Σ(R; fNL = 0)−1|, calculated from the curves
shown in Fig. 6.4. The dot-dashed, dashed, and dotted lines show fNL = ±10, ±50, and
±100, respectively, while the thin solid line shows ∝ R2 with an arbitrary normalization.
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For comparison, Sheldon et al. Sheldon et al. (2007) measured ∆Σ(R) ∼ 0.5 hM⊙ pc−2

at R ∼ 30 h−1 Mpc from clusters of galaxies in the SDSS main sample. The mean lens

redshift for these data is zL ∼ 0.2, which would give Σc ∼ 5000 h M⊙ pc−2 (see Fig. 6.2 for

zL = 0.2 and zS ∼ 0.4); thus, the magnitude of the mean tangential shear that they were

able to measure is of order 10−4, which is only ∼ 1 to 4 times larger than the magnitude

of the signal expected from the BAO. Therefore, detecting the BAO signature in ∆Σ(R)

should be quite feasible with the future observations. We shall give a more quantitative

discussion on the detectability of BAO from the galaxy-galaxy lensing effect in Sec 6.1.4.

How about fNL? As expected, the effect of fNL is enhanced on very large scales,

i.e., hundreds of Mpc (see Fig. 6.4). For fNL = ±50, ∆Σ(R) is modified by 10–20% at

R ∼ 300 h−1 Mpc (depending on b1 and zL; see Fig. 6.5). The modification grows rapidly

toward larger scales, in proportion to R2. On such a large scale (R ∼ 300 h−1 Mpc ), the

galaxy-galaxy lensing signal is on the order of ∆Σ ∼ 0.01 h M⊙ pc−2, and thus we need

to measure the mean tangential shear down to the level of γht ∼ 2.5 × 10−6 to 10−5, i.e.,

10–40 times smaller than the level of sensitivity achieved by the current observations. Can

we observe such a small shear?

6.1.3 Covariance matrix of the mean tangential shear

In order to study the feasibility of measuring the tangential shear of order 10−6,

we compute the covariance matrix of the mean tangential shears averaged over NL lens

galaxies. As derived in Appendix L.2, the covariance matrix of the mean tangential shear is

⟨γht (θ)γht (θ′)⟩ − ⟨γht (θ)⟩⟨γht (θ′)⟩

=
1

4πfsky

∫
ldl

2π
J2(lθ)J2(lθ

′)

×

[
(Chκl )2 +

(
Chl +

1

nL

)(
Cκl +

σ2
γ

nS

)]
. (6.16)

This expression includes the cosmic variance, the shot noise of lens halos, as well as the

shape noise σγ . As far as we know this formula has not been derived before. Note that we

have assumed a single source and lens redshift. For multiple source and lens redshifts, the

covariance matrix needs to be suitably generalized.

Here, Chl and Cκl are the angular power spectra of the lens halos (galaxies or cluster

of galaxies) and κ, respectively, and nL and nS are the number densities of the lens halos

and the lensed (source) galaxies, respectively. These angular power spectra, Chκl , Chl , C
κ
l ,

will be related to the corresponding three-dimensional power spectrum, P (k), in Sec 6.2.3.
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In the limit that the cosmic variance is unimportant, we recover the usual expression

used in the literature:

⟨γht (θ)γht (θ′)⟩ − ⟨γht (θ)⟩⟨γht (θ′)⟩ =
σ2
γ

NL

δD(θ − θ′)

2πθnS
, (6.17)

where NL = 4πfskynL is the total number of lens halos available in the data. In this limit

the errors in different radial bins are uncorrelated, and they are simply given by the shape

noise, σγ , reduced by the square-root of the number of source galaxies available within

each radial bin and the total number of lens halos that we can use for averaging the mean

tangential shear. In particular, at each bin with a width ∆θ, we find the variance of

Var[γht (θ)] =
σ2
γ

2πθ(∆θ)nSNL
, (6.18)

in the absence of the cosmic variance.

When would the cosmic variance become important? There is the maximum surface

number density of sources, nS,max = σ2
γ/C

κ
l , above which the shape noise becomes irrelevant.

This gives the maximum number of sources within a given radial bin of a width ∆θ (≪ θ)

above which the shape noise becomes irrelevant:

NS,max = 2πθ(∆θ)nS,max = (lθ)2
(
∆θ

θ

)
σ2
γ

l2Cκl /(2π)
. (6.19)

For lθ = π (the usual relation between l and θ) and σγ ≃ 0.3 (realistic shape noise), we find

NS,max ≃
(
∆θ

θ

)
1

l2Cκl /(2π)
. (6.20)

At l ∼ 100, l2Cκl /(2π) ∼ 10−5 Hu & Jain (2004); thus, we do not gain sensitivity any further

by having more than, say, 104 galaxies (for ∆θ/θ = 0.1) within a single radial bin.

Alternatively, one can define the minimum multipole, lmin, below which the cosmic

variance term dominates:

lmin =

√
2πnS
σ2
γ

l2Cκl
2π

. (6.21)

For LSST, we expect to have the surface density of sources on the order of nS = 30 arcmin−2 =

3.5 × 108 sr−1. For σγ = 0.3, we find lmin(LSST) ∼ 1.6 × 105
√
l2Cκl /(2π). At l ≲ 103,

l2Cκl /(2π) ≲ 10−4 Hu & Jain (2004); thus, at l ≲ 103 the cosmic variance term dominates.

In the limit that the covariance matrix is dominated by the cosmic variance terms,

we have

⟨γht (θ)γht (θ′)⟩ − ⟨γht (θ)⟩⟨γht (θ′)⟩

=
1

4πfsky

∫
ldl

2π
J2(lθ)J2(lθ

′)Chl C
κ
l (1 + r2l ),
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where rl ≡ Chκl /
√
Cκl C

h
l is the cross-correlation coefficient. The variance at a given radial

bin is

Var[γht (θ)]

=
1

4πfsky

∫
ldl

2π
[J2(lθ)]

2Chl C
κ
l (1 + r2l ). (6.22)

6.1.4 Detectability of the mean tangential shear

In this section, we shall calculate the expected uncertainties in radially binned

measurements of the mean tangential shear.

The mean tangential shear averaged within the i-th bin, ⟨γ̂ht ⟩(θi), i.e., the mean

tangential shear averaged within an annulus between θi,min and θi,max, is given by

⟨γ̂ht ⟩(θi) =
2π

A(θi)

∫ θi,max

θi,min

θdθ ⟨γht ⟩(θ)

≡
∫
ldl

2π
Chκl Ĵ2(lθi), (6.23)

where A(θi) = π(θ2i,max − θ2i,min) is the area of the annulus, and

Ĵ2(lθi) =
2π

A(θi)

∫ θi,max

θi,min

θdθ J2(lθ), (6.24)

is the Bessel function averaged within a bin.

Similarly, the covariance matrix of the binned mean tangential shears is given by

Cij ≡ ⟨γ̂ht (θi)γ̂
h

t (θj)⟩ − ⟨γ̂ht (θi)⟩⟨γ̂
h

t (θj)⟩

=
1

4πfsky

∫
ldl

2π
Ĵ2(lθi)Ĵ2(lθj)

×

[
(Chκl )2 +

(
Chl +

1

nL

)(
Cκl +

σ2
γ

nS

)]
. (6.25)

This matrix contains the full information regarding the statistical errors of the binned mea-

surements of the mean tangential shear, which includes the cosmic variance errors due to

the cosmic shear (Cκl ), clustering of lens galaxies (Chl ) and their correlations (Chκl ), the

finite number density of lenses, and the noise in intrinsic shapes of source galaxies.
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Figure 6.6: Same as Fig. 6.3, but with the expected 1-σ uncertainties for full-sky lens
surveys and a single lens redshift. Adjacent bins are highly correlated, with the correlation
coefficients shown in Fig. 6.7. The open (filled) boxes show the binned uncertainties with
(without) the cosmic variance term due to the cosmic shear field included. See Eq. (6.26)
and (6.27) for the formulae giving open and filled boxes, respectively. We use the radial bin
of size ∆R = 5 h−1 Mpc. For comparison, we also show ∆Σ(R) computed from the smooth
power spectrum without the baryonic feature (Eisenstein & Hu, 1998) (dashed lines). Note
that the uncertainties are calculated for a single lens redshift slice, and thus they will go
down as we add more lens redshift slices.
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Figure 6.7: The cross-correlation-coefficient matrix, rij ≡ Cij/
√
CiiCjj , where Cij is the

covariance matrix given in Eq. (6.25), for a radial bin of ∆R = 5 h−1 Mpc. We show rij for
the same populations of lens galaxies as shown in Fig. 6.3 and 6.6. We use the same number
of source galaxies and the same shape noise as in Fig. 6.6. The neighboring bins are highly
correlated for ∆R < 10 h−1 Mpc.
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Figure 6.8: Same as Fig. 6.4, but with the expected 1-σ uncertainties for full-sky lens surveys
and a single lens redshift. Adjacent bins are highly correlated. The open (filled) boxes show
the binned uncertainties with (without) the cosmic variance term due to the cosmic shear
field included. See Eq. (6.26) and (6.27) for the formulae giving open and filled boxes,
respectively. We use logarithmic bins with ∆R = R/10. Note that the uncertainties are
calculated for a single lens redshift slice, and thus they will go down as we add more lens
redshift slices.
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The variance at a given radial bin is

Var[γ̂
h

t (θi)] =
1

4πfsky

∫
ldl

2π
[Ĵ2(lθi)]

2

×

[
(Chκl )2 +

(
Chl +

1

nL

)(
Cκl +

σ2
γ

nS

)]
. (6.26)

In the analysis of the galaxy-galaxy lensing effects in the literature, the cosmic variance due

to cosmic shear is usually ignored:

Var[γ̂
h

t (θi)]
∣∣∣
κ=0

=
1

4πfsky

∫
ldl

2π

[
Ĵ2(lθi)

]2
×

[(
Chl +

1

nL

)
σ2
γ

nS

]
. (6.27)

This is probably a reasonable approximation for the current measurements atR ≲ 30 h−1 Mpc;

however, on larger scales which will be probed by the next-generation lens surveys, the cos-

mic variance due to cosmic shear must be included, as we show in Fig. 6.6.

For estimating the expected uncertainties, we assume a million lens galaxies with

very narrow (delta-function like) redshift distribution centered at zL (NL = 106) over the

full sky, fsky = 1. We also assume σγ = 0.3, and nS = 3.5 × 108 sr−1. As the covariance

matrix is dominated by the cosmic variance terms, the size of open boxes is insensitive to the

exact values of NL, σγ , or nS . (See Sec. 6.2.3.) First, we calculate the binned uncertainties

in the region close to the baryonic feature, R ∼ 110 h−1 Mpc. In Fig. 6.6, the open boxes

show the full uncertainties including the cosmic variance due to cosmic shear (Eq. (6.26)),

while the filled boxes show the uncertainties without the cosmic shear term (Eq. (6.27)).

The latter is clearly negligible compared to the former on large scales, R ≳ 50 h−1 Mpc.

Can we distinguish ∆Σ(R) with and without the baryonic feature? Without baryons,

we do not see any features in ∆Σ(R); see dashed lines in Fig. 6.6 which are calculated from

the smooth linear power spectrum without the baryonic feature (Eisenstein & Hu, 1998).

To see if we can detect this feature in ∆Σ(R), we estimate the χ2 difference between ∆Σ(R)

with and without the baryonic feature:

∆χ2 ≡
∑
i,j

(∆Σi −∆Σi,nw)C
−1
ij (∆Σj −∆Σj,nw),

where ∆Σi is the mean tangential shear of i-th bin, ∆Σnw is ∆Σ without the baryonic

feature, and C−1
ij is the inverse of the binned covariance matrix (Eq. 6.25). Using only a

single lens redshift slice, we find ∆χ2 = 0.85 (zL = 0.3, b = 2), 1.07 (zL = 0.5, b = 2),
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1.32 (zL = 0.8, b = 3), and 1.34 (zL = 0.8, b = 5). For example, if we add up all these

measurements at different slices (zL = 0.3, 0.5 and 0.8), significance of detection of the

baryonic feature is ∆χ2 = 3.2, i.e., 93% C.L. As we expect to have many more lens redshift

slices from the future lens surveys, detection and measurement of the baryonic feature in

∆Σ are quite feasible. For multiple lens slices the gain in the signal-to-noise ratio will be

approximately
√
Nlens; thus, for 10 lens slices the errors would be a factor of 3 smaller. At

best we can expect ∼ 25 slices, which gives a factor of 5 reduction in errors.

What about fNL? We show the expected 1-σ uncertainties for the mean tangential

shears, ∆Σ(R), on larger scales in Fig. 6.8. For this figure we use logarithmic bins with the

radial size of ∆R/R = 0.1. We find that ∆Σ(R) on R ≃ 250 h−1 Mpc is detectable, even

from a single lens redshift slice. This is remarkable; however, the predicted uncertainties are

too large for us to distinguish between fNL = 0 and fNL = 100 using a single lens redshift

slice. In order to obtain a tight limit on fNL, we would need to include many lens redshift

slices.

Note that the uncertainty at a given R is larger for a smaller lens redshift. This is

because a given R corresponds to a larger angular size for a lower lens redshift, making the

cosmic variance contribution greater.

6.2 Harmonic Space Approach

6.2.1 Formula

The mean tangential shear, ⟨γht ⟩ or ∆Σ, is currently widely used for measuring the

halo-shear cross correlation, as this method is easy to implement and is less sensitive to

systematic errors.

In this section, we shall study the effects of fNL on the equivalent quantity in

harmonic space: the halo-convergence cross power spectrum, Chκl . The mean tangential

shear is related to Chκl by the 2-dimensional Fourier integral given in Eq. (6.9).

The convergence field, κ(n), is the matter density fluctuations projected on the sky:

κ(n) =

∫ ∞

0

dzWκ(z)δm[dA(0; z)n, z], (6.28)

where δm(r, z) ≡ ρm(r, z)/ρ̄m(z)−1, andWκ(z) is a lens kernel which describes the efficiency

of lensing for a given redshift distribution of sources, p(zS):

Wκ(z) =
ρ0

Σc(z; zS)H(z)
, (6.29)
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Figure 6.9: Angular power spectrum of the galaxy-convergence cross correlation, Chκl , at
various multipoles as a function of the lens redshift, zL, for two effective source redshifts,
zs = 1 (top) and 2 (bottom). We have divided Chκl by its maximum value. The solid,
dotted, dashed, dot-dashed, and triple-dot-dashed lines show l = 10, 50, 100, 350, and 1000,
respectively.
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where the critical density, Σc, is defined in Eq. (6.14).

Again using Limber’s approximation (whose validity and limitation are studied in

Appendix M), we find the relation between the angular cross-correlation power spectrum

of the convergence field and the halo density at a given lens redshift zL, C
hκ
l (zL), and the

halo-mass cross-correlation power spectrum at the same redshift, Phm(k, zL), as

Chκl (zL) =
ρ0

Σc(zL; zS)d2A(0; zL)
Phm

[
k =

l + 1/2

dA(0; zL)
, zL

]
=

4πGρ0
c2

(1 + zL)
dA(zL; zS)

dA(0; zL)dA(0; zS)

×Phm
[
k =

l + 1/2

dA(0; zL)
, zL

]
. (6.30)

Fig. 6.9 shows Chκl (zL) for the Gaussian density field as a function of lens redshifts,

zL. The convergence fields at low (high) multipoles are better correlated with low-z (high-z)

galaxies. This is due to the shape of the matter power spectrum: on very large scales (i.e.,

low l), the matter power spectrum is given by the initial power spectrum, Phm(k) ∝ k, and

thus we get 1/dA(0; zL) from Phm[k = l/dA(0; zL)]. This gives a larger weight to low-z

galaxies. On smaller scales where Phm(k) ∝ kneff with neff ≃ −3, we get positive powers of

dA(0; zL) from Phm[k = l/dA(0; zL)], which gives a larger weight to high-z galaxies.

6.2.2 Result

We can now calculate Chκl for various values of fNL. We use

Chκl (zL) =
4πGρ0
c2

(1 + zL)
dA(zL; zS)

dA(0; zL)dA(0; zS)

×
[
b1(zL) + ∆b

(
k =

l + 1/2

dA(0; zL)
, zL

)]
×Pm

[
k =

l + 1/2

dA(0; zL)
, zL

]
, (6.31)

where the scale-dependent bias, ∆b(k, z), is given by Eq. (6.1).

Figure 6.10 shows Chκl (zL) for fNL = ±50 and ±100 for populations of galaxies

that we have considered in the previous sections. For each lens redshift, we calculate the

“effective” source redshift by requiring that the angular diameter distance to the source

redshift is twice as large as that to the lens redshift, i.e., dA(0; zS) = 2dA(0; zL). With this

requirement, the source redshifts are zs = 0.65, 1.19, and 2.25 for zL = 0.3, 0.5, and 0.8,

respectively.
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Figure 6.10: Imprints of the local-type primordial non-Gaussianity in the galaxy-convergence
cross power spectrum, l(l + 1)Chκl /(2π), for for the same populations of lens galaxies as in
Fig. 6.3. The solid, dashed, and dotted lines show fNL = 0, ±50, and ±100, respectively.
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Figure 6.11: Fractional differences between Chκl from non-Gaussian initial conditions and the
Gaussian initial condition, calculated from the curves shown in Fig. 6.10. These differences
are equal to |∆b(l = k/dA, zL)|/b1(zL). The dashed and dotted lines show fNL = ±50 and
±100, respectively, while the thin solid lines show l−2 with an arbitrary normalization.
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Figure 6.11 shows the fractional differences between non-Gaussian predictions and

the Gaussian prediction (fNL = 0), which are simply equal to ∆b(k, zL)/b1(zL) where k =

l/dA(0; zL). As expected from the form of the scale-dependent bias, the difference grows

toward small multipoles as roughly 1/l2. While lower redshift populations do not show

more than 10% difference at l ≥ 10 for fNL = ±50, a higher-z population of lens galaxies

or clusters of galaxies at zL = 0.8 show the differences at the level of ∼ 10% at l ∼ 20 and

∼ 30% at l ∼ 10. Are these effects detectable?

6.2.3 Covariance matrix of the galaxy-convergence cross power spectrum

The covariance matrix of the galaxy-convergence cross-correlation power spectrum

is given by

⟨Chκl Chκl′ ⟩ − ⟨Chκl ⟩⟨Chκl′ ⟩

=
δll′

(2l + 1)fsky

[(
Chκl

)2
+

(
Chl +

1

nL

)(
Cκl +

σ2
γ

nS

)]
, (6.32)

where δll′ is Kronecker’s delta symbol showing that the angular power spectra at different

multipoles are uncorrelated. Again, Chl and Cκl are the angular power spectra of the lens

halos (galaxies or cluster of galaxies) and κ, respectively, and nL and nS are the number

densities of the lens halos and the lensed (source) galaxies, respectively.

We calculate Cκl by using Limber’s approximation as

Cκl =

∫ zS

0

dz
ρ20

Σ2
c(z; zS)

Pm

[
k = l+1/2

dA(0;z) ; z
]

H(z)d2A(0; z)
. (6.33)

However, we cannot use Limber’s approximation for Chl unless one considers lens redshift

slices that are broad. As we are assuming a thin lens redshift slice throughout this paper,

we must not use Limber’s approximation, but evaluate the exact integral relation:

Chl =
2

π

∫
dkk2Pg(k, zL)j

2
l [kdA(zL)] , (6.34)

where jl is the spherical Bessel function, and Pg(k, z) is the linear galaxy power spectrum:

Pg(k) = b21Pm(k).

Fig. 6.12 shows the galaxy-galaxy, galaxy-convergence, and convergence-convergence

angular power spectra for Gaussian (fNL = 0) initial conditions. We also show the shot

noise of the galaxy angular power spectrum, 1/nL, and the shape noise of the conver-

gence power spectrum, σ2
γ/nS , with the following representative values: NL = 4πnL = 106,
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Figure 6.12: Angular power spectra of the galaxy-galaxy correlation, Chl (thick dotted
lines), the galaxy-convergence cross-correlation, Chκl (thick solid lines), and the convergence-
convergence correlation, Cκl (thick dashed lines) for the Gaussian initial condition (fNL = 0).
The four panels show the same populations of galaxies and clusters of galaxies as in Fig. 6.10.
We also show the galaxy shot noise, 1/nL (thin dotted lines) as well as the source shape
noise, σ2

γ/nS (thin dashed lines), for NL = 106, σγ = 0.3, and nS = 3.5× 108 sr−1. We find

1/nL ≪ Chl and σ2
γ/nS ≪ Cκl for l ≲ 100.
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Figure 6.13: Same as Fig. 6.10, with the expected 1-σ uncertainties for full-sky lens surveys
and a single lens redshift. Adjacent bins are uncorrelated. The open (filled) boxes show
the binned uncertainties with (without) the cosmic variance term due to the cosmic shear
field included. We used Eq. (6.32) for the open boxes, and Eq. (6.32) with Chκl = 0 = Cκl
for the filled boxes. We use logarithmic bins of ∆l = 0.23l. Note that the uncertainties are
calculated for a single lens redshift slice, and thus they will go down as we add more lens
redshift slices.

193



nS = 3.5×108 sr−1, and σγ = 0.3. We find 1/nL ≪ Chl and σ2
γ/nS ≪ Cκl for the multipoles

that we are interested in, i.e., l ≲ 100, and thus we conclude that the uncertainties are to-

tally dominated by the cosmic variance terms. In other words, the size of the uncertainties

are insensitive to the exact choices of NL, σγ , or nS .

We also find that the values of cross correlation coefficients, rl ≡ Chκl /
√
Chl C

κ
l , are

small (of order 10–20%): the maximum values are 0.19, 0.15, and 0.13 for zL = 0.3, 0.5, and

0.8, respectively. This implies that one may ignore the contribution of Chκl to the covariance

matrix, approximating the variance of Chκl of a single lens redshift slice for a multipole bin

of size ∆l as:

Var(Chκl ) =
Chl C

κ
l

(2l + 1)∆lfsky
. (6.35)

Therefore, we should be able to measure the galaxy-convergence cross-power spectrum with

Chκl /
√

Var(Chκl ) ≳ 1 when the multipoles satisfy

l ≳ lmin ≡ 1

rl
√
2(∆l/l)fsky

. (6.36)

For the galaxy-convergence power spectra in Fig. 6.10 with the full sky coverage (fsky = 1)

and ∆l/l = 0.23, we find lmin = 9.0, 12.1, and 15.7 for zL = 0.3 (zS = 0.65), 0.5 (1.19), and

0.8 (2.25), respectively.

Similarly, we can estimate the maximum radius below which we can measure the

mean tangential shear, ∆Σ(R), as

Rmax ≃ πdA(0; zL)

lmin
. (6.37)

For example, with ∆R/R = ∆l/l = 0.1, we get Rmax ≃ 215, 260, and 300 h−1 Mpc for

zL = 0.3, 0.5 and 0.8, respectively. These values do give the radii at which the signal-to-noise

ratios are roughly unity in Fig. 6.8.

Fig. 6.13 shows the expected 1-σ uncertainties of Chκl for several populations of lens

galaxies. We find that the cosmic variance completely dominates the uncertainties on large

scales (low l) where the non-Gaussian effects are the largest. Again, while we find that it

would be difficult to measure fNL from a single lens redshift slice, combining many redshift

slices should help us measure fNL, especially when we can use many slices at moderately

high redshifts.
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6.3 Halo-mass correlation from galaxy-CMB lensing

6.3.1 Formula

Instead of using the background galaxies for measuring the cosmic shear field due

to the intervening mass, one can use the CMB as the background light and measure the

shear field of the CMB lensing due to the intervening mass between us and the the photon

decoupling epoch at z∗ ≃ 1089. See Lewis & Challinor (2006) for a review on the CMB

lensing.

The lensing effect makes CMB anisotropies (both temperature and polarization)

non-Gaussian by producing a non-vanishing connected four-point function, although it does

not produce any non-vanishing three-point function. One can use this property to recon-

struct the lensing potential field, hence the projected mass-density field between us and z∗,

from the four-point function of CMB Hu & Okamoto (2002); Okamoto & Hu (2003); Hirata

& Seljak (2003).

By cross-correlating the halo over-density field, δh, at some redshift zL (measured

from spectroscopic observations) and the κ field reconstructed from the CMB lensing, one

can measure the halo-convergence angular power spectrum, Chκl .

The angular power spectrum of the galaxy-CMB lensing cross correlation is merely a

special case of the galaxy-convergence cross correlation that we have studied in the previous

section: all we need to do is to set the source redshift, zS , to be the redshift of the photon

decoupling epoch, z∗ ≃ 1089, i.e., zS = z∗. Note that for a flat universe dA(zL; z∗) =

dA(0; z∗)− dA(0; zL) where dA(0; z∗) = 9.83 h−1 Gpc.

Figure 6.14 shows that the CMB lensing at low (high) multipoles are better corre-

lated with low-z (high-z) galaxies. This is due to the shape of the matter power spectrum,

as we have explained in the previous section. Note that Chκl of the CMB lensing for a

given multipole decreases more slowly with zL than that of the galaxy lensing due to the

geometrical factor dA(zL; zS)/dA(0; zS).

Note that CMB and galaxies at z ≲ 1 are correlated also via the Integrated Sachs-

Wolfe (ISW) effect (Boughn & Crittenden, 2004). We shall not include this effect in our

cross-correlation calculation for the following reason. We calculate the cross-correlation sig-

nal between galaxies and the convergence field reconstructed from CMB. This reconstruction

relies on the fact that lensed CMB fluctuations have non-vanishing connected four-point

function. On the other hand, the linear ISW effect does not have such a particular form of

four-point function induced by lensing, and thus should not contribute to the reconstructed
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Figure 6.14: Angular power spectrum of the galaxy-CMB lensing, Chκl , at various multipoles
as a function of the lens redshift, zL. We have divided Chκl by its maximum value. The
solid, dotted, dashed, dot-dashed, and triple-dot-dashed lines show l = 10, 50, 100, 350, and
1000, respectively.

convergence field. See Afshordi & Tolley (2008) for the effects of fNL on the galaxy-ISW

cross correlation.
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6.3.2 Results

We can now calculate Chκl for various values of fNL. We use

Chκl (zL) =
4πGρ0
c2

(1 + zL)
dA(zL; z∗)

dA(0; zL)dA(0; z∗)

×
[
b1(zL) + ∆b

(
k =

l

dA(0; zL)
, zL

)]
×Pm

[
k =

l

dA(0; zL)
, zL

]
, (6.38)

where the scale-dependent bias, ∆b(k, z), is given by Eq. (6.1).

Figure 6.15 shows Chκl (zL) for fNL = ±50 and±100 for populations of low-z galaxies

that we have considered in the previous sections: b1 = 2 at zL = 0.3 (similar to SDSS LRGs,

top-left), b1 = 2 at zL = 0.5 (higher-z LRGs, top-right), b1 = 2 at zL = 0.8 (galaxies that

can be observed by LSST, bottom-left), and b1 = 5 at zL = 0.8 (clusters of galaxies that

can be observed by LSST, bottom-right). The fractional differences between non-Gaussian

predictions and the Gaussian prediction (fNL = 0) are exactly the same as those shown in

Fig. 6.11: in the limit where Limber’s approximation is valid, the galaxy-convergence power

spectrum and the galaxy-CMB lensing power spectrum for the same lens galaxies differ only

by a constant geometrical factor of dA(zL; z∗)dA(0; zS)/dA(zL; zS)dA(0; z∗). Incidentally, for

our choice of the source redshifts in the previous section, 2dA(zL; z∗)/dA(0; z∗) = 1.83, 1.73,

and 1.60 for zL = 0.3, 0.5, and 0.8, respectively.

Therefore, the galaxy-CMB lensing cross correlation would provide a nice cross-

check for systematics of the galaxy-convergence cross correlation, and vice versa: after all,

we are measuring the same quantity, Phm(k), by two different background sources, high-z

galaxies and CMB.

In using high-z galaxies as sources, the galaxy-galaxy lensing measurement may

be susceptible to systematic errors widely discussed in the lensing literature, namely shear

calibration, coherent point spread function (PSF) anisotropy, redshift biases, magnification

bias and intrinsic alignments of galaxies. Here we are particularly concerned with errors that

affect galaxy-shear cross-correlations by mimicking the angular dependence of the signal due

to non-zero fNL. Fortunately most systematic errors that affect shear-shear correlations do

not contribute to galaxy-shear cross correlations: for instance, PSF anisotropy affects back-

ground galaxy shapes but not foreground galaxy locations (Mandelbaum et al., 2005). With

standard lensing data analysis methods, it can be ensured that both the shear calibration
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Figure 6.15: Imprints of the local-type primordial non-Gaussianity in the galaxy-CMB lens-
ing power spectrum, l(l+1)Chκl /(2π), for the same populations of lens galaxies as in Fig. 6.3.
The solid, dashed, and dotted lines show fNL = 0, ±50, and ±100, respectively.

and PSF do not contribute a scale dependence to the first order. Biases in the redshift dis-

tributions of lens and source galaxies can similarly lead to a mis-estimation of the amplitude

of the signal, but not its scale dependence. Thus, to the lowest order, the measurement of

fNL via the scale dependence of the galaxy-galaxy lensing signal is robust to the leading

systematic errors in weak lensing. But a detailed study of various sources of error is needed

given the small signal we are seeking.

Another benefit of using the CMB lensing as a proxy for the intervening matter

distribution is that we can probe the galaxy-matter cross correlation at high redshift to

which we cannot reach with the galaxy-galaxy lensing method. It is especially useful for

probing primordial non-Gaussianity, as the scale dependent bias signal is higher for higher

lens redshift: ∆b(k, zL) ∝ 1/D(zL) (see Eq. (6.1)). Therefore, we find that even higher-
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z populations of galaxies give us a much better chance of detecting the effects of fNL.

Figure 6.16 shows Chκl (zL) for fNL = ±50 and ±100 for populations of high-z galaxies:

b1 = 2 at zL = 2 (top-left), b1 = 2.5 at zL = 3 (top-right), b1 = 3 at zL = 4 (bottom-left),

and b1 = 3.5 at zL = 5 (bottom-right). The first one, a spectroscopic galaxy survey at

zL = 2 with bL = 2, is within reach by, e.g., the Hobby-Eberly Telescope Dark Energy

Experiment (HETDEX) Hill et al. (2004); Hill et al. (2008). There we find, for fNL = ±50,

∼ 10% effect at l ∼ 40, and a factor of two effect at l ∼ 10 (see Fig. 6.17). The effects grow

bigger at higher z: higher-z surveys at z > 3 can be done with, e.g., the concept of the

Cosmic Inflation Probe (CIP) 7. At zL = 4 and 5 (with b1 = 3 and 4, respectively) we find

∼ 10% effect at l ∼ 100, a factor of two effect at l ∼ 30, and even bigger effects at l ≲ 30

(see Fig. 6.17).

6.3.3 Covariance matrix of the galaxy-CMB lensing

The covariance matrix of the galaxy-CMB lensing is given by Acquaviva et al. (2008)

⟨Chκl Chκl′ ⟩ − ⟨Chκl ⟩⟨Chκl′ ⟩

=
(Chκl )2 +

(
Chl + 1/nL

)
(Cκl +Nκ

l )

(2l + 1)fsky
δll′ , (6.39)

where Nκ
l is the reconstruction noise from CMB given by Hu & Okamoto (2002). The

covariance matrix equation here is the same as Eq. (6.32), except that now the shape noise

of source galaxies is replaced by the reconstruction noise of CMB lensing. In what follows,

we shall assume a “nearly perfect” CMB experiment considered in Hu & Okamoto (2002),

whose Gaussian random detector noise is modeled as (Knox, 1995)

CTl

∣∣∣∣
noise

=

(
TCMB

∆T

)−2

el(l+1)σ2/8 ln 2,

CEl

∣∣∣∣
noise

= CBl

∣∣∣∣
noise

=

(
TCMB

∆T

)−2

el(l+1)σ2/8 ln 2, (6.40)

where the white noise level of detectors is ∆T = ∆P /
√
2 = 1 µK arcmin, and the Full-

Width-at-Half-Maximum (FWHM) of the beam is σ = 4′. With these detector parameters

and the cosmological parameters of the “WMAP+BAO+SN ML” parameters in Table 1 of

Komatsu et al. (2009), we find Nκ
l ≃ 6× 10−8 sr−1 on large scales, l < 1008.

7http://www.cfa.harvard.edu/cip/
8We summarize the calculation of lensing reconstruction noise of Hu & Okamoto (2002) in Appendix N.
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Figure 6.16: Same as Fig. 6.15, but for high-z lens galaxies with b1 = 2 at zL = 2 (top-left),
b1 = 2.5 at zL = 3 (top-right), b1 = 3 at zL = 4 (bottom-left), and b1 = 3.5 at zL = 5
(bottom-right).
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Figure 6.17: Same as Fig. 6.11, but for high-z lens galaxies with b1 = 2 at zL = 2 (top-left),
b1 = 2.5 at zL = 3 (top-right), b1 = 3 at zL = 4 (bottom-left), and b1 = 3.5 at zL = 5
(bottom-right).
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Figure 6.18: Angular power spectra of the galaxy-galaxy correlation, Chl (thick dotted
lines), the galaxy-convergence cross-correlation, Chκl (thick solid lines), and the convergence-
convergence correlation, Cκl (thick dashed lines) for the Gaussian initial condition (fNL = 0).
The four panels show the same populations of galaxies and clusters of galaxies as in Fig. 6.15.
We also show the galaxy shot noise, 1/nL (thin dotted lines) as well as the lens reconstruction
noise, Nκ

l (think dashed lines), for NL = 106 and Nκ
l ≃ 6× 10−8 sr−1 (for multipoles much

smaller than that corresponds to the beam size of 4′). We find 1/nL ≪ Chl and Nκ
l ≪ Cκl

for l ≲ 100.
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Figure 6.19: Same as Fig. 6.15, but with 1-sigma uncertainty due to the shape noise of source
galaxies (filled box, Eq. (6.27)) and full error budget (empty box, diagonal of Eq. (6.25))
including the cosmic variance. We use the multipole bins of size ∆l = 0.23l. For uncertainty
of CMB lensing reconstruction, We assume the nearly-perfect reference experiment of Hu
& Okamoto (2002): white detector noise ∆T = ∆P /

√
2 = 1 µK arcmin, and FWHM of the

beam σ = 4′.
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Figure 6.20: Same as Fig. 6.18, but for the high redshift lens galaxies shown in Fig. 6.16.
For these populations (and with NL = 106), the shot noise is about the same as the galaxy
power spectrum, i.e., Chl ≃ 1/nL.
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Figure 6.21: Same as Fig. 6.19, but for the high redshift lens galaxies shown in Fig. 6.16.
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Fig. 6.18 shows the galaxy-galaxy, galaxy-convergence, convergence-convergence

angular power spectra for the Gaussian initial condition (fNL = 0). This figure is qual-

itatively similar to Fig. 6.12: the galaxy-galaxy correlation is exactly the same, and the

galaxy-convergence power spectrum is simply a scaled version of the corresponding curve in

Fig. 6.12. The major difference comes from Cκl : as the CMB photons travel a longer path

than photons from source galaxies, the convergence-convergence power spectrum is higher

for the CMB lensing convergence.

On large scales (l ≲ 100), the covariance matrix is dominated by the cosmic variance

terms: 1/nL ≪ Chl and Nκ
l ≪ Cκl . The cross correlation coefficients are small, of order

10%: the maximum values are 0.12, 0.11, and 0.10 for zL = 0.3, 0.5, and 0.8, respectively.

Therefore, we can again use Eq. (6.35) for estimating the variance, and find lmin (Eq. (6.36))

above which we can measure the galaxy-convergence cross correlation with the signal-to-

noise ratio greater than unity. For logarithmic bins of ∆l/l = 0.23, we find lmin = 12.2,

13.5, and 15.8 for zL = 0.3, 0.5, and 0.8, respectively. Comparing to the results in Sec 6.2.3,

lmin is slightly bigger, as Cκl (which contributes to the uncertainty) increases more rapidly

than Chκl (the signal we are after) would as the source redshift increases from zS to z∗.

Fig. 6.19 shows the expected 1-σ uncertainties of the angular power spectrum of

the galaxy-CMB lensing cross correlation, on top of the predicted Gaussian/non-Gaussian

signals with five different values of non-Gaussianity parameters: fNL = 0, ±50, ±100.

