Brianna Zawadzki Penn State University

Regularized Maximum Likelihood Techniques for Interferometric Disk Imaging

Small single antenna (lowest resolution)

1 - Brianna Zawadzki Images courtesy of PopePompus (left, CC BY 4.0), NRAO/AUI (center, CC BY 3.0), and ESO/C. Malin (right, CC BY 4.0)

Large single antenna (better resolution)

Large array of many small antennas (best resolution)*

Radio Astronomy

*but now you have to deal with the special needs of interferometers

Needs of Interferometry

Image synthesis: process the Fourier visibilities from the interferometer to obtain sky brightness

- ➡ Must choose type of image synthesis
- ➡ Must make assumptions about unsampled spatial frequencies

Photo by Glen Petitpas

Interferometric Image Processing

What assumptions can we make about the unsampled spatial frequencies?

3 - Brianna Zawadzki

Incomplete sampling of visibilities (left) and corresponding dirty image with Briggs weighting (right), adapted from Zawadzki et al. (2023, submitted)

CLEAN

Dirty Image PSF True Sky Brightness

- Iteratively finds peaks in the dirty image and subtracts the PSF
- Procedural method for obtaining a cleaned image
- Cons: Can be slow
	- features (e.g. rings)

- Gaussian components may not lend themselves well to certain

https://casa.nrao.edu/casadocs-devel/stable/imaging/synthesis-imaging/deconvolution-algorithms

RML: Regularized Maximum Likelihood

- A forward-modeling approach to imaging
- We want to solve for the most likely image given the visibilities
	- Consider each pixel as a model parameter
	- Apply regularizers/priors to the model
-

• A true optimization algorithm: we write down some objective function and solve for it

Image synthesis of the HD 169142 in dust continuum (figure from Perez et al. 2019)

Panels a) and b) show the CASA tclean image with Briggs and uniform weighting, respectively.

Panel c) shows RML imaging, which has a sensitivity comparable to panel a) and a spatial resolution comparable to panel b).

Optimizing with RML: Bayesian Perspective

$$
p(\mathbf{I} | \mathbf{D}) \propto
$$

Likelihood function: make assumptions about the data generating process (usually χ^2)

Posterior: what we're optimizing

Priors: all additional constraints on the model

6 - Brianna Zawadzki

$p(\mathbf{D} | \mathbf{I}) p(\mathbf{I})$

Optimizing with RML: Computing Perspective

The negative log likelihood (usually χ^2)

Regularizing terms add linearly and can have many functional forms

 $L(\mathbf{I}) = L_{\text{nl}}(\mathbf{I}) + \lambda_A L_A(\mathbf{I}) + \lambda_B L_B(\mathbf{I})$

Million Points of Light

- Developing MPoL [\(https://mpol-dev.github.io/MPoL/](https://mpol-dev.github.io/MPoL/))
	- Python package for RML based on PyTorch
	- Authors: Ian Czekala, Brianna Zawadzki, Ryan Loomis
	- RML frameworks are flexible with many possibilities

The RML Optimization Loop

Calculate gradients to be added the base image after one iteration and Base image after 300 iterations to the base image.

Development

- So far, we have implemented the following regularizers:
	- Positivity
	- Entropy
	- Sparsity
	- Total variation (TV)
	- Total squared variation (TSV)

Enforcing Positivity

-
- It follows that the intensity value of a given pixel must be positive

 $f_{\text{ReLU}}(x) = \max(0,x)$ *f*

$$
f_{\text{Softplus}}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))
$$

If the pixel is positive, the value is unchanged If the pixel is negative, the value becomes 0

Negative input values have a positive nonzero output Little impact on large positive input values Retain some information about the relative brightness of each pixel

11 - Brianna Zawadzki

• The flux of the observed source must be positive (or zero, if there is no flux)

Entropy

- Promotes images with similar pixel values to a given set of reference pixels
- Reference pixels p could be uniform or incorporate prior knowledge (e.g. assuming the source intensity is Gaussian)

Functional form of the entropy regularizer

$$
L = \frac{1}{\sum_{i} I_i} \sum_{i} I_i \ln \frac{I_i}{p_i}
$$

Entropy

• Promotes images with similar pixel values to a given set of reference pixels

-
- Reference pixels p could be uniform or incorporate prior knowledge (e.g. assuming the source intensity is Gaussian)

less regularization more regularization

Sparsity

- Uses the L_1 norm to reduce the impact of unneeded pixels
- Promotes a final image that is a sparse collection of nonzero pixels

Functional form of the sparsity

$$
=\sum_{i}\left|I_{i}\right|
$$

less regularization

more regularization

Sparsity

- Uses the L_1 norm to reduce the impact of unneeded pixels
- Promotes a final image that is a sparse collection of nonzero pixels

Total Variation (TV)

Functional form of the TV regularizer

- Promotes images with sharp edges where significant changes in intensity are needed
- Otherwise promotes similarity/smoothness between adjacent pixels

$$
L = \sum_{l,m,v} \sqrt{\left(I_{l+1,m,v} - I_{l,m,v}\right)^2 + \left(I_{l,m+1,v} - I_{l,m,v}\right)^2 + \epsilon}
$$

Total Variation (TV)

less regularization more regularization

• Promotes images with sharp edges where significant changes in intensity are

- needed
- Otherwise promotes similarity/smoothness between adjacent pixels

Total Squared Variation (TSV)

- A variant of the TV regularizer
- Edges are smoother with TSV than with TV

$$
L = \sum_{l,m,v} (I_{l+1,m,v} - I_{l,m,v})^2 + (I_{l,m+1,v} - I_{l,m,v})^2
$$

Functional form of the TSV regularizer

Total Squared Variation (TSV)

less regularization more regularization

- A variant of the TV regularizer
- Edges are smoother with TSV than with TV

20 — Brianna Zawadzki Adapted from Zawadzki et al. 2023a (submitted)

DSHARP data: HD 143006

Dirty Image

21 - Brianna Zawadzki

CLEAN Image

Regularized Image

Checking Convergence

Imaging HD143006 with only TSV regularization. We check that the loss function has converged on a minimum to ensure the optimization process is finished.

22 - Brianna Zawadzki

 -0.30 $\mathsf{\vdash}$ 0.25 F 0.20 F 0.15

- Depends on number of pixels
- Depends on your starting image
- Typical times:
	- ~minutes on a CPU
	- ~seconds on a GPU

Optimization Speed

Blank Image

Custom Image

26 - Brianna Zawadzki

Dirty Image

Blank Image

Custom Image

Cross-Validation

- Machine learning method for finding the model with the highest predictive power
- K-fold cross-validation:
	- split data into K chunks
	- use 1/K as the test dataset and train the model with the rest
	- compare model to test to get a crossvalidation score

Hyperparameter Tuning

- Cross-validation can be used to determine the optimal λ values for each regularizer
- Minimizing the CV score yields a model with the best predictive power
- CV scores can be directly compared if CV setup and model parameterization remains constant

Cross-Validation Tips

- Selecting visibilities with the dartboard method tests how the model responds to data in different u-v space
- Selecting visibilities uniformly/randomly tests how the model responds to data in comparable u-v space
- Convergence is doubly important during CV

32 — Brianna Zawadzki Adapted from Zawadzki et al. (2023a, submitted)

- MPoL is already functional, but still in development
- We want to expand to applications like
	- Spectral line data (+ new types of regularization)
	- Data from other telescopes (e.g. SMA)
	- New sources (more disks + other kinds of sources)

Future Work with MPoL <https://mpol-dev.github.io/MPoL/>

33 - Brianna Zawadzki - bjz16@psu.edu

