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Classification in astronomy

Classification methods have played an important role in astronomy for
centuries and continue to be essential tools in modern astronomy.

In the NASA Astrophysics Data System, the keyword ‘classification’
appeared in over 5,000 refereed astronomy/physics papers annually for
the last 5 consecutive years (2017–2021).
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Measurement error
Many classification methods have publicly available code implementations
such as random forest, neural network, Gaussian processes, etc.

However, astronomical data for classification (right) are not the same as
those in a classification textbook (left) due to measurement error.

Here, xobsi = (xobsi1 , xobsi2 , . . . , xobsip )> and σi = (σi1, σi2, . . . , σip)>

obtained by careful calibration of the instrument and examination of
source-free regions of the image or spectrum.
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Measurement error (cont.)

In astronomy, a Gaussian measurement error assumption dates back to
Eddington (1913).

Image Credit: Great War Films.

For a measurement of the j-th property (e.g., color, brightness, redshift)
of the i-th object,

xobsij = xtrueij + εij , εij ∼ N(0, σ2
ij),
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Measurement error in astro. classification

In astronomical object classification, standard classification methods are
often adopted by discarding the uncertainty columns (e.g., Timlin et al.,
2018).

Bovy et al. (2011, 2012) proposed Bayesian methods to account for
measurement error in astronomical classification (but limited to quasar
classification).

Could we develop a general framework that enables standard classification
methods to account for measurement error in astronomical data?
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Gaussian perturbation

Gaussian perturbation is a way to replicate data sets by perturbing the
observed data with the Gaussian measurement errors (like bootstrapping).

For example, a linear support vector machine is fit on each perturbed set,
producing a single decision boundary for each set.

A collection of decision boundaries from multiple fits → a decision band.
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Gaussian perturbation (cont.)

Gaussian perturbation simulates replicates by randomly generating

xrepij ∼ N(xobsij , 2σ2
ij).

This is a posterior predictive distribution of a two-level Gaussian
hierarchical model. Specifically, from the Gaussian error model

xobsij | xtrueij ∼ N(xtrueij , σ2
ij),

we assume a flat prior on each unknown true value xtrueij , h(xtrueij ) ∝ 1.

Then, the posterior distribution of xtrueij is

xtrueij | xobsij ∼ N(xobsij , σ2
ij),

and the resulting posterior predictive distribution is

q(xrepij | x
obs
ij ) =

∫
f (xrepij | x

true
ij )π(xtrueij | xobsij )dxtrueij = N(xrepij | x

obs
ij , 2σ2

ij).
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Gaussian perturbation (cont.)

The measurement error uncertainty is used only once for producing
perturbed data sets and is never used anymore.

The resulting replicates don’t have columns for measurement uncertainty.

Now, each replicate is in the format shown in a classification textbook.
Thus, any standard classification methods can be fit on each replicate set.
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Classification via Gaussian perturbation

The resulting variation of any quantity of interest from multiple fits forms
its posterior predictive distribution (Gelman et al., 2013, Chap. 6).

I Let C be a classification operator, mapping a data set to a quantity
for classification summary, θ, such as classification accuracy,
predicted labels, etc.

I Let us define θ(i) = C (Xrep
(i) ) as the quantity of interest obtained by

applying the classification operator C to the i-th replicate data set.

I Then, the values of θ(i)’s represent the posterior predictive
distribution of the quantity of interest.
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Simulation study: Data

Let us consider the following simulation setting with two features.

1. First simulate 200 features each with length 2, and set true labels.

2. Next generate 200 observed data by

xobsij = xtrueij + εij , εij ∼ N(0, σ2
ij).

where σ2
ij = |xtrueij |/2 to be realistic.
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Simulation study: Data (cont.)

Next, Gaussian perturbation will generate 500 replicate data sets using
the data in the 3rd panel.

Both linear SVM (a hard classifier) and random forest (a soft classifier)
will be fit on each of the 500 replicate sets.
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Simulation study: SVM

The gray decision band (accounting for measurement error) encompasses
the red decision band (obtained without measurement error).

The label prediction probabilities show a yellow-green-blue color gradient
(softening a hard classification).
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Simulation study: SVM (cont.)

The variation in (cross-validated) classification accuracy stems from the
variation in the SVM decision boundary caused by measurement error.

Over-confidence about our measurements (ignoring measurement error)
can lead to exaggerated results and potential bias in classification.

The lower accuracy under the Gaussian perturbation is natural as the
measurement error has further blurred the separation between classes.

14 / 20



Simulation study: Random Forest

The yellow-green-blue color gradient becomes more blurred (less
extreme) overall due to measurement error uncertainty.

The cross-validated classification accuracy is 0.87 without measurement
error, and 0.77± 0.03 with measurement error.
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Real data: High-redshift quasars

Let us identify high-redshift quasar candidates (2.9 ≤ redshift ≤ 5.1)
from a catalog data set merged from multiple sources (SDSS, Spitzer
IRAC, Spitzer-HETDEX).

Each observation is composed of 6 colors (ug , gr , ri , iz , zs1, s1s2),
xobsi = {xobsi1 , xobsi2 , . . . , xobsi6 }.
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Real data: Classification accuracy

Considering substantial class imbalance, we use two accuracy measures,
completeness and efficiency (Timlin et al., 2018).
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Real data: Classification accuracy (cont.)

Is Gaussian perturbation still useful, considering that both completeness
and efficiency are quite similar?
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Real data: Predicting unlabeled objects

936 objects are predicted as AE (Anything Else) without measurement
error, but as high-redshift quasars with measurement error.
Potential new candidates (∼900 needles) might have been buried in the
AE group (haystack of ∼2M), without considering measurement error.

3,146 objects are predicted as high-redshift quasars without measurement
error, but as AE with measurement error.
Potential misclassification that might have wasted telescope’s substantial
time and effort, without considering measurement errors.
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Discussion

1. Why Bayesian posterior predictive distribution?
A naive approach is to sample xrepij ∼ N(xobsij , σ2

ij) (Ball+, 2007).

But, this is the post. distribution of (xtrueij | xobsij ) and xtrueij 6= xrepij .

2. The number of perturbed data sets.
200 replicates are recommended (Efron and Tibshirani, 1994, p48)

3. Additional computational cost linearly increases in terms of the
number of perturbed sets.

4. Correlated measurement error.
Possible by modeling correlations (future work).

5. Gaussian perturbation beyond classification, e.g., clustering
(unsupervised learning) (future work).

6. Limitations.
Limited to ‘Gaussian’ measurement error.
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