We also show the 1-σ uncertainties without the cosmic variance due to the cosmic shear.

Once again, it would be difficult to measure the effects of fNL from a single lens redshift,

but combining many slices would help measure fNL from the galaxy-CMB lensing cross

correlation.

What about using even higher-z lens galaxies? As shown in Fig. 6.20, for higher-z

populations (with zL = 2 − 5) the galaxy-galaxy power spectra are about the same as the

shot noise levels. This is true only for the assumed number of lenses, NL = 106 (over the

full sky), which is somewhat arbitrary. Increasing NL will help reduce the noise, but only

up to a factor of
√
2. For populations with Chl ≃ 1/nL, we can approximate the variance as

Var(Chκl ) =
(Chl + 1/nL)C

κ
l

(2l + 1)∆lfsky
≃ 2Chl C

κ
l

(2l + 1)∆lfsky
. (6.41)

Thus, we find Chκl /
√
Var(Chκl ) ≳ 1 when

l ≳
1

rl
√
(∆l/l)fsky

. (6.42)
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The maximum cross-correlation coefficients are 0.091, 0.084, 0.078, and 0.073 for zL = 2, 3,

4, and 5, respectively. The estimated lmax is then 29 (zL = 2), 34 (zL = 3), 38 (zL = 4) and

42 (zL = 5).

In Fig. 6.21 we compare the expected 1-σ uncertainties with the predicted signals

from high-z lens galaxies with fNL = 0, ±50, and ±100. Comparing this result with that in

Fig. 6.19, we conclude that higher-z lens populations do provide a better chance of finding the

effects of fNL than lower-z lenses, although we would still need to combine many lens redshift

slices. In particular, using higher-z lenses, we can find non-Gaussian effects at higher and

higher multipoles which are easier to measure; thus, high-z galaxies correlated with CMB

lensing offers a yet another nice probe of the local-type primordial non-Gaussianity.

6.4 Discussion and Conclusions

In this paper we have studied the galaxy-galaxy lensing and galaxy-CMB lensing

cross-correlation functions. We have focused on large scales, typically larger than 100 Mpc

at the lens redshift. While current measurements have high signal-to-noise ratios on much

smaller scales, we believe that future surveys will enable detection of interesting physical

effects in the large-scale, linear regime.

We derive the full covariance matrix for galaxy-galaxy lensing, including the cos-

mic variance due to the clustering of lenses and to cosmic shear (Eq. 6.16). We use the

linear bias model to provide the halo-mass and halo-halo correlations needed for this cal-

culation. We present results for the covariance of the mean tangential shear measurement

as a function of angular separations, as well as for the harmonic space halo-convergence

cross-power spectrum. Our calculations show that the errors in ∆Σ(R) are dominated by

the cosmic variance term for R ≳ 50 h−1 Mpc (see Fig. 6.6). Similarly, the errors in the

halo-convergence cross power spectra, Chκl , are dominated by the cosmic variance term at

l ≲ 100 (see Fig. 6.19).

For Gaussian initial conditions, we show that the baryonic effects in the mat-

ter power spectrum (often called Baryon Acoustic Oscillations) produce a “shoulder” in

the galaxy-galaxy lensing correlation (i.e., the mean tangential shears), ∆Σ(R), at R ∼
110 h−1 Mpc (see Fig. 6.3). This effect should be easy to measure from the next-generation

lensing surveys by combining ∆Σ(R) from multiple lens redshift slices.

We consider the prospects of detecting primordial non-Gaussianity of the local-

form, characterized by the fNL parameter. We have found that the scale-dependent bias
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from the local-form non-Gaussianity with fNL = ±50 modifies ∆Σ(R) at the level of 10–20%

at R ∼ 300 h−1 Mpc (depending on b1 and zL; see Fig. 6.5) (see Fig. 6.4). The modification

grows rapidly toward larger scales, in proportion to R2. High-z galaxies at, e.g., z ≳ 2,

cross-correlated with CMB can be used to find the effects of fNL in the galaxy-convergence

power spectrum, Chκl . While the effects are probably too small to see from a single lens

redshift (see Fig. 6.21), many slices can be combined to beat down the cosmic variance

errors. Exactly how many slices are necessary, or what is the optimal strategy to measure

fNL from the galaxy-CMB lensing signal requires a more detailed study that incorporates

the survey strategy for specific galaxy and lens surveys.

We emphasize that, while the two-point statistics of shear fields are not sensitive

to primordial non-Gaussianity, the two-point statistics correlating shear fields with density

peaks (i.e., galaxies and clusters of galaxies) are sensitive due to the strong scale-dependence

of halo bias on large scales.

Finally, we note that one can also measure the effects of fNL on the halo power

spectrum, Chl . For example, Chl that would be measured from LSST can be used to probe

fNL ∼ 1 (Carbone et al., 2008); thus, we would expect Chl to be more powerful than

the lens cross-correlation statistics we studied here. However, a combination of the two

measurements would provide useful cross-checks, as galaxy clustering and galaxy-lensing

correlations are affected by very different systematics.
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Chapter 7

Measuring Power spectrum and Bispectrum

In this chapter, we provide a practical guide for measuring power spectrum and

bispectrum by using Fast Fourier Transforms. First, we show the method of calculating the

power spectrum and bispectrum from N-body simulations, where input density contrast field

is defined in a well defined cubic box. Then, we move to the power spectrum estimation

for general cases and show the way we implement the FKP estimator (Feldman et al.,

1994) with Fast Fourier Transform. For those two cases, we make special emphases on the

normalization coefficients, the shot noise correction and the window function.

7.1 Power spectrum and Bispectrum from N-body simulation

Estimating power spectrum and bispectrum from the N-body simulation data is

less complicated as N-body simulations have 1) the cubic box, 2) the constant mean number

density. We divide the general procedure of measuring power spectrum and bispectrum

from N-body simulation by following five steps:

(1) Distributing particles onto the regular grid

(2) Fourier transformation

(3) Estimating power spectrum and bispectrum

(4) Deconvolving window function

(5) Subtracting shot noise

7.1.1 From particle to grid

In order to apply the Fast Fourier Transform technique, we have to assign the density

field onto each point in the regular grid. The way we distribute a particle to the nearby

grid points is called a ‘particle distribution scheme.’ For a given distribution scheme, we

209



can define an associated ‘shape function’, which quantifies how a quantity (mass, number,

luminosity, etc) of particle is distributed. After this process, the sampling we made from the

particle distribution is not a mere sampling of the underlying density field, but a sampling

convolved with the ‘window function’ of particle distribution scheme. In this section, we

shall review the three distribution schemes which are widely used in practice: Nearest-

Grid-Point, Cloud-In-Cloud, Triangular-Shape-Cloud. Although we use the particle number

density as a representative example below, one can use the same equation for calculating

mass weighted power spectrum, luminosity weighted power spectrum, etc, by multiplying

the apropos quantity (mass, luminosity) of each particle.

Let us consider the case with Np particles (e.g. dark matters, halos, galaxies) in a

N-body simulation box. The particle number density is given by

n0(x) =

Np∑
i=1

δD(x− xi), (7.1)

where xi is the position of i-th particle. Then, the particle number assignment can be

formulated by the convolution as

n(x) =

∫
V

d3x′n0(x
′)W (x− x′), (7.2)

where W (x) is the window function which quantifies how much of this particle number

density is distributed to a grid point separated by x. We sample the continuous number

density n(x) by the regular grids of size N3:

ns(xp) ≡ n(xp) =

∫
V

d3x′n(x′)W (xp − x′). (7.3)

Therefore, the sampled density contrast, defined as δs(x) ≡ ns(x)/n̄− 1 is given by

the convolution of the real density contrast and the window function,

δm(x) = [δ ⋆ W ] (x), (7.4)

and Fourier transformation of the sampled density contrast is

δm(k) = δ(k)W (k). (7.5)

This procedure of convolving with window function can be think of as following.

First, we define the cloud shape function (or point spreading function) S(x′) of a particle.

The shape function can be uniquely determined for given distribution scheme such that the
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fraction of the particle number of the particle at x assigned to the grid point xp is given by

integrating the shape function within the cubic cell surrounding xp (Hockney & Eastwood,

1988, p. 142). That is, the number of a particle at x assigned to grid point xp n(x → xp)

is given by

n(x → xp) =

∫
|x′−xp|i<H/2

d3x′S(x′ − x). (7.6)

In one-dimensional case, the window function can be written in terms of the cloud

shape function as

W (x− xp) =Wp(x) =
1

H

∫ xp+H/2

xp−H/2
S(x′ − x)dx′, (7.7)

where H = L/Ngrid is the separation of grids. Using the top-hat function, T(x),

T(x) =

 1 if |x| < 1/2
1/2 if |x| = 1/2
0 if otherwise

, (7.8)

equation (7.7) can be also written as a convolution of top-hat function and cloud function

as:

W (x) =
1

H

∫
T

(
x′

H

)
S(x′ − x)dx′ (7.9)

There are three most widely used distribution (window) functions.

7.1.1.1 NGP

Nearest Grid Point (NGP) scheme assigns particles to their nearest grid points.

Therefore, the number density changes discontinuously when particles cross cell boundaries.

The one dimensional window function for NGP is proportional to the top-hat function

WNGP (x) ≡
1

H
T
( x
H

)
=

 1/H if |x| < H/2
1/(2H) if |x| = H/2
0 if otherwise

, (7.10)

and its point spreading function is the Dirac delta function as

1

H
T
( x
H

)
=

1

H
T
( x
H

)
⊗ δD(x) =

1

H
T
( x
H

)
⊗ 1

H
δD
( x
H

)
. (7.11)

The Fourier Transformation of the top-hat function is the sinc function.

T(k) =
sin (k/2)

k/2
= sinc

(
k

2

)
(7.12)
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Proof.

T(k) =

∫ 1/2

−1/2

e−ikxdx =
e−ik/2 − eik/2

−ik
=

sin(k/2)

k/2
(7.13)

Therefore, the Fourier Transformation of the NGP window function is

WNGP (k) = FT[T](Hk) = sinc

(
Hk

2

)
= sinc

(
πk

2kN

)
where, kN = π/H is the Nyquist frequency. I use the similarity theorem of the Fourier

transformation.

7.1.1.2 CIC

Cloud In Cell (CIC) assignment is the first order distribution scheme which uni-

formly distributes the particle with top-hat spreading function. In other words, the cloud

shape function is given by

SCIC(x) =
1

H
T
( x
H

)
. (7.14)

Therefore, the window function is

WCIC(x) =
1

H
T
( x
H

)
⊗ 1

H
T
( x
H

)
, (7.15)

and its Fourier Transformation can be simply obtained by the convolution theorem:

WCIC(k) =WNGP (k)
2 = sinc2

(
πk

2kN

)
. (7.16)

The explicit expression of the CIC window function is

WCIC(x) =
1

H

{
1− |x|/H if |x| < H
0 otherwise

. (7.17)

7.1.1.3 TSC

Triangular Shaped Cloud (TSC) scheme is the second order distribution scheme.

Its point spreading function is triangular, as the convolution of the two first order (CIC)

functions:

STSC(x) =
1

H
T
( x
H

)
⊗ 1

H
T
( x
H

)
. (7.18)
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Therefore, the window function is

WTSC(x) =
1

H
T
( x
H

)
⊗ 1

H
T
( x
H

)
⊗ 1

H
T
( x
H

)
, (7.19)

and its Fourier Transformation is given by

WTSC(k) =WNGP (k)
3 = sinc3

(
πk

2kN

)
. (7.20)

The explicit expression of TSC scheme is

WTSC(x) =
1

H


3
4 −

(
x
H

)2
if |x| ≤ H

2

1
2

(
3
2 − |x|

H

)2
if H

2 ≤ |x| ≤ 3H
2

0 otherwise

. (7.21)

7.1.1.4 3D window function

As we use the regular cubic grid, the three dimensional window function is simply

given as the multiplication of three one dimensional window functions.

W (x) =W (x1)W (x2)W (x3) (7.22)

Therefore, its Fourier transformation is

W (k) =

[
sinc

(
πk1
2kN

)
sinc

(
πk2
2kN

)
sinc

(
πk3
2kN

)]p
, (7.23)

where p = 1, 2, 3 for NGP, CIC and TSC, respectively.

7.1.2 Power spectrum and bispectrum: the estimators

The power spectrum and bispectrum are defined as

⟨δ(k1)δ(k2)⟩ = (2π)3P (k1)δ
D(k1 + k2) (7.24)

⟨δ(k1)δ(k2)δ(k3)⟩ = (2π)3B(k1, k2, k3)δ
D(k1 + k2 + k3). (7.25)

Note that both power spectrum and bispectrum are real because of the parity invariance

and the reality of the configuration space n-point correlation function. (See, appendix A of

Smith et al. (2008b))

With this definition, σ8 is

σ2
8 =

∫
d3k

(2π)3
P (k)|W (kR)|2 =

∫
dk

k
∆2(k)|W (kR)|2
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with R = 8Mpc/h, and ∆2(k) = P (k)k3/2π2 is the dimensionless power spectrum. One can

check the normalization of the power spectrum by calculating σ8. In some literature, the

definition of power spectrum and bispectrum does not contain (2π)3, and we have to drop

(2π)3 in the integration measure of σ2
8 equation above.

For the normalization of bispectrum, one can check the value of the reduced bis-

pectrum Q(k1, k2, k3) which is defined as

Q(k1, k2, k3) =
B(k1, k2, k3)

P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)
.

On large scales where so called ‘tree-level’ bispectrum model works, the reduced bispectrum

is 4/7 for the equilateral configuration.

In this section, we shall find the proper normalization to the power spectrum and

bispectrum estimators which use the unnormalized Fast Fourier Transformation (FFT) such

as FFTW. For denote the unnormalized discrete Fourier transform result by superscript

‘FFTW’.

First, we nondimensionalize the Dirac delta function in the definition of power

spectrum and bispectrum. Using the property of delta function,

δD(f(x)) =
∑

xi∈zeros

1

|f ′(xi)|
δD(x− xi),

we can express the delta function in Fourier space in terms of the Kronecker delta of integer

triplet nk. We denote the Kronecker delta for such integer triplet as δK(nk).

δD(kp) = δD (kFnk) =
∏
i

δD(kFni) =
∏
i

1

kF
δKni

=
1

k3F
δK(nk)

7.1.2.1 Power spectrum estimator: direct sampling

FFTW output is the unnormalized DFT, which is related to the sampled Fourier

space density field as

δFFTW (nk) =
∑
nr

δ(nr)e
−i2πnk·nr/N =

∑
rp

δ(rp)e
−ikp·rp =

δ(kp)

H3
. (7.26)

From the definition of power spectrum

⟨δ(k1)δ(k2)⟩ = H6⟨δFFTW (n1)δ
FFTW (n2)⟩ = (2π)3P (k1)δ

D(k1 + k2)

=
(2π)3

k3F
δK(n1 + n2)P (kFn1), (7.27)
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we find the normalization for the power spectrum from DFT as

P (kFn1) =
H6k3F
(2π)3

⟨δFFTW (n1)δ
FFTW (−n1), ⟩ (7.28)

where V is the volume of survey, N is number of one-dimensional grid, H3 = V/N3 and

k3F = (2π)3/V . Therefore, the final estimator for power spectrum is

P (kFn1) =
V

N6

〈∣∣δFFTW (n1)
∣∣2〉 =

V

N6

 1

Nk

∑
|nk−n1|≤ 1

2

|δFFTW (nk)|2
 , (7.29)

where we sum over all Fourier modes within k1 − kF /2 < |k| < k1 + kF /2 to estimate the

power spectrum at k = k1 = kFn1.

7.1.2.2 Bispectrum estimator: direct sampling

From the definition of the bispectrum, we also find

⟨δ(k1)δ(k2)δ(k3)⟩ = H9⟨δFFTW (n1)δ
FFTW (n2)δ

FFTW (n3)⟩

= (2π)3B(k1, k2, k3)δ
D(k123) =

(2π)3

k3F
δD(n123)B(k1, k2, k3). (7.30)

Therefore, the estimator of bispectrum from DFT is

B(kFn1, kFn2, kFn3)

=
H9k3F
(2π)3

⟨δFFTW (n1)δ
FFTW (n2)δ

FFTW (n3)⟩δD(n123)

=
V 2

N9
⟨δFFTW (n1)δ

FFTW (n2)δ
FFTW (n3)⟩δD(n123)

=
V 2

N9

(
1

Ntriangle

∑
m∈Tri123

δFFTW (m1)δ
FFTW (m2)δ

FFTW (m3)

)
, (7.31)

where Tri123 is the set of {m1,m2,m3} whose magnitude satisfies |mi−ni| ≤ 1/2 and three

vectors form a triangle, i.e. m1 +m2 +m3 = 0.

7.1.2.3 Estimating power spectrum II

There is another way of estimating the power spectrum. We slightly change the

previous estimator as

P (kFn1) =
V

N6
⟨δFFTW (n1)δ

FFTW (n2)⟩δK(n1 + n2)

=
V

N6

∑
m1≃n1

∑
m2≃n1

δFFTW (m1)δ
FFTW (m2)δ

K(m1 +m2)∑
m1≃n1

∑
m2≃n1

δK(m1 +m2)
. (7.32)
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Where, mi ≃ ni strictly means that |mi − ni| < s/2, with δk = skF . Note that∑
m1≃n1

∑
m2≃n1

δK(m1 +m2) =
1

Vf

∫
k1

d3q1

∫
k2

d3q2δ
D(q1 + q2) ≃

4πk21δk

k3F
= 4πsn21

is the total number of independent k-modes inside the spherical shell of radius k and width

δk = skF . We shall use the total number of k modes here instead of the actual number of k

modes, because when we do the inverse DFT later, both δ(k) and δ(−k) shall be summed

over.

Using the orthonormality of DFT

δK(np + nq) =
1

N3

∑
nr

e2πinr·np/Ne2πinr·nq/N , (7.33)

we transform the estimator as

P (kFn1)

=
V

N6

1

4πsn21

1

N3

∑
nr

∑
m1≃n1

∑
m2≃n1

δFFTW (m1)δ
FFTW (m2)e

2πinr·m1/Ne2πinr·m2/N

=
V

N6

1

4πsn21

1

N3

∑
nr

[ ∑
m1≃n1

δFFTW (m1)e
2πinr·m1/N

][ ∑
m2≃n1

δFFTW (m2)e
2πinr·m2/N

]
(7.34)

Let’s define δmi
(nr) as

δni
(nr) =

∑
m≃ni

δFFTW (m)e2πinr·m/N

In practice, δni
(nr) can be calculated by applying fftw dft c2r to the array whose values are

δFFTW (m) when |m− ni| < s/2 and otherwise zero. Note that δni(nr) is real.

Proof. One can break the summation into two part, one with positivemx index, and another

with negative mx index.

δni
(nr) =

∑
m≃ni

δFFTW (m)e2πinr·m/N

=
∑

m≃ni,mx>0

[
δFFTW (m)e2πinr·m/N + δFFTW (−m)e−2πinr·m/N

]
=

∑
m≃ni,mx>0

[
δFFTW (m)e2πinr·m/N + [δ∗]

FFTW
(m)e−2πinr·m/N

]
=

∑
m≃ni,mx>0

[
δFFTW (m)e2πinr·m/N + c.c.

]
∈ R

In third line, we used the reality of δ(r), then δ(−k) = δ∗(k).
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Then, we find the second estimator for the power spectrum as

P (kFn1) =
V

N6

1

4πsn21

1

N3

∑
nr

δn1
(nr)

2. (7.35)

This method takes more time than the first estimator which uses the direct sampling method.

However, real strength of this method is apparent when we calculate the higher order

polyspectra, e.g. Bispectrum and Trispectrum etc, because we do not have to explicitly

sum up all the possible triangles (Bispectrum) or rectangles (Trispectrum), etc.

7.1.2.4 Estimating Bispectrum II

We can similarly construct the Bispectrum estimator. The direct sampling estima-

tor we derived before is given by

B(kFn1, kFn2, kFn3) =
V 2

N9
⟨δFFTW (n1)δ

FFTW (n2)δ
FFTW (n3)⟩δK(n1 + n2 + n3), (7.36)

where we estimate the ensemble average by summing over the all possible triangles with

side of ki − skF /2 < qi < ki + skF /2. Therefore, the estimator can be recasted as

B(kFn1, kFn2, kFn3)

=
V 2

N9

∑
m1≃n1

∑
m2≃n2

∑
m3≃n3

δFFTW (m1)δ
FFTW (m2)δ

FFTW (m3)δ
K(m123)∑

m1≃n1

∑
m2≃n2

∑
m3≃n3

δK(m123)
. (7.37)

Again, mi ≃ ni means |mi−ni| < s/2. The denominator is the number of possible triangles

with side of (k1, k2, k3) :∑
m1≃n1

∑
m2≃n2

∑
m3≃n3

δD(m123) =
1

V 2
f

∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3δ
D(q123)

≃ 8π2k1k2k3(δk)
3

k6F
= 8π2s3n1n2n3 (7.38)

By using the normalization of DFT,

δD(np + nq + ns) =
1

N3

∑
nr

e2πinr·np/Ne2πinr·nq/Ne2πinr·ns/N ,

and following the exactly same procedure of finding the second estimator for power spectrum,

we find the second bispectrum estimator

B(kFn1, kFn2, kFn3) =
V 2

N9

(
1

8π2s3n1n2n3

)
1

N3

∑
nr

δn1(nr)δn2(nr)δn3(nr). (7.39)
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7.1.2.5 Counting the number of triangles

In the previous section, we use the integral approximation to estimate the number

of triangles. However, this approximation is broken down when three vectors are parallel to

each other, i.e. when

k1 = αk2 = βk3.

Also, it is not an accurate approximation for the triangle including the large scale modes.

Therefore, in this section, we present the way we calculate the actual number of triangles

for given triangular configurations.

We shall use the exactly same trick as you used in the previous section for estimating

bispectrum. Since it is a trivial normalization factor, the number of triangles are the same

as the bispectrum for the unit density contrast. i.e.

Ntri(n1, n2, n3) =
∑

m1≃n1

∑
m2≃n2

∑
m3≃n3

δK(m1 +m2 +m3)

=
1

N3

∑
nr

∑
m1≃n1

∑
m2≃n2

∑
m3≃n3

e2πinr·m1/Ne2πinr·m2/Ne2πinr·m3/N

=
1

N3

∑
nr

[ ∑
m1≃n1

e2πinr·m1/N

][ ∑
m2≃n2

e2πinr·m2/N

][ ∑
m3≃n3

e2πinr·m3/N

]

≡ 1

N3

∑
nr

In1
(nr)In2

(nr)In3
(nr),

where

Ini
(nr) ≡

∑
m1≃ni

e2πinr·mi/N .

The function Ini(nr) is the inverse Fourier transformation of the function in k space, which

has the value unity within the shell of |mi − ni| < s/2, otherwise zero.

By calculating the number of triangles, and compare the result with the exact

calculation, we find that the logical size of the 1D Fourier grid has to be at least three times

as large as that of the maximum wavenumber for which we want to estimate the bispectrum.

That is, the array size of calculating Ini
(nr), bnmesh, has to satisfy

bnmesh > 3(s× nkmax), (7.40)

where s and nkmax are the bin size, and maximum wavenumber in the unit of the funda-

mental frequency. This is to avoid the fictitious increasing of the number of triangles (when

calculating the number of triangles) or power (when calculating bispectrum) due to the

aliasing effect.
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7.1.3 Deconvolution

Now, we have the estimators for the power spectrum and the bispectrum. However,

as we have employed the distribution scheme, the power spectrum and the bispectrum we

would measure with those estimators are not the same as the power/bi-spectrum of the

‘real’ density contrast, but the power/bi-spectrum of density contrast convolved with the

window function. Therefore, the power spectrum and bispectrum we estimate will show the

artificial power suppression on small scales. Therefore, we have to deconvolve the window

function due to the particle distribution scheme in order to estimate the power spectrum

and bispectrum of the true density contrast.

7.1.3.1 Deconvolving only window function

First, as we know the exact shape of the window function in Fourier space, we can

simply divide the resulting density contrast in Fourier space by the window function. That

is, we deconvolve each k mode of density contrast as

δ(k) =
δm(k)

W (k)
, (7.41)

or, deconvolve the estimated power spectrum by

P (k) =

∣∣∣∣δm(k)

W (k)

∣∣∣∣2 = Pm(k1, k2, k3)

[
sinc

(
πk1
2kN

)
sinc

(
πk2
2kN

)
sinc

(
πk3
2kN

)]−2p

, (7.42)

for k < kN . Again, p = 1, 2, 3 for NGP, CIC and TSC scheme, respectively. Here, superscript

m denote the measured quantity.

7.1.3.2 Deconvolving window function and aliasing

When we want to extract the power spectrum for k ≃ kN
1, we have to take the

alias effect into account. As we show in Appendix A.2.1, the Fourier counterpart of the

sampled data are the aliased sum of Fourier transformation of the continuous function. i.e.

Pm(k) =
∑
n

|W (k+ 2kNn)|2 P (k+ 2kNn) (7.43)

For the case of uniformly distributed random particles, the power spectrum is simply

a constant (Poisson shot noise), 1/n, where n is the number density. In that case, the

1Actually, it may not happen for most of N-body simulations because of the Force/Mass resolution is
usually too poor to use the power spectrum for such a high wavenumber.
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convolved power spectrum becomes

Pm(k) =
1

n

∑
n

|W (k+ 2kNn)|2 . (7.44)

Let us calculate the convolved power spectrum analytically for p = 1, 2, 3 cases:

∑
n

|W (k+ 2kNn)|2 =

3∏
i=1

[ ∞∑
n=−∞

W (ki + 2kNn)
2

]

=

3∏
i=1

 ∞∑
n=−∞

sin2p
(

π
2kN

(ki + 2kNn)
)

(
π

2kN
(ki + 2kNn)

)2p


=

3∏
i=1

sin2p( πki
2kN

) ∞∑
n=−∞

1(
πki
2kN

+ πn)
)2p
 (7.45)

Here, the infinite summation can be calculated by using following identity (Jing, 2005). (so

called Glaisher’s series 2)

∞∑
M=−∞

1

(a+Md)2
=
[π
d
csc

aπ

d

]2
(7.46)

NGP (p=1)

Let’s put d = π.
∞∑

n=−∞

1

(a+ nπ)2
= csc2 a (7.47)

Therefore, for p = 1,

∑
n

|W (k+ 2kNn)|2 =

3∏
i=1

sin2
(
πki
2kN

)
csc2

(
πki
2kN

)
= 1, (7.48)

and sum over infinite aliasing effect of power suppression ends up giving rise to the original

power.

CIC (p=2)

Differentiate both side with respect to a twice, we get

∞∑
n=−∞

6

(a+ nπ)4
= 2(3− 2 sin2 a) csc4 a (7.49)

2F. Soddy, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences,
Vol. 182, No. 989. (Dec. 16.1943), pp. 113-129
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Therefore, the aliased sum becomes

∑
n

|W (k+ 2kNn)|2 =

3∏
i=1

sin4
(
πki
2kN

)[
1− 2

3
sin2

(
πki
2kN

)]
csc4

(
πki
2kN

)

=

3∏
i=1

[
1− 2

3
sin2

(
πki
2kN

)]
. (7.50)

TSC (p=3)

Differentiate the both side with a four times, we get

∞∑
n=−∞

120

(a+ nπ)6
= (120− 120 sin2 a+ 16 sin4 a) csc6 a (7.51)

Therefore, ∑
n

|W (k+ 2kNn)|2

=

3∏
i=1

sin6
(
πki
2kN

)[
1− sin2

(
πki
2kN

)
+

2

15
sin4

(
πki
2kN

)]
csc6

(
πki
2kN

)

=

3∏
i=1

[
1− sin2

(
πki
2kN

)
+

2

15
sin4

(
πki
2kN

)]
. (7.52)

When the measured power spectrum include the both true power spectrum and

Poisson shot noise, we have to cure it iteratively, See, e.g. Jing (2005). However, as the

nonlinear galaxy power spectrum is dominated by the constant term P0 and large k plateau

of nonlinear bias terms, Pb2, Pb22, we may simply apply the same aliased window function

as for the constant power spectrum. In practice, we calculated both window-corrected and

window-alias-corrected power spectrum, and only use the wavenumber ranges where those

two power spectra agree with each other.

7.1.4 Poisson shot noise

Finally, we have to subtract the Poisson shot noise from the deconvolved power

spectrum and bispectrum. As a general terminology, ‘shot noise’ refers to the self-particle

contribution to the statistics. We call it Poisson shot noise, as it appears when we think

of a realization of galaxy (matter) distribution as a Poisson sampling of underlying smooth

galaxy (matter) density contrast field. Poisson shot noise appears whenever we calculate

the n-point function from a discrete set of objects, like a galaxy, dark matter, etc.
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7.1.4.1 Poisson sampling and underlying density field

Suppose we have a point process n(r) which is a “Poisson sample” of some contin-

uous stochastic field 1 + δ(r). That is, the probability that an infinitesimal volume element

δV contains an object is n̄(r) [1 + δ(r)] δV .

Following Peebles (1980, §36) we describe the process by dividing the space into the

infinitesimal micro-cells of volume δV which has a occupation numbers ni = 0 or 1. That

is, the statistical average of self-correlator for a given cell is〈
n3i
〉
=
〈
n2i
〉
= ⟨ni⟩ = n̄(ri)δVi, (7.53)

and the correlator for different cells are given by the underlying density contrast as

⟨ninj⟩i̸=j
=n̄(ri)n̄(rj)δViδVj [1 + ⟨δ(ri)δ(rj)⟩] (7.54)

⟨ninjnk⟩i ̸=j ̸=k
=n̄(ri)n̄(rj)n̄(rk)δViδVjδVk

× [1 + ⟨δ(ri)δ(rj)⟩+ ⟨δ(rj)δ(rk)⟩+ ⟨δ(ri)δ(rk)⟩+ ⟨δ(ri)δ(rj)δ(rk)⟩]. (7.55)

7.1.4.2 Power spectrum and Bispectrum of discrete particles

We follow the derivation given in Feldman et al. (1994). Consider the expectation

value of ∫
d3r

∫
d3r′g(r, r′)n(r)n(r′),

for an arbitrary function g(r, r′). By using the infinitesimal micro-cells, the expectation

value becomes〈∫
d3r

∫
d3r′g(r, r′)n(r)n(r′)

〉
=

∫
d3r

∫
d3r′g(r, r′) ⟨n(r)n(r′)⟩ (7.56)

=
∑
i,j

g(ri, rj) ⟨ninj⟩

=
∑
i̸=j

δViδVjg(ri, rj)n̄(ri)n̄(rj) [1 + ⟨δ(ri)δ(rj)⟩] +
∑
i=j

δVig(ri, ri)n̄(ri)

=

∫
d3r

∫
d3r′g(r, r′)n̄(r)n̄(r′) [1 + ⟨δ(r)δ(r′)⟩] +

∫
d3rg(r, r)n̄(r)

=

∫
d3r

∫
d3r′g(r, r′)

{
n̄(r)n̄(r′) [1 + ⟨δ(r)δ(r′)⟩] + n̄(r)δD(r− r′)

}
.

222



As this equation holds for an arbitrary function g(r, r′), comparing the first and last line

of the equation above, we find the relation between the two point correlator of the discrete

number density and that of underlying density contrast:

⟨n(r)n(r′)⟩ = n̄(r)n̄(r′) [1 + ⟨δ(r)δ(r′)⟩] + n̄(r)δD(r− r′). (7.57)

The 2nd term in Equation (7.57) is called a Poisson shot noise, as the Dirac delta function

manifests its identity as a self-particle contribution. The shot noise term n̄(r)δD(r−r′) can

also be understood as follows. Because the presence of galaxies obeys the Poisson statis-

tics, for a single position r with the mean number density n̄(r), its variance is σ2 [n(r)] ≡
⟨n(r)n(r)⟩ − n̄2(r) = n̄(r).

By using equation (7.57), the correlation function of galaxy density contrast mea-

sured from the ‘discrete’ samples of galaxies is given by

ξn(r− r′) ≡ ⟨δn(r)δn(r′)⟩

=

〈(
n(r)− n̄(r)

n̄(r)

)(
n(r′)− n̄(r′)

n̄(r′)

)〉
=

⟨n(r)n(r′)⟩ − n̄(r)n̄(r′)

n̄(r)n̄(r′)

= ⟨δ(r)δ(r′)⟩+ δD(r− r′)

n̄(r)
, (7.58)

where we denote the density contrast of the discrete Poisson sample as

δn(r) ≡
n(r)− n̄(r)

n̄(r)
.

The Fourier transform of Equation (7.58) yields following relation in Fourier space:

〈
δn(k)δn(k

′)
〉
=
〈
δ(k)δ(k′)

〉
+

∫
d3r

1

n̄(r)
e−ir·(k+k′). (7.59)

For N-body simulation, as the mean number density over the simulation box are

constant, n̄(r) ≡ n̄; the equation (7.59) reduces to

〈
δn(k)δn(k

′)
〉
=
〈
δ(k)δ(k′)

〉
+

(2π)3

n̄
δD(k′ + k). (7.60)

Therefore, we get the formula for Poisson shot noise.

Pn(k) = P (k) +
1

n̄
. (7.61)
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7.1.4.3 Bispectrum of discrete particles

Similarly, we calculate the bispectrum of discrete particles from the expectation

value of ∫
d3r1

∫
d3r2

∫
d3r3g(r1, r2, r3)n(r1)n(r2)n(r3)

for an arbitrary function g(r1, r2, r3). By using the infinitesimal micro-cells, the expectation

value becomes〈∫
d3r1

∫
d3r2

∫
d3r3g(r1, r2, r3)n(r1)n(r2)n(r3)

〉
=

∫
d3r1

∫
d3r2

∫
d3r3g(r1, r2, r3) ⟨n(r1)n(r2)n(r3)⟩

=
∑
i,j,k

g(ri, rj , rk) ⟨ninjnk⟩

=
∑
i̸=j ̸=k

δViδVjδVkgijkn̄in̄j n̄k [1 + ⟨δiδj⟩+ ⟨δjδk⟩+ ⟨δkδi⟩+ ⟨δiδjδk⟩]

+
∑
i=j ̸=k

δViδVkgiikn̄in̄k [1 + ⟨δiδk⟩] + (2 cyclic) +
∑
i=j=k

δVigiiin̄i

=

∫
d3r1

∫
d3r2

∫
d3r3g(r1, r2, r3)

×
{
n̄(r1)n̄(r2)n̄(r3) [1 + ⟨δ(r1)δ(r2)δ(r3)⟩+ ⟨δ(r1)δ(r2)⟩+ (2 cyclic)]

+ n̄(r1)n̄(r2) [1 + ⟨δ(r1)δ(r2)⟩] δD(r1 − r3) + (2 cyclic)

+ n̄(r1)δ
D(r1 − r2)δ

D(r1 − r3)

}
, (7.62)

where we use subscript to mark the coordinate in the fourth and fifth line. For example,

gijk ≡ g(ri, rj , rk). Again, as the equation (7.62) has to hold for arbitrary g(r1, r2, r3), we

find

⟨n(r1)n(r2)n(r3)⟩

=n̄(r1)n̄(r2)n̄(r3) [1 + ⟨δ(r1)δ(r2)δ(r3)⟩+ ⟨δ(r1)δ(r2)⟩+ (2 cyclic)]

+ n̄(r1)n̄(r2) [1 + ⟨δ(r1)δ(r2)⟩] δD(r1 − r3) + (2 cyclic)

+ n̄(r1)δ
D(r1 − r2)δ

D(r1 − r3). (7.63)

We calculate the three-point correlation function of discrete particles by

⟨δn(r1)δn(r2)δn(r3)⟩ =
〈(

n(r1)

n̄(r1)
− 1

)(
n(r2)

n̄(r2)
− 1

)(
n(r3)

n̄(r3)
− 1

)〉
=

⟨n(r1)n(r2)n(r3)⟩
n̄(r1)n̄(r2)n̄(r3)

− ⟨n(r1)n(r2)⟩
n̄(r1)n̄(r2)

+ (2 cyclic) + 2. (7.64)
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Using equation (7.57) and equation (7.63), we find

⟨δn(r1)δn(r2)δn(r3)⟩

= ⟨δ(r1)δ(r2)δ(r3)⟩+
δD(r1 − r3)

n̄(r3)
⟨δ(r1)δ(r2)⟩+ (2 cyclic)

+
1

n̄(r2)n̄(r3)
δD(r1 − r2)δ

D(r1 − r3), (7.65)

and the Fourier transform of equation (7.65) yields,

⟨δn(k1)δn(k2)δn(k3)⟩ = ⟨δ(k1)δ(k2)δ(k3)⟩

+

∫
d3r1

∫
d3r2

1

n̄(r1)
⟨δ(r1)δ(r2)⟩ e−ir1·(k1+k3)−ir2·k2

+

∫
d3r1

1

n̄2(r1)
e−ir1·k123 . (7.66)

Especially, when the mean number density does not vary in time, the three point function

in k space becomes

⟨δn(k1)δn(k2)δn(k3)⟩

= ⟨δ(k1)δ(k2)δ(k3)⟩+
1

n̄
⟨δ(k13)δ(k2)⟩+ (2 cyclic) +

(2π)3

n̄2
δD(k123), (7.67)

and, the bispectrum of discrete Poisson samples is reduced to

Bn(k1, k2), k3) = B(k1, k2, k3) +
1

n̄

{
P (k1) + P (k2) + P (k3)

}
+

1

n̄2
. (7.68)

7.2 Power spectrum from Galaxy surveys

For the real galaxy survey, we have to take into account the spatial variance of

the mean number density. In that case, we have to weight galaxies differently depending

on the mean number density in order to optimize the variance of power spectrum. The

most popular weighting is given from Feldman et al. (1994, FKP). In this section, we first

review the FKP estimator, and derive the optimal weighting function for power spectrum

measurement. Then, we show the practical implementation of FKP estimator for galaxy

surveys by using Discrete Fourier Transformation.
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7.2.1 The FKP estimator

7.2.1.1 The power spectrum with weighting function w(r)

Let us denote the weighted overdensity F (r) as a ‘weighted’ overdensity of a galaxies

at position r in the survey:

F (r) ≡ w(r) [n(r)− n̄(r)] = w(r)n̄(r)δn(r) ≡W (r)δn(r). (7.69)

Here, n̄(r) is the mean number density of galaxies expected at position r, and w(r) is a

weighting function which optimizes the variance of the estimated power spectrum. Combin-

ing the two effect of the selection function and the weighting defines the window function,

W (r).

