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Small single antenna

(lowest resolution)

Large single antenna

(better resolution)

Large array of many small antennas

(best resolution)*

Radio Astronomy

*but now you have to deal with the

special needs of interferometers



Needs of Interferometry

Image synthesis: process the Fourier 
visibilities from the interferometer to 
obtain sky brightness


➡Must choose type of image synthesis


➡Must make assumptions about 
unsampled spatial frequencies

Photo by Glen Petitpas
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Interferometric Image Processing

What assumptions can we make about the unsampled spatial frequencies?
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Incomplete sampling of visibilities (left) and corresponding dirty image with Briggs weighting (right), adapted from 
Zawadzki et al. (2023, submitted)
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CLEAN

Dirty Image PSF True Sky Brightness

• Iteratively finds peaks in the dirty image and subtracts the PSF


• Procedural method for obtaining a cleaned image


• Cons:  - Can be slow

 - Gaussian components may not lend themselves well to certain

     features (e.g. rings)


https://casa.nrao.edu/casadocs-devel/stable/imaging/synthesis-imaging/deconvolution-algorithms
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RML: Regularized Maximum Likelihood
• A forward-modeling approach to imaging


• We want to solve for the most likely image given the visibilities

• Consider each pixel as a model parameter

• Apply regularizers/priors to the model


• A true optimization algorithm: we write down some objective function and solve for it

Image synthesis of the HD 169142 in dust 
continuum (figure from Perez et al. 2019)


Panels a) and b) show the CASA tclean image 
with Briggs and uniform weighting, respectively.


Panel c) shows RML imaging, which has a 
sensitivity comparable to panel a) and a spatial 
resolution comparable to panel b).
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Optimizing with RML: Bayesian Perspective

p(I ∣ D) ∝ p(D ∣ I)p(I)

Posterior: what we’re optimizing
Likelihood function: make 

assumptions about the data 
generating process (usually )χ2

Priors: all additional constraints 
on the model

6 - Brianna Zawadzki



Optimizing with RML: Computing Perspective

The loss function
The negative log likelihood 

(usually )χ2

Regularizing terms add linearly 
and can have many functional 

forms

L(I) = Lnll(I) + λALA(I) + λBLB(I)
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Million Points of Light
• Developing MPoL (https://mpol-dev.github.io/MPoL/)


• Python package for RML based on PyTorch


• Authors: Ian Czekala, Brianna Zawadzki, Ryan Loomis


• RML frameworks are flexible with many possibilities
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https://mpol-dev.github.io/MPoL/


The RML Optimization Loop

Calculate gradients to be added 
to the base image Base image after one iteration Base image after 300 iterations

9 - Brianna Zawadzki



Development

• So far, we have implemented the following regularizers:


• Positivity


• Entropy


• Sparsity


• Total variation (TV)


• Total squared variation (TSV)
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Enforcing Positivity

• The flux of the observed source must be positive (or zero, if there is no flux)


• It follows that the intensity value of a given pixel must be positive

fReLU(x) = max (0,x) fSoftplus(x) =
1
β

* log(1 + exp(β * x))

If the pixel is positive, the value is unchanged

If the pixel is negative, the value becomes 0

Negative input values have a positive nonzero output

Little impact on large positive input values


Retain some information about the relative brightness of each pixel
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Entropy

• Promotes images with similar pixel values to a given set of reference pixels


• Reference pixels  could be uniform or incorporate prior knowledge (e.g. 
assuming the source intensity is Gaussian)

p

Functional form of the entropy regularizer

L =
1

∑i Ii ∑
i

Ii ln
Ii

pi
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Entropy

• Promotes images with similar pixel values to a given set of reference pixels


• Reference pixels  could be uniform or incorporate prior knowledge (e.g. 
assuming the source intensity is Gaussian)

p

less regularization more regularization
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Sparsity

• Uses the  norm to reduce the impact of unneeded pixels


• Promotes a final image that is a sparse collection of nonzero pixels

L1

Functional form of the sparsity

L = ∑
i

Ii
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Sparsity

less regularization

more regularization

• Uses the  norm to reduce the impact of unneeded pixels


• Promotes a final image that is a sparse collection of nonzero pixels

L1
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Total Variation (TV)

Functional form of the TV regularizer

• Promotes images with sharp edges where significant changes in intensity are 
needed


• Otherwise promotes similarity/smoothness between adjacent pixels

L = ∑
l,m,v

(Il+1,m,v − Il,m,v)2 + (Il,m+1,v − Il,m,v)2 + ϵ
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Total Variation (TV)

less regularization more regularization

• Promotes images with sharp edges where significant changes in intensity are 
needed


• Otherwise promotes similarity/smoothness between adjacent pixels
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Total Squared Variation (TSV)

• A variant of the TV regularizer


• Edges are smoother with TSV than with TV

L = ∑
l,m,v

(Il+1,m,v − Il,m,v)2 + (Il,m+1,v − Il,m,v)2

Functional form of the TSV regularizer
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Total Squared Variation (TSV)

less regularization more regularization

• A variant of the TV regularizer


• Edges are smoother with TSV than with TV
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20 — Brianna Zawadzki Adapted from Zawadzki et al. 2023a (submitted)

Entropy

Sparsity

TV

TSV



DSHARP data: HD 143006

Zawadzki et al. (2023, submitted)
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Checking Convergence

Imaging HD143006 with only TSV regularization. We check that the loss function has 
converged on a minimum to ensure the optimization process is finished.
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• Depends on number of pixels


• Depends on your starting image


• Typical times:


• ~minutes on a CPU


• ~seconds on a GPU

Optimization Speed
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Cross-Validation

• Machine learning method for finding the model 
with the highest predictive power


• K-fold cross-validation:


• split data into K chunks


• use 1/K as the test dataset and train the 
model with the rest


• compare model to test to get a cross-
validation score
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Hyperparameter Tuning
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• Cross-validation can be used to determine 
the optimal  values for each regularizer


• Minimizing the CV score yields a model with 
the best predictive power


• CV scores can be directly compared if CV 
setup and model parameterization remains 
constant

λ
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Cross-Validation Tips
• Selecting visibilities with the dartboard method tests how the model responds 

to data in different u-v space


• Selecting visibilities uniformly/randomly tests how the model responds to data 
in comparable u-v space


• Convergence is doubly important during CV
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3x improved

angular resolution

2x improved

angular resolution

nominal/base

angular resolution


——————————————————————


(matches an image

made with CLEAN)
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base RML model



Future Work with MPoL

• MPoL is already functional, but still in development


• We want to expand to applications like


• Spectral line data (+ new types of regularization)


• Data from other telescopes (e.g. SMA)


• New sources (more disks + other kinds of sources)
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