By convolution theorem, the Fourier mode of the weighted density field becomes

F (k) =

∫
d3q

(2π)3
W (k− q)δn(q). (7.70)

The two point correlation function of the weighted density field is

⟨F (k)F (k′)⟩ =
∫

d3q

(2π)3

∫
d3q′

(2π)3
W (k− q)W (k′ − q′)⟨δn(q)δn(q′)⟩

=

∫
d3q

(2π)3
W (k− q)W (k′ + q)P (q)

+

∫
d3q

(2π)3

∫
d3q′

(2π)3
W (k− q)W (k′ − q′)

∫
d3r

1

n̄(r)
e−ir·(q+q′).

The second term is further simplifies to∫
d3q

(2π)3

∫
d3q′

(2π)3
W (k− q)W (k′ − q′)

∫
d3r

1

n̄(r)
e−ir·(q+q′)

=

∫
d3rW 2(r)

1

n̄(r)
e−ir·(k+k′) =

∫
d3rw2(r)n̄(r)e−ir·(k+k′).

Therefore, the power spectrum of the weighted overdensity can be calculated from

⟨F (k)F (k′)⟩ =
∫

d3q

(2π)3
W (k− q)W (k′ + q)P (q) +

∫
d3rw2(r)n̄(r)e−ir·(k+k′), (7.71)

that is,

⟨F (k)F (−k)⟩ =
∫

d3q

(2π)3
|W (k− q)|2 P (q) +

∫
d3rw2(r)n̄(r). (7.72)

In Feldman, Kaiser & Peacock (1994, FKP), they first subtract the synthetic cata-

log, ns(r), generated by the number density of n̄(r)/α. Also, they divide the ‘magnitude’
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of the window function

W ≡
[∫

d3rW 2(r)

]1/2
=

[∫
d3k

(2π)3
|W (k)|2

]1/2
when defining the ‘weighted’ density field. That is, the weighted density field in FKP is

F (r) ≡ w(r) [n(r)− αns(r)]

W
=
W (r)

W
[δn(r)− δs(r)] , (7.73)

where

δs(r) ≡
ns(r)− n̄(r)/α

n̄(r)/α
.

Assuming that the synthetic catalog is completely random, and independent of the galaxy

distribution, i.e.,

⟨δn(r)δs(r′)⟩ = 0 (7.74)

⟨δs(r)δs(r′)⟩ = α
δD(r− r′)

n̄(r)
, (7.75)

the power spectrum of the weighted density field of FKP is

P̃ (k) ≡
〈
|F (k)|2

〉
=

∫
d3q

(2π)3
|W (k− q)|2

W 2
P (q) +

1 + α

W 2

∫
d3rw2(r)n̄(r). (7.76)

Note that in FKP, they refer W (k)/W as G(k):

G(k) ≡
∫
d3rn̄(r)w(r)e−ik·r[∫
d3rn̄2(r)w2(r)

]1/2 .
If survey has a typical size of D ≃ V 1/3, then the window function W (k)/W will be

a rather compact function with width δk ∼ 1/D. Therefore, for high enough wavenumber,

|k| ≫ 1/D, we can approximate the power spectrum of weighted overdensity as

P̃ (k) ≃ P (k) + Pshot

provided that P (k) is a smooth function of k. Here,

Pshot ≡
(1 + α)

∫
d3rn̄(r)w2(r)∫

d3rn̄2(r)w2(r)
.

is the shot noise power spectrum in the presence of the weighting function. We estimate the

angular averaged (monopole) power spectrum estimation by

P̂ (k) ≡ 1

Vk

∫
Vk

d3q
[
P̃ (q)− Pshot

]
, (7.77)

where Vk is the volume of the shell in Fourier space.
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7.2.2 The variance of the power spectrum

We estimate the variance of the power spectrum by

σ2
p ≡

〈[
P̂ (k)− P (k)

]2〉
=

1

V 2
k

∫
Vk

d3q

∫
Vk

d3q′
〈
δP̂ (q)δP̂ (q′)

〉
(7.78)

with δP̂ (q) = P̂ (q)− P (q). If F (k) obeys Gaussian statistics, then〈
δP̂ (q)δP̂ (q′)

〉
= |⟨F (q)F ∗(q′)⟩|2

With Equation (7.71), we write the right hand side as

⟨F (q)F ∗(q′)⟩

=

∫
d3p

(2π)3
W (q− p)W ∗(q′ − p)

W 2
P (p) +

1 + α

W 2

∫
d3rw2(r)n̄(r)e−ir·(q−q′). (7.79)

In FKP paper, the second term is referred as S(k):

S(k) ≡
(1 + α)

∫
d3rw2(r)n̄(r)e−ik·r∫

d3rw2(r)n̄2(r)

As Equation (7.78) integrate over the same spherical shell, we consider the case when q−q′ =

δq. For |q| ≫ 1/D, we approximate Equation (7.79) as

⟨F (q)F ∗(q′)⟩

≃P (q)
W 2

∫
d3p

(2π)3
W (q− p)W ∗(q′ − p) +

1 + α

W 2

∫
d3rw2(r)n̄(r)e−ir·(q−q′), (7.80)

where the first term becomes∫
d3p

(2π)3
W (q− p)W ∗(q′ − p)

=

∫
d3p

(2π)3

∫
d3r

∫
d3r′W (r)W (r′)e−ir·(q−p)eir

′·(q′−p)

=

∫
d3r

∫
d3r′W (r)W (r′)δD(r− r′)e−ir·qeir

′·q′

=

∫
d3rW 2(r)e−ir·(q−q′).

In FKP, this function is called Q(k):

Q(k) ≡
∫
d3rw2(r)n̄2(r)e−ik·r∫
d3rw2(r)n̄2(r)

. (7.81)

Therefore, the variance of the power spectrum is〈
δP̂ (q)δP̂ (q′)

〉
= |⟨F (q)F ∗(q′)⟩|2

= |P (q)Q(δq) + S(δq)|2 . (7.82)
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7.2.3 Optimal weighting

When the spherical shell is larger than the coherence length (∼ 1/D), the double

integration in Equation (7.78) reduces to

σ2
p(k) =

1

Vk

∫
d3q |P (k)Q(q) + S(q)|2 .

Therefore, the fractional variance of the power is

σ2
p(k)

P 2(k)
=

1

Vk

∫
d3q

∣∣∣∣Q(q) +
S(q)

P (k)

∣∣∣∣2
=

1

VkW 2

∫
d3q

∣∣∣∣∫ d3rw2(r)n̄2(r)

(
1 +

1 + α

n̄(r)P (k)

)
e−iq·r

∣∣∣∣2 . (7.83)

Using Parseval’s theorem3, the equation is further simplified as

σ2
p(k)

P 2(k)
=

(2π)3

VkW 2

∫
d3rw4(r)n̄4(r)

(
1 +

1 + α

n̄(r)P (k)

)2

. (7.84)

For optimal weighting, we choose the weighting function w(r) which minimizes the variance

in Equation (7.84). First, let’s abbreviate the equation as

σ2
p(k)

P 2(k)
=

∫
d3rw4(r)f(r)[∫
d3rw2(r)g(r)

]2
That is,

f(r) = n̄4(r)

(
1 +

1 + α

n̄(r)P (k)

)2

g(r) = n̄2(r).

When we take the variation of w(r) = w0(r) + δw(r), Equation (7.84) becomes

σ2
p(k)

P 2(k)
=

∫
d3rw4

0 [1 + 4δw/w0] f[∫
d3rw2

0 (1 + 3δw/w0) g
]2

=

∫
d3rw4

0f[∫
d3rw2

0g
]2 {1 + 4

(∫
d3rw3

0δwf∫
d3rw4

0f
−
∫
d3rw0δwg∫
d3rw2

0g

)}
+ · · · (7.85)

3The proof of Parceval’s theorem is given as following.∫
d3q

∣∣∣∣∫ d3rf(r)e−iq·r
∣∣∣∣2 =

∫
d3q

∫
d3rf(r)e−iq·r

∫
d3r′f(r′)eiq·r

′

= (2π)3
∫

d3r

∫
d3r′f(r)f(r′)δD(r− r′) = (2π)3

∫
d3rf2(r)
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Therefore, the optimal weighting function has to satisfy∫
d3rw3

0δwf∫
d3rw4

0f
=

∫
d3rw0δwg∫
d3rw2

0g
, (7.86)

whose solution is given by

w2
0 ∝ g/f. (7.87)

In terms of the mean number density and the power spectrum, the optimal weighting has

to satisfy

w(r) ∝ 1

n̄(r) + (1 + α)/P (k)
. (7.88)

Finally, the dimensionless optimal weighting function is

w(r) =
1

1 + α+ P (k)n̄(r)
. (7.89)

When we choose a large number of synthetic sample (α≪ 1), we recover the result

of the FKP optimal weighting function:

w(r) =
1

1 + P (k)n̄(r)
. (7.90)

7.3 Implementing the FKP estimator

In this section, we show the Discrete Fourier Transform implementation of the FKP

estimator. Let us consider the case when the mean number density depends on the position:

n̄(r). In the previous section, we have shown that the optimal weighting function is given

by

w(r) =
1

1 + n̄(r)P (k)
. (7.91)

We define the weighted overdensity in the discrete grid point nr as

F (nr) =
w(nr)

W
[Ng(nr)− αNs(nr)] =

w(nr)N̄(nr)

W
[δn(nr)− δs(nr)]

=
W (nr)H

3

W
[δn(nr)− δs(nr)] . (7.92)

Here, Ni(nr) denote the number density of galaxies (i = g), and synthetic random samples

(i = s) assigned to the grid nr,

Ni(nr) ≡
∫
nr

d3rni(r)W
s(r − nr), (7.93)
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where W s(x) is the sampling window function we discussed in Section 7.1.1. Similarly,

N̄(nr) is the mean number density of galaxies assigned to the grid nr:

N̄(nr) ≡
∫
nr

d3rn̄(r)W s(r − nr). (7.94)

As synthetic random samples are generated from the mean number density rescaled by 1/α,

they are related by

N̄(nr) = ⟨Ng(nr)⟩ = α ⟨Ns(nr)⟩ . (7.95)

Also we define the survey window function on the grid point nr as

W (nr) ≡
w(nr)N̄(nr)

H3
. (7.96)

Fourier transform the weighted overdensity above yields4

FDFT (nk)

=
∑
nr

F (nr)e
−i2πnk·nr/N =

H3

W

∑
nr

W (nr) [δn(nr)− δs(nr)] e
−i2πnk·nr/N . (7.97)

That is, the Fourier transform is given by the convolution of W (nk) and δn(nk) − δs(nk).

Let us be explicit about the convolution in DFT. For discrete sampling of A(nr) and B(nr),

the Fourier transform of its multiplication C(nr) ≡ A(nr)B(nr) is given by

CDFT (nk)

≡
∑
nr

A(nr)B(nr)e
−i2πnk·nr/N

=
∑
nr

 1

V

∑
np

A(np)e
i2πnp·nr/N

 1

V

∑
nq

B(nq)e
i2πnq·nr/N

 e−i2πnk·nr/N

=
1

V 2

∑
np

∑
nq

A(np)B(nq)

[∑
nr

ei2π(np+nq)·nr/Ne−i2πnk·nr/N

]

=
N3

V 2

∑
np

∑
nq

A(np)B(nq)δnk±mN,np+nq

=
N3

V 2

∑
nq

A((nk − nq)N )B(nq). (7.98)

4For the normalization of the Discrete Fourier Transform, see Appendix A.
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Here, m can be any integer, and A((nk)N ) denotes the integer triplet modulated by N .

Using the convolution in DFT, we find the DTF of F becomes

FDFT (nk) =
1

WV

∑
nq

W ((nk − nq)N ) [δn(nq)− δs(nq)] . (7.99)

Note that when W (nr) ≡ wn̄ (constant), then,

W (nk) = H3
∑
nr

wn̄e−i2πnk·nr/N = H3wn̄N3δnk,0

therefore, we reproduce the normalization of the previous section:

FDFT (nk) =
wn̄

W
[δn(nk)− δs(nk)] .

We estimate the power spectrum by calculating the ensemble average of

⟨FDFT (nk)FDFT (nk′)⟩ =
1

W 2V 2

∑
nq

∑
nq′

W ((nk − nq)N )W ((nk′ − nq′)N )

×⟨[δn(nq)− δs(nq)] [δn(nq′)− δs(nq′)]⟩ . (7.100)

First, let us evaluate the two point correlation function without the window function for the

discrete grid

⟨δn(nq)δn(nq′)⟩

= H6
∑
nr

∑
nr′

⟨δn(nr)δn(n′
r)⟩ e−i2πnr·nq/Ne−i2πnr′ ·nq′/N

= H6
∑
nr

∑
nr′

[
⟨δ(nr)δ(nr′)⟩+

δKnr,nr′

H3n̄(nr)

]
e−i2πnr·nq/Ne−i2πnr′ ·nq′/N

= ⟨δ(nq)δ(nq′)⟩+H3
∑
nr

1

n̄(nr)
e−i2πnr·(nq+nq′ )/N , (7.101)

where in the second line, we changes the Dirac delta function to the Kronecker delta by

explicitly factoring out the dimensionality (1/H3). From the same procedure, we can also

calculate

⟨δn(nq)δs(nq′)⟩ = 0, (7.102)

⟨δs(nq)δs(nq′)⟩ = H3
∑
nr

α

n̄(nr)
e−i2πnr·(nq+nq′ )/N . (7.103)
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Putting the result above all together, we finally have

⟨FDFT (nk)FDFT (nk′)⟩

=
1

W 2V 2

∑
nq

∑
nq′

W ((nk − nq)N )W ((nk′ − nq′)N ) ⟨δ(nq)δ(nq′)⟩

+H3 1 + α

W 2V 2

∑
nq

∑
nq′

W ((nk − nq)N )W ((nk′ − nq′)N )
∑
nr

1

n̄(nr)
e−i2πnr·(nq+nq′ )/N .

(7.104)

The first term is the Window function convolved galaxy power spectrum:

1

W 2V 2

∑
nq

∑
nq′

W ((nk − nq)N )W ((nk′ − nq′)N )
(2π)3

kF1kF2kF3
P (nq)δ

D
nq,−nq′

=
1

W 2V

∑
nq

W ((nk − nq)N )W ((nk′ + nq)N )P (nq), (7.105)

and the second term is the shot-noise term:

H9 1 + α

W 2V 2

∑
nq

∑
nq′

∑
nr1

W (nr1)e
−i2πnr1·(nk−nq)/N

×
∑
nr2

W (nr2)e
−i2πnr2·(nk′−nq′ )/N

∑
nr

1

n̄(nr)
e−i2πnr·(nq+nq′ )/N

=H9 1 + α

W 2V 2

∑
nr1

∑
nr2

∑
nr

W (nr1)W (nr2)

n̄(nr)
e−i2π(nr1·nk+nr2·nk′ )/NN3δDnr1,nr

N3δDnr2,nr

=N6H9 1 + α

W 2V 2

∑
nr

W 2(nr)

n̄(nr)
e−i2πnr·(nk+nk′ )/N

=H3 1 + α

W 2

∑
nr

W 2(nr)

n̄(nr)
e−i2πnr·(nk+nk′ )/N . (7.106)

Adding up the results, we find that〈
|FDFT (nk)|2

〉
=

1

W 2V

∑
nq

|W ((nk − nq)N )|2 P (nq) +H3 1 + α

W 2

∑
nr

W 2(nr)

n̄(nr)
. (7.107)

The normalization factor W can be calculated as

W ≡
[∫

d3rW 2(r)

]1/2
=

[∑
nr

w2(nr)N̄
2(nr)

H3

]1/2
. (7.108)

Let us check the limiting case when n̄(nr) = n̄. For that case, the weighting function
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is also a constant, w(nr) = w. Then, the normalization factor becomes

W =

[∑
nr

w2n̄2H3

]1/2
=
[
N3w2n̄2H3

]1/2
=

√
V wn̄, (7.109)

and power spectrum can be estimated by〈
|FDFT (nk)|2

〉
=

1

V 2w2n̄2

∑
nq

V 2w2n̄2δnk,nq
P (nq) +H3 1 + α

V w2n̄2

∑
nr

w2n̄2

n̄

= P (nk) +
1 + α

n̄
, (7.110)

which are what we expected from the calculation of the previous section.

Finally, we have to correct for the window function due to the number density

distribution, by following the method described in Section 7.1.3.

7.3.1 The estimator

In summary, we estimate the power spectrum as follows.

7.3.1.1 Constant weighting

When we do not employ the weighting function, first calculate

F (nr) = Ng(nr)− αNs(nr) (7.111)

and Fourier transform it. Then, the square of the Fourier transform becomes

1

W 2

〈
|FDFT (nk)|2

〉
=

1

W 2V

∑
nq

|W (nk − nq)|2 P̂ (nq) +H3 1 + α

W 2

∑
nr

W 2(nr)

n̄(nr)
, (7.112)

where the window function is given by

W (nr) =
N̄(nr)

H3
≃ αNs(nr)

H3
, (7.113)

and its Fourier transform is

W (nk) = H3
∑
nr

W (nr)e
−i2πnk·nr/N . (7.114)
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As we distribute particle numbers to regular grid points, FDFT (nk) has to be deconvolved

by the method we described in 7.1.3.

The normalization factor W 2 is given by

W 2 =
1

H3

∑
nr

N̄2(nr) ≃
α2

H3

∑
nr

N2
s (nr). (7.115)

Note that we can approximate the average number of galaxies N̄(nr) by

N̄(nr) ≡
∫
H3

d3rn̄(r) ≃ αNs(nr). (7.116)

With this approximation, and n̄(nr) ≃ αNs(nr)/H
3 the shot noise term may be approxi-

mated as

H3 1 + α

W 2

∑
nr

W 2(nr)

n̄(nr)
≃ H3

(
1 + α

α

) ∑
Ns(nr)∑
N2
s (nr)

. (7.117)

7.3.1.2 FKP optimal weighting

When estimating power spectrum with a optimal weighting function

w(nr) =
1

1 + n̄(r)P (k)
≃ 1

1 + αNs(r)P (k)/H3
=

H3

H3 + αNs(r)P (k)
, (7.118)

first calculate

F (nr) = w(nr) [Ng(nr)− αNs(nr)] (7.119)

and Fourier transform it. Then, the square of the Fourier transform becomes

1

W 2

〈
|FDFT (nk)|2

〉
=

1

W 2V

∑
nq

|W (nk − nq)|2 P (nq) +H3 1 + α

W 2

∑
nr

W 2(nr)

n̄(nr)
, (7.120)

where the window function is given by

W (nr) =
w(nr)N̄(nr)

H3
≃ αw(nr)Ns(nr)

H3
=

αNs(nr)

H3 + αNs(nr)P (k)
, (7.121)

and its Fourier transform is

W (nk) = H3
∑
nr

W (nr)e
−i2πnk·nr/N . (7.122)
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Then, according to the number distribution scheme, FDFT (nk) has to be deconvolved by

the method we described in 7.1.3. The normalization factor W 2 is

W 2 =
1

H3

∑
nr

w2(nr)N̄
2(nr) ≃ H3

∑
nr

[
αNs(nr)

H3 + αNs(nr)P (k)

]2
, (7.123)

and the shot noise term may be approximated as

H3 1 + α

W 2

∑
nr

W 2(nr)

n̄(nr)

≃H3

(
1 + α

α

)(∑
nr

Ns(nr)

(H3 + αNs(nr)P (k))2

)(∑
nr

N2
s (nr)

(H3 + αNs(nr)P (k))2

)−1

. (7.124)
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Appendix A

Fourier transforms

In this Appendix, we present the Fourier convention we adopt throughout this

dissertation. We define the Fourier transform, Fourier series and Discrete Fourier Transform

in a consistence manner.

A.1 Continuous Fourier transform

In our convention, the Fourier transform of function f(x) is defined as

f(k) =

∫
d3xf(x)e−ik·x, (A.1)

and the inverse Fourier transform is defined as

f(x) =

∫
d3k

(2π)3
f(k)eik·x, (A.2)

where the integration extended to the entire space. Note that, unless it causes come con-

fusion, we use the same notation for the functions in real space and Fourier space, as we

consider them as different representations of a function defined in the Hilbert space. We

shall distinguish them by the explicit argument, but, when this notation can cause confusion,

we shall explicitly indicate the Fourier transform by FT.

A.1.1 Delta function

The Fourier transform [Eq. (A.1)] of a function f(x) followed by the inverse Fourier

transform [Eq. (A.2)] has to be identical to the original function:

f(x) =

∫ ∞

−∞

d3k

(2π)3

(∫ ∞

−∞
d3x′f(x′)e−ik·x

′
)
eik·x

=

∫ ∞

−∞
d3x′

(∫ ∞

−∞

d3k

(2π)3
eik·(x−x′)

)
f(x′), (A.3)
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or

f(k) =

∫ ∞

−∞
d3x

(∫ ∞

−∞

d3k′

(2π)3
f(k′)eik

′·x
)
e−ik·x

=

∫ ∞

−∞
d3k′

(∫ ∞

−∞

d3x

(2π)3
eix·(k

′−k)

)
f(k′). (A.4)

The relations above motivate us to define Dirac delta function as

δD(x− x′) ≡
∫ ∞

−∞

d3k

(2π)3
eik·(x−x′), (A.5)

which satisfies

f(x) =

∫ ∞

−∞
d3x′δD(x− x′)f(x′). (A.6)

A.1.2 Convolution theorem

In this convention, the Fourier transformation of convolution of two functions f(x)

and g(x), which is defined as

h(x) = [f ⋆ g] (x) ≡
∫
d3x1

∫
d3x2f(x1)g(x2)δ

D(x− x1 − x2), (A.7)

can be calculated as

h(k) =

∫
d3x

[∫
d3x1

∫
d3x2f(x1)g(x2)δ

D(x− x1 − x2)

]
e−ik·x

=

∫
d3x

[∫
d3x1

∫
d3x2f(x1)g(x2)

∫
d3k′

(2π)3
eik

′·(x−x1−x2)

]
e−ik·x

=

∫
d3k′

(2π)3

∫
d3xeix·(k

′−k)

[∫
d3x1f(x1)e

−ik′·x1
] [∫

d3x2g(x2)e
−ik′·x2

]
=

∫
d3k′δD(k′ − k)f(k′)g(k′)

= f(k)g(k). (A.8)

This property can be trivially generalized to the convolution of arbitrary number of functions

f1, f2, · · ·, fn. For their convolution h(x),

h(x) = [f1 ⋆ · · · ⋆ fn] (x)

≡
∫
d3x1 · · ·

∫
d3xnf1(x1) · · · fn(xn)δD(x−

n∑
i=1

xi), (A.9)

its Fourier transformation is given by

h(k) = f1(k)f2(k) · · · fn(k) (A.10)
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Conversely, for the product of two functions

h(x) = f(x)g(x), (A.11)

its Fourier transformation is given by the convolution of their Fourier transforms:

h(k) =

∫
d3xf(x)g(x)e−ik·x

=

∫
d3x

(∫
d3k1
(2π)3

f(k1)e
ik1·x

)(∫
d3k2
(2π)3

g(k2)e
ik2·x

)
e−ik·x

=

∫
d3k1
(2π)3

∫
d3k2f(k1)g(k2)

(∫
d3x

(2π)3
eix·(k1+k2−k)

)
=

∫
d3k1
(2π)3

∫
d3k2f(k1)g(k2)δ

D(k1 + k2 − k) (A.12)

Again, one can extend to n functions f1(x), f2(x), · · · , fn(x). The Fourier transformation

of the product of n functions

h(x) = f1(x) · · · fn(x) (A.13)

is given by the convolution in Fourier space.

h(k) =

∫
d3k1
(2π)3

∫
d3k2
(2π)3

· · ·
∫
d3knf1(k1) · · · fn(kn)δD(k−

n∑
i=1

ki)

=
1

(2π)3(n−1)
[f1 ⋆ f2 ⋆ · · · ⋆ fn] (k) (A.14)

Note that we have (2π)3(n−1) in denominator, as Dirac delta function absorbs one factor of

(2π)3.

A.2 From Fourier Transform to Fourier Series

Let us consider the three dimensional cube of volume L3, and a periodic function

f(x) which has a period of L for all three directions. The periodicity implies that its Fourier

transform f(k) is discretized with the fundamental frequency kF = 2π/L as an interval,

f(k) =

{
f(kFnk) nk = (i, j, k) ∈ Z3

0 otherwise
, (A.15)

and the function f(x) can be expressed as

f(x) =
1

L3

∑
nk

f(kFnk)e
ikF nk·x. (A.16)
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Proof. As f(x) has a periodicity L (L = L(i, j, k), where i, j, k are integers), f(x) = f(x+L),

Fourier transform the both side leads
∫

d3k
(2π)3 f(k)e

ik·x =
∫

d3k
(2π)3 f(k)e

ik·(x+L). Therefore, the

periodicity is maintained if and only if k · L = 2mπ for some integer m. Since we assume

the periodicity for all three spatial directions with same length L, three dimensional wave-

vector has to be k = kFnk, with kF = 2π/L and some integer triplet nk. Then, the Fourier

transformation now becomes a summation:

f(x) =

∫
d3k

(2π)3
f(k)eik·x =

δk3

(2π)3

∑
nk

f(kFnk)e
ikF nk·x =

1

L3

∑
nk

f(kFnk)e
ikF nk·x

Here, we use δk3 = k3F .

Note that when periods are different for all three directions: L1, L2 and L3, we

have to use three different fundamental frequencies kFi ≡ 2π/Li but f(k) is still discretized

with kFi intervals.

The equation (A.16) is simply a Fourier Series. Using the orthonormality condition

in the periodic interval, ∫ 2π

0

dxe−inxeimx = 2πδm,n, (A.17)

we can easily find the inverse :

f(k) =

∫
V

d3xf(x)e−ik·x (A.18)

where, V stands for the cube of side L.

Similarly, if we consider a function defined at discrete points f(xr), where xr = Hnr

with a integer triplet nr, its Fourier transform becomes

f(k) =

∫
d3xf(xr)e

−ik·xr = H3
∑
nr

f(Hnr)e
−iHk·nr . (A.19)

It is also easy to see that f(k) is the periodic function with periodicity of kg ≡ 2π/H:

f(k) = f(k+ kgm), (A.20)

for every integer triplet m. Finally, using the orthonormal condition, we get the inverse

transformation.

f(x) =

∫
Vk

d3k

(2π)3
f(k)eik·x (A.21)

where Vk is the volume of the Fourier space cube of size k3g . Therefore, the periodicity of a

function implies the discreteness of its Fourier counterpart and the discreteness of a function

implies the periodicity of its Fourier counterpart.
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A.2.1 Sampling and aliasing

Let us consider the continuous underlying density field δ(x) and its Fourier trans-

formation δ(k), and sample the density field at discrete points xp = Hnp (np is the integer

triplet): δ̂(xp) = δ(xp). As we sample a function at discrete points, its Fourier pair is given

by equation (A.19) and equation (A.21):

δ̂(k) = H3
∑
np

δ̂(xp)e
−ik·xp (A.22)

δ̂(xp) =

∫
Vk

d3k

(2π)3
δ̂(k)eik·xp . (A.23)

At the same time, we can also relate the sampled density field to the underlying density

filed as

δ̂(xp) = δ(xp) =

∫
d3k

(2π)3
δ(k)eik·xp =

∫
Vk

d3k′

(2π)3

∑
na

δ(k′ − kgna)e
ik′·xp , (A.24)

where in the second equality we divide the Fourier space into infinitely many cubes of k3g ,

and, then, move those cubes into the Vk region by coordinate translation. By comparing

equation (A.23) and equation (A.24), we find

δ̂(k) =
∑
na

δ(k− kgna). (A.25)

This equation tells that the Fourier transform of the discrete-sampling of a function is equal

to the aliased sum of infinitely many copies of Fourier transform of underlying function.

We can formulate it as follow. Let us define the one-dimensional sampling function

Π(x) =

∞∑
n=−∞

δx,n, (A.26)

where δx,n is the Kronecker delta, which is 1 when x = n, and zero otherwise. Then, its

Fourier transform is given by

Π(k) = 2π

∞∑
m=−∞

δD(k − 2πm). (A.27)

Proof. The Fourier transform of the sampling function is

Π(k) =

∫
dxΠ(x)e−ikx =

∞∑
n=−∞

∫
dxδx,ne

−ikx = lim
N→∞

N∑
n=−N

e−ikn, (A.28)
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where the sum of geometric series can be further simplified as,

N∑
n=−N

e−ikn =
eikN − eik(N+1)

1− e−ik
= (2N + 1)

sinc[k(2N + 1)/2]

sinc(k/2)
]. (A.29)

This function peaks at k = 2mπ for integer m. As N → ∞, the height of the peaks (2N+1)

goes to infinity, but the width of the peaks decreases as 1/(2N +1) at the same time so that

the total area inside of peaks remains constant. Indeed, the function is proportional to the

sum of infinitely many Dirac delta functions:

Π(k) = lim
N→∞

(2N + 1)
sinc[k(N + 1/2)]

sinc(k/2)
= 2π

∞∑
m=−∞

δD(k − 2mπ). (A.30)

Using the sampling function, the procedure of sampling can be think of as multi-

plying an underlying (continuous) density field to the sampling function.

δ̂(x) ≡ Π
( x

H

)
δ(x), (A.31)

where the three dimensional sampling function is defined as Π(x) ≡ Π(x)Π(y)Π(z). By

using the similarity theorem1,

FT
[
Π
( x
H

)]
= 2πH

∞∑
m=−∞

δD (kH − 2πm) = 2π

∞∑
m=−∞

δD
(
k − 2π

H
m

)
, (A.32)

we calculate Fourier Transform of the sampled function δ̂(x) as from the convolution theo-

rem:

δ̂(k) = (2π)3
∫

d3q

(2π)3

∑
na

δD
(
q− 2π

H
na

)
δ(k− q) =

∑
na

δ(k− kgna), (A.33)

where kg = 2π/H. Therefore, one can think of the Fourier Series as the Fourier Transfor-

mation of the sampled function with equal interval H.

Related to equation (A.33), there is a Nyquist sampling theorem. The theorem

states that aliasing can be avoided if the Nyquist frequency kg/2 is greater than the maximum

1The similarity theorem states that the Fourier transformation of f
(
x
a

)
is the same as |a|f(ka) in one

dimension. It is obvious that in three dimension, the pre-factor becomes |a|3.

Proof. Changing of variable from x to x′ = x/a in the following integral f(k) =
∫
dxf(x/a)e−ikx leads

f(k) = |a|
∫
dx′f(x′)e−ikx′a. Finally, change k to ka, we get FT [f(x/a)] = |a|f(ka).
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component frequency. That is, as aliasing will mix the wave-modes coming from ±nrkg, if

the power spectrum is truncated to be zero for |k| > kNy ≡ kg/2, then there should be no

aliasing effect. However, that’s not the case for cosmological density power spectrum, and

even worse, as shown in Chapter 2, the galaxy power spectrum contains a constant term

which dominates on small scales. In that case, we can calculate the infinite sum of aliasing

effect analytically. See Section 7.1.3.2 for detail.

In summary, sampling in the x space leads the periodicity in Fourier space. In

addition to that, the relation between sampled x space function and its Fourier counterpart

is given by the Fourier Series :

δ(xp) =

∫
Vk

d3k

(2π)3
δ(k)eik·xp (A.34)

δ(k) = H3
∑
xp

δ(xp)e
−ik·xp (A.35)

Similarly, if we have the finite sampling in k space, it leads opposite pair of Fourier Series :

δ(x) =
1

L3

∑
kp

δ(kp)e
ix·kp (A.36)

δ(kp) =

∫
V

d3xδ(x)e−ix·kp (A.37)

Here, xp = Hnr and kp = kFnr. The sampling interval is related to the periodicity in

Fourier counter part as kg = 2π/H and L = 2π/kF . The periodic volume is V = L3 and

Vk = k3g for configuration space and Fourier space, respectively.

A.3 Fourier Series to Discrete Fourier Transform

Suppose we have a periodic function δ(x) which has a periodicity of L for all three

directions. Consider the case when we sample the function δ(x) with constant interval

H = L/N . In the previous section, we find that the sampled series of δ(xp) forms a Fourier

Series of periodic function in k space with following relation:

δ(xp) =

∫
Vk

d3k

(2π)3
δ(k)eik·xp (A.38)

δ(k) = H3
∑
xp

δ(xp)e
−ik·xp . (A.39)

Now we add up the periodicity of δ(x), which implies that the Fourier counterpart δ(k) is

also non-zero only for the case when k = kFnk, (kF = 2π/L is the fundamental frequency,
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nk is an integer triplet). Therefore, the Fourier space integration becomes a finite sum as

δ(xp) =
1

L3

∑
kp∈Vk

δ(kp)e
ikp·xp . (A.40)

Inverse transformation can be found by using the orthogonality condition of the

Discrete Fourier Transformation. For one dimensional DFT, the orthogonality condition is

N−1∑
k=0

e−2πikp/Ne2πikq/N = NδKp,q±mN (A.41)

where, p, q and m are integers, and N is the size of the DFT array. We can extend it to the

n-dimension : ∑
nk

e−2πink·np/Ne2πink·nq/N = NnδKnp,nq±Nnr
(A.42)

where, np, nq and nr is the n-dimensional triplet of integers.

Using integer triplets, the DFT becomes

δ(Hnr) =
1

L3

∑
nk

δ(kFnk)e
i 2πN nk·nr (A.43)

and using the identity above, the inverse transformation is:

δ(kFnq) = H3
∑
nr

δ(Hnr)e
−i 2πN nq·nr . (A.44)

Proof. ∑
nr

δ(Hnr)e
−i 2πN nq·nr =

1

L3

∑
nk

δ(kFnk)
∑
nr

ei
2π
N nk·nre−i

2π
N nq·nr

=
1

L3

∑
nk

δ(kFnk)N
3δKnk,nq

=
1

H3
δ(kFnq)

Therefore, when we sample a periodic function δ(x) with data points xp, the DFT

pair of the sampled list and its DFT dual, the sampling of δ(k) at kp, is given by

δ(rp) =
1

L3

∑
kp∈Vk

δ(kp)e
ikp·xp (A.45)

δ(kp) = H3
∑
xp∈V

δ(xp)e
−ikp·xp . (A.46)
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A.4 Discrete Fourier Transform with FFTW

FFTW2, the Fastest Fourier Transform in the West, is a publically available routine

for the Fast Fourier Transform. In this section, we provide a practical guide on calculating

Fourier Transform of a real field. For estimating the power spectrum and the bispectrum

from N-body simulation and realistic galaxy survey, see Chapter 7, and for generating initial

condition for N-body simulation, see Appendix E.

First, let us summarize two properties of the Discrete Fourier Transform of a real

field. The Fourier transform δk(nk) of a regularly sampled (with Nd sampling points in

d-dimensional space) real field δr(nr) satisfies

(P1) The Hermitianity condition:

δk(−nk) = δ∗k(nk), (A.47)

where superscript ∗ denotes the complex conjugate.

(P2) The periodicity:

δk(nk) = δk(nk +Nm), (A.48)

for general integer vector m.

As we often Fourier transform the real density field in three dimension, let us use the

Fourier transform of 128× 128× 128 array as an example. Following lists are the simplest

sequence of FFTW in C/C++ and FORTRAN.

C/C++

fftw_complex *deltk;

double *deltar;

fftw_plan plan;

int nn = 128;

int cn2= nn/2+1;

int N = nn*nn*nn;

int Nc = nn*nn*cn2;

deltak = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * Nc);

deltar = (double *) fftw_malloc(N * sizeof(double));

plan = fftw_plan_dft_r2c_3d(nn, nn, nn, deltar, deltak);

<<--- code to calculate deltar --->>

fftw_execute(plan);

fftw_destroy_plan(plan);

fftw_free(deltak);

fftw_free(deltar);

2http://www.fftw.org
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FORTRAN

integer, parameter :: DOUBLE = KIND(0.0D0)

integer, parameter :: nn = 128

integer, parameter :: nnm = nn-1

integer, parameter :: cn = nn/2

integer*8 :: plan

real(KIND=DOUBLE), allocatable, dimension(:,:,:) :: deltar

complex(KIND=DOUBLE), allocatable, dimension(:,:,:) :: deltak

allocate(deltar(0:nnm,0:nnm,0:nnm),deltak(0:cn,0:nnm,0:nnm))

call dfftw_plan_dft_r2c_3d(plan,nn,nn,nn,deltar,deltak)

<<--- code to calculate deltar --->>

call dfftw_execute(plan)

call dfftw_destroy_plan(plan)

deallocate(dk)

deallocate(rhomesh)

For both cases, we declare two arrays: deltar and deltak, and plan for executing

FFTW. For FORTRAN, plan has to be defined as interger*8 type. Then, we allocate the

arrays. For C/C++, FFTW has its own memory allocation subroutine (fft malloc), but in

FORTRAN, we have to manually allocate the array.

Within the periodicity in Fourier space, kg = 2π/H, there are (kg/kF )
3 = (L/H)3

wave-modes. However, due to the Hermitianity condition (P1), the half of the modes inside

of the periodic box are not real degrees of freedom. Therefore, fftw dft r2c routine of FFTW

cut the half of the Fourier space cube. It is done for the fastest varying index; the first index

for FORTRAN, and the last index for C/C++. Therefore, for one dimensional sampling size

of nn, we have to set the input(real) array as

deltar[0:nn-1,0:nn-1,0:nn-1]

and output(complex) array as

deltak[0:N/2,0:N-1,0:N-1],

for FORTRAN, and

deltak[0:N-1,0:N-1,0:N/2],

for C/C++. After executing Discrete Fourier Transform by fftw execute, we destroy the plan

(fftw destroy), and finally deallocate the arrays (fftw free).

Note that the output array elements are stored in order, with the zero wavenumber

(DC) component stored in dk(0,0,0). All Fourier modes have positive wave numbers, and

we can change the wave numbers by using the Periodicity (P2) condition as

deltak[l,m,n] = delta[(l,m,n)+N*(i,j,k)],
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where (i, j, k) is a integer triplet.

The output of FFTW is not normalized. That is, for a Fourier transform and inverse

Fourier transform, it calculates

δFFTW(nk) =
∑
nr

δ(nr)e
−i2πnk·nr ≡ 1

H3
δ(nk), (A.49)

δFFTW(nr) =
∑
nk

δ(nk)e
i2πnk·nr ≡ L3δ(nr), (A.50)

respectively. Here, we denote δFFTW as a FFTW result.

Let us look more closely on how output result of FFTW is stored. We first start

from the simplest one-dimensional case, and expand to two and three dimensions. For this

section, we shall uses the FORTRAN convention, and one can simply change the order of

array indices for C/C++ convention.

A.4.1 Output array of dft r2c 1d

Let’s start from the DFT of an array with N real numbers : a[n] with n = 0, · · · ,
N − 1. The DFT of this real array is an array of N complex numbers : Fa[n]. Let’s call

N/2 (round down, or (N − 1)/2 if N is an odd integer) cnmesh, which corresponds to the

Nyquist frequency.

Because of the periodicity of Fa and the reality of a, we have

Fa[N-n] = Fa[-n] = conjg(Fa[n]).

That is, for every n1>cnmesh, there exists a n2=N-n1<cnmesh such that

Fa[n1] = conjg(Fa[n2]).

Therefore, it is unnecessary to store Fa[n] for n>cnmesh. Also, when n= 0, we have

Fa[0] = conjg(Fa[0]),

therefore Fa[0] is a real number. If N is an even number, Fa[cnmesh] is also real number

as

Fa[cnmesh] = Fa[N-cnmesh] = Fa[-cnmesh] = conjg(Fa[cnmesh]).

Combining all the result above, FFTW store the result of dft r2c 1d to the com-

plex array of Fa[0:cnmesh], which includes N/2+1 (rounded down if N is an odd number)
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complex numbers. Note that the number of degrees of freedom is conserved on this output

array because one (for odd N) or two (for even N) elements are actually real. For even N ,

we have 2(N/2 + 1)− 2 = N real d.o.f., and for odd N , we have 2[(N − 1)/2 + 1]− 1 = N

d.o.f in the output array.

Inversely, if one wants to construct the DFT component of a real array of size N,

say, from a give power spectrum, one has to follow following procedure:

(1) Prepare an array Fa[0:cnmesh], where cnmesh = N/2, rounded down if N is odd.

(2)-1 If N is even, assign a complex number to Fa[1:cnmesh-1], and a real number to

Fa[0]=cmplx(#,0.d0) and Fa[cnmesh]=cmplx(#,0.d0)

(2)-2 If N is odd, assign a complex number to Fa[1:cnmesh], and a real number to

Fa[0]=cmplx(#,0.d0)

A.4.2 Output array of dft r2c 2d

For two dimensional real array a[0:N-1,0:N-1] and its DFT complex array Fa[0:N-1,0:N-1],

we have the similar property :

Fa[N-n1,N-n2] = Fa[-n1,-n2] = conjg(Fa[n1,n2]).

With this condition, again, we can reduce the number of elements in complex array Fa by

roughly factor of two, as for every grid point (n1,n2) with n1>cnmesh, there exists a grid

point (m1,m2) whose Fa value is simply a complex conjugate of the original point. That is,

Fa[n1,n2] = conj(Fa[m1,m2])

if m1=N−n1 and m2=N−n2. Therefore, it is sufficient to store a half of 2×2 plane, and conven-

tionally FFTW reduces the direction of the fastest varying index by about half. That is, we

need only Fa[0:cnmesh,0:N-1]. Using the condition above, it is also easy to show that DC

component (Fa[0,0]), and the Nyquist components (Fa[cnmesh,cnmesh], Fa[0,cnmesh],

Fa[cnmesh,0], when N is even) are also real numbers.

One has to be careful about the boundaries with n1=0 or n1=cnmesh (with even

N). It is because in those boundaries, Fourier modes are not independent from each other.

That is,

Fa[0,n2] = conjg(Fa[N,N-n2]) = conjg(Fa[0,N-n2])
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δ0i

δij
δij

δi0δi0
δ00

δ0i

*

*

*

dk[0:nNy,0:N-1]

Figure A.1: Result of FFTW stored in the complex array with half size. Shaded region
shows DC component which has a real value. This diagram is for an odd N .

for both even and odd N and

Fa[N/2,n2] = conjg(Fa[-N/2,-n2]) = conjg(Fa[N/2,N-n2])

only for even N .

Let us calculate the real degrees of freedom (d.o.f). For even N , we have 2N(N/2+

1) = N2 + 2N d.o.f. in the reduced Fa. Among them, four points (DC plus three Nyquist

frequencies) have real values, and we have (N − 2)/2 pairs of complex-conjugated points on

each boundary (n1=0 and n1=cnmesh). Therefore, total real d.o.f. isN2+2N−4−2(N−2) =

N2.

For odd N , we have total 2N((N − 1)/2+ 1) = N2 +N d.o.f.s in the reduced Fa. For n1=0

boundary, there are (N − 1)/2 of complex-conjugated pairs and one DC (real) point. In

sum, total real d.o.f. is N2 +N − (N − 1)− 1 = N2.

In summary, here is a prescription of generating the DFT component of a real array

of size N ×N .
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δ
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*
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δi,Ny

δ
Ny,j

δ
Ny,j

*

*

Figure A.2: Same as Figure A.1, but for an even N . DC components and Nyquist compo-
nents are shaded with grey.

(1) Prepare an array Fa[0:cnmesh,0:N-1], where cnmesh = N/2, rounded down if N is

odd.

(2)-1 IfN is even, assign a complex number to Fa[1:cnmesh-1,0:N-1], and a real number to

DC, Fa[0,0], and Nyquest modes : Fa[0,cnmesh] Fa[cnmesh,0] Fa[cnmesh,cnmesh].

Then, assign complex numbers to a half row of Fa[0,1:cnmesh-1] and Fa[cnmesh,1:cnmesh-1],

and its complex conjugate to another half row of Fa[0,cnmesh+1:N-1] and Fa[cnmesh,cnmesh+1:N-1].

(2)-2 If N is odd, assign a complex number to Fa[1:cnmesh,0:N-1], and a real number to

Fa[0,0].

Then, assign complex numbers to a half row of Fa[0,1:cnmesh], and its complex

conjugate to another half row of Fa[0,cnmesh+1:N-1].

The data structure and symmetric properties are shown in Figure A.1 and A.2.
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A.4.3 Output array of dft r2c 3d

Extend to three-dimensional array is trivial. With the general property

Fa[N-n1,N-n2,N-n3] = Fa[-n1,-n2,-n3] = conjg(Fa[n1,n2,n3]).

With the same argument, we can reduce the number of elements in complex array Fa by

roughly factor of two. Therefore, it is sufficient to store only a half of a cube, and convention-

ally FFTW reduces the direction of the fastest varying index by about half. That is, we need

only Fa[0:cnmesh,0:N-1,0:N-1]. Using the condition above, it is also easy to show that

DC component (Fa[0,0,0]), and the Nyquist components (Fa[cnmesh,cnmesh,cnmesh],

Fa[0,cnmesh,cnmesh], Fa[cnmesh,0,cnmesh], Fa[cnmesh,cnmesh,0],

Fa[0,0,cnmesh], Fa[0,cnmesh,0], Fa[0,0,cnmesh], when N is even) are also real num-

bers.

One has to be careful about the boundaries with n1=0 or n1=cnmesh (with even

N). It is because in those boundaries, Fourier modes are not independent from each other.

That is,

Fa[0,n2,n3] = conjg(Fa[N,N-n2,N-n3]) = conjg(Fa[0,N-n2,N-n3])

for both even and odd N and

Fa[N/2,n2,n3] = conjg(Fa[-N/2,-n2,-n3]) = conjg(Fa[N/2,N-n2,N-n3])

only for even N .

Let’s calculate the real d.o.f.. For even N , we have 2N2(N/2+1) = N3+2N2 d.o.f.

in the reduced Fa. Among them, eight points (DC plus seven Nyquist frequencies) have real

values, and we have (N2−4)/2 pairs of complex-conjugated points on each boundary (n1=0

and n1=cnmesh). Therefore, total real d.o.f. is N3 + 2N2 − 8− 2(N2 − 4) = N3.

For odd N , we have total 2N2((N − 1)/2 + 1) = N3 + N2 d.o.f.s in the reduced Fa. For

n1=0 boundary, there are (N2 − 1)/2 of complex-conjugated pairs and one DC (real) point.

In sum, total real d.o.f. is N3 +N2 − (N2 − 1)− 1 = N3.

In summary, here is the prescription to generate the DFT component of a real array

of size N ×N ×N .
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(1) Prepare an array Fa[0:cnmesh,0:N-1,0:N-1], where cnmesh = N/2, rounded down

if N is odd.

(2)-1 If N is even, assign a complex number to Fa[1:cnmesh-1,0:N-1,0:N-1], and a real

number to DC, Fa[0,0,0], and Nyquest modes :

Fa[cnmesh,cnmesh,cnmesh], Fa[0,cnmesh,cnmesh],

Fa[cnmesh,0,cnmesh], Fa[cnmesh,cnmesh,0], Fa[0,0,cnmesh],

Fa[0,cnmesh,0], Fa[0,0,cnmesh].

Then, assign complex numbers to a half row of Fa[0,1:cnmesh,0:N-1] and Fa[cnmesh,1:cnmesh,0:N-1],

and its complex conjugate to another half row of Fa[0,cnmesh+1:N-1,0:N-1] and

Fa[cnmesh,cnmesh+1:N-1,0:N-1], respectively. Also, assign the complex conjugate

pair to

Fa[0,(/0,cnmesh/),1:N-1] and Fa[cnmesh,(/0,cnmesh/),0:N-1]. See, Figure A.2.

(2)-2 If N is odd, assign a complex number to Fa[1:cnmesh,0:N-1,0:N-1], and a real

number to Fa[0,0,0].

Then, assign complex numbers to a half row of Fa[0,1:cnmesh,0:N-1], and its com-

plex conjugate to another half row of Fa[0,cnmesh+1:N-1,0:N-1]. See, Figure A.1.
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Appendix B

Derivation of one-loop power spectrum

In this appendix, we derive the one-loop (next-to-leading order) power spectrum of

the quantity X(k, τ) whose general perturbative expansion is given by equation (2.55).

B.1 Gaussian linear density field

We calculate PX,13 and PX,22 when δ1(k, τ) follows the Gaussian distribution. As

these functions involve the ensemble average of four δ1s, we shall use following identity from

Wick’s theorem1:

⟨δ1(k1)δ1(k3)δ1(k3)δ1(k4)⟩ = (2π)6
[
PL(k1)PL(k3)δ

D(k1 + k2)δ
D(k3 + k4)

+PL(k3)PL(k2)δ
D(k1 + k3)δ

D(k2 + k4)

+PL(k2)PL(k1)δ
D(k1 + k4)δ

D(k2 + k3)

]
. (B.1)

Furthermore, by requiring that the ensemble average of X(k, τ) has to vanish, we have

following constraint

K
(s)
2 (k,−k) = 0.

Let’s first calculate PX,22(k), which is defined as〈
X(2)(k)X(2)(k′)

〉
≡ (2π)3PX,22(k)δ

D(k+ k′), (B.2)

1For a rigorous treatment of the Gaussian random field and the derivation of Wick’s theorem, see Section
2.2.
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where we omit the explicit time dependency for brevity. We evaluate the left hand side of

the definition 〈
X(2)(k)X(2)(k′)

〉
=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

K
(s)
2 (q1, k− q1)K

(s)
2 (q2, k

′ − q2)

×
〈
δ1(q1)δ1(k− q1)δ1(q2)δ1(k

′ − q2)
〉

=

∫
d3q1

∫
d3q2K

(s)
2 (q1, k− q1)K

(s)
2 (q2, k

′ − q2)

×
[
PL(q1)PL(k− q1)δ

D(q1 + q2)δ
D(k+ k′)

+PL(q1)PL(q2)δ
D(k′ + q1 − q2)δ

D(k+ q2 − q1)

]
= (2π)3

{
2

∫
d3q

(2π)3
PL(q)PL(|k− q|)

[
K

(s)
2 (q, k− q)

]2}
δD(k+ k′),

therefore

PX,22(k) = 2

∫
d3q

(2π)3
PL(q)PL(|k− q|)

[
K

(s)
2 (q, k− q)

]2
. (B.3)

We define PX,13(k) in the similar manner:〈
X(1)(k′)X(3)(k)

〉
≡ (2π)3PX,13(k)δ

D(k+ k′). (B.4)

We calculate the left hand side as〈
δ1(k)δ3(k

′)
〉

= K
(s)
1 (k′)

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3δ

D(k′ − q1 − q2 − q3)K
(s)
3 (q1, q2, q3)

×
〈
δ1(k

′)δ1(q1)δ1(q2)δ1(q3)
〉

= 3K
(s)
1 (k′)

∫
d3q1

∫
d3q2

∫
d3q3δ

D(k− q1 − q2 − q3)K
(s)
3 (q1, q2, q3)

×PL(k′)PL(q2)δD(k′ + q1)δ
D(q2 + q3)

= (2π)3
[
3K

(s)
1 (−k)PL(k)

∫
d3q

(2π)3
PL(q)K

(s)
3 (k, q,−q)

]
δD(k+ k′).

For the galaxy power spectrum K
(s)
1 (k) is a real function, and from the Hermitianity of

X(1)(−k) =
[
X(1)(k)

]∗
, one can show that K

(s)
1 (−k) = K

(s)
1 (k). Therefore,

PX,13(k) = 3K
(s)
1 (k)PL(k)

∫
d3q

(2π)3
PL(q)K

(s)
3 (k, q,−q). (B.5)
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B.2 Non-Gaussian linear density field

When linear density field follows non-Gaussian distribution, effect on the power

spectrum comes through the higher-order correlation function such as bispectrum, BL(k1, k2, k3),

and trispectrum TL(k1, k2, k3, k4)
2.

First, we calculate the leading order non-Gaussian correction term which comes

from δ31 term in equation (2.57):〈
X(1)(k′)X(2)(k)

〉
= K

(s)
1 (k′)

∫
d3q

(2π)3
K

(s)
2 (q, k− q)

〈
δ1(k

′)δ1(q)δ1(k− q)
〉

= (2π)3
[
K

(s)
1 (k′)

∫
d3q

(2π)3
K

(s)
2 (q, k− q)BL(k

′, q, k− q)

]
δD(k+ k′).

Therefore, the leading order non-Gaussian term is

∆PX,NG(k) = 2PX,12(k)

= 2K
(s)
1 (k)

∫
d3q

(2π)3
K

(s)
2 (q, k− q)BL(−k, q, k− q). (B.8)

Another non-Gaussian correction term comes from PX,22 and PX,13. For non-

Gaussian linear density field, the four point correlator becomes

⟨δ1(k1)δ1(k3)δ1(k3)δ1(k4)⟩ = (2π)6
[
PL(k1)PL(k3)δ

D(k1 + k2)δ
D(k3 + k4)

+PL(k3)PL(k2)δ
D(k1 + k3)δ

D(k2 + k4)

+PL(k2)PL(k1)δ
D(k1 + k4)δ

D(k2 + k3)

]
+(2π)3TL(k1, k2, k3, k4)δ

D(k1 + k2 + k3 + k4),

instead of equation (B.1), which is valid for Gaussian case. The new term in the four point

correlator which is proportional to the linear trispectrum generates yet another class of

2Bispectrum and Trispectrum are defined as

⟨δ1(k1)δ1(k2)δ1(k3)⟩ = (2π)3BL(k1, k2, k3)δ
D(k1 + k2 + k3), (B.6)

and
⟨δ1(k1)δ1(k2)δ1(k3)δ1(k4)⟩c = (2π)3TL(k1, k2, k3, k4)δ

D(k1 + k2 + k3 + k4), (B.7)

where ⟨· · · ⟩c denotes the connected part of correlation function.
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non-Gaussian correction terms:

∆PX,22(k) =

∫
d3q1
(2π)3

∫
d3q2
(2π)3

K
(s)
2 (q1, k− q1)K

(s)
2 (q2,−k− q2)

×TL(q1, k− q1, q2,−k− q2) (B.9)

∆PX,13(k) = K
(s)
1 (k)

∫
d3q1
(2π)3

∫
d3q2
(2π)3

K
(s)
3 (q1, q2, k− q1 − q2)

×TL(−k, q1, q2, k− q1 − q2). (B.10)

As linear trispectrum is generated from two-loop order in the curvature perturbation, ζ,

these terms are important on even larger scales than scales where equation (B.8) is impor-

tant.
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Appendix C

Derivation of the primordial bispectrum and
trispectrum from local non-Gaussianity

In this appendix, we derive the bispectrum and the trispectrum of primordial cur-

vature perturbation in the presence of local type non-Gaussianity. For local type non-

Gaussianity, primordial curvature perturbation, Φ(x), is given by

Φ(x) = ϕ(x) + fNL

[
ϕ2(x)− ⟨ϕ2⟩

]
+ gNLϕ

3(x) + · · · . (C.1)

In Fourier space, by using the convolution theorem, we can recast the equation as

Φ(k) ≡ϕ(1)(k) + ϕ(2)(k) + ϕ(3)(k) + · · ·

=ϕ(k) + fNL

[∫
d3q1
(2π)3

∫
d3q2ϕ(q1)ϕ(q2)δ

D(k− q12)−
〈
ϕ2
〉
δD(k)

]
+ gNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3ϕ(q1)ϕ(q2)ϕ(q3)δ

D(k− q123)

+ · · · . (C.2)

The bispectrum of Φ(k) is defined as a three point correlator in Fourier space:

⟨Φ(k1)Φ(k2)Φ(k3)⟩ = (2π)3B(k1, k2, k3)δ
D(k123). (C.3)

We calculate the primordial bispectrum by plugging equation (C.2) into left hand side of

equation (C.3). As ϕ follows Gaussian distribution, the leading order bispectrum comes

from
〈
ϕ(1)ϕ(1)ϕ(2)

〉
. Let us pick up one of three such terms.〈

ϕ(1)(k1)ϕ
(1)(k2)ϕ

(2)(k3)
〉

=fNL

∫
d3q1
(2π)3

∫
d3q2δ

D(k3 − q12) ⟨ϕ(k1)ϕ(k2)ϕ(q1)ϕ(q2)⟩

− fNL

〈
ϕ2
〉
δD(k3) ⟨ϕ(k1)ϕ(k2)⟩

=2fNL(2π)
3

∫
d3q1

∫
d3q2δ

D(k3 − q12)Pϕ(k1)Pϕ(k2)δ
D(k1 + q1)δ

D(k2 + q2)

=(2π)3 [2fNLPϕ(k1)Pϕ(k2)] δ
D(k123) (C.4)
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In order to evaluate the four-point correlator, we use the Wick’s theorem [Eq. (B.1)]. By

adding up cyclic combinations of equation (C.4), we calculate the primordial bispectrum of

curvature perturbation as

BΦ(k1, k2, k3) = 2fNL [Pϕ(k1)Pϕ(k2) + Pϕ(k2)Pϕ(k3) + Pϕ(k3)Pϕ(k1)] . (C.5)

The trispectrum of Φ(k) is the four-point correlator in Fourier space:

⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩c = (2π)3T (k1, k2, k3, k4)δ
D(k1234). (C.6)

Explicitly expanding the left hand side by using equation (C.2) yields (ϕ
(n)
i is the short-hand

notation of ϕ(n)(ki))

⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩

=⟨ϕ(1)1 ϕ
(1)
2 ϕ

(1)
3 ϕ

(1)
4 ⟩+

[
⟨ϕ(1)1 ϕ

(1)
2 ϕ

(1)
3 ϕ

(3)
4 ⟩+ (3 cyclic)

]
+
[
⟨ϕ(1)1 ϕ

(1)
2 ϕ

(2)
3 ϕ

(2)
4 ⟩+ (5 cyclic)

]
,

and among them, trispectrum picks up only connected correlator:

⟨Φ(k1)Φ(k2)Φ(k3)Φ(k4)⟩c
=
[
⟨ϕ(1)1 ϕ

(1)
2 ϕ

(1)
3 ϕ

(3)
4 ⟩c + (3 cyclic)

]
+
[
⟨ϕ(1)1 ϕ

(1)
2 ϕ

(2)
3 ϕ

(2)
4 ⟩c + (5 cyclic)

]
. (C.7)

Each piece of connected trispectrum is a product of three power spectra of Gaussian field

ϕ. First, let us calculate one of ⟨ϕ(1)ϕ(1)ϕ(1)ϕ(3)⟩c terms.

⟨ϕ(1)1 ϕ
(1)
2 ϕ

(1)
3 ϕ

(3)
4 ⟩c =gNL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3δ

D(k4 − q123)

× ⟨ϕ(k1)ϕ(k2)ϕ(k3)ϕ(q1)ϕ(q2)ϕ(q3)⟩c (C.8)

As the connected correlator does not count the case where any wave vectors ki are factored

out as a delta function (e.g. δD(ki) or δD(ki + kj)) except for δD(k1234), only six (3!) of

15 (5!!) Wick contraction terms are qualified as a part of trispectrum. For all of six Wick

contractions, we contract one ϕ(ki) with one ϕ(qi), and equation (C.8) becomes

⟨ϕ(1)1 ϕ
(1)
2 ϕ

(1)
3 ϕ

(3)
4 ⟩c

=(2π)3
∑
perm.

gNL

∫
d3q1

∫
d3q2

∫
d3q3δ

D(k4 − q123)

× Pϕ(k1)Pϕ(k2)Pϕ(k3)δ
D(k1 + qi)δ

D(k2 + qj)δ
D(k3 + qk), (C.9)
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where sum over permutation means that (i, j, k) can be any permutation of the set {1, 2, 3}.
After integrating all three delta functions, we find

⟨ϕ(1)1 ϕ
(1)
2 ϕ

(1)
3 ϕ

(3)
4 ⟩c = (2π)3

[
6gNLPϕ(k1)Pϕ(k2)Pϕ(k3)

]
δD(k1234). (C.10)

We also calculate ⟨ϕ(1)ϕ(1)ϕ(2)ϕ(2)⟩c terms with similar method. Let us focus on one of

1122-terms

⟨ϕ(1)1 ϕ
(1)
2 ϕ

(2)
3 ϕ

(2)
4 ⟩c

=f2NL

∫
d3q1
(2π)3

∫
d3q2
(2π)3

⟨ϕ(k1)ϕ(k2)ϕ(q1)ϕ(k3 − q1)ϕ(q2)ϕ(k4 − q2)⟩c .

In order to calculate the connected correlator, we should not contract ϕ(k1) with ϕ(k2),

ϕ(q1) with ϕ(k3 − q1), and ϕ(q2) with ϕ(k4 − q2). As a result, there are eight different way

of pairing six ϕs: first contracting one of {ϕ(q1), ϕ(k3−q1)} with one of {ϕ(q2), ϕ(k4−q2)}
(4 ways), there are two ways of contracting ϕ(k1) and ϕ(k2) with two left-overs of the

previous contraction. After contracting all three pairs, the correlator becomes

⟨ϕ(k1)ϕ(k2)ϕ(q1)ϕ(k3 − q1)ϕ(q2)ϕ(k4 − q2)⟩c
=(2π)9Pϕ(k1)Pϕ(k2)

×
[
δD(k1 + q1)δ

D(k2 + q2)Pϕ(k3 − q1)δ
D(k34 − q12)

+ δD(k1 + q1)δ
D(k2 + k4 − q2)Pϕ(k3 − q1)δ

D(k3 − q1 + q2)

+ δD(k1 + k3 − q1)δ
D(k2 + q2)Pϕ(q1)δ

D(k4 − q2 + q1)

+δD(k1 + k3 − q1)δ
D(k2 + k4 − q2)Pϕ(q1)δ

D(q12) + (k1 ↔ k2)
]
.

After integrating the delta functions, we find

⟨ϕ(1)1 ϕ
(1)
2 ϕ

(2)
3 ϕ

(2)
4 ⟩c

=(2π)3
[
f2NLPϕ(k1)Pϕ(k2) {4Pϕ(k13) + 4Pϕ(k23)}

]
δD(k1234).

By using k1234 = 0, we can rewrite the equation in the form that the symmetry is most

apparent:

⟨ϕ(1)1 ϕ
(1)
2 ϕ

(2)
3 ϕ

(2)
4 ⟩c

=(2π)3
[
2f2NLPϕ(k1)Pϕ(k2)

× {Pϕ(k13) + Pϕ(k14) + Pϕ(k23) + Pϕ(k24)}
]
δD(k1234). (C.11)
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By combining equation (C.10) and equation (C.11), we calculate the primordial trispectrum

induced by local type of non-Gaussianity [Eq. (C.7)]:

TΦ(k1, k2, k3, k4)

=6gNLPϕ(k1)Pϕ(k2)Pϕ(k3) + (3 cyclic)

+ 2f2NLPϕ(k1)Pϕ(k2)

{
Pϕ(k13) + Pϕ(k14) + Pϕ(k23) + Pϕ(k24)

}
+(5 cyclic)

=6gNLPϕ(k1)Pϕ(k2)Pϕ(k3) + (3 cyclic)

+ 2f2NLPϕ(k1)Pϕ(k2)

{
Pϕ(k13) + Pϕ(k14)

}
+(11 cyclic). (C.12)
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Appendix D

P
(rest)
gs,22 and P

(rest)
gs,13

The rest term for P
(rest)
gs,22 (k, µ; c1, c2) and P

(rest)
gs,13 (k, µ; c1) are defined as terms which

cannot be absorbed as either re-definition of bias or previously known terms such as Pm,

Pb2, Pb22, Pδθ, and Pθθ. In this appendix, we present the explicit functional form of them.

They are

P
(rest)
gs,22 (k, µ; c1, c2)

=2

∫
d3q

(2π)3
PL(q)PL(|k− q|)

×
[
c21

(fkµ)2

4

(
qz
q2

WR(|k− q|) + kz − qz
|k− q|2

WR(q)

)2

+
(fkµ)4

4

(
qz(kz − qz)

q2|k− q|2

)2

+ c2fµ
2WR(q)WR(|k− q|)G(s)

2 (q, k− q)

+ c1c2
fkµ

2
WR(q)WR(|k− q|)

(
qz
q2

WR(|k− q|) + kz − qz
|k− q|2

WR(q)

)
+ c2

(fkµ)2

2
WR(q)WR(|k− q|)

(
qz(kz − qz)

q2|k− q|2

)
+ c21fkµWR(k)F

(s)
2 (q, k− q)

(
qz
q2

WR(|k− q|) + kz − qz
|k− q|2

WR(q)

)
+ c1(fkµ)

2WR(k)F
(s)
2 (q, k− q)

(
qz(kz − qz)

q2|k− q|2

)
+ c1f

2kµ3G
(s)
2 (q, k− q)

(
qz
q2

WR(|k− q|) + kz − qz
|k− q|2

WR(q)

)
+ (f3k2µ4)G

(s)
2 (q, k− q)

(
qz(kz − qz)

q2|k− q|2

)
+ c1

(fkµ)3

2

(
qz
q2

WR(|k− q|) + kz − qz
|k− q|2

WR(q)

)(
qz(kz − qz)

q2|k− q|2

)]
, (D.1)
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and

P
(rest)
gs,13 (k, µ; c1)

=3(c1WR(k) + fµ2)PL(k)

∫
d3q

(2π)3
PL(q)

×
[
c1
fkµ

3

{
WR(|k− q|)F (s)

2 (k,−q)
qz
q2

−WR(|k+ q|)F (s)
2 (k, q)

qz
q2

+WR(q)

(
G

(s)
2 (k,−q)

kz − qz
|k− q|2

+G
(s)
2 (k, q)

kz + qz
|k+ q|2

)}
+

(fkµ)2

3

{(
G

(s)
2 (k,−q)

qz(kz − qz)

q2|k− q|2
−G

(s)
2 (k, q)

qz(kz + qz)

q2|k+ q|2

)
− c1WR(k)

(fkµ)2

6

q2z
q4

}
− (fkµ)3

6

q2zkz
q4k2

]
. (D.2)

When we implement that, we set WR = 1 (see, the discussion in Section 2.8.1), then

P
(rest)
gs,22 (k, µ; c1, c2) and P

(rest)
gs,13 (k, µ; c1) are simplified as

P
(rest)
gs,22 (k, µ, c1, c2) =

∑
m,n,i,j

µ2mfnci1c
j
2

k3

(2π)3

∫
drPL(kr)

∫ 1

−1

dx

× PL

[
k(1 + r2 − 2rx)1/2

] Amnij(r, x)

(1 + r2 − 2rx)2
(D.3)

P
(rest)
gs,13 (k, µ, c1) =(c1 + fµ2)PL(k)

∑
m,n,i

µ2mfnci1
k3

(2π)3

∫
drPL(kr)Bmni(r), (D.4)
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where the non-zero Amnij(r, x) and Bmni(r) are

A1120(r, x) =
1

7

(
(20x4 − 16x2 + 3)r2 − (24x3 − 10x)r + 7x2

)
(D.5)

A1111(r, x) =− r
(
(2x2 − 1)r3 − (4x3 − x)r2 + (4x2 − 1)r − x

)
(D.6)

A1101(r, x) =− 1

7

(
(6x2 + 1)r3 − 3x(4x2 + 3)r2 + (20x2 + 1)r − 7x

)
(D.7)

A1220(r, x) =
1

4
(1− x2)(1− 2rx)2 (D.8)

A1210(r, x) =
1

14
(1− x2)((10x2 − 3)r − 7x)r (D.9)

A1201(r, x) =− 1

2
(1− x2)(r2 − 2rx+ 1)r2 (D.10)

A2220(r, x) =
1

4

(
2(6x4 − 6x2 + 1)r2 − (12x3 − 8x)r + 3x2 − 1

)
(D.11)

A2210(r, x) =
1

14

(
(54x4 − 27x2 + 1)r2 − (81x3 − 25x)r + 28x2

)
(D.12)

A2201(r, x) =
1

2
r
(
−(3x2 + 1)r3 + 6x3r2 − (7x2 − 1)r + 2x

)
(D.13)

A2310(r, x) =
1

2
(1− x2)

(
(6x2 − 1)r2 − 5xr + 1

)
(D.14)

A2300(r, x) =
1

14
(1− x2)((6x2 + 1)r − 7x)r (D.15)

A2400(r, x) =
3

16
r2(x2 − 1)2 (D.16)

A3310(r, x) =
1

2

(
(10x4 − 9x2 + 1)r2 − (11x3 − 7x)r + 3x2 − 1

)
(D.17)

A3300(r, x) =
1

14

(
(18x4 − 3x2 − 1)r2 − (33x3 − 5x)r + 14x2

)
(D.18)

A3400(r, x) =
1

8
(1− x2)

(
3(5x2 − 1)r2 − 12xr + 2

)
(D.19)

A4400(r, x) =
1

16

(
(35x4 − 30x2 + 3)r2 − 8x(5x2 − 3)r + 12x2 − 4

)
(D.20)
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and

B111(r) =
1

84

[
−2(9r4 − 24r2 + 19) +

9

r
(r2 − 1)3 ln

(
1 + r

|1− r|

)]
(D.21)

B121(r) =− 1

3
(D.22)

B120(r) =− 1

336r3

[
2(−9r7 + 33r5 + 33r3 − 9r) + 9(r2 − 1)4 ln

(
1 + r

|1− r|

)]
(D.23)

B220(r) =
1

336r3

[
2r(−27r6 + 63r4 − 109r2 + 9) + 9(3r2 + 1)(r2 − 1)3 ln

(
1 + r

|1− r|

)]
(D.24)

B230(r) =− 1

3
(D.25)
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Appendix E

Lagrangian Perturbation Theory and Initial condition
for Cosmological N-body Simulation

We generate the initial condition for cosmological N-body simulation by using La-

grangian perturbation theory. In this section, we review the linear and second order La-

grangian perturbation theory and compare the cosmological initial condition generated from

two theories.

E.1 Lagrangian perturbation theory formalism

Let us summarize the result of the Lagrangian perturbation theory. The reader can

find a review on the subject in Bouchet et al. (1995); Bernardeau et al. (2002).

While Eulerian perturbation theory (Chapter 2) describes the density and veloc-

ity fields of matter at a fixed (‘comoving’ in cosmology) coordinate system, Lagrangian

perturbation theory concentrates on the trajectory of individual particle. We denote the

Eulerian (comoving physical) coordinate x, and the Lagrangian (comoving initial) coordi-

nate q. As we define the both coordinate in comoving sense, the expansion of Universe

does not change them. In Lagrangian perturbation theory, the dynamical variable is the

Lagrangian displacement field Ψ(q, τ), which is defined by

x(τ) = q+Ψ(q, τ). (E.1)

Note that Ψ = 0 initially so that q is the same as the usual comoving coordinate at initial

time, τ = 0.

The particle trajectory in the expanding universe is governed by the equation of

motion:
d2x

dτ2
+H(τ)

dx

dτ
= −∇xΦ, (E.2)

where Φ is the peculiar gravitational potential, and

H(τ) ≡ 1

a

da

dτ
= a(t)H(t) (E.3)
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is the modified Hubble parameter. Note that we are using a conformal time τ which is

related to the Robertson-Walker coordinate time by dt = adτ . Taking a divergence of this

equation, we get

∇x ·
[
d2x

dτ2
+H(τ)

dx

dτ

]
= −∇2

xΦ = −3

2
H2Ωmδ(x), (E.4)

where δ(x) is the density contrast, δ(x) ≡ ρ(x)/ρ̄− 1.

The particle density in the Lagrangian coordinate is the same as the average density

of the universe. Therefore, by using the mass conservation, we have

ρ̄(τ)d3q = ρ(x, τ)d3x = ρ̄(τ) [1 + δ(x, τ)] d3x. (E.5)

By using the equation above, we can relate the Eulerian density contrast δ(x, τ) to the

Lagrangian displacement vector Ψ(q, τ) as

1 + δ(x, τ) =

∣∣∣∣ d3qd3x

∣∣∣∣ = 1

J(q, τ)
, (E.6)

where

J(q, τ) = det (δij +Ψi,j(q, τ)) , (E.7)

is a Jacobian of the Lagrangian to Eulerian coordinate transform. Here, we abbreviate the

partial derivative with respect qj coordinate as Ψi,j ≡ ∂Ψi/∂qj .

By using equation (E.6), the equation of motion becomes

J(q, τ)∇x ·
[
d2x

dτ2
+H(τ)

dx

dτ

]
=

3

2
H2(τ)Ωm(τ)(J − 1). (E.8)

Using the chain rule
∂

∂xi
=

[
d3q

d3x

]
ij

∂

∂qj
= [δij +Ψi,j ]

−1 ∂

∂qj
,

the equation for displacement vector Ψ becomes

J(q, τ) [δij +Ψi,j(q, τ)]
−1

[
d2Ψi,j(q, τ)

dτ2
+H(τ)

dΨi,j(q, τ)

dτ

]
=

3

2
H2(τ)Ωm(τ) [J(q, τ)− 1] . (E.9)

Equation (E.9) is the master equation of the Lagrangian perturbation theory. In order to

get the perturbative solution, we solve the equation perturbatively in Ψ(q, τ):

Ψ(q, τ) = Ψ(1)(q, τ) +Ψ(2)(q, τ) + · · · . (E.10)
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E.2 Linear Lagrangian perturbation theory

In order to get the linear solution, let’s first approximate the Jacobian as

J(q, τ) = det [δij +Ψi,j(q, τ)] ≃ 1 + Ψi,i(q, τ), (E.11)

and the inverse of the Jacobian matrix as

[δij +Ψi,j ]
−1 ≃ δij −Ψi,j . (E.12)

This approximation is justified by by using the matrix approximation of det(I + A) =

1 + tr(A) + O(A2)1. Using these linear approximations, equation (E.9) becomes

(1 + Ψk,k) [δij −Ψi,j ]

(
d2Ψi,j
dτ2

+H(τ)
dΨi,j
dτ

)
=

3

2
H2(τ)Ωm(τ)Ψk,k, (E.15)

and we can find the linear equation for Ψ(1):

d2Ψ
(1)
i,i

dτ2
+H(τ)

dΨ
(1)
i,i

dτ
=

3

2
H2(τ)Ωm(τ)Ψ

(1)
i,i . (E.16)

Since the dynamical variable of the equation of motion is only time, we can separate

the time dependent part as D1(τ). Also, in linear approximation,

1 + δ1(x, τ) = J−1 ≃ 1−Ψi,i,

therefore, the linear solution becomes

∇q ·Ψ(1) = −δ1(x, τ), (E.17)

where the time evolution of δ1(x, τ) is governed by following equation.

D′′
1 (τ) +H(τ)D′

1(τ) =
3

2
H2(τ)Ωm(τ)D1(τ). (E.18)

1This identity can be proved as follows. Suppose we have a matrix A, whose eigenvalues are small. From
the matrix identity

det(C) = exp [tr(lnC)] , (E.13)

and when C = I +A, where I is the identity matrix, we get

det(I +A) = exp [tr(ln(I +A))] = exp

[
tr

(∑
n=1

(−1)n−1An

n

)]

= 1 + tr

(∑
n=1

(−1)n−1An

n

)
+ tr

(∑
n=1

(−1)n−1An

n

)2

+ · · ·

= 1 + tr(A) +
1

2

[
tr2 (A)− tr

(
A2
)]

+ O
(
A3
)
. (E.14)
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Note that the linear growth function D1(τ) here is the same as the linear growth factor in

Eulerian perturbation theory [Eq. (2.11].

Therefore, the particle position in the linear Lagrangian perturbation theory is given

by

x = q−∇−1
q δ1(x, τ), (E.19)

and corresponding peculiar velocity is

v ≡ dx

dτ
= −Hf1∇−1

q δ1(x, τ). (E.20)

Here, f1 ≡ d lnD1/d ln a is a logarithmic derivative of the linear growth factor.

We can further simplify the result by using the curl-free condition of the Lagrangian

displacement. The ir-rotational condition ∇ × Ψ(1) = 0 implies the existence of a scalar

potential satisfying Ψ(1)(q, τ) = −∇qϕ
(1)(q, τ). Therefore, in terms of the linear Lagrangian

potential ϕ(1), which is related to the linear density field as

∇q ·Ψ(1)(q, τ) = −∇2
qϕ

(1)(q, τ) = −δ1(x, τ), (E.21)

the linear solution can be also written as

x(q, τ) = q−∇qϕ
(1)(q, τ) (E.22)

v(q, τ) = −Hf1∇qϕ
(1)(q, τ). (E.23)

E.2.1 Zel’dovich approximation

The Zel’dovich approximation (Zel’dovich, 1970) extrapolates the linear solution

[Eq. (E.22) and Eq. (E.23)] into the non-linear regime. As a consequence of such an approx-

imation, the theory predict what’s called Zel’dovich pancake.

In this context, the Jacobian matrix is often called the ‘tensor of deformation’:

Dij ≡ δij +Ψi,j(q, τ). (E.24)

We can find the three eigenvectors of the deformation tensorDij and using these eigensystem

as a basis (with eigenvalues −α, −β, and −γ 2 ), we can diagonalize 3 it as

J(q, τ) =

∥∥∥∥∥∥
1− αD1(τ) 0 0

0 1− βD1(τ) 0
0 0 1− γD1(τ)

∥∥∥∥∥∥ , (E.25)

2Negative eigenvalues correspond to the growing mode (positive δ(x, τ)) See, for example, equation (E.17).
3This diagonalization is justified because, we assume the ir-rotational perturbation; using a scalar po-

tential ϕ(1), Dij is symmetric (i.e. diagonalizable).
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where D1(τ) is the linear growth function. By using the three eigenvalues, we can write the

density contrast as [Eq. (E.6)]

δ(x, τ) = [(1−D1(τ)α)(1−D1(τ)β)(1−D1(τ)γ)]
−1 − 1. (E.26)

What is the consequence of it? In order to see that, without loss of generality, let α be

the largest eigenvalues of deformation tensor. For example, for the ellipsoidal shape initial

perturbation, α corresponds to the shortest axis. Initially, D1(τ) is small, but it gets bigger

as linear perturbation grows, and eventually, reaches 1/α. At that moment, the density of

α-direction become infinity, and this stage is called Zeldovich pancake. Physically, it mean

that every sheet element sliced perpendicular to α-direction finally merging at one point. In

reality, however, Zeldovich approximation breaks down before the volume element reaches

its infinite density stage. It is because for the particles within such a small volume element,

we have to take into account the pressure effect as well as shell crossing.

E.3 Second order Lagrangian perturbation theory (2LPT)

Up to second order, the Jacobian is approximated as [Eq. (E.14)]

J ≃ 1 + Ψ
(1)
k,k +Ψ

(2)
k,k +

1

2

[(
Ψ

(1)
k,k

)2
−Ψ

(1)
i,jΨ

(1)
j,i

]
, (E.27)

therefore equation of motion,

J [δij −Ψi,j ]

(
d2Ψi,j
dτ2

+H
dΨi,j
dτ

)
=

3

2
H2Ωm(J − 1), (E.28)

becomes(
d2Ψ

(2)
i,i

dτ2
+H

dΨ
(2)
i,i

dτ

)
+Ψ

(1)
k,k

(
d2Ψ

(1)
i,i

dτ2
+H

dΨ
(1)
i,i

dτ

)
−Ψ

(1)
i,j

(
d2Ψ

(1)
i,j

dτ2
+H

dΨ
(1)
i,j

dτ

)

=
3

2
H2Ωm

[
Ψ

(2)
k,k +

1

2

(
Ψ

(1)
k,k

)2
− 1

2
Ψ

(1)
i,jΨ

(1)
j,i

]
. (E.29)

Using the solution for the linear displacement field Ψ(1)(x, τ), we simplify the equation of

motion as(
d2Ψ

(2)
i,i

dτ2
+H

dΨ
(2)
i,i

dτ
− 3

2
H2ΩmΨ

(2)
i,i

)
= −3

2
H2Ωm

[
1

2

(
Ψ

(1)
k,k

)2
− 1

2
Ψ

(1)
i,jΨ

(1)
j,i

]
. (E.30)

Here, we use the following symmetry: Ψ
(1)
i,j = Ψ

(1)
j,i = −ϕ(1),ij . The equation of motion above

is, again, separable, because the spatial derivatives only appears as divergence. Let’s denote
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the time dependent part of Ψ(2) as D2(τ). The second order time evolution of D2(τ) is

governed by

D′′
2 (τ) +HD′

2(τ)−
3

2
H2ΩmD2(τ) = −3

2
H2Ωm [D1(τ)]

2
. (E.31)

Note that, in flat ΛCDM universe, D2(τ) ≃ −3D2
1(τ)Ω

−1/143
m /7 approximates D2(τ) better

than 0.6 per cent (Bouchet et al. 1995).

The space part of the second order solution describes the effect of gravitational tide,

Ψ
(2)
k,k(q, τ)

D2(τ)
=

1

D2
1(τ)

1

2

∑
i ̸=j

{
Ψ

(1)
i,i (q, τ)Ψ

(1)
j,j (q, τ)−Ψ

(1)
i,j (q, τ)Ψ

(1)
j,i (q, τ)

}
. (E.32)

By using a second order scalar potential Ψ(2)(q, τ) = ∇qϕ
(2)(q, τ), the equation becomes

∇2
qϕ

(2)(q, τ) =
D2(τ)

D2
1(τ)

1

2

∑
i ̸=j

{
ϕ
(1)
,ii (q, τ)ϕ

(1)
,jj (q, τ)− ϕ

(1)
,ij (q, τ)ϕ

(1)
,ji (q, τ)

}
(E.33)

≃− 3

7
Ω−1/143
m

∑
i>j

{
ϕ
(1)
,ii (q, τ)ϕ

(1)
,jj (q, τ)−

[
ϕ
(1)
,ij (q, τ)

]2}
. (E.34)

Using the scalar potential, the solution for the position and velocity up to the second

order are

x(q, τ) = q−∇qϕ
(1)(q, τ) +∇qϕ

(2)(q, τ) (E.35)

v(q, τ) =
dx

dτ
= −Hf1∇qϕ

(1)(q, τ) +Hf2∇qϕ
(2)(q, τ). (E.36)

The logarithmic derivatives of the growth factor fi ≡ d lnDi/d ln a is well approximated as

f1 ≃ [Ωm(z)]
5/9

, f2 ≃ 2 [Ωm(z)]
6/11

to better than 10 and 12 percent, respectively, for flat-ΛCDM universe with 0.01 < Ωm < 1.

The accuracy of these two fits improves significantly for Ωm ≥ 0.1 (Bouchet et al. 1995).

E.4 Generating initial condition using Linear solution

In this section, we present the way how to generate the initial condition by using

the linear, and second order Lagrangian perturbation theory solutions. For the detailed nor-

malization, and the way to impose the Hermitian condition in Fourier space, see, Appendix

A.
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The solutions of Lagrangian perturbation theory is summarized as below: The

second order particle position and velocity are given by

x(q, τ) =q−∇qϕ
(1)(q, τ) +∇qϕ

(2)(q, τ) (E.37)

v(q, τ) =
dx

dτ
= −Hf1∇qϕ

(1)(q, τ) +Hf2∇qϕ
(2)(q, τ), (E.38)

where the linear and the second order Lagrangian potential is

∇2
qϕ

(1)(q, τ) = δ1(x, τ), (E.39)

and

∇2
qϕ

(2)(q, τ) ≃ −3

7
[Ωm(τ)]

−1/143
∑
i>j

{
ϕ
(1)
,ii (q, τ)ϕ

(1)
,jj (q, τ)−

[
ϕ
(1)
,ij (q, τ)

]2}
, (E.40)

respectively. Here, H(τ) is a reduced Hubble parameter

H(z) =
H0

1 + z

√
ΩΛ +Ωm(1 + z)3, (E.41)

and fi ≡ d lnDi/d ln a is the logarithmic derivative of growth factor, which can be approxi-

mated as

f1 ≃ [Ωm(z)]
5/9

, f2 ≃ 2 [Ωm(z)]
6/11

, (E.42)

for flat-ΛCDM universe. For different cosmology, one has to solve the linear and non-linear

growth equations: [Eq. (E.18)] and [Eq. (E.31)].

Let us suppose that we want to generate the initial condition for N3 matter particles

inside of cubic box of volume L3 at redshift z. The initial density field follows the Gaussian

statistics, and the linear power spectrum is given PL(k, z). Then, the procedure is as follow.

(1) Imagine we divide the cubic box into N3 regular grid points. Those are the Lagrangian

coordinate q.

(2) As Lagrangian displacement vector is determined by the density contrast, we need to

generate the Gaussian random density contrast. From the definition of power spectrum〈
δ1(k, z)δ1(k

′, z)
〉
= (2π)3PL(k, z)δ

D(k+ k′),

we relate the density contrast to the power spectrum as〈
|δ(k, z)|2

〉
=

(2π)3

k3F
P (k, z) = V P (k, z), (E.43)
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where we use δD(k + k′) = δknk,nk′/k
3
F with the fundamental frequency kF = (2π)/L.

Here, δkij is the Kronecker delta.

Generate density contrast in the Fourier space δ(k) ≡ δr(k)+iδi(k) as random variables

obeying a Gaussian statistics with mean and variance given by:

⟨δr(k)⟩ = 0, ⟨δ2r(k)⟩ =
√
V P (k)

2
(E.44)

⟨δi(k)⟩ = 0, ⟨δ2i (k)⟩ =
√
V P (k)

2
. (E.45)

When generating the random variable, we have to explicitly impose the Hermitian

condition of δ(k):

δ(−k) = δ∗(k). (E.46)

If one want to calculate the real space density field, do the inverse Fourier transform

by

δ(q) =
1

V

∑
δ(k)eik·q. =

1

V
δFFTW(q). (E.47)

(3) The linear Lagrangian potential ϕ(1) is given by

−k2ϕ(1)(k, z) = δ1(k, z). (E.48)

Therefore, calculate the linear Lagrangian displacement Ψ(1) in Fourier space by

Ψ(1)(k, z) = −ikϕ(1)(k, z) = ik
δ1(k, z)

k2
. (E.49)

(4) Inverse Fourier transform to get the displacement field in real space.

Ψ(1)(q, z) =
1

V

∑
ik
δ1(k, z)

k2
eik·q. (E.50)

Then, move particles at each grid point q by the displacement vector at that point.

x = q+Ψ(1)(q, z) (E.51)

Also, assign the velocity as

v = f1(z)H(z)Ψ(1)(q, z). (E.52)

Now, we have generated the Zeldovich initial condition.
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(5) In order to calculate the initial condition by using second order Lagrangian perturba-

tion theory (2LPT), we have to calculate the second order Lagrangian potential ϕ(2)

from equation (E.40). We shall solve this equation in Fourier space with following

order.

(5)-1 Calculate the Fourier transform of ϕ
(1)
,ij (q, τ) in Fourier space:

−kikjϕ(1)(k, τ) =
kikjδ1(k, τ)

k2
. (E.53)

(5)-2 Inverse Fourier transform to the real space, now we have six ϕ
(1)
,ij (q, z)s. Calculate

the right hand side of equation (E.40) as

F (q) =

[
ϕ
(1)
,22(q, z)ϕ

(1)
,11(q, z) + ϕ

(1)
,33(q, z)ϕ

(1)
,22(q, z) + ϕ

(1)
,33(q, z)ϕ

(1)
,11(q, z)

−
[
ϕ
(1)
,32(q, z)

]2
−
[
ϕ
(1)
,31(q, z)

]2
−
[
ϕ
(1)
,21(q, z)

]2 ]
. (E.54)

(5)-3 Fourier transform F (q). Then, ϕ(2)(k, z) is

ϕ(2)(k, z) =
3

7
[Ωm(z)]

−1/143 F (k, z)

k2
, (E.55)

and we calculate the second order Lagrangian displacement Ψ(2) by

Ψ(2)(k, z) = ikϕ(2)(k, z) =
3

7
[Ωm(z)]

−1/143 ikF (k, z)

k2
. (E.56)

(5)-4 Inverse Fourier transform to get the second order displacement field in real space,

and move particle further by Ψ(2)(q, z)

x = q+Ψ(1)(q, z) +Ψ(2)(q, z). (E.57)

Finally, assign the velocity

v = f1(z)H(z)Ψ(1)(q, z) + f2(z)H(z)Ψ(2)(q, z). (E.58)

Now, we have generated the second order Lagrangian initial condition.

E.5 Starting redshifts, initial condition generators, and conver-
gence tests

How early in redshift should one start N -body simulations? Is the usual first-order

Lagrangian perturbation theory, which is traditionally known as the Zel’dovich approxima-

tion (ZA) (e.g., Efstathiou et al., 1985), accurate enough for generating initial conditions
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for N -body simulations? Will ZA converge as one increases the starting redshift? In this

Appendix we show that ZA converges only very slowly: even zstart = 400 leaves an artifi-

cial suppression of power at the level of ∼ 1% relative to a more accurate initial condition

generated by the second-order Lagrangian perturbation theory (2LPT). This suppression

is persistent at all the redshifts we have studied, z = 1 − 6. On the other hand, simula-

tions starting from 2LPT initial conditions at zstart = 300 show convergence at z < 6, i.e.,

simulations starting at zstart = 400 give very similar results at z < 6.

Crocce et al. (2006) have shown that ZA-generated initial conditions yield an ar-

tificial suppression of power spectrum measured from N -body simulations. They call this

effect the “transient effect”. The lower the starting redshift, zstart, is, the larger the artificial

suppression of power becomes. This is a very important systematic error and must be taken

into account when one is interested in making precision predictions for the power spectrum

(Jeong & Komatsu, 2006) as well as for the mass function of dark matter halos (Lukić et al.,

2007).

The transient effects occur when decaying modes are excited artificially by inaccu-

rate initial condition generators. Although these decaying modes decay, they decay only

slowly as a−1 when ZA is used to generate initial conditions (Crocce et al., 2006). For

example, the transient effect reported in Crocce et al. (2006) is about 4% at k = 1 h Mpc−1

at z = 3 for a simulation starting at zstart = 49, and decays only slowly toward lower red-

shifts. The error at this level is unacceptable for testing precision calculations of the power

spectrum (Jeong & Komatsu, 2006; McDonald, 2007; Matarrese & Pietroni, 2007).

Crocce et al. (2006) also show that simulations starting from 2LPT initial conditions,

which are more accurate than ZA, still yield transient effects with the opposite sign: there

is an artificial amplification of power. However, an advantage of 2LPT is that the transient

modes decay much more quickly than those from ZA.

A natural question then arises: would ZA perform better as zstart is raised, and if so,

how large should zstart be? The same question would apply to 2LPT as well. To answer these

questions, we ran 10 simulations with 5 different starting redshifts, zstart = 50, 100, 150,

300, and 400, whose initial conditions were generated from either ZA or 2LPT. We have used

a publicly-available 2LPT initial condition generator developed by Roman Scoccimarro4 to

generate initial conditions for N -body simulations. We have then used the Gadget-2 code

to evolve density fields. The cosmological parameters are exactly the same as those used in

4http://cosmo.nyu.edu/roman/2LPT
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the main body of this paper. We chose to run simulations with a (200 h−1 Mpc)3 box and

5123 particles for these runs. Finally, we have used the same initial random seed for all of

these runs to facilitate head-to-head comparison.

Figure E.1 shows P (k) measured from 5 ZA runs with zstart = 50, 100, 150, 300,

and 400 (bottom to top), divided by P (k) from a 2LPT run with zstart = 300. In all cases

the power is suppressed relative to 2LPT, and the suppression is persistent at all redshifts

from z = 6 to 1. The amount of suppression decreases only slowly as we raise zstart.

Figure E.2 shows P (k) measured from 5 2LPT runs with zstart = 50, 100, 150, 300,

and 400 (top to bottom), divided by P (k) from a 2LPT run with zstart = 300. The situation

is reversed: the transient effects amplify the power, but the amount of amplification decays

very quickly with z and zstart. We conclude that the transient effect is unimportant (< 1%)

at z < 6, if initial conditions are generated at zstart = 300 using 2LPT.
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Figure E.1: Comparison between the power spectra calculated from 5 different ZA runs using
different starting redshifts, zstart = 50, 100, 150, 300, and 400 (from bottom to top). The
power spectra are divided by the one from 2LPT with zstart = 300, to facilitate comparison.
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Figure E.2: Comparison between the power spectra calculated from 5 different 2LPT runs
using different starting redshifts, zstart = 50, 100, 150, 300, and 400 (from bottom to
top). The power spectra are divided by the one from 2LPT with zstart = 300, to facilitate
comparison. Note that the power spectra with zstart = 300 and 400 agree very well, which
suggests convergence at zstart = 300.
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Appendix F

Error on power spectrum and bispectrum

F.1 Error on power spectrum

Besides the normalization, an estimator for the power spectrum may be written as

Pobs(k) =
1

Nk

Nk∑
i=1

|δ(ki)|2
∣∣∣∣∣
|ki−k|≤∆k

(F.1)

where δ(ki) is a Fourier transform of the density field in position space, ∆k is the funda-

mental wavenumber of either survey volume or simulation box, and Nk is the number of

independent k-modes available per bin. This estimator is unbiased because

⟨Pobs(k)⟩ =
1

Nk

Nk∑
i=1

⟨|δ(ki)|2⟩

∣∣∣∣∣
|ki−k|≤∆k

= ⟨|δ(k)|2⟩ = P (k), (F.2)

where P (k) is the underlying power spectrum. The variance of this estimator is given by〈(
Pobs(k)− P (k)

P (k)

)2
〉

= 1− 2
⟨Pobs⟩
P (k)

+
1

N2
kP (k)

2

Nk∑
i=1

Nk∑
j=1

⟨δ∗(ki)δ(ki)δ∗(kj)δ(kj)⟩. (F.3)

Assuming that the density field is a Gaussian random variable with its variance given by

P (k), i.e.,

⟨δ∗i δj⟩ = P (k)δij , (F.4)

we use Wick’s theorem for evaluating the last double summation:

Nk∑
i=1

Nk∑
j=1

⟨δ∗i δiδ∗j δj⟩ =

Nk∑
i=1

Nk∑
j=1

[
⟨δ∗i δi⟩⟨δ∗j δj⟩+ ⟨δ∗i δj⟩⟨δ∗j δi⟩+ ⟨δ∗i δ∗j ⟩⟨δiδj⟩

]
= N2

k [P (k)]
2 +Nk[P (k)]

2. (F.5)

Therefore, the variance is given by〈
[Pobs(k)− P (k)]

2
〉
=

[P (k)]2

Nk
, (F.6)
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and the standard deviation is given by

σP (k) ≡
〈
[Pobs(k)− P (k)]

2
〉1/2

=

√
1

Nk
P (k). (F.7)

Note that this formula is valid only when δ is a Gaussian random field. When δ is non-

Gaussian due to, e.g., non-linear evolution, primordial non-Gaussianity, non-linear bias, etc.,

we must add the connected four-point function to Eq. (F.5). See also Takahashi et al. (2008)

for the study of finite box size effects on the four-point function.

How do we calculate Nk? As the Fourier transformation of a real-valued field has

symmetry given by δ∗(k) = δ(−k), the number of independent k-modes is exactly a half of

the number of modes available in a spherical shell at a given k. We find

Nk =
1

2

4πk2δk

(δk)3
= 2π

(
k

δk

)2

, (F.8)

where δk is the fundamental wavenumber given by δk = 2π/L, where L is the survey size

or simulation box size.

In the literature one may often find a different formula such as

σliteratureP (k) =

√
2

N literature
k

P (k). (F.9)

Here, there is an extra factor of
√
2, as N literature

k is the number of modes available in a

spherical shell at a given k, without symmetry, δ∗(k) = δ(−k), taken into account, i.e.,

N literature
k = 2Nk. Both formulas give the same results, provided that we understand what

we mean by Nk in these formulas.

We have tested the formula Eq. (F.7) by comparing it to the standard deviation

estimated the ensemble of dark matter simulations used in Chapter 3. Figure F.1 and F.2

show the result of this comparison. The formula Eq. (F.7) and the simulation data agree

well.

F.2 Error on bispectrum

Similarly, we can calculate the expected Gaussian error on the measurement of the

bispectrum. Let us suppose that we estimate the bispectrum from a cubic box of size L. As

the fundamental frequency is kF ≡ 2π/L, we can estimate the bispectrum for a triangle with
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Figure F.1: Standard deviation of the matter power spectrum: analytical versus simulations.
The symbols show the standard deviations directly measured from 120 independent N -body
simulations whose box sizes are L = 512 Mpc/h (60 realizations for k < 0.24h/Mpc) and
L = 256 Mpc/h (60 realizations for 0.24 < k < 0.5h/Mpc) . Each simulation contains
2563 particles. The solid and dot-dashed lines show the analytical formula (Eq. (F.7))
with the 3rd-order PT non-linear P (k) and the linear P (k), respectively. Note that the
graph is discontinuous at k = 0.24h/Mpc because the number of k modes, Nk, for a given
wavenumber k is different for different box sizes.
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Figure F.2: Residuals. We divide both analytical estimation and simulation results by the
analytical formula (Eq. (F.7)) with the 3rd-order PT nonlinear P (k).
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side of kF (n1, n2, n3), where ni are integers. From the unbiased estimator of the bispectrum

(See, Chapter 7 for this estimator)

Bobs(n1kF , n2kF , n3kF )

=
V 2

N9

(
1

Nt

∑
m∈Tri123

δFFTW (m1)δ
FFTW (m2)δ

FFTW (m3)

)
, (F.10)

one can estimate the errors on calculating the bispectrum as〈(
∆B

B
(n1, n2, n3)

)2
〉

=1− 2

〈
Bobs
B

〉
+

V 4

N18

1

H18

1

N2
t B

2

∑
q∈Tri123

∑
q′∈Tri123

⟨δ(q1)δ(q2)δ(q3)δ(q′1)δ(q′2)δ(q′3)⟩,

(F.11)

where Nt is the total number of triangle with side of (k1,k2,k3)=kF (n1, n2, n3), and N is the

size of one dimensional Fourier grid (therefore, we perform the Fourier transform on grid of

size N3.)

Let’s calculate the six point correlator in equation (F.11). At the lowest order,

the six point correlator is given by the sum of the product of three power spectra and two

bispectra, which are related to δ(qi) as (See, Chapter 7 for the coefficients)

⟨δ(qi)δ(qj)⟩ =
(2π)3

k3F
P (ki)δ

k
ij

and

⟨δ(qi)δ(qj)δ(qk)⟩ =
(2π)3

k3F
B(kijk)δ

k
ijk.

Here, δkijk... denotes the Kronecker delta. That is, the six point correlator is given by∑
q∈Tri123

∑
q′∈Tri123

⟨δ(q1)δ(q2)δ(q3)δ(q′1)δ(q′2)δ(q′3)⟩

= N2
t

(2π)6

k6F
B2(k123) + sBNt

(2π)9

k9F
P (k1)P (k2)P (k3)

+O(P (ki)T (kl, km, kn, ko)) + O(H(k1, k2, k3, k1, k2, k3))

≃ N2
t V

2B2(k123) + sBNtV
3P (k1)P (k2)P (k3), (F.12)

where we approximate the equation by only taking the ‘Gaussian’ part. Here, T and H

denote the trispectrum, and hexaspectrum generated by non-linear gravitational interaction.

The symmetric factor sB is 6, 2, 1 for equilateral, isosceles and general triangles, respectively.
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Using this approximation, we calculate the variance of bispectrum〈
[Bobs(k123)−B(k123)]

2
〉
= sB

V

Nt
P (k1)P (k2)P (k3) = sB

(2π)3

Ntk3F
P (k1)P (k2)P (k3) (F.13)

Finally, the standard deviation is given by

σB(k123) =

√
sBV

Nt
[P (k1)P (k2)P (k3)]

1/2
=

√
sB(2π)3

Ntk3F
[P (k1)P (k2)P (k3)]

1/2
. (F.14)

Note that this result is consistent with Equation (28) of Sefusatti & Komatsu (2007).

In that paper, variance on bispectrum is given by

(∆B)2 ≃ k3F
s123
VB

P (k1)P (k2)P (k3) (F.15)

where

VB ≡
∫
k1

d3q1

∫
k2

d3q2

∫
k3

d3q3 δD(q123) ≃ 8π2k1k2k3(∆k)
3 (F.16)

measures 9-dimensional volume within which q1 + q2 + q3 = 0 is satisfied. Note that their

Fourier convention is different from the convention we are using in this dissertation (See

Appendix A); there is (2π)3 factor difference in the integral measure in k-space. In this

convention, the number of triangles (Nt) is given by dividing the volume VB by the volume

of fundamental cell:

Nt =
VB
k6F

, (F.17)

and we rewrite the variance in Sefusatti & Komatsu (2007) as

(∆B)2 ≃ s123
Ntk3F

P (k1)P (k2)P (k3). (F.18)

One can easily show that the factor of (2π)3 difference comes from the difference in the

definition of power spectrum and bispectrum. They define them as

⟨δ(k1)δ(k2)⟩ = P (k1)δ
D(k12) (F.19)

⟨δ(k1)δ(k2)δ(k3)⟩ = B(k1, k2, k3)δ
D(k123). (F.20)
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Appendix G

Analytical marginalization of the likelihood function
over b̃21 and P0

In this appendix we derive the analytical formulas for the likelihood function marginal-

ized over b̃21 and P0.

The likelihood function, Eq. (4.6), is given by

L(b̃1, b̃2, P0, θn) =

(∏
i

1√
2πσ2

Pi

)
exp

−∑
i

(
Pobs,i − b̃21(Pδδ,i + b̃2Pb2,i + b̃22Pb22,i)− P0

)2
2σ2

Pi

 ,
(G.1)

where θn are the cosmological parameters that do not depend on any of the bias parameters.

The subscript i denotes bins, ki.

Integrating the likelihood function over P0, we find

L(b̃1, b̃2, θn) =

∫ ∞

−∞
dP0L(b̃1, b̃2, P0, θn)

= N

√
2π∑
i wi

exp

[
−1

2

∑
i>j wiwj(aj − ai)

2∑
i wi

]
, (G.2)

where we have defined new variables

N ≡
∏
i

1√
2πσ2

Pi

(G.3)

ai ≡ Pobs,i − b̃21(Pδδ,i + b̃2Pb2,i + b̃22Pb22,i) (G.4)

wi ≡ 1

σ2
Pi

. (G.5)

We then integrate this function over b̃21. Introducing new variables given by

N̄ ≡ N

√
2π∑
i wi

, (G.6)

Pth,i ≡ Pδδ,i + b̃2Pb2,i + b̃22Pb22,i, (G.7)
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and ai = Pobs,i − b̃21Pth,i, we rewrite Eq. (G.2) as

L(b̃1, b̃2, θn) = N̄ exp

−1

2

∑
i>j wiwj

{
(Pth,i − Pth,j)b̃

2
1 − (Pobs,i − Pobs,j)

}2

∑
i wi


= N̄ exp

[
−1

2

(
Ab̃41 − 2Bb̃21 + C

)]
, (G.8)

where

A ≡
∑
i>j wiwj(Pth,i − Pth,j)

2∑
i wi

(G.9)

B ≡
∑
i>j wiwj(Pth,i − Pth,j)(Pobs,i − Pobs,j)∑

i wi
(G.10)

C ≡
∑
i>j wiwj(Pobs,i − Pobs,j)

2∑
i wi

. (G.11)

Assuming a flat prior on b̃21, we integrate the likelihood function to find the desired result:

L(b̃2, θn) = N̄

∫ ∞

0

exp

[
−1

2

(
Ab̃41 − 2Bb̃21 + C

)]
d(b̃21)

= N̄ exp

[
B2 −AC

2A

]√
π

2A

{
1 + erf

(
B√
2A

)}
. (G.12)

Note that the convergence of the likelihood function is ensured by Cauchy’s inequality,

B2 −AC < 0.
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Appendix H

distribution of errors on the distance scale

We find that the error on D extracted from the halo power spectrum of Millennium

Simulation is about 2.17% for kmax = 1.5 h/Mpc at z = 6. (See Figure 4.16.) On the

other hand, the error on D calculated from the Fisher information matrix is 1.57% Are they

consistent?

In order to test whether it is possible to get the error on D far from the value derived

from the Fisher matrix, we generate 1000 realizations of mock power spectra with the best-

fitting bias parameters for halo with kmax = 1.5 h/Mpc at z = 6. Then, we calculate

the best-fitting value of D as well as the 1-σ (68.27% CL) range from the one-dimensional

marginalized likelihood function of D for each realization.

We find that the mean 1-σ error on D calculated from these realizations is 1.66%,

and their standard deviation is 0.43%. Figure H.1 shows the distribution of the fractional

1-σ error on D compared with Dtrue. While the error derived from the Fisher matrix is

close to the mean, the error calculated from the Millennium Simulation is on the tail of the

distribution. The probability of having an error on D greater than that from the Millennium

Simulation is about 6%, which is acceptable.
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Figure H.1: Histogram for the 1-σ errors on D calculated from 1000 Monte Carlo realiza-
tions generated with the best-fitting bias parameters of halo power spectrum of Millennium
Simulation with kmax = 1.5 h/Mpc at z = 6. The error derived from the Fisher matrix is
close to the mean, while the error from the marginalized one-dimensional likelihood function
of Millennium Simulation is on the tail of the distribution. The probability of having an
error on D greater than that from the Millennium Simulation is about 6%.
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Appendix I

Theory on statistics of density peaks: Mass function
and halo bias

I.1 Mass function of halos

I.1.1 Variables

First, we summarize the variables we use to describe the mass function of halos.

σ2
R: The variance of the smoothed linear matter density contrast is defined as

σ2
R(z) =

∫
d3k

(2π)3
PL(k, z)W

2(k;R) =

∫
dk

k
∆2
L(k, τ)W

2(k;R), (I.1)

where PL(k, z) = PL(k)D
2(z) is the linear power spectrum, and ∆2

L(k, z) = k3PL(k, z)/(2π
2)

is the dimensionless linear power spectrum. The smoothing is usually done by the fol-

lowing two k-space Filters;

– Gaussian filter

WG(k;R) = exp

[
−R

2k2

2

]
(I.2)

– Top-Hat filter

WTH(k;R) = 3
sinx− x cosx

x3
, x ≡ kR (I.3)

We can explicitly separate the time dependence of σ2
R(z) in terms of the linear growth

function, D(z).

σ2
R(z) = D2(z)σ2

R, (I.4)

where σ2
R is the value at present.

δc(ΩM ): In the spherical collapse model, a spherical clump becomes a virialized object when

linear density contrast of the clump extrapolated to the moment reaches the criti-

cal over-density, δc. In Einstein de-Sitter (flat, matter-dominated) Universe, δc ≡
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0.15(12π)2/3 ≃ 1.686 regardless of the time when halo forms. In flat-ΛCDM uni-

verse, the critical over-density changes as Ωm changes, and it is approximately given

in Kitayama & Suto (1996):

δc(z) ≃
3(12π)2/3

20
[1 + 0.0123 log10 Ωm(z)] , (I.5)

In order to avoid confusion between time dependence due to Λ and time dependence

due to growth factor (in random walk view), we refer to the former as δc(Ωm).

R, M , ν: In this chapter, we shall use these three quantities interchangeably. They are related

by

m

1M⊙
=
4π

3

(
2.7754× 1011

)
Ωmh

2

(
r

1Mpc

)3

(I.6)

ν =
δc
σR

=
δc
σm

, (I.7)

where σR and δc are given above, and σm is defined as σR(m).

I.1.2 The random walk view

A region of radius R becomes a halo of mass M , when the linear density contrast

δ1 of that region grows and exceeds the critical value δc. Therefore, the statistics of halos

are determined by comparing the growth of linear density contrast δ1(z) to a fixed critical

value δc.

The same process can also be described by the alternative view. In this view, instead

of following the growth of the linear density field (we call it physical view), we freeze the

density field at the fixed time (usually at present time) and change the critical density as

δc(Ωm)/D(z), so that the relative ratio between the density field and the critical density

remains same (we call it random walk view). The excursion set approach is based on this

view. For the details of this view, see Bond et al. (1991) and Lacey & Cole (1993).

Formally, these two views can be written as

δh,R(x, zf ) = Θ[δR(x, zf )− δc(Ωm,f )] = Θ[δR(x)− δc(Ωm,f )/D(zf )] (I.8)

with a step function, Θ, and a formation redshift of halo, zf . Here, δR(x, z) is the smoothed

linear density field (value at present without z dependence). Note that, for high mass halos,

we usually assume that observed redshift zo is very close to the formation redshift: zf ≃ zo.
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Although these two views give essentially the same answer for the halo mass func-

tion, random walk view is more convenient to calculate the conditional mass function; thus,

quantities which is based on it, like a halo merger rate, halo bias, etc. Therefore, we shall

use the random walk view in this appendix whenever excursion set approach is used.

I.1.3 Press-Schechter mass function

As smoothed linear density field follows Gaussian statistics,

PR(δ) =
1√
2πσ2

R

exp

[
− δ2

2σ2
R

]
, (I.9)

we calculate the fraction of collapsed objects with mass larger than m ≡ 4/3ρ̄πR3 by

integrating the PDF:

F (> m) =

∫ ∞

δc

PR(δ)dδ =
1

2
erfc

[
δc√
2σR

]
. (I.10)

Using this, the fraction of collapsed objects within mass range between m ∼ m+ δm is

f(m)dm ≡ F (> m)− F (> m+ δm) = − ∂F

∂m
dm. (I.11)

We calculate the comoving number density of the collapsed object within that mass range

as

n(m)dm =
number of smoothed patch× f(m)

V
=
V/(M/ρ̄)f(m)dm

V

= −ρ̄ ∂F
∂m

dm

m
. (I.12)

Multiplying the Cloud-In-Cloud magic factor 2, (Bond et al., 1991) we find

nPS(m)dm = −2ρ̄
∂F

∂m

dm

m
. (I.13)

Changing the parameter from δ to x ≡ δ/σR and with new parameter ν ≡ δc/σR,

F =

∫ ∞

ν

1√
2π

exp

[
−x

2

2

]
dx. (I.14)

Therefore,
∂F

∂m
=
∂F

∂ν

∂ν

∂m
=

1√
2π
νe−ν

2/2 d lnσR
dm

, (I.15)

and the PS mass function is now

nPS(m)mdm = −2ρ̄ν
e−ν

2/2

√
2π

dσR
σR

, (I.16)
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or

nPS(m) = −2
ρ̄

m2
ν
e−ν

2/2

√
2π

d lnσR
d lnm

. (I.17)

Sometimes, people define f(ν) as

n(m)mdm = −2ρ̄f(ν)d lnσR = 2ρ̄f(ν)d ln ν. (I.18)

Then,

fPS(ν) =

√
1

2π
νe−ν

2/2. (I.19)

I.1.3.1 ST convention

Sheth and Tormen use different definition of ν. They set ν = (δc/σR)
2. In this

case,

F =

∫ ∞

√
ν

1√
2π

exp

[
−x

2

2

]
dx, (I.20)

and with the following partial differentiation,

∂F

∂m
=
∂F

∂ν

∂ν

∂m
= − 1√

2π
e−ν/2

d
√
ν

dm
= − 1√

2π
e−ν/2

1

2
√
ν

dν

dm
, (I.21)

we get

nPS(m)dm =
ρ̄

m

1√
2πν

eν/2dν. (I.22)

Defining f(ν) as

νf(ν) ≡ m2n(m)

ρ̄

d lnm

d ln ν
, (I.23)

leads

νf(ν) =
(ν
2

)1/2 e−ν/2√
π
. (I.24)

I.1.4 Mass function from excursion set approach

Some halos reside in the bigger halo, and others are isolated. In the excursion set

approach (Bond et al., 1991), we can formulate isolated halo of mass m which is just formed

at redshift z (mass function) as “trajectories that are above the threshold δc(z) at some

mass scale m ∼ m + δm but are below this threshold for all larger values of m”. Let’s

calculate the probability of having those halos.
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First, we consider a region which has overdensity δ(< δc(z)) after smoothing with

a filter of mass m. Then, probability that this region does NOT exceed the critical density

δc(z) for any larger smoothing scale is given by

q(δ, δc;m, z)dδ =
1√
2πσ2

m

[
exp

(
− δ2

2σ2
m

)
− exp

(
− (2δc(z)− δ)2

2σ2
m

)]
dδ.

It is easy to prove this equation because for every random walk path ends up δ which passed

the barrier of δc(z) in the past, there exists a unique path ends up 2δc(z) − δ0 which has

the same probability as the former path by reflective symmetry. Therefore, the chance that

the patch does not exceed δc(z) for larger smoothing scale is simply

[Prob. of random walk path ends up δ]

− [Prob. of random walk path ends up 2δc(z)− δ],

which is basically the equation above.

The probability that a trajectory hit the barrier at redshift z between filtering scale

m and m + δm has to equal the reduction of trajectories which does NOT hit the barrier.

That is,

f(m, z)dσ2
m = − ∂

∂σ2
m

[∫ δc(z)

−∞
q(δ, δc;m, z)dδ

]
dσ2

m

= − ∂

∂σ2
m

[
1√
2π

∫ ν

−∞
dx
(
e−x

2/2 − e−(x−2ν)2/2
)]
dσ2

m

= − ∂ν

∂σ2
m

∂

∂ν

[
2√
2π

∫ ν

0

dxe−x
2/2

]
dσ2

m

=
1√
2π

δc
σ3
m

exp

[
− δ2c
2σ2

m

]
dσ2

m. (I.25)

f(m, z) represents the fraction of mass associated with halos in rangem ∼ m+δm. Therefore

the comoving number density of halos of mass m at redshift z (mass function) is

nes(m)dm =
ρ̄

m
f(m, z)

∣∣∣∣dσ2
m

dm

∣∣∣∣ dm = −2
ρ̄

m2
ν
e−ν

2/2

√
2π

d lnσR
d lnm

dm. (I.26)

where subscript ‘es’ stands for ‘excursion set approach’. Note that the resulting mass func-

tion is the same as the Press-Schechter mass function, but we do not need a magic factor

of 2!
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I.1.5 Halo merger rate

I.1.5.1 Conditional mass-function

One can also calculate the conditional mass function in the onset of the Press-

Schechter formalism. Conditional mass function f(m1, z1|m0, z0) is the conditional proba-

bility that the halo of mass m0 at later time z = z0 was found as the halo with mass m1

at earlier time z = z1. Note that z0 < z1 and m0 > m1, which leads δc(z0) < δc(z1) and

σ2
0 < σ2

1 .

In the previous section, we calculate that the probability of forming a halo of mass

m at redshift z by using an excursion set approach. Note that this probability is the result

from analyzing random walk trajectories from m = 0, δ = 0.

f(m, z)dm =
1√
2π

δc(z)

σ3(m)
exp

[
− δ2c (z)

2σ2(m)

]
dσ2(m)

dm
dm. (I.27)

Because the random walk trajectories are translationally invariant, we can set up the similar

equation for a trajectory starting from m = m0 and δ = δc(z0). Especially, the probability

that this trajectory reaches the bar of δc(z1) for the first time at m = m1 is the conditional

probability we want to calculate.

f(m1, z1|m0, z0)dσ
2(m1)

=
1√
2π

δc(z1)− δc(z0)

[σ2(m1)− σ2(m0)]
3/2

exp

{
− [δc(z1)− δc(z0)]

2

2 [σ2(m1)− σ2(m0)]

}
dσ2(m1). (I.28)

Remember that we use σ2 as a time step of random walk.

To simplify the notation, we use put subscript 0 for a quantity related to the ‘later

time’ and subscript 1 for a quantity related to the ‘earlier time‘. Plus, density contrast with

subscript has to be understood as a ‘critical density’ at that epoch, e.g. δ1 = δc(z1).

I.1.5.2 Halo merger rate

To get the merger rate, we had to invert the conditional mass function using Bayes

theorem:

f(m0, z0|m1, z1)dσ
2
0 =

f(m1, z1|m0, z0)dσ
2
1f(m0, z0)dσ

2
0

f(m1, z1)dσ2
1

. (I.29)
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Therefore,

f(m0, z0|m1, z1)

=
1√
2π

δ1 − δ0

(σ2
1 − σ2

0)
3/2

exp

{
− (δ1 − δ0)

2

2 (σ2
1 − σ2

0)

}
δ0
σ3
0

exp

(
− δ20
2σ2

0

)
σ3
1

δ1
exp

(
δ21
2σ2

1

)

=
1√
2π

[
σ2
1

σ2
0(σ

2
0 − σ2

1)

]3/2
δ0(δ1 − δ0)

δ1
exp

[
− (δ0σ

2
1 − δ1σ

2
0)

2

2σ2
0σ

2
1(σ

2
1 − σ2

0)

]
.

(I.30)

This is the probability that a halo of mass m1 at redshift z1 will merge later and by the

time z0 have mass between m0 and m0 + δm0. In the language of excursion set approach,

merger event corresponds to the sudden decrease of σ2(m), equivalently sudden increase of

m, in time. Since the parameter controls the time is δc(z), this can be achieved by setting

δ0 → δ1. Then, the using the equation (I.30), we can define the probability of the merger

(i.e. sudden increase in mass) from m1 to m0, equivalently from σ2
1 to σ2

0 , within time

interval dδ(z), which is also called ‘mean transition rate’, as

d2p

dσ2
0dδ

dδdσ2
0 =

1√
2π

[
σ2
1

σ2
0(σ

2
0 − σ2

1)

]3/2
exp

[
−δ

2
0(σ

2
1 − σ2

0)

2σ2
0σ

2
1

]
dδ0dσ

2
0 . (I.31)

Finally, we can get the merger rate by changing the variables from (δ, σ2) to (t,m).

d2p

d(ln∆m)dt
=

∣∣∣∣dσ2
0

dm

∣∣∣∣∆m ∣∣∣∣dδdt
∣∣∣∣ d2p

dσ2
0dδ

=

(
2

π

)1/2
1

t

∣∣∣∣d ln δc(z)d ln t

∣∣∣∣ (∆m

m0

) ∣∣∣∣ d lnσ0d lnm0

∣∣∣∣ δc(z)σ0

1

(1− σ2
0/σ

2
1)

3/2

× exp

[
−δc(z)

2

2

(
1

σ2
0

− 1

σ2
1

)] (I.32)

I.1.6 Sheth-Tormen mass function

Sheth & Tormen (1999) refines the PS mass function in order to fit the mass function

from GIF/Virgo simulation. Their modification of the PS mass function is

fST (ν) = A

√
αν2

2π

[
1 +

1

(αν2)p

]
exp

(
−αν

2

2

)
, (I.33)

where α = 0.707, p = 0.3, and A is determined by requiring that∫
nST (m)mdm = ρ̄ = 2

∫ ∞

0

ρ̄fST (ν)d ln ν. (I.34)

Therefore,

A =
1

1 + Γ(0.5−p)
2p

√
π

≃ 0.322184. (I.35)
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Later, Sheth et al. (2001) show that this mass function may be related to a ellipsoidal

collapse. Note that, in the special case of A = 1/2, p = 0, and α = 1, ST mass function is

reduced to PS mass function.

I.1.6.1 ST convention

Using Sheth-Tormen definition of ν ≡ (δc/σR)
2

νf(ν) = A

(
1 +

1

(αν)p

)(αν
2

)1/2 e−αν/2√
π

(I.36)

I.2 Halo bias with Gaussian linear density field

I.2.1 Kaiser (1984)

The first paper which calculate the linear bias factor is Kaiser (1984). We sum-

marize his analysis here. Let’s assume that halos form where “the primordial density en-

hancement, when averaged over a rich cluster mass scale, lay above some moderately high

threshold”. Then, “at large separations, the cluster correlation function is amplified by a

factor, A ≡ ξc/ξρ which depends only on the statistical distribution of the smoothed density

fluctuations.”

Let’s think about a density field δR(x) which is smoothed with a window radius

RW . We denote the threshold as νσ, where σ2 = ξ(0) is the rms density fluctuation. We

calculate ξ>ν(r) which is “the correlation function of regions lying above the threshold”,

which is closely related to what we want to calculate, ξmax>ν(r). “ξ>ν(r) is defined to be the

fractional excess probability that δ2 ≡ δ(x2) > νσ given δ1 ≡ δ(x1) > νσ and |x1−x2| > r.”

I.2.1.1 Gaussian density field

Let’s do the analysis for Gaussian case first. Then, for any point, the probability

of having a density field of size y is

P (y) =
1√
2πσ2

e−
y2

2σ2 ,

and the probability of having a density field of size y1 at x1 and y2 at x2, whose separation

is r, becomes

P (y1, y2) =
1

2π
√

|C|
exp

[
−1

2
yTC−1y

]
,
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where

y =

(
y1
y2

)
and the covariant matrix can be calculated by using there auto-correlation and correlation:

C =

(
ξ(0) ξ(r)
ξ(r) ξ(0)

)
.

By using the p.d.f. above, probability that a randomly chosen point lies above the

threshold becomes

P1 =

∫ ∞

νσ

P (y)dy =
1√
2π

∫ ∞

ν

e−x
2/2dx =

1

2
erfc

[
ν√
2

]
and the probability that δ1 and δ2 both lie above the threshold becomes

P2 =

∫ ∞

νσ

dy1

∫ ∞

νσ

dy2P (y1, y2)

=

∫ ∞

νσ

dy1

∫ ∞

νσ

dy2
1

2π
√
ξ2(0)− ξ2(r)

exp

[
−ξ(0)y

2
1 + ξ(0)y22 − 2ξ(r)y1y2
2 [ξ2(0)− ξ2(r)]

]
=

1

2π
√
1− α2

∫ ∞

ν

dx1

∫ ∞

ν

dx2exp

[
−x

2
1 + x22 − 2αx1x2

2 (1− α2)

]
=

√
1

8π

∫ ∞

ν

dxe−x
2/2erfc

[
ν − αx√
2(1− α2)

]
,

where α ≡ ξ(r)/ξ(0) < 1. Therefore, ξ>ν(r) is

1 + ξ>ν(r) =
P2

P 2
1

=

√
2

π

[
erfc

(
ν√
2

)]−2 ∫ ∞

ν

dxe−x
2/2erfc

[
ν − αx√
2(1− α2)

]
. (I.37)

Let’s think about the case when α = ξ(r)/ξ(0) ≪ 1. This assumption is valid for

large scale, because correlation function is very small for large scale. In that limit, we can

approximate erfc of the right hand side of equation (I.37) as

erfc

[
ν − αx√
2(1− α2)

]
= erfc

(
ν√
2

)
+

√
2

π
e−ν

2/2xα+ O(α2).

Therefore, from equation (I.37), we find

ξ>ν(r) =
2

π
e−ν

2/2

[
erfc

(
ν√
2

)]−2 [∫ ∞

ν

dxxe−x
2/2

]
ξ(r)

ξ(0)
(I.38)

≃
(
eν

2/2

∫ ∞

ν

dye−y
2/2

)−2
ξ(r)

ξ(0)
. (I.39)
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We can further simplify the equation by assuming ν ≫ 1 by using

lim
x→∞

√
π

2
ex

2/2erfc

(
x√
2

)
=

1

x
.

That is, in the limit of ξ(r) ≪ ξ(0) and ν ≫ 1, the relation between the correlation function

of regions above the density threshold and the correlation function of underlying density

field becomes1

ξ>ν(r) ≃
ν2

σ2
ξ(r). (I.42)

Note that correlation of over-dense region ξ>ν(r) become stronger and stronger when we

increase threshold ν. It is because (erfc[ν/
√
2])2 (∝ probability of having two disjoint region

have more than threshold density) decays slightly more rapidly than exp[−x2] (∝ conditional

probability of finding an object at a distance r) as ν becomes large.

Finally, We write the time dependence explicitly:

ξ>ν(r, z) =

[
ν(z)

σ(z)

]2
ξ(r, z) =

[
δc(Ωm)

σ2(z)

]2
ξ(r, z) =

[
ν2(z)

δc(Ωm)

]2
ξ(r, z) (I.43)

In the last equality, we use ν(z) = δc/σ(z).

1While this result is consistent with the Peak-background split method in its leading order, the next-to-
leading order correction term is different. We can show that from the general approximation of∫ ∞

x0

dxf(x)e−x2/2 = e−x2
0/2

{
f(x0)

x0

(
1−

1

x2
+ · · ·

)
+

f ′(x0)

x2
0

+ · · ·
}
.

Using the formula, erfc(x/
√
2) and

∫∞
ν dxx exp[−x2/2] can be approximated as

erfc

(
x
√
2

)
≡
√

2

π

∫ ∞

ν
dxe−x2/2 =

√
2

π
e−ν2/2

{
1

ν

(
1−

1

ν2
+ · · ·

)}
and ∫ ∞

ν
dxxe−x2/2 =

√
2

π
e−ν2/2

{(
1−

1

ν2
+ · · ·

)
+

1

ν2
+ · · ·

}
.

Therefore, from equation (I.39), we find

ξ>ν(r) =
2

π
e−ν2/2

[
erfc

(
ν
√
2

)]−2 [∫ ∞

ν
dxxe−x2/2

]
ξ(r)

ξ(0)
=

[
1

ν

(
1−

1

ν2
+ · · ·

)]−2 ξ(r)

σ2
.

Therefore, the next-to-leading order linear bias parameter is

b(ν) ≃ ν

(
1 +

1

ν2

)
1

σ
=

1

σ

(
ν +

1

ν

)
(I.40)

This result has to be compared to equation (I.47) from the Peak-background split method, where the linear
bias is given by

b(ν) =
1

σ

(
ν −

1

ν

)
. (I.41)
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I.2.1.2 General pdf : peak/background split method

As an example, let’s assume that we can divide the density field by two parts

δ(x) = δS(x) + δN (x),

where δN (x) (“peak”) has a much smaller correlation length lC and δS(x) (“background”,

whose correlation length is lS ≫ lC) has relatively smaller amplitude than δN (x). That

is, the probability distribution of δ(x) is effectively the same as that of δN (x) whereas the

correlation function of δ(x) is just equal to that of δS(x) for the length scale much larger

than lC .

Consider a region of size l (lC ≪ l ≪ lS). Since its length scale is smaller than

lS , δS(x) is almost stationary in this region, and δN (x) fluctuates many times. Therefore,

placing the object when δ = δS + δN > νσ, is equivalent to place the object when δN >

νσ − δs(x) ≡ νeffσ. The probability of finding an object is then spatially modulated as:

P (> ν,x) = PN (> ν − δs(x)/σ)

= P (> ν)

[
1− d lnP (> ν)

dν

δs(x)

σ

]
. (I.44)

Here, P (> ν) denotes the homogeneous 2 probability of exceeding the threshold. This

equation says that the probability of finding object is higher where δs is higher, and lower

when δs is lower. How much it becomes higher? It’s not quite δs, but a multiplet of it. Thus

the objects can be considered to be a random sample from a field with density contrast:

δc(x) = −d lnP (> ν)

dν

δs(x)

σ
= bδs(x) (I.45)

where

b ≡ − 1

σ

d lnP (> ν)

dν

is the linear bias parameter. One can find the more elaborated version of peak/background

split method for objects at density peaks of 3D Gaussian density field in Bardeen et al.

(1986).

I.2.2 Linear bias with Press-Schechter mass function

The linear bias calculated in Kaiser (1984) becomes more explicit when aided by

Press-Schechter formalism (Cole & Kaiser, 1989). The background number density of halo

2We assume that the statistical properties of δN is homogeneous on this scale as l > lC .
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of mass m is simply a PS mass function,

n̄(m) = −2
ρ̄ν

m2

e−ν
2/2

√
2π

d lnσR
d lnm

.

With background/peak split argument, the number density of halo in the denser region with

linear density contrast δs is a PS mass function, with νeff = ν − δs(x)/σR:

n(m,x) ≃ n̄(m)− ∂n̄

∂ν

δs(x)

σR

Therefore, the halo density contrast is

δh(x) ≡
n(m,x)− n̄(m)

n̄(m)
= −∂ ln n̄

∂ν

δs(x)

σR
, (I.46)

and linear bias parameter δh(x, z) = b(m, z)δs(x, z) is

b(m, z) ≡ δh(x)

δs(x)
= − 1

σR

∂ ln n̄

∂ν
= − 1

σR

(
1

ν
− ν

)
=

ν2(z)− 1

ν(z)σR(z)
=
ν2(z)− 1

δc(Ωm)
. (I.47)

If we use ν(z) = δc(Ωm)/σR(z) in last equality. Note that it is consistent with Mo & White

(1996):

δh(x, z) =
ν2(z)− 1

δc(Ωm)
δs(x, z) =

ν2(z)− 1

δc(Ωm)
D(z)δs(x, z = 0) =

ν2(z)− 1

δc(z)
δs(x, z = 0).

I.2.3 Linear bias parameters from excursion set approach

Mo & White (1996) calculated the bias parameters by using Press-Schechter for-

malism. Let us start from the conditional mass function, which can be also interpreted as

“the fraction of the mass in a region of initial radius R0 and linear overdensity δ0
3 which at

redshift z1 is contained in halos of mass m1” (m1 < m0 ≡ 4πρ̄(1 + δ)R3
0/3):

f(σ1, δ1|σ0, δ0)
dσ2

1

dm1
dm1 =

1

(2π)1/2
δ1 − δ0

(σ2
1 − σ2

0)
3/2

exp

[
− (δ1 − δ0)

2

2(σ2
1 − σ2

0)

]
dσ2

1

dm1
dm1

Using this, the average number of m1 halos identified at redshift z1 in a spherical region

with comoving radius R0 and overdensity δ0 is

N(1|0)dm1 ≡ m0

m1
f(1|0) dσ

2
1

dm1
dm1, (I.48)

3Remember that this density contrast has the value extrapolated to z = 0.

300



where (1|0) is the shot-hand notation for (σ1, δ1|σ0, δ0). Note that δ1 > δ0 because m1 is a

collapsed halo at z1 and m0 is un-collapsed even at z = 0. Using this definition, the average

over-abundance of halos in the spherical region becomes

δLh (1|0) =
N(1|0)

n(m1, z1)V0
− 1, (I.49)

where V0 = 4πR3
0/3. Especially, when m0 ≫ m1, (or σ0 ≪ σ1) and δ0 ≪ δ1, it becomes

δLh (1|0) =
ν21 − 1

δ1
δ0 =

ν21 − 1

δc
δ0(z1), (I.50)

which coincide with the result of previous section. That is, “the halo overdensity in these

Lagrangian sphere is directly proportional to the linear mass overdensity.” So, the pro-

portionality constant in equation (I.50) is called a “Lagrangian bias”, in the sense that we

calculate the halo overdensity in the initial sphere.

How are halo over-densities related to the current over-dense region? In order to

answer the question, we have to relate the initial density contrast, δ0, and radius, R0, of the

spherical region to those in the recent values, δ and R, respectively. First, from the mass

conservation, we get

R3
0 = R3(1 + δ).

The initial spherical region evolves as described by ‘spherical collapse mode’, whose radius

evolves by (for positive δ0)
R(R0, δ0, z)

R0
=

3

10

1− cos θ

δ0
,

and
1

1 + z
=

3× 62/3

20

(θ − sin θ)1/2

δ0
.

By equating those two equation, we can express δ ≡ (R0/R)
3 − 1 as a function of δ0 :

δ0 ≃ −1.35(1 + δ)−2/3 + 0.78785(1 + δ)−0.58661 − 1.12431(1 + δ)−1/2 + 1.68647

Finally, combining all of these, we find the average overdensity of halos in sphere with

current radius R and current mass density contrast δ as

δh(1|0) =
N(1|0)

n(m1, z1)V
− 1, (I.51)

where V = 4πR3/3 = V0/(1 + δ). Again, for m0 ≫ m1 and δ0 ≪ δ1, we have

δh(1|0) =
(
1 +

ν21 − 1

δ1

)
δ. (I.52)
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We can also derive the higher order expression adding more terms from the spherical

collapse model as Mo et al. (1997). They use the following expansion :

δ0(z) =

∞∑
n=0

anδ
n, (I.53)

where first five coefficients calculated using spherical collapse model are

a0 = 0 , a1 = 1 , a2 = −17

21
, a3 =

341

567
, a4 = − 55805

130977
. (I.54)

I.2.4 Linear bias with Shech-Tormen mass function

In the linear region, relation between Eulerian and Lagrangian bias are easy to show

by using the relation R3
0 = R3(1 + δ). It is first shown in this paper :

δEh (1|0) =
N(1|0)

n(m1, z1)V
− 1

≃ (1 + δ)
[
1 + δLh (1|0)

]
− 1 ≃ [1 + bLag(m1, z1)] δ (I.55)

Motivated by this equation, Sheth & Tormen (1999) define the Eulerian bias as

bEul(m1, z1) ≡ 1 + bLag(m1, z1). (I.56)

Physically, this additional factor 1 is added because, the Eulerian overdensity region of

density ρ̄(1+δ) spans larger volume in the initial Lagrangian space. Therefore, more masses

are enclosed within that sphere, which leads more number of halos by factor of 1 + δ.

In this paper, they apply the “peak background split method” to newly found mass

function (so called ‘Sheth-Tormen’ mass function) which is, with our notation,

nST (m) = −2
ρ̄

m2
f(ν)

d lnσR
d lnm

, (I.57)

where

fST (ν) = A

√
αν2

2π

[
1 +

1

(αν2)p

]
exp

(
−αν

2

2

)
. (I.58)

From peak background split method in Cole & Kaiser (1989), we calculate Lagrangian bias

parameter as

bLST (m, z) = − 1

σR

∂ ln n̄ST
∂ν

= − 1

σR

∂

∂ν

[
ln ν + ln

(
1 +

1

(αν2)p

)
− αν2

2

]
=

1

δc(Ωm)

[
αν2(z)− 1 +

2p

1 + (αν2(z))p

]
. (I.59)

Therefore, the Eulerian bias is

bST = 1 + ϵ1 + E1 = 1 +
αν2(z)− 1

δc(Ωm)
+

2p/δc(Ωm)

1 + (αν2(z))p
.
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I.2.5 Nonlinear halo bias and its mass dependence

Halo bias for the more general mass function is given in Scoccimarro et al. (2001b).

δh(m1, z1|m0, z0) =
∑
k

bk(m, z1)δ
k, (I.60)

will lead the bias parameters as following:

b1(m) = 1 + ϵ1 + E1 (I.61)

b2(m) = 2(1 + a2)(ϵ1 + E1) + ϵ2 + E2 (I.62)

b3(m) = 6(a2 + a3)(ϵ1 + E1) + 3(1 + 2a2)(ϵ2 + E2) + ϵ3 + E3 (I.63)

b4(m) = 24(a3 + a4)(ϵ1 + E1) + 12
[
a22 + 2(a2 + a3)

]
(ϵ2 + E2) (I.64)

+4(1 + 3a2)(ϵ3 + E3) + ϵ4 + E4 (I.65)

where, the coefficients are

ϵ1 =
αν2 − 1

δf

ϵ2 =
αν2

δ2f
(αν2 − 3)

ϵ3 =
αν2

δ3f
(α2ν4 − 6αν2 + 3)

ϵ4 =

(
αν2

δ2f

)2

(α2ν4 − 10αν2 + 15)

E1 =
2p/δf

1 + (αν2)p

E2

E1
=

(
1 + 2p

δf
+ 2ϵ1

)
E3

E1
=

[
4(p2 − 1) + 6pαν2

δ2f
+ 3ϵ21

]
E4

E1
=

2αν2

δ2f

(
2
α2ν4

δf
− 15ϵ1

)
+ 2

(1 + p)

δ2f

[
4(p2 − 1) + 8(p− 1)αν2 + 3

δf
+ 6αν2ϵ1

]
.

Here, ν = δc/σm(z1) with δc ≃ 1.686, and δf ≡ δcD(z0)/D(z1) which is equal to δc with an

assumption that the formation redshift (z1) is the same as the observing redshift (z0).

For the case of PS formula, we have all the En’s to be zero, and α = 1. And the

formulae reduce to those in Mo et al. (1997). Note that, by construction, bias parameters
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have to satisfy the consistency relation:∫
dm

nm(m, z)

ρ̄
bk(m, z) = δk1. (I.66)

I.3 Halo bias with local type primordial non-Gaussianity

Dalal et al. (2008) has derived the bias parameter in the presence of the local type

non-Gaussianity by using a method similar to Kaiser (1984). Local type non-Gaussianity is

defined by constructing a non-Gaussian Bardeen’s potential outside of horizon as

Φ(x) = ϕ(x) + fNL(ϕ
2(x) + ⟨ϕ2⟩), (I.67)

where ϕ is a Gaussian random field whose power spectrum is similar to Φ. Then, the

Laplacian of Φ becomes

∇2Φ = ∇2ϕ+ 2fNL
[
ϕ∇2ϕ+ |∇ϕ|2

]
.

We set ∇ϕ = 0, as we are interested in the density peak region where ϕ is also maximum:

∇2Φ = ∇2ϕ+ 2fNLϕ∇2ϕ (I.68)

We can relate the Laplacian of ϕ with the density field by Poisson equation. The exact

relation inside the horizon is

δNG(k, z) =M(k, z)Φ(k) =
3

2

D(z)

H2
0Ωm0

k2T (k)Φ(k). (I.69)

I.3.1 Basic idea

To make analysis simple, let’s focus on the large scale where T (k) ≃ 1. Then,

we found the simple relation between the non-Gaussian density field, δNG and Gaussian

‘density’ field δ ∝ −∇2ϕ as

δNG ≃ δ(1 + 2fNLϕp) = δ

[
1 + 2fNL

ϕ

g(z)

]
. (I.70)

Note that we explicitly write down the time dependence in the last equation using time

evolution function of gravitational potential ϕ(z) = g(z)ϕp ∝ D(z)(1 + z)ϕp.

What does equation (I.70) mean? It says that the density field is modified by

∆δ = 2δfNLϕp. Since ϕpδ > 0, that is the Bardeen potential (or spatial curvature) is
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positive (negative) in the over-dense (under-dense) region, the non-Gaussian correction to

the density field is positive (negative) for positive (negative) fNL. Therefore, we generally

expect that the number of the regions whose overdensity exceed δc, thus halos, increases

(decrease) in the presence of positive (negative) fNL. As a result, the linear bias parameter

increases (decreases) for positive (negative) fNL.

Let’s calculate the correction to the bias parameter due to non-Gaussianity. We

consider the long wavelength mode with density perturbation δ and corresponding curvature

perturbation of ϕ. As Kaiser (1984) showed, if density field is Gaussian, the presence of this

‘background’ density field boosted the ‘peak’ over-densities, so that the number of halos

increases, and becomes δh = bLδ. In addition to that, due to the non-Gaussianity, ‘peak’

height δpk is enhanced by the long-wavelength curvature perturbation by 2fNLϕpδpk. If we

focus on the peaks near threshold, δpk ∼ δc, the amount of enhancement becomes 2fNLϕpδc,

then halo density is now

δh = bL(δ + 2fNLϕpδc) = bL(1 + 2fNLδc
ϕp
δ
)δ. (I.71)

Therefore, correction to the bias is

∆bL(m, z) =
2bLfNLδc
M(k, z)

= 2bL(m, z)fNLδc(Ωm)
2H2

0Ωm0

3D(z)k2
(I.72)

= 2 [b(m, z)− 1] fNLδc(Ωm)
2H2

0Ωm0

3D(z)k2
. (I.73)

For last line, I use b = bL + 1. Note that this argument is valid only for the small k where

T (k) ≃ 1. Matarrese & Verde (2008) provide more general derivation based on MLB formula

(Appendix K).

I.3.2 Calculation

In this section, we will calculate the Lagrangian bias of halos in the non-Gaussian

density field. We utilize that both δ and ϕ are Gaussian field, and fNL|ϕ| is very small. In

order to use Gaussianity of δ and ϕ, we invert the equation δNG ≃ δ(1 + 2fNLϕ) as

δ ≃ (1− 2fNLϕp)δNG.

Then, the condition for forming halos (δNG > δc) becomes

δ > (1− 2fNLϕp)δc.
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Calculating one point probability P1

We first calculate the one-point probability that a spatial region has a overdensity more

than δc, i.e. that region contains a halo:

P1 =

∫ ∞

−∞
dϕ

∫ ∞

δc−2fNLδcϕp

dδ
1√

(2π)2|Σ|
exp

[
−1

2
(ϕ δ) · Σ−1 · (ϕ δ)T

]
(I.74)

Here, Σ is a covariant matrix of (δ ϕ), which is

Σ =

(
σ2
ϕ ⟨ϕδ⟩

⟨ϕδ⟩ σ2
δ

)
. (I.75)

After redefining variables: µ = ϕ/σϕ, ν = δ/σδ, νc = δc/σδ and η = 2fNLσϕνc, and

covariant matrix

S =

(
1 r
r 1

)
(I.76)

with r = ⟨µν⟩, integration becomes

P1 =

∫ ∞

−∞
dµ

∫ ∞

νc−µη
dν

1

2π
√
1− r2

exp

[
−µ

2 + ν2 − 2rµν

2(1− r2)

]
. (I.77)

Change of variable (µ, ν) → (µ, v ≡ ν + ηµ) does not changes integration measures, but

disentangle the integrations as

P1 =

∫ ∞

−∞
dµ

∫ ∞

νc

dv
1

2π
√
1− r2

exp

[
−σ

2
vµ

2 − 2v(r + η)µ+ v2

2(1− r2)

]

=

∫ ∞

νc

dv
1

2π
√
1− r2

√
2π(1− r2)

σ2
v

exp

(
− [σ2

v − (r + η)2]v2

2(1− r2)σ2
v

)
=

∫ ∞

νc

dv
1√
2πσ2

v

exp

[
− v2

2σ2
v

]
=

1

2
erfc

[
xc√
2

]
, (I.78)

where we use σ2
v ≡ ⟨v2⟩ = ⟨(ν + ηµ)2⟩ = 1 + 2ηr + η2 and

xc ≡
νc√

1 + 2rη + η2
.

Therefore, the effect of non-Gaussianity on the abundance of the peak is simply to rescale

the threshold density νc by an inverse of fNL and cross correlation of ⟨δϕ⟩. Note that the

threshold decreases, that is, we have more halo for given density field, as fNL increases as

we expected from the earlier discussion.
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Calculating two point probability P2

We calculate two point probability by integrating four Gaussian parameters u = (µ1, µ2, ν1, ν2):

P2 =

∫
d4u

exp
[
− 1

2u · Σ−1 · u
]

(2π)2|Σ|1/2
Θ(ν1 + ηµ1 − νc)Θ(ν2 + ηµ2 − νc), (I.79)

where we denote the covariant matrix Σ as

Σ =


1 γ r β
γ 1 β r
r β 1 ψ
β r ψ 1

 , (I.80)

by using ψ = ⟨ν1ν2⟩, γ = ⟨µ1µ2⟩, r = ⟨µ1ν1⟩ = ⟨µ2ν2⟩, β = ⟨µ1ν2⟩ = ⟨µ2ν1⟩.

Again, after change the variable as, vi ≡ νi − ηµi, we can integrate out the two

potential variables µ1 and µ2:

P2 =

∫ ∞

νc

dv1

∫ ∞

νc

dv2
1

2π|S|1/2
exp

[
−1

2
v · S−1 · v

]
, (I.81)

where v = (v1, v2) and there covariant matrix is

S =

(
σ2
v ψ + 2ηβ + γη2

ψ + 2ηβ + γη2 σ2
v

)
.

Let’s define a matrix C ≡ S/σ2
v , and two variables xi = vi/σv and χ = (ψ + 2ηβ + γη2)/σv

in order to simplify the calculation. Then, v · S−1 · v = x · C−1 · x and dv1dv2/|S|1/2 =

dx1dx2/|C|1/2 makes the expression

P2 =

∫ ∞

xc

dx1

∫ ∞

xc

dx2
1

2π|C|1/2
exp

[
−1

2
x · C−1 · x

]
, (I.82)

where xc is defined when we calculate P1, and the covariant matrix is simply

C =

(
1 χ
χ 1

)
.

Integration at this point has already done when we follow Kaiser (1984) in the previous

section, and we can write the answer immediately.

P2 =

√
1

8π

∫ ∞

xc

dxe−x
2/2erfc

[
xc − χx√
2(1− χ2)

]
(I.83)

Therefore, when νc ≫ 1 and χ≪ 1, we get

ξpk =
P2

P 2
1

− 1 ≃
(
ex

2
c/2

∫ ∞

xc

dye−y
2/2

)−2

χ ≃ x2cχ, (I.84)
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which to lowest order in η becomes

ξpk ≃ ν2c (ψ + 2ηβ + γη2)(1 + 2rη + η2)−2

≃ ν2c (ψ + 2βη)(1− 4rη)

= ν2c (ψ + 2(β − 2rψ)η).

Now we further simplify the equation by neglecting rψ ≡ σδϕξδϕ(r12)/(σ
3
δσϕ) < ξδδ(r12)/σ

2
δ

compare to β ≡ ξδϕ(r12)/(σδσϕ), because δ/ϕ ∼ k2 ∼ 1/r2 leads

ξδϕ
σδϕ

∼ ξδδr
2
12

σ2
δR

2
=
(r12
R

)2 ξδδ
σ2
δ

≫ ξδδ
σ2
δ

.

Then,

ξpk(r) ≃ ν2c (ψ + 2βη) = b2L

[
ξδδ(r) + 4fNLδcξδϕ(r)

]
.

Finally, Fourier transformation of it gives the peak (halo) power spectrum

Ph(k) = b2L

[
Pδδ(k) + 4fNLδcPδϕ(k)

]
, (I.85)

and scale dependence bias as

∆b(k) = 2bLfNLδc
Pδϕ(k)

Pδδ(k)
=

2bLfNLδc
M(k, z)

=
2(b− 1)fNLδc

M(k, z)
. (I.86)

In the last equation, we write ∆b in terms of the Eulerian bias b. Again, because it stems

from the approximated relation between δNG and δ, this result only works for the very large

scale when we make approximation of T (k) ≃ 1.
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Appendix J

Integration of T 1112
R

In the standard perturbation theory, the four-point correlator contained in the def-

inition of T 1112
R (see Eq. (5.28)) is given by1

⟨δ(1)(k1)δ(1)(k2)δ(1)(k3)δ(2)(k4)⟩

=

∫
d3q

(2π)3
F

(s)
2 (q, k4 − q)⟨δ(1)(k1)δ(1)(k2)δ(1)(k3)δ(1)(k4 − q)δ(1)(q)⟩. (J.1)

For non-Gaussian density fields, the leading order of Eq. (J.1) contains the ensemble average

of products of six Gaussian variables, ϕ, which gives products of three power spectra, Pϕ.

We find ∫
d3q

(2π)3
F

(s)
2 (q, k4 − q)⟨δ(1)(k1)δ(1)(k2)δ(1)(k3)δ(1)(k4 − q)δ(1)(q)⟩

=

∫
d3q

(2π)3
F

(s)
2 (q, k4 − q)⟨δ(1)(k1)δ(1)(k2)⟩⟨δ(1)(k3)δ(1)(k4 − q)δ(1)(q)⟩

+2

∫
d3q

(2π)3
F

(s)
2 (q, k4 − q)⟨δ(1)(k1)δ(1)(q)⟩⟨δ(1)(k2)δ(1)(k3)δ(1)(k4 − q)⟩

+(cyclic 123)

= (2π)3
[
2fNLPm(k1)M(k3)

∫
d3qM(q)M(|k4 − q|)Pϕ(q)

×{Pϕ(|k4 − q|) + 2Pϕ(k3)}F (s)
2 (q, k4 − q)δD(k12)

+4fNLM(k2)M(k3)M(k14)Pm(k1)F
(s)
2 (−k1, k14)

×{Pϕ(k2)Pϕ(k3) + Pϕ(k2)Pϕ(k14) + Pϕ(k3)Pϕ(k14)}

+(cyclic 123)

]
δD(k1234). (J.2)

1Sefusatti (2009) also derived and studied this term independently.
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Therefore, T 1112
R is given by

T 1112
R (k1, k2, k3, k4)

= WR(k1)WR(k2)WR(k3)WR(k4)

[
2fNLPm(k1)M(k3)

×
∫
d3qM(q)M(|k4 − q|)Pϕ(q) {Pϕ(|k4 − q|) + 2Pϕ(k3)}

×F (s)
2 (q, k4 − q)δD(k12) + 4fNLM(k2)M(k3)M(k14)Pm(k1)F

(s)
2 (−k1, k14)

×{Pϕ(k2)Pϕ(k3) + Pϕ(k2)Pϕ(k14) + Pϕ(k3)Pϕ(k14)}+ (cyclic 123)

]
, (J.3)

where M(k) ≡ MR(k)/WR(k), kij = ki+kj , and (cyclic 123) denotes that the cyclic changes

among (k1, k2, k3). We calculate the sum of {1112} terms in Eq. (5.29) by integrating
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Eq. (J.3): ∫
d3q

(2π)3
T

(2)
R (q, k1 − q, k2, k3)

= 8fNLWR(k2)WR(k3)M(k1)M(k2)M(k3)

×{Pϕ(k2)Pϕ(k3) + Pϕ(k2)Pϕ(k1) + Pϕ(k3)Pϕ(k1)}

×
∫

d3q

(2π)3
WR(|k1 − q|)WR(q)Pm(q)F

(s)
2 (−q, k1)

+ 4fNLWR(k2)WR(k3)M(k1)

×
[
Pm(k2)F

(s)
2 (k2, k1) + Pm(k3)F

(s)
2 (k3, k1)

]
×
∫

d3q

(2π)3
WR(|k1 − q|)WR(q)M(q)M(|k1 − q|)

×{Pϕ(q)Pϕ(|k1 − q|) + 2Pϕ(q)Pϕ(k1)}

+ 8fNLWR(k2)WR(k3)M(k3)Pm(k2)

∫
d3q

(2π)3
WR(|k1 − q|)WR(q)

×M(|k1 − q|)M(|k2 + q|)F (s)
2 (−k2, k2 + q)

×{Pϕ(k3)Pϕ(|k1 − q|) + Pϕ(k3)Pϕ(|k2 + q|) + Pϕ(|k1 − q|)Pϕ(|k2 + q|)}

+(k2 ↔ k3)

+ 8fNLWR(k2)WR(k3)M(k3)

∫
d3q

(2π)3
WR(|k1 − q|)WR(q)

×M(|k1 − q|)M(|k2 + q|)Pm(q)F
(s)
2 (−q, k2 + q)

×{Pϕ(|k1 − q|)Pϕ(k3) + Pϕ(|k1 − q|)Pϕ(|k2 + q|) + Pϕ(k3)Pϕ(|k2 + q|)}

+(k2 ↔ k3)

+ 8fNL (WR(k2)WR(k3))
2
Pm(k3)M(k2)

∫
d3q

(2π)3
M(q)M(|k2 − q|)

×Pϕ(q) {Pϕ(|k2 − q|) + 2Pϕ(k2)}F (s)
2 (q, k2 − q)

+(k2 ↔ k3). (J.4)

311



Appendix K

The three-point correlation function (bispectrum) of
density peaks

Consider the smoothed density field, ρR(x) = ρ̄ [1 + δR(x)], with a general smooth-

ing kernel W (x)

δR(x) =

∫
d3yWR(x− y)δ(y). (K.1)

We define the peaks as regions in the space where the smoothed density contrast exceed a

certain threshold value, δc:

np(x) =
1

VR
θ [δR(x)− δc] , (K.2)

where θ(x) is a step-function, and VR is the volume of the smoothed region1. In this chapter,

we shall calculate the three-point correlation function of peaks when the density field follows

general probability distribution. We shall use the functional integration method adopted

by Matarrese et al. (1986), but, instead of presenting the general formula, we explicitly

calculate the two point correlation function and the three point correlation function.

Let us denote the density contrast of the peaks as δp(x) ≡ np(x)/⟨np⟩ − 1. The

probability P2(x1,x2) of finding two peaks at two different locations x1 and x2, and the

probability P3(x1,x2,x3) of finding three peaks at three different locations x1, x2 and x3

are related to the two-point correlation function ξp(x1,x2), and the three-point correlation

1For a spherical top-hat filter

WR(x) =
1

VR

{
1, |x| < R
0, otherwise

,

the volume of the smoothed region is VR = 4πR3/3. However, VR may not be well-defined for different
filters, e.g. Gaussian filter, where smoothing function is extended to infinity. Fortunately, it is not important
to calculate the correlation function from the method we use here, as mean number density cancels out in
equation (K.3) and (K.4).
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function ζp(x1,x2,x3) of density contrast of peaks as (Peebles, 1980):

P2(x1,x2)

P 2
1

=
⟨np(x1)np(x2)⟩

⟨np⟩2

= ⟨(1 + δp(x1))(1 + δp(x2))⟩ = 1 + ξp(x1,x2) (K.3)

P3(x1,x2,x3)

P 3
1

=
⟨np(x1)np(x2)np(x3)⟩

⟨np⟩3

= ⟨(1 + δp(x1))(1 + δp(x2))(1 + δp(x3))⟩

= 1 + ξp(x1,x2) + ξp(x2,x3) + ξp(x3,x1) + ζp(x1,x2,x3) (K.4)

Therefore, in order to calculate the two-point correlation function and the three-point cor-

relation function, we have to calculate PN up to N = 3.

In Appendix K.1 we calculate the probability PN : starting from the general func-

tional integration method for calculating PN , we explicitly calculate P1 (Appendix K.1.1),

P2 (Appendix K.1.2) and P3 (Appendix K.1.3). Then, in Appendix K.2, we calculate the

two-point correlation function (power spectrum) of peaks by using equation (K.3). Finally,

We calculate the three-point correlation function (bispectrum) of peaks in Appendix K.3 by

using equation (K.4).

K.1 Probability of finding N distinct peaks

The probability functional P[δ(x)] is the probability distribution function of δ(x) at

all point x in space. It is normalized to be∫
[Dδ]P [δ(x)] = 1,

with a suitable measure [Dδ]. The probability distribution function of the density field δ0

as a specific position x0 can be calculated as

P (δ0) =

∫
[Dδ]P [δ(x)] δD(δ(x0)− δ0), (K.5)

which means that fixing the density at x0 to be δ0 and marginalize over all other points.

As defined in equation (K.2), the peaks are the regions where the smoothed den-

sity field [Eq. (K.1)] exceeds δc. By using a P[δ(x)] we can formulate the probability
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PN (x1, · · · ,xN ), which is the probability of finding N peaks at x1, · · · , xN , as

PN (x1, · · · ,xN )

=

∫ ∞

δc

dα1 · · ·
∫ ∞

δc

dαN

∫
[Dδ]P [δ(x)]

N∏
r=1

δD (δR(xr)− αr)

=

∫
[Dδ]P[δ(x)]

N∏
r=1

∫ ∞

−∞

dϕr
2π

∫ ∞

νσR

dαre
iϕr[

∫
d3yWR(xr−y)δ(y)−αr]. (K.6)

Here, in the second equality we use
∫
δD(x) ≡ 1/(2π)

∫
dϕeiϕx representation of the Dirac

delta function and the definition of the smoothed density field. In order to simplify the

notation later, we define a variable ν ≡ δc/σR which quantify the density threshold in a

unit of the root-mean-squared (r.m.s.) value of the smoothed density contrast.

Let us define the partition (generating) functional Z[J ] as

Z[J ] ≡
∫

[Dδ]P [δ(x)] ei
∫
d3yδ(y)

∑N
r=1 ϕrWR(|xr−y|)

=

〈
exp

[
i

∫
d3yδ(y)J(y)

]〉
, (K.7)

with following source function:

J(y) ≡
N∑
r=1

ϕrWR(xr − y). (K.8)

Then, from equation (K.7), we can define the n-point connected correlation function as

ξ(n)(y1, · · · ,yn) ≡ ⟨δ(y1) · · · δ(y1)⟩c ≡
1

in
δn lnZ[J ]

δJ(y1) · · · δJ(yn)

∣∣∣∣
J=0

. (K.9)

In other words, if we know all n-point correlation functions, we can reconstruct the partition

function as a Taylor expansion:

lnZ[J ] =

∞∑
n=2

in

n!

∫
d3y1 · · ·

∫
d3ynξ

(n)(y1, · · · ,yn)J(y1) · · · J(yn). (K.10)

By substituting the source function in equation (K.8), the partition functional becomes

lnZ[J ] =

∞∑
n=2

in

n!

∫
d3y1 · · ·

∫
d3ynξ

(n)(y1, · · · ,yn)

×

[
N∑

r1=1

ϕr1WR(xr1 − y1)

]
· · ·

[
N∑

rn=1

ϕrnWR(xrn − yn)

]
. (K.11)
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The strategy of calculating PN is following. For given n-point correlation functions

of density field, we can calculate the partition functional from equation (K.11). By using

the partition functional, PN becomes

PN (x1, · · · ,xN )

=

∫ ∞

νσR

dα1 · · ·
∫ ∞

νσR

dαN

∫ ∞

−∞

dϕ1
(2π)3

· · ·
∫ ∞

−∞

dϕN
(2π)3

e−i
∑N

r=1 αrϕrZ[J ], (K.12)

which involves only ordinary integration.

Matarrese et al. (1986) provide the general solution for PN , from there the authors

reach the general formula for the N -point correlation function of peaks. We however find

that the formula in Matarrese et al. (1986) is too abstract to be directly adopted without

justification from the explicit calculation. Therefore, we shall explicitly show the solution

for N = 1, 2 and 3 in the following sections. For the notational simplicity we denote the

smoothed n-th order correlation function as ξ
(n)
R :

ξ
(n)
R (x1, · · · ,xn) =

{
n∏
r=1

∫
d3yrwR(xr − yr)

}
ξ(n)(y1, · · · ,yn). (K.13)

K.1.1 Calculation of P1

Let’s consider N = 1 case. The generating functional becomes

lnZ[J ]

=

∞∑
n=2

in

n!

∫
d3y1 · · ·

∫
d3ynξ

(n)(y1, · · · ,yn)
n∏
r=1

ϕ1WR(x1 − yr), (K.14)

and the integration over yis are simply a smoothed correlation function:∫
d3y1 · · ·

∫
d3ynξ

(n)(y1, · · · ,yn)
n∏
r=1

WR(x1 − yr)

=ξ
(n)
R

(
x1, · · · ,x1
n times

)
. (K.15)

As we have only one argument in the smoothed correlation function, we simply denote it as

ξ
(n)
R without arguments. Then, the generating functional is simplified as

lnZ[J ] =

∞∑
n=2

in

n!
ϕn1 ξ

(n)
R , (K.16)
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and we can calculate P1 from equation (K.12).

P1(x1) =
1

(2π)

∫ ∞

νσR

dα1

∫ ∞

−∞
dϕ1 exp

[
−iα1ϕ1 +

∞∑
n=2

in

n!
ϕn1 ξ

(n)
R

]
. (K.17)

Let us first consider the ϕi integration.

I ≡
∫ ∞

−∞
dϕ1 exp

[
−iα1ϕ1 +

∞∑
n=2

in

n!
ϕn1 ξ

(n)
R

]
. (K.18)

We first calculate the quadratic term

I0 =

∫ ∞

−∞
dϕ1 exp

[
−iα1ϕ1 −

1

2
ϕ21σ

2
R

]
=

√
2π

σ2
R

exp

[
− α2

1

2σ2
R

]
, (K.19)

then, we calculate the other terms in I, which include ϕn1 (n > 3), by taking n-th derivative

of α1 on I0 as following.

I = exp

[ ∞∑
n=3

(−1)n

n!
ξ
(n)
R

∂n

∂αn1

]∫ ∞

−∞
dϕ1e

−ϕ2
1σ

2
R/2−iα1ϕ1

=

√
2π

σR
exp

[ ∞∑
n=3

(−1)n

n!
ξ
(n)
R

∂n

∂αn1

]
exp

[
− α2

1

2σ2
R

]
(K.20)

Now, P1 becomes

P1(x1) =
1√

2πσR

∫ ∞

νσR

dα1 exp

[ ∞∑
n=3

(−1)n

n!
ξ
(n)
R

∂n

∂αn1

]
exp

[
− α2

1

2σ2
R

]

=
1√
2π

∫ ∞

ν

dα′
1 exp

[ ∞∑
n=3

(−1)n

n!

ξ
(n)
R

σnR

∂n

∂α′n
1

]
exp

[
−α

′2
1

2

]
, (K.21)

where in the second equality, we change the variable α′
i = αi/σR. We use the Hermite

polynomial, Hn(x) to simplify the equation further. Especially, following two properties of

Hermite polynomial is useful for our purpose.

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(K.22)

lim
x→∞

Hn(x) = 2nxn (K.23)

From equation (K.22), we find

(−1)n
dn

dα′n
1

e−α
′2
1/2 = 2−n/2e−α

′2
1/2Hn

(
α′
1√
2

)
,
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and when the argument is large, (α′
1 ≫ 1) we approximate the derivative as

(−1)n
dn

dα′n
1

e−α
′2
1/2 → e−α

′2
1/2 (α′

1)
n
.

Therefore, by using the asymptotic formula of Gaussian integration∫ ∞

a

f(x)e−x
2/2 ≃ f(a)

a
e−a

2/2 + O

(
1

a2

)
, (K.24)

we further simplify P1 as

P1(x1) ≃
1√
2πν2

exp

[ ∞∑
n=3

νn

n!

ξ
(n)
R

σnR

]
e−ν

2/2. (K.25)

for the high peak limit (ν ≫ 1).

K.1.2 Calculation of P2

In this section, we focus only on N = 2 case. The generating functional becomes

lnZ[J ] =

∞∑
n=2

in

n!

∫
d3y1 · · ·

∫
d3ynξ

(n)(y1, · · · ,yn)

×
n∏
r=1

[
ϕ1WR(x1 − yr) + ϕ2WR(x2 − yr)

]

=

∞∑
n=2

in

n!

∫
d3y1 · · ·

∫
d3ynξ

(n)(y1, · · · ,yn)
n∑

m=0

(
n
m

)
ϕm1 ϕ

n−m
2

×
m∏

r1=1

WR(x1 − yr1)
n∏

r2=m+1

WR(x2 − yr2), (K.26)

where, in the second line, we use the binomial expansion and the symmetry of ξ(n), namely,

the correlation function does not depend on the order of argument. We can replace the

integration over yis as a smoothed correlation function.∫
d3y1 · · ·

∫
d3ynξ

(n)(y1, · · · ,yn)
m∏

r1=1

WR(x1 − yr1)
n∏

r2=m+1

WR(x2 − yr2)

=ξ
(n)
R

(
x1, · · · ,x1, x2, · · · ,x2
m times n−m times

)
(K.27)

For notational simplicity we denote such a smoothed correlation function as ξ
(n)
R,m. Then,

the generating functional becomes

lnZ[J ] =

∞∑
n=2

in
n∑

m=0

ϕm1 ϕ
n−m
2

m!(n−m)!
ξ
(n)
R,m. (K.28)
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We calculate P2 from equation (K.12)

P2(x1,x2) =

∫ ∞

νσR

dα1

∫ ∞

νσR

dα2

∫ ∞

−∞

dϕ1
(2π)

∫ ∞

−∞

dϕ2
(2π)

e−i(α1ϕ1+α2ϕ2)Z[J ]. (K.29)

Let’s first consider the ϕi integration.

I =

∫ ∞

−∞
dϕ1

∫ ∞

−∞
dϕ2 exp

[
−i

2∑
r=1

αrϕr +

∞∑
n=2

in
n∑

m=0

ϕm1 ϕ
n−m
2

m!(n−m)!
ξ
(n)
R,m

]
(K.30)

As we have done in Section K.1.1, we first calculate the quadratic integration,

I0 =

∫ ∞

−∞
dϕ1

∫ ∞

−∞
dϕ2 exp

[
−i

2∑
r=1

αrϕr −
(
1

2
ϕ21σ

2
R +

1

2
ϕ22σ

2
R

)]

=
2π

σ2
R

exp

[
−1

2

2∑
r=1

α2
r

σ2
R

]
. (K.31)

Then, ϕi integration simplifies to be a sum of successive derivatives on I0 as below.

I =
2π

σ2
R

exp

[
(−1)2ξ

(2)
R (x12)

∂2

∂α1∂α2
+

∞∑
n=3

(−1)n
n∑

m=0

ξ
(n)
R,m

m!(n−m)!

∂n

∂αm1 ∂α
n−m
2

]

× exp

[
−1

2

2∑
r=1

α2
r

σ2
R

]
(K.32)

Now, we have to calculate the αi integration. For the notational simplicity, we define

α′
i ≡ αi/σR, and w

(n)
m as following.

w
(2)
m = ξ

(2)
R (x12)/σ

2
R (m = 1)

w
(2)
m = 0 (m = 0 or 2)

w
(n)
m = ξ

(n)
R,m/σ

n
R (n > 2)

(K.33)

Now the two-point probability P2(x1,x2) becomes

P2(x1,x2)

=
1

2π

∫ ∞

ν

dα′
1

∫ ∞

ν

dα′
2 exp

[ ∞∑
n=2

(−1)n
n∑

m=0

w
(n)
m

m!(n−m)!

∂n

∂α′m
1 ∂α

′n−m
2

]

× exp

[
−1

2

2∑
r=1

α′
r
2

]
, (K.34)

Again, we use the Hermite polynomial, and take the high peak limit of ν ≫ 1

P2(x1,x2) ≃
1

2πν2
exp

[ ∞∑
n=2

n∑
m=0

w
(n)
m νn

m!(n−m)!

]
e−ν

2
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K.1.3 Calculation of P3

Let’s calculate for P3(x1,x2,x3):

P3(x1,x2,x3) =
1

(2π)3

3∏
i=1

∫ ∞

νσR

dαi

∫ ∞

−∞
dϕie

−i
∑3

r=1 αrϕrZ[J ]. (K.35)

We first calculate the partition functional

lnZ[J ] =

∞∑
n=2

in

n!

(
n∏
i=1

∫
d3yi

)
ξ(n)(y1, · · · ,yn)

n∏
r=1

[ 3∑
j=1

ϕjWR(xj − yr)

]
. (K.36)

By using a multinomial expansion theorem,

n∏
r=1

[ 3∑
j=1

ϕjWR(xj − yr)

]

=

n∑
m1=0

n−m1∑
m2=0

n!

m1!m2!(n−m1 −m2)!
ϕm1
1 ϕm2

2 ϕn−m1−m2
3

×
∏

r1∈[m1]

WR(x1 − yr1)
∏

r2∈[m2]

WR(x2 − yr2)
∏

r3∈[m3]

WR(x3 − yr3) (K.37)

where, m3 ≡ n−m1 −m2, and [mi] stands for the set of indexes

[mi] = {ak|1 ≤ ak ≤ n, k = 1, · · · ,mi},

and empty when mi = 0. Note that, [mi] are mutually exclusive, that is [mi] ∩ [mj ] = {},
and [m1] ∪ [m2] ∪ [m3] = {1, 2, · · · , n}. For example, when n=2, it becomes

2∏
r=1

[ 3∑
j=1

ϕjWR(xj − yr)

]
=ϕ21WR(x1 − y1)WR(x1 − y2) + ϕ22WR(x2 − y1)WR(x2 − y2)

+ ϕ23WR(x3 − y1)WR(x3 − y2) + ϕ1ϕ2WR(x1 − y1)WR(x2 − y2)

+ ϕ1ϕ2WR(x1 − y2)WR(x2 − y1) + ϕ2ϕ3WR(x2 − y1)WR(x3 − y2)

+ ϕ3ϕ2WR(x2 − y2)WR(x3 − y1) + ϕ1ϕ3WR(x1 − y1)WR(x3 − y2)

+ ϕ1ϕ3WR(x1 − y2)WR(x3 − y1), (K.38)
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and we can write n = 2 component of lnZ[J ] as

− 1

2

∫
d3y1

∫
d3y2ξ

(2)(y1,y2)× eq.[K.38]

=− 1

2

[
(ϕ21 + ϕ22 + ϕ23)σ

2
R

+ 2ϕ1ϕ2ξ
(2)
R (x1,x2) + 2ϕ2ϕ3ξ

(2)
R (x2,x3) + 2ϕ3ϕ1ξ

(2)
R (x3,x1)

]
. (K.39)

Therefore, we rewrite Z[J ] as

lnZ[J ] =

∞∑
n=2

in

n!

n∑
m1=0

n−m1∑
m2=0

n!

m1!m2!m3!
ϕm1
1 ϕm2

2 ϕm3
3 ξ

(n)
R,m1m2m3

, (K.40)

where

ξ
(n)
R,m1m2m3

= ξ
(n)
R

(
x1, · · · ,x1, x2, · · · ,x2, x3, · · · ,x3,
m1 times m2 times m3 times

)
.

For example, for n = 2 case we write

in

n!

n∑
m1=0

n−m1∑
m2=0

n!

m1!m2!m3!
ϕm1
1 ϕm2

2 ϕm3
3 ξ

(n)
R,m1m2m3

∣∣∣∣∣
n=2

=− 1

2

[
ϕ21ξ

(2)
R,200 + ϕ22ξ

(2)
R,020 + ϕ23ξ

(2)
R,002 + 2ϕ1ϕ2ξ

(2)
R,110 + 2ϕ2ϕ3ξ

(2)
R,011 + 2ϕ3ϕ1ξ

(2)
R,101

]
.

We follow the same procedure as we have calculated P1 and P2 in the previous section.

First, we calculate ϕi integration by using a quadratic integration of

I0 =

∫ ∞

−∞
dϕ1

∫ ∞

−∞
dϕ2

∫ ∞

−∞
dϕ3 exp

[
−i

3∑
r=1

αrϕr −
1

2

3∑
r=1

ϕ2rσ
2
R

]

=
(2π)3/2

σ3
R

exp

[
−1

2

3∑
r=1

α2
r

σ2
R

]
. (K.41)

Then, we can replace the ϕr-integration by applying successive differentiations of (−iαr).
That is,

I =exp

[∑
i ̸=j

ξ
(2)
R (xi,xj)

∂

∂αi

∂

∂αj

+

∞∑
n=3

n∑
m1=0

n−m1∑
m2=0

(−1)nξ
(n)
R,m1m2m3

m1!m2!m3!

∂n

∂αm1
1 ∂αm2

2 ∂αm3
3

]
I0. (K.42)
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As we do not apply the derivative operator to the terms appears in I0, we define w
(n)
m1m2m3

as following. 
w

(2)
m1,m2,m3 = ξ

(2)
R (xij)/σ

2
R (m1 ̸= 2,m2 ̸= 2,m3 ̸= 2)

w
(2)
m1,m2,m3 = 0 (otherwise)

w
(n)
m1,m2,m3 = ξ

(n)
R,m1m2m3

/σnR (n > 2)

(K.43)

By using the new notation, and changing the variable to α′
i ≡ αi/σR, P3 becomes

P3(x1,x2,x3)

=
1

(2π)3/2

3∏
r=1

∫ ∞

ν

dα′
r

× exp

[ ∞∑
n=2

∑
m1,m2

(−1)nw
(n)
m1m2m3

m1!m2!m3!

∂n

∂α′m1
1 ∂α′m2

2 ∂α′m3
3

]
exp

[
−1

2

3∑
r=1

α′2
r

]
.

Using the Hermite polynomial, and, finally, we imposing the high peak condition of ν ≫ 1,

we find

P3(x1,x2,x3) ≃
1

(2πν2)3/2
exp

[ ∞∑
n=2

∑
m1,m2,m3

w
(n)
m1m2m3ν

n

m1!m2!m3!

]
e−

3
2ν

2

. (K.44)

K.2 The two point correlation function of peaks

We calculate the two point correlation function of peaks by substituting P1 from

equation (K.25) and P2 from equation (K.35) into equation (K.3):

ξp(x1,x2) =
P2(x1,x2)

P 2
1

− 1

= exp

[ ∞∑
n=2

n∑
m=0

w
(n)
m νn

m!(n−m)!
− 2

∞∑
n=3

νn

n!

ξ
(n)
R

σnR

]
− 1, (K.45)

where w
(n)
m and ξ

(n)
R are defined in equation (K.33) and equation (K.15), respectively. We

further simplify the notation by using w
(n)
0 = w

(n)
n = ξ

(n)
R /σnR for n ≥ 3, and w

(2)
0 = w

(2)
2 = 0.
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ξp(x1,x2) = exp

[ ∞∑
n=2

n∑
m=0

w
(n)
m νn

m!(n−m)!
−

∞∑
n=3

νnw
(n)
0

n!
−

∞∑
n=3

νnw
(n)
n

n!

]
− 1

= exp

[ ∞∑
n=2

n−1∑
m=1

w
(n)
m νn

m!(n−m)!

]
− 1

= exp

[ ∞∑
n=2

n−1∑
m=1

(
n
m

)
νn

n!

ξ
(n)
R,m

σnR

]
− 1 (K.46)

This result was first derived in Grinstein & Wise (1986) with a following ansatz

np(x) = C exp

[
T

∫
d3yδ(y)W (x− y)

]
. (K.47)

It was only after the full calculation of Matarrese et al. (1986) that T = ν/σR is identified.

Note that for Gaussian case, where all the higher order correlation function vanishes

(ξ(n) = 0 for n > 3) equation (K.46) coincides with the result in Politzer & Wise (1984):

ξGp (x1,x2) = exp

[
ξ
(2)
R (x12)

σ2
R

ν2

]
− 1 ≃ ν2

σ2
R

ξ
(2)
R (x12), (K.48)

and, in the second equality, we can also reproduce the ‘Lagrangian bias’, bL = ν/σR, by

taking the large scale limit (ξR ≪ 1).

Recently, in the light of the scale dependent bias induced by primordial non-

Gaussianity (see, Section I.3), Matarrese & Verde (2008) study the large scale limit of

equation (K.46). For the large separation, we can expand the exponential in equation

(K.46), and the two-point correlation function including the leading order correction due to

the non-Gaussianity becomes

ξp(|x1 − x2|) ≃
ν2

σ2
R

ξ
(2)
R (x1,x2) +

ν3

σ3
R

ξ
(3)
R (x1,x1,x2). (K.49)

Fourier transform of the non-Gaussian correction term is related to the matter bispectrum

as

ξ
(3)
R (x1,x1,x2)

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

⟨δ̃R(q1)δ̃R(q2)δ̃R(q3)⟩eiq1·x1eiq2·x1eiq3·x2

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

BR(q1, q2,−(q1 + q2))e
i(q1+q2)·(x1−x2). (K.50)
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Therefore, by taking Fourier transformation of equation (K.49), we find the power spectrum

of peaks as

Pp(k) =

∫
d3rξp(r)e

−ik·r

=
ν2

σ2
R

∫
d3rξ

(2)
R (r)e−ik·r

+
ν3

σ3
R

∫
d3r

∫
d3q1
(2π)3

∫
d3q2
(2π)3

BR(q1, q2,−(q1 + q2))e
i(q1+q2−k)·r

=
ν2

σ2
R

PR(k) +
ν3

σ3
R

∫
d3q

(2π)3
BR(q,−k, k− q) (K.51)

where r = x1 − x2.

K.3 The three point correlation function of peaks

We calculate the three point function from the relation between P3 and correlation

functions in equation (K.4). By using the calculation of P1 in equation (K.25) and P3 in

equation (K.44), we calculate P3/P
3
1 (in the high peak limit ν ≫ 1, and on large scales,
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ξ
(n)
R (x1, · · · ,xn) ≪ 1) up to four-point function order:

P3(x1,x2,x3)

P 3
1

=exp

[ ∞∑
n=2

n∑
m1=0

n−m1∑
m2=0

νnw
(n)
m1m2m3

m1!m2!(n−m1 −m2)!
− 3

∞∑
n=3

νn

n!

ξ
(n)
R

σnR

]

≃1 +

∞∑
n=2

n∑
m1=0

n−m1∑
m2=0

νnw
(n)
m1m2m3

m1!m2!(n−m1 −m2)!
− 3

∞∑
n=3

νn

n!

ξ
(n)
R

σnR

≃1 +
ν2

σ2
R

[
ξ
(2)
R (x12) + ξ

(2)
R (x23) + ξ

(2)
R (x31)

]
+
ν3

σ3
R

[
ξ
(3)
R,003

6
+
ξ
(3)
R,012

2
+
ξ
(3)
R,021

2
+
ξ
(3)
R,030

6
+
ξ
(3)
R,102

2
+
ξ
(3)
R,111

1
+
ξ
(3)
R,120

2
+
ξ
(3)
R,201

2

+
ξ
(3)
R,210

2
+
ξ
(3)
R,300

6

]
− 3

ν3

σ3
R

ξ
(3)
R

6

+
ν4

σ4
R

[
ξ
(4)
R,004

24
+
ξ
(4)
R,013

6
+
ξ
(4)
R,022

4
+
ξ
(4)
R,031

6
+
ξ
(4)
R,040

24
+
ξ
(4)
R,103

6
+
ξ
(4)
R,112

2
+
ξ
(4)
R,121

2

+
ξ
(4)
R,130

6
+
ξ
(4)
R,202

4
+
ξ
(4)
R,211

2
+
ξ
(4)
R,220

4
+
ξ
(4)
R,301

6
+
ξ
(4)
R,310

6
+
ξ
(4)
R,400

24

]
− 3

ν4

σ4
R

ξ
(4)
R

24

=1 +
ν2

σ2
R

[
ξ
(2)
R (x12) + ξ

(2)
R (x23) + ξ

(2)
R (x31)

]
+
ν3

σ3
R

[
ξ
(3)
R (x1,x2,x3) + ξ

(3)
R (x2,x3,x3) + ξ

(3)
R (x1,x1,x3) + ξ

(3)
R (x1,x1,x2)

]
+
ν4

σ4
R

[
1

2
ξ
(4)
R (x1,x1,x2,x3) +

1

2
ξ
(4)
R (x1,x2,x3,x3) +

1

2
ξ
(4)
R (x1,x2,x2,x3)

+
1

4
ξ
(4)
R (x2,x2,x3,x3) +

1

3
ξ
(4)
R (x2,x2,x2,x3) +

1

4
ξ
(4)
R (x1,x1,x3,x3)

+
1

3
ξ
(4)
R (x1,x1,x1,x3) +

1

4
ξ
(4)
R (x1,x1,x2,x2) +

1

3
ξ
(4)
R (x1,x1,x1,x2)

]
. (K.52)

In order to calculate the three-point correlation function of peaks, we need to subtract the

two-point correlation functions from equation (K.52). As we expand P3/P
3
1 up to four-point
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function order, we also expand equation (K.46) in the same order as

ξp(x1,x2) ≃
∞∑
n=2

n∑
m=0

νnw
(n)
m

m!(n−m)!
− 2

∞∑
n=3

νn

n!

ξ
(n)
R

σnR

=
ν2

σ2
R

ξ
(2)
R (x12) +

ν3

σ3
R

[
ξ
(3)
R,1

2
+
ξ
(3)
R,2

2

]
+
ν4

σ4
R

[
ξ
(4)
R,1

6
+
ξ
(4)
R,2

4
+
ξ
(4)
R,3

6

]
+ · · ·

=
ν2

σ2
R

ξ
(2)
R (x12) +

ν3

σ3
R

ξ
(3)
R (x1,x1,x2)

+
ν4

σ4
R

[
1

3
ξ
(4)
R (x1,x1,x1,x2) +

1

4
ξ
(4)
R (x1,x1,x2,x2)

]
+ · · · (K.53)

Subtracting the two-point correlation function, we find that the three-point correlation

function is

ζp(x1,x2,x3) =
ν3

σ3
R

ξ
(3)
R (x1,x2,x3) +

ν4

σ4
R

[
ξ
(2)
R (x12)ξ

(2)
R (x23) + (cyclic)

]
+

1

2

ν4

σ4
R

[
ξ
(4)
R (x1,x1,x2,x3) + (cyclic)

]
. (K.54)

Bispectrum is the Fourier transform of the three-point correlation function. As

universe is statistically isotropic, the three-point correlation function only depends on the

shape and size of triangles constructed by three points (x1, x2, x3), which can be fully

specified by using two vectors, r ≡ x1 − x3 and s ≡ x2 − x3. That is,

ζ(r, s) = ζ(r, s, |r− s|). (K.55)

In order to see this, let’s Fourier transform the three point correlation function.

ζ(x1,x2,x3)

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

⟨δ(q1)δ(q2)δ(q3)⟩eiq1·x1eiq2·x2eiq3·x3

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

(2π)3B(q1, q2, q3)δ
D(q123)e

iq1·x1eiq2·x2eiq3·x3

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

B(q1, q2, |q1 + q2|)eiq1·(x1−x3)eiq2·(x2−x3)

=

∫
d3q

(2π)3

∫
d3q′

(2π)3
B(q, q’)eiq·reiq

′·s = ζ(r, s) (K.56)

Therefore, we calculate the bispectrum by inverse-Fourier transform of the three-point cor-

relation function:

B(q, q′) =

∫
d3r

∫
d3sζ(r, s)e−iq·re−iq

′·s (K.57)
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Finally, let’s think about the Fourier transformation of connected four point function,

ξ
(4)
R (x1,x1,x2,x3)

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

∫
d3q4
(2π)3

⟨δ̃R(q1)δ̃R(q2)δ̃R(q3)δ̃R(q4)⟩c

× eiq1·x1eiq2·x1eiq3·x2eiq4·x3

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

∫
d3q4
(2π)3

(2π)3TR(q1, q2, q3, q4)δ
D(q1234)

× eiq1·x1eiq2·x1eiq3·x2eiq4·x3

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

TR(q1, q2, q3,−q123)e
iq1·(x1−x3)eiq2·(x1−x3)eiq3·(x2−x3)

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

TR(q1, q2, q3,−q123)e
i(q1+q2)·reiq3·s (K.58)

Similarly,

ξ
(4)
R (x1,x2,x2,x3)

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

TR(q1, q2, q3,−q123)e
iq1·rei(q2+q3)·s (K.59)

ξ
(4)
R (x1,x2,x3,x3)

=

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

TR(q1,−q123, q2, q3)e
iq1·(r−s)e−i(q2+q3)·s (K.60)

By using the Fourier relations above, we can easily calculate the Fourier transfor-
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mation of equation (K.54).

Bp(k1, k2)

=

∫
d3r

∫
d3sζp(r, s)e

−ik1·re−ik2·s

=
ν3

σ3
R

BR(k1, k2) +
ν4

σ4
R

[
PR(k1)PR(k2) + PR(k2)PR(k3) + PR(k3)PR(k1)

]
+

ν4

2σ4
R

∫
d3r

∫
d3s

∫
d3q1
(2π)3

∫
d3q2
(2π)3

∫
d3q3
(2π)3

×
[
TR(q1, q2, q3,−q123)e

iq12·reiq3·se−ik1·re−ik2·s

+ TR(q1, q2, q3,−q123)e
iq1·reiq23·se−ik1·re−ik2·s

+ TR(q1,−q123, q2, q3)e
iq1·(r−s)e−iq23·se−ik1·re−ik2·s

]
=
ν3

σ3
R

BR(k1, k2) +
ν4

σ4
R

[
PR(k1)PR(k2) + (2 cyclic)

]
+

ν4

2σ4
R

∫
d3q

(2π)3

[
TR(q, k1 − q, k2, k3) + +(2 cyclic)

]
, (K.61)

where k3 = −k2 − k3.

Note that, even in the absence of the primordial non-Gaussianity, matter bispectrum

BR(k1, k2, k3) is non-zero due to the gravitational instability, and that is given by

BR(k1, k2, k3) = 2F
(s)
2 (k1, k2)PR(k1)PR(k2) + (cyclic). (K.62)

Therefore, the galaxy bispectrum is given by

Bp(k1, k2, k3) =
ν3

σ3
R

[
2F

(s)
2 (k1, k2)PR(k1)PR(k2) + (cyclic)

]
+
ν4

σ4
R

[
PR(k1)PR(k2) + (cyclic)

]
. (K.63)

in the large scale where we expect that halo/galaxy bias is linear.
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Appendix L

Mean Tangential Shear and its covariance

In this appendix, we derive the mean tangential shear [Eq. (6.9)] and its covariance

[Eq. (6.16)].

L.1 Derivation of the mean tangential shear

One may write down the observed tangential shears at a given distance from a lens

halo, θ, averaged over NL lens halos as

γht (θ) =
1

NL

∫
d2n̂

[
NL∑
i

δD(n̂− n̂i)

]
γt(n̂+ θ), (L.1)

where δD is the delta function, and i denotes the location of lens halos. Note that we have

not azimuthally averaged the tangential shears yet. The ensemble average of γht yields the

number-weighted average of the tangential shear:

⟨γht ⟩(θ) =
1

NL

∫
d2n̂⟨nL(n̂)γt(n̂+ θ)⟩, (L.2)

where nL(n̂) is the surface number density of lens halos at a given location on the sky, n̂.

Expanding it into the perturbation, nL(n̂) = n̄L[1 + δh(n̂)], we obtain

⟨γht ⟩(θ) =
1

fsky

∫
d2n̂

4π
⟨δh(n̂)γt(n̂+ θ)⟩, (L.3)

where fsky ≡ NL/(4πn̄L) is a fraction of sky covered by the observation. From statistical

isotropy of the universe, ⟨δh(n̂)γt(n̂+ θ)⟩ does not depend on n̂, and thus the integral over

n̂ simply gives 4πfsky. Expanding δh and γt in Fourier space, we obtain

⟨γht ⟩(θ)

= −
∫

d2l

(2π)2
d2l′

(2π)2
eil·n̂eil

′·(n̂+θ) cos[2(ϕ− φ)]⟨δh(l)κ(l′)⟩

= −
∫

d2l

(2π)2
Chκl cos[2(ϕ− φ)]e−il·θ, (L.4)
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where we have used ⟨δh(l)κ(l′)⟩ = (2π)2Chκl δD(l+l′). Finally, we take the azimuthal average

of ⟨γht ⟩(θ) to find the averaged mean tangential shear:

⟨γht ⟩(θ) =

∫ 2π

0

dϕ

2π
⟨γht ⟩(θ)

= −
∫

d2l

(2π)2
Chκl

∫ 2π

0

dϕ

2π
cos[2(ϕ− φ)]e−ilθ cos(ϕ−φ)

=

∫
d2l

(2π)2
Chκl J2(lθ)

=

∫
ldl

2π
Chκl J2(lθ). (L.5)

This completes the derivation of Eq. (6.9).

L.2 Derivation of the covariance matrix of the mean tangential
shear

To compute the covariance matrix of the tangential shears (not yet azimuthally

averaged), we first compute

⟨γht (θ)γht (θ′)⟩

=
1

N2
L

NL∑
ij

∫
d2n̂

∫
d2n̂′

×⟨δD(n̂− n̂i)δD(n̂
′ − n̂j)γt(n̂+ θ)γt(n̂

′ + θ′)⟩

=
1

N2
L

∫
d2n̂

∫
d2n̂′

× [δD(n̂− n̂′)⟨nL(n̂)γt(n̂+ θ)γt(n̂
′ + θ′)⟩

+⟨nL(n̂)nL(n̂′)γt(n̂+ θ)γt(n̂
′ + θ′)⟩] . (L.6)

Here, the first term in the square bracket correlates two γt’s measured relative to the same

lens halo (1-halo term), and the second correlates two γt’s relative to two lens halos (2-halo

term). Again expanding nL into the perturbation, nL(n̂) = n̄L[1 + δh(n̂)], we obtain

⟨γt(θ)γt(θ′)⟩

=
1

fsky

1

NL

∫
d2n̂

4π
⟨γt(n̂+ θ)γt(n̂+ θ′)⟩

+
1

f2sky

∫
d2n̂

4π

∫
d2n̂′

4π
[⟨γt(n̂+ θ)γt(n̂

′ + θ′)⟩

+⟨δh(n̂)δh(n̂′)γt(n̂+ θ)γt(n̂
′ + θ′)⟩] . (L.7)
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Here, we assume that δh and γt obey Gaussian statistics, i.e., ⟨δhγtγt⟩ = 0. This approxi-

mation is justified even in the presence of primordial non-Gaussianity, as non-Gaussianity is

weak, and this approximation only affects the size of errorbars. Let us evaluate each term.

With γt expanded in Fourier space, the first term (1-halo term) becomes

1

NL

1

fsky

∫
d2n̂

4π
⟨γt(n̂+ θ)γt(n̂+ θ′)⟩

=
1

NL

∫
d2l

(2π)2
Cκl cos [2(ϕ− φ)] cos [2(ϕ′ − φ)] eil·(θ−θ′)

+
σ2
γ

NLnS
δD(θ − θ′), (L.8)

where σγ is the r.m.s. shape noise (dimensionless), and nS is the surface density of source

(background) galaxies that are available for the shear measurement at a given location. By

azimuthally averaging γt, we find

1

NL

∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π
⟨γt(n̂+ θ)γt(n̂+ θ′)⟩

=
1

NL

∫
d2l

(2π)2
Cκl J2(lθ)J2(lθ

′) +
σ2
γ

NLnS

δD(θ − θ′)

2πθ
. (L.9)

Here, Cκl is the angular power spectrum of κ(l).

As for the second term (2-halo term), the first of the second term vanishes, as∫
d2n̂γt(n̂+ θ) = 0. The remaining non-vanishing term gives

1

f2sky

∫
d2n̂

4π

∫
d2n̂′

4π

× [⟨δh(n̂)γt(n̂+ θ)⟩⟨δh(n̂′)γt(n̂
′ + θ′)⟩

+ ⟨δh(n̂)γt(n̂′ + θ′)⟩⟨δh(n̂′)γt(n̂+ θ)⟩

+⟨δh(n̂)δh(n̂′)⟩⟨γt(n̂+ θ)γt(n̂
′ + θ′)⟩]

= ⟨γht (θ)⟩⟨γht (θ′)⟩

+
1

4πfsky

∫
d2l

(2π)2
cos [2(ϕ− φ)] cos [2(ϕ′ − φ)] eil·(θ−θ′)

×

[
(Chκl )2 + Chl

(
Cκl +

σ2
γ

nS

)]
. (L.10)

Here, Chl is the angular power spectrum of δh(l). By azimuthally averaging γt in the above
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equation, we find

⟨γht (θ)⟩⟨γht (θ′)⟩

+
1

4πfsky

∫
d2l

(2π)2
J2(lθ)J2(lθ

′)

[
(Chκl )2 + Chl

(
Cκl +

σ2
γ

nS

)]
,

where we have used the identity

δD(θ − θ′)

2πθ
=

∫
ldl

2π
J2(lθ)J2(lθ

′). (L.11)

Collecting both the 1-halo and 2-halo terms, we finally obtain the covariance matrix

of the azimuthally-averaged mean tangential shear:

⟨γht (θ)γht (θ′)⟩ − ⟨γht (θ)⟩⟨γht (θ′)⟩

=
1

4πfsky

∫
ldl

2π
J2(lθ)J2(lθ

′)

[
(Chκl )2 +

(
Chl +

1

nL

)(
Cκl +

σ2
γ

nS

)]
.

This completes the derivation of Eq. (6.16).
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Appendix M

On the accuracy of Limber’s approximation

Throughout this paper we have repeatedly used Limber’s approximation in order

to relate the angular correlation function to the corresponding three dimensional power

spectrum. In general, Limber’s approximation is known to be accurate only for small angular

scales, and only for the quantities which are integrated over a broad range of redshift.

However, the situations we have considered in this paper sometimes violate both

of the conditions above: 1) We correlate the convergence field with galaxies within a very

thin redshift slice, and 2) the non-Gaussianity signal we study in this paper appears only

on very large scales.

Then, how accurate is Limber’s approximation in this case? In this Appendix, we

shall study in detail the validity and limitation of Limber’s approximation, by comparing

the main results of the paper to the result of exact calculations.

Consider a quantity xi(n̂), which is projected on the sky. Here, n̂ is the unit

vector pointing toward a given direction on the sky. This quantity is related to the three

dimensional quantity si(r; z) by a projection kernel Wi(z) as

xi(n̂) =

∫
dzWi(z)si[dA(z)n̂; z]. (M.1)

Throughout this Appendix, we use dA(z) to denote dA(0; z).

Fourier transforming si(r), one obtains

si[dA(z)n̂; z)]

=

∫
d3k

(2π)3
si(k, z)e

ik·n̂dA(z)

= 4π
∑
l,m

il
∫

d3k

(2π)3
si(k, z)jl[kdA(z)]Y

∗
lm(k̂)Ylm(n̂). (M.2)

In the third line, we have used Rayleigh’s formula:

eik·n̂r = 4π
∑
l,m

iljl(kr)Y
∗
lm(k̂)Ylm(n̂).
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By using Eq. (M.2), we rewrite Eq. (M.1) as

xi(n̂) = 4π
∑
l,m

il
∫
dzWi(z)

×
∫

d3k

(2π)3
si(k, z)jl[kdA(z)]Y

∗
lm(k̂)Ylm(n̂). (M.3)

Therefore, the coefficients of the spherical harmonics decomposition of xi(n̂), a
xi

lm, becomes

axi

lm = 4πil
∫
dzWi(z)

∫
d3k

(2π)3
si(k, z)jl[kdA(z)]Y

∗
lm(k̂). (M.4)

We calculate the angular power spectrum, C
xixj

l , by taking an ensemble average of
〈
axi

lma
xj∗
lm

〉
as

C
xixj

l

≡
〈
axi

lma
xj∗
lm

〉
= (4π)2

∫
dzWi(z)

∫
dz′Wj(z

′)

∫
d3k

(2π)3
P sisj (k; z, z′)

×jl[kdA(z)]jl[kdA(z′)]Y ∗
lm(k̂)Y ∗

lm(k̂), (M.5)

where we have used the definition of the power spectrum:〈
si(k, z)s

∗
j (k

′, z)
〉
≡ (2π)3δ(k− k′)P sisj (k; z, z′).

Now, by assuming statistical isotropy of the universe, we write P sisj (k; z, z′) =

P sisj (k; z, z′), and do the angular integration of k̂ by using the orthonormality condition of

spherical harmonics: ∫
dk̂Ylm(k̂)Y ∗

lm(k̂) = 1.

We then obtain the angular power spectrum given by

C
xixj

l =

∫
dzWi(z)

∫
dz′Wj(z

′)

×
{
2

π

∫
k2dkP sisj (k; z, z′)jl[kdA(z)]jl[kdA(z

′)]

}
.

(M.6)

This is the exact relation.

What determines the form of Wi(z)? For a projected galaxy distribution projected

on the sky, this kernel is simply a normalized galaxy distribution function in redshift space.

In this paper, we consider the delta function-like distribution, i.e.,

Wg(z) = δD(z − zL). (M.7)
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Using Eq. (M.6) with the delta function kernel above yields Eq. (6.34):

Chl =
2

π

∫
dkk2Pg(k, zL)j

2
l [kdA(zL)] . (M.8)

Again, this is still the exact result. As the form of Wg(z) we have considered here (i.e., a

delta function) is a sharply peaked function, we cannot use Limber’s approximation given

below. This is the reason why we have used the exact result for Chl .

In order to get the expression for Limber’s approximation, we assume that P sisj (k)

is a slowly-varying function of k. Then, by using the identity

2

π

∫
k2dkjl(kr)jl(kr

′) =
δD(r − r′)

r2
, (M.9)

we approximate the k integral of Eq. (M.6) as

2

π

∫
k2dkP sisj (k)jl(kr)jl(kr

′)

≈ δD(r − r′)

r2
P sisj

(
k =

l + 1/2

r

)
. (M.10)

By using this approximation, we finally get

C
xixj

l ≈
∫
dzWi(z)Wj(z)

H(z)

d2A(z)
P sisj

(
k =

l + 1/2

r
; z

)
,

(M.11)

which is the result known as Limber’s approximation.

One important application of Limber’s approximation is the statistics involving

weak gravitational lensing. The lensing kernel for the convergence field, Wκ(z), can be

calculated by integrating the lens equation:

Wκ(z) =
ρ0

Σc(z; zS)H(z)
, (M.12)

where Σc(z; zS) is the critical surface density defined in Eq. (6.14). The exact result for the

galaxy-convergence angular cross power spectrum is

Chκl (zL) =
2

π

∫ zS

0

dz
ρ0

Σc(z; zS)H(z)

×
∫
dkk2Phm(k, zL, z)jl[kdA(zL)]jl[kdA(z)],

(M.13)
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Figure M.1: Top: Convergence-convergence angular power spectrum from two different
methods: the exact calculation (Eq. M.14, symbols) and Limber’s approximation (Eq. 6.33,
solid lines). Bottom: Fractional differences between Limber’s approximation and the exact
integration. Symbols are the same as the top panel. Grey symbols show the absolute values
of negative values.

and the exact result for the convergence-convergence angular power spectrum is

Cκl (zS) =
2

π

∫ zS

0

dz

∫ zS

0

dz′
ρ20

Σc(z; zS)H(z)Σc(z′; zS)H(z′)

×
∫
dkk2Pm(k, z, z′)jl[kdA(z)]jl[kdA(z

′)]. (M.14)

First, we compare the exact convergence-convergence angular power spectrum to

Limber’s approximation. Fig. M.1 shows that Limber’s approximation works very well for

all four source redshifts we study in the paper: zS = 0.65, 1.19, 2.25, and 1089.0. For l > 10,

the error caused by Limber’s approximation is always much smaller than 1%.

335



Figure M.2: Same as Fig. M.1, but for the galaxy-convergence cross angular power spectrum
with fNL = 0 and b1 = 1.
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Figure M.3: Same as Fig. M.1, but for the non-Gaussian correction (i.e., the term propor-
tional to ∆b(k)) to the galaxy-convergence cross angular power spectrum. We show the
corrections with fNL = 1 and b1 = 2.
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Figure M.4: Same as Fig. M.2, but for the galaxy-CMB lensing.
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Figure M.5: Same as Fig. M.3, but for the galaxy-CMB lensing.
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Figure M.6: Top: Same as Fig. 6.3, but also showing the exact result (Eq. M.13, thick lines)
on top of the result from Limber’s approximation (Eq. 6.30, thin lines). Bottom: Fractional
difference of Limber’s approximation relative to the exact result.
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Then, we compare the galaxy-convergence cross angular power spectra. Fig. M.2

and Fig. M.3 show the comparison between the exact galaxy-convergence cross power spec-

trum (Eq. M.13, symbols) and their Limber approximation (Eq. 6.30, solid lines) for three

galaxy-galaxy lensing cases we study in Sec. 6.1: (zL, zS) = (0.3, 0.65), (0.5, 1.19), and

(0.8, 2.25).

For the Gaussian term (Fig. M.2), Limber’s approximation is accurate at l > 10 with

the errors less than 1%. On the other hand, Limber’s approximation to the non-Gaussian

correction term (Fig. M.3) has a sizable error, at the level of 10%, at l ∼ 10. The error

goes down to the 1% level only at l ∼ 100. One needs to keep this in mind when comparing

Limber’s approximation with observations. We find that Limber’s approximation underpre-

dicts the Gaussian term at l ≲ 20, while it overpredicts the non-Gaussian corrections at all

multipoles.

The story is basically the same for the galaxy-CMB lensing cross power spectrum.

Fig. M.4 (Gaussian term) and Fig. M.5 (non-Gaussian correction) show the comparison

between the exact galaxy-convergence cross power spectrum (Eq. M.13, solid lines) and

their Limber approximation (Eq. 6.30, dashed lines) for seven lens redshifts we study in

Sec. 6.3: zL = 0.3, 0.5, 0.8, 2, 3, 4, and 5. Again, for small scales, l > 10, Limber’s

approximation works better than 1% for the Gaussian term, while it overpredicts the non-

Gaussian correction at the level of 10% at l ∼ 10 and 1% at l ∼ 100.

What about the effect on the mean tangential shear, ∆Σ(R)? Fig. M.6 compares

the Gaussian term of ∆Σ(R) from the exact integration and that from Limber’s approxima-

tion. On the top panel of Fig. M.6, we show the baryonic feature computed with Limber’s

approximation (thin lines, the same as those in Fig. 6.3) as well as that computed with the

exact integration (thick lines). They are indistinguishable by eyes. The bottom panel shows

the fractional differences between the two. We find that Limber’s approximation is better

than 0.5% for R < 180 h−1 Mpc; thus, the baryonic feature in ∆Σ is not an artifact caused

by Limber’s approximation.

However, Limber’s approximation becomes worse and worse as we go to larger R.

Fig. M.8 shows ∆Σ on large scales. For the lens redshifts that we have studied here, the

error is at most 5% for R < 500 h−1 Mpc, and the error is the largest for the lowest zL, as

a given R at a lower redshift corresponds to a larger angular separation on the sky.

While Limber’s approximation underpredicts the Gaussian term on large scales, it

overpredicts the non-Gaussian correction terms. Fig. M.8 shows the fractional differences of
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Figure M.7: Same as Fig. M.6, but for larger R. Thick lines are the results of the exact
integration, while the thin lines are Limber’s approximation. The Limber approximation
overpredicts ∆Σ(R) for large R, but the error is at most 5% for R < 500 h−1 Mpc. The error
is the largest for the lowest zL, as a physical separation R at a lower redshift corresponds
to a larger angular separation on the sky.
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Figure M.8: Fractional differences in the non-Gaussian correction terms, ∆ΣnG, from Lim-
ber’s approximation and the exact integration. Using Limber’s approximation, we overpre-
dict the non-Gaussian correction by ∼ 20% at R = 300 h−1 Mpc for zL = 0.3.
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Figure M.9: Same as Fig. 6.4, but with the exact integration instead of Limber’s approxi-
mation.

the non-Gaussian correction terms, ∆ΣnG, between Limber’s approximation and the exact

calculation as a function of separation R for three lens redshifts: zL = 0.3, 0.5, and 0.8.

This figure shows that the error caused by Limber’s approximation can be substantial on

∆ΣnG.

As Limber’s approximation to ∆Σ(R) can be quite inaccurate on very large scales,

we show the exact calculations of ∆Σ(R) in Fig. M.9. (Limber’s approximation is given in

Fig. 6.4.)

Finally, we note that the definition of the tangential shear we have used (Eq. 6.2)

is valid only on the flat sky (as noted in the footnote there), and thus the prediction for

∆Σ on very large scales probably needs to be revisited with the exact definition of the

tangential shears on the full sky using the spin-2 harmonics. This is beyond of the scope of
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this dissertation.
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Appendix N

Cosmic Microwave Background lensing reconstruction:
Quadratic Estimator with the flat-sky approximation

In this appendix, we summarize the of Cosmic Microwave Background (CMB) lens-

ing reconstruction method in Hu & Okamoto (2002). The method summarized here is valid

for small angular scales as we use the flat-sky approximation. For general Full-sky treatment

with spin-2 spherical harmonics, see Okamoto & Hu (2003).

The intervening matter distribution of the large scale structure of the Universe

lenses CMB photon along the direction n̂ with lensing potential ϕ(n̂) given by

ϕ(n̂) = 2

∫
dη

dA(η∗ − η)

dA(η∗)dA(η)
Φ(dA(η)n̂, η), (N.1)

where dA(η) is the comoving angular diameter distance corresponding to the comoving

distance η, and η∗ is the comoving distance to the last scattering surface. Here Φ is the

gravitational potential. As a result, temperature (Θ(n̂) ≡ ∆T (n̂)/T ) anisotropy and Stokes

parameters Q(n̂) and U(n̂) of CMB is re-mapped as

Θ(n̂) = Θ̃(n̂+∇ϕ(n̂))) (N.2)

(Q± iU)(n̂) = (Q̃± iŨ)(n̂+∇ϕ(n̂)). (N.3)

Following the notation of Hu & Okamoto (2002), we denote the unlensed power

spectra of x = Θ (temperature fluctuation), E-, and B-mode polarization as

⟨x̃∗(l)x̃(l′)⟩ ≡ (2π)2δ(l− l′)C̃xx
′

l (N.4)

⟨ϕ∗(L)ϕ(L′)⟩ ≡ (2π)2δ(L− L′)L−2CddL . (N.5)

Note that, as we assume that parity is conserved,

C̃ΘB
l = C̃EBl = 0.

On the other hands, observed power spectra are denoted without tilde as

⟨x∗(l)x(l′)⟩ ≡ (2π)2δ(l− l′)Cxx
′

l . (N.6)
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These ‘observed’ power spectra include all the sources of uncertainties such as instrumental

white noise and foreground contaminations. In order to quantify the uncertainty of the

observed power spectra, we use the Gaussian random detector noise of Knox (1995):

CΘΘ
l,noise =

(
TCMB

∆T

)−2

el(l+1)σ2/8 ln 2 (N.7)

CBBl,noise = CEEl,noise =

(
TCMB

∆p

)−2

el(l+1)σ2/8 ln 2, (N.8)

where ∆T and ∆p is in the unit of [µK rad]. For Planck, we use ∆T = 35.4µK arcmin, and

∆p = 63.1µK arcmin, and set the FWHM of beam σ = 7 arcmin, which comes from the

CMBPol mission study of Zaldarriaga et al. (2008). The ”nearly perfect” experiment referred

by Hu & Okamoto (2002) has white noise of ∆T = 1µK arcmin, and ∆p =
√
2µK arcmin,

and FWHM of σ = 4 arcmin.

In order to quantify the effect of weak lensing, we first Taylor expand equation (N.2)

and equation (N.2):

Θ(n̂) = Θ̃(n̂) + (∇Θ̃(n̂)) · (∇ϕ(n̂)) + · · · (N.9)

(Q± iU)(n̂) = (Q̃± iŨ)(n̂) + (∇(Q̃± iŨ)(n̂)) · (∇ϕ(n̂)) + · · · , (N.10)

and Fourier transform them1. Then, the re-mapping effect of gravitational lensing in Fourier

space becomes a mode coupling between Φ̃, Ẽ, B̃ and lensing potential ϕ:

Θ(l) = Θ̃(l)−
∫

d2l1
(2π)2

∫
d2l2δ

D(l− l12)l1 · l2ϕ(l2)Θ̃(l1) (N.13)

E(l)± iB(l) = Ẽ(l)± iB̃(l)−
∫

d2l1
(2π)2

∫
d2l2δ

D(l− l12)l1 · l2ϕ(l2)

×(Ẽ(l1)± iB̃(l1))e
±2i(φl1

−φl). (N.14)

Decomposing the equations for each Fourier mode of Θ, E, and B, the change due to weak

1Fourier transform with the flat sky approximation is defined as

Θ(n̂) =

∫
d2l

(2π)2
Θ(l)eil·n (N.11)

(Q± iU)(n̂) = −
∫

d2l

(2π)2
[E(l)± iB(l)] e2lφleil·n, (N.12)

where φl ≡ cos−1(x̂ · l̂) is an azimuthal angle of l.
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lensing is (Hu, 2000):

Θ(l) = Θ̃(l) +

∫
d2l′

(2π)2
W (l, l’)Θ̃(l′) (N.15)

E(l) = Ẽ(l) +

∫
d2l′

(2π)2
W (l, l’)

[
Ẽ(l′) cos(2φl′l)− B̃(l′) sin(2φl′l)

]
(N.16)

B(l) = B̃(l) +

∫
d2l′

(2π)2
W (l, l’)

[
B̃(l′) cos(2φl′l) + Ẽ(l′) sin(2φl′l)

]
, (N.17)

where

W (l, l’) ≡ −l′ · (l− l′)ϕ(l− l′).

Note that lensed E-mode and B-mode polarization are mixed. That is why the most of lens

reconstruction signal comes from the estimator using EB cross-correlation (see, Figure N.2).

How do we reconstruct the lensing potential from the observed CMB anisotropy?

The key is that weak lensing also mixes different wave-modes and the mode-mixing strength

are proportional to the Fourier transform of lensing potential ϕ(l). Let us first quantify the

coupling strength. For fixed lensing potential, we define the mode coupling strength as

⟨x(l)x′(l′)⟩CMB = fα(l, l
′)ϕ(L). (N.18)

Here, L = l + l′, and x is one of anisotropy variables, {Θ, E, B}, and α denotes the xx′

pairing. We calculate the coupling strength fα by using equations (N.15), (N.16) and (N.17)
2:

fΘΘ(l1, l2) = C̃ΘΘ
l1 (L · l1) + C̃ΘΘ

l2 (L · l2) (N.19)

fΘE(l1, l2) = C̃ΘE
l1 cos(2φl1l2)(L · l1) + C̃ΘE

l2 (L · l2) (N.20)

fΘB(l1, l2) = C̃ΘE
l1 sin(2φl1l2)(L · l1) (N.21)

fEE(l1, l2) =
[
C̃EEl1 (L · l1) + C̃EEl2 (L · l2)

]
cos(2φl1l2) (N.22)

fEB(l1, l2) =
[
C̃EEl1 (L · l1)− C̃BBl2 (L · l2)

]
sin(2φl1l2) (N.23)

fBB(l1, l2) =
[
C̃BBl1 (L · l1) + C̃BBl2 (L · l2)

]
cos(2φl1l2) (N.24)

However, we cannot use equation (N.18) as an estimator of ϕ, as ⟨ϕ⟩ = 0 due to the statistical

isotropy. Instead, we estimate the deflection field d(n̂) by taking a weighted average over

2There is a typo in Table 1 of Hu & Okamoto (2002). For α = ΘE, cos(φl1l2 ) in the equation has to be
cos(2φl1l2 ).
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multipole moments. The estimate suggested by Hu & Okamoto (2002) is

dα(L) =
Aα(L)

L

∫
d2l1
(2π)2

x(l1)x
′(l2)Fα(l1, l2). (N.25)

Here, we introduce a normalization factor

Aα(L) = L2

[∫
d2l1
(2π)2

fα(l1, l2)Fα(l1, l2)

]−1

, (N.26)

so that

⟨dα(L)⟩CMB ≡ Lϕ(L) (N.27)

is satisfied. By minimizing the variance ⟨dα(L)dα(L)⟩, Hu & Okamoto (2002) has calculate

the minimum variance filter Fα(l1, l2) as:

Fα(l1, l2) =
Cx

′x′

l1
Cxxl2 fα(l1, l2)− Cxx

′

l1
Cxx

′

l2
fα(l2, l1)

Cxxl1 C
x′x′
l2

Cx
′x′
l1

Cxxl2 −
(
Cxx

′
l1
Cxx

′
l2

)2
,

(N.28)

For α = ΘΘ, EE and BB, Fα is reduced to

Fα(l1, l2) =
fα(l1, l2)

2Cxxl1 C
xx
l2

, (N.29)

and if C̃xx
′

l = 0 as in the case of α = ΘB and EB,

Fα(l1, l2) =
fα(l1, l2)

Cxxl1 C
x′x′
l2

.
(N.30)

What about the noise matrix of lensing reconstruction? The noise matrix for lensing

reconstruction, 〈
d∗α(L)dβ(L

′)
〉
= (2π)2

[
CddL +Nαβ(L)

]
δD(L− L′), (N.31)

is calculated as

Nαβ(L) =
Aα(L)Aβ(L)

L2

∫
d2l1
(2π)2

Fα(l1, l2)

×
[
Fβ(l1, l2)C

xαxβ

l1
C
x′
αx

′
β

l2
+ Fβ(l2, l1)C

xαx
′
β

l1
C
x′
αxβ

l2

]
. (N.32)

Note that for the minimum variance filter,

Nαα(L) = Aα(L).

Now we have five different estimators where α = ΘΘ, ΘE, ΘB, EE, EB, and Nαβ is a 5

by 5 matrix. We linearly combine these estimators

dmv(L) =
∑
α

wα(L)dα(L) (N.33)
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with coefficient determined by

wα =

∑
β

(
N−1

)
αβ

Tr (N−1)
.

Then, final noise power spectrum for lensing reconstruction is

Nmv(L) =
1∑

αβ (N
−1)αβ

. (N.34)

Finally, as our analysis in Chapter 6 is based on the convergence field κ ≡ ∇2ϕ/2,

the noise power spectrum in equation (N.34) has to be properly rescaled as following. The

deflection field d is defined to be d = lϕ in equation (N.27), therefore, the convergence power

spectrum is related to the deflection field power spectrum as

Cκκl =
1

4
l4Cϕϕl =

1

4
l2Cddl . (N.35)

The noise power spectrum of convergence field scales in the same way:

Nκ
l =

1

4
l2Nmv(l). (N.36)

Figure N.1 and N.2 show two examples of noise power spectra. In those figures, we

show the noise power spectra of each of five estimators, dΘΘ, dΘE , dΘB , dEE , dEB as well

as that of the minimum variance linear combination dmv (orange solid line).

Figure N.1 shows the noise power spectra for Planck mission. As Planck satellite

is expected to observe EE and ΘE correlation but probably not to observe the EB and

BB correlation, even minimum variance noise power spectrum exceeds the lensing potential

power spectrum. Therefore, we cannot measure the lensing potential power spectrum for a

single wavenumber for Planck. Instead, we may have to constrain a few parameters which

depends on the whole shape of the lensing potential power spectrum.

On the other hand, Figure N.2 shows the noise power spectra for the nearly perfect

experiment suggested by Hu & Okamoto (2002). For this case, the instrumental noise is

so small that we can detect the B-mode polarization from CMB lensing down to l ∼ 1000

(Figure 2 of Hu & Okamoto (2002)), and we can detect the lensing potential for individual

wave mode until l ∼ 1000. Note that the best estimator is dEB provide the best estimator.

It is because B-mode polarization in this analysis is sorely from weak lensing of E-mode

polarization as we ignore the primordial tensor mode, Since we need to first reconstruct the

lensing potential map in order to cross correlate them with the lens galaxies, we use latter

case for our analysis in Chapter 6.
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Figure N.1: Noise power spectra of Cosmic Microwave Background lensing reconstruction.
We show the noise power spectrum of dΘΘ (solid line), dΘE (dashed line), dΘB (dot-dashed
line), dEE (dots-dashed line), dEB (long-dashed line), and minimum variance estimator dmv

(orange solid line). For comparison, we also show the convergence power spectrum Cκl
(red line). Noise power spectrum is calculated for Planck satellite: ∆T = 35.4 µKarcmin,
∆P = 63.1 µKarcmin, and σ = 7 arcmin as described in Appendix A of Zaldarriaga et al.
(2008).
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Figure N.2: Same as Figure N.1, but for the nearly perfect experiment quoted by Hu &
Okamoto (2002). We use ∆T = 1 µKarcmin, ∆P =

√
2 µKarcmin, and σ = 4 arcmin.

In Chapter6, we estimate the noise power spectrum (Nκ
l ) by minimum variance estimator

(orange solid line).
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