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Abstract The concept of morphological integration

describes the pattern and the amount of correlation between

morphological traits. Integration is relevant in evolutionary

biology as it imposes constraint on the variation that is

exposed to selection, and is at the same time often based on

heritable genetic correlations. Several measures have been

proposed to assess the amount of integration, many using

the distribution of eigenvalues of the correlation matrix. In

this paper, we analyze the properties of eigenvalue vari-

ance as a much applied measure. We show that eigenvalue

variance scales linearly with the square of the mean cor-

relation and propose the standard deviation of the

eigenvalues as a suitable alternative that scales linearly

with the correlation. We furthermore develop a relative

measure that is independent of the number of traits and can

thus be readily compared across datasets. We apply this

measure to examples of phenotypic correlation matrices

and compare our measure to several other methods. The

relative standard deviation of the eigenvalues gives similar

results as the mean absolute correlation (W.P. Cane, Evol

Int J Org Evol 47:844–854, 1993) but is only identical to

this measure if the correlation matrix is homogenous. For

heterogeneous correlation matrices the mean absolute

correlation is consistently smaller than the relative standard

deviation of eigenvalues and may thus underestimate

integration. Unequal allocation of variance due to variation

among correlation coefficients is captured by the relative

standard deviation of eigenvalues. We thus suggest that this

measure is a better reflection of the overall morphological

integration than the average correlation.

Keywords Morphological integration � Evolutionary

constraint � Phenotypic correlation � Eigenvalue

distribution

Introduction

I mean by [the correlation of growth] that the whole

organization is so tied together during its growth and

development, that when slight variations in any one part

occur, and are accumulated through natural selection, other

parts become modified.

Charles Darwin, On the Origin of Species, 1859

The seminal work of Olson and Miller (1958) on the

concept of morphological integration brought the evolution

of correlated characters (Darwin 1895: correlation of

growth; Chetverikov 1929 in: Chetverikov 1961: correlative

variability; Terentjev 1931, Berg 1960: correlation pleiades)

to the attention of evolutionary biologists. Olson and Miller

(1958) proposed that traits that develop or function in concert

tend to be phenotypically correlated and will evolve toge-

ther. Later, quantitative genetic models (Lande 1980; Lande

and Arnold 1983; Cheverud 1982, 1984; Jones et al. 2007;

Revell 2007) placed these ideas on solid theoretical ground

by showing that if functionally and developmentally inte-

grated phenotypic traits experience correlative stabilizing
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selection they will become genetically correlated. These

genetic correlations then will result in correlated responses to

selection for functionally and developmentally related traits

(Pearson 1903; Lande and Arnold 1983). The features of an

organ or organism do not represent stochastically indepen-

dent dimensions but are correlated with one another.

Intertrait correlations reduce the amount of independent

variation in their respective dimensions. The new methods to

characterize the multivariate phenotypic structure are still

being developed, reflecting the interest in this field and the

need for tools (e.g., Magwene 2008).

Our focus here is on overall level of inter-correlation

among traits, defined by Olson and Miller (1958) as the

magnitude of morphological integration. For the purpose of

this note, we name the overall correlation of traits corre-

latedness, to distinguish it from pair wise correlation. There

is often discussion in evolutionary studies as to whether

morphological or other forms of integration should be

considered in terms of covariance or correlation matrices.

While the two matrices are related by a simple matrix

operation (R = W-1CW-1 where W is a diagonal matrix of

the inverses of trait standard deviations) and a correlation is

a variance-standardized covariance, it is the genetic

covariance matrix that appears in the multivariate response

to selection equation (Lande 1979). Therefore the covari-

ance matrix is often considered more relevant for

evolutionary studies (Hansen and Houle 2008; Kirkpatrick

2008). However, a covariance matrix combines two sepa-

rate, fundamental aspects of quantitative variation; the

level and pattern of variation, as described by a vector of

trait variances or coefficients of variation, and the strength

and pattern of relationship between traits. Olson and Miller

(1958) were specifically concerned with this second aspect,

i.e., with the pattern of intertrait relationships. With a focus

on intertrait relationships, it is most appropriate to analyze

correlation, rather than covariance, matrices in studies of

morphological integration. Relative levels of variation

can and have been considered separately from strength of

intertrait relationships (Cheverud 1996).

We thus focus on the traditional measure of integration,

namely the correlation and specifically explore the

relationship between the attribute measured and the mea-

surement scale, i.e., the representational aspect of the

measurement. Integration of a complex phenotypic unit will

be assessed by the measurement of the correlatedness of its

traits. One measure of the correlatedness is the dispersion of

the eigenvalues of the correlation matrix among phenotypic

dimensions (Wagner 1984; Cheverud et al. 1989). Each

eigenvalue is equal to the amount of variance distributed

along its corresponding eigenvector. Morphological inte-

gration leads to the concentration of variation in a few

dimensions and thus leads to increased differences among

eigenvalues. The more different the eigenvalues, the more

biased the variation and thus the higher the integration. For

example, when traits are highly correlated, most of the

independent variance is concentrated in the first few eigen-

values which results in a high eigenvalue variance.

Contrastingly, when the traits are uncorrelated, the eigen-

values will tend to be similar and thus have low variance.

Eigenvalue variance has thus been proposed to assess the

shape of the eigenvalue distribution (Wagner 1984; Cheve-

rud et al. 1989). High eigenvalue variance is characteristic of

the highly integrated phenotypic units, whereas low eigen-

value variance is typical of phenotypes with low integration.

Because the eigenvalue variance also depends on the number

of eigenvalues, it needs to be corrected for the number of

traits (i.e., number of eigenvalues) included in the matrix.

This enables comparison across matrices of different size.

Eigenvalue variance is frequently applied to mea-

sure phenotypic integration in wide range of fields

(e.g., Herrera et al. 2002; Peres-Neto and Magnan 2004;

Hallgrimsson et al. 2004; Young and Hallgrimsson 2005;

Hallgrimsson et al. 2006; Parsons and Robinson 2006;

Young 2006), and also indirectly to assess the effective

number of independent variables in a correlation matrix on

a continuous scale (Wagner et al. 2008). The latter purpose

was originally developed to determine the number of

independent tests to calculate the significance threshold in

QTL mapping based on the Bonferroni adjustment

(Cheverud 2001; Nyholt 2004).

In the present contribution, we provide a simple deri-

vation showing how the dispersion of eigenvalues relates to

overall correlatedness represented in a correlation matrix.

Eigenvalue variance scales linearly with the square of

mean correlation while the standard deviation of the

eigenvalues scales with average level of correlation.

Eigenvalue Variance Depends on Number of Traits

Eigenvalue variance is the average squared deviation of the

eigenvalues from the mean eigenvalue. The sum of the

eigenvalues of a correlation matrix equals the number of

variables (N) because the trace of a matrix (i.e., the sum of

the diagonal elements) is invariant under rotation of the

coordinate system. Thus the sum of the eigenvalues is

equal to the trace of the correlation matrix, which is of

course equal to the number of rows and columns. For that

reason the mean eigenvalue of a correlation matrix always

equals 1.0. The eigenvalue variance is

VarðkÞ ¼
PN

i¼1 ðki � 1Þ2

N

Note that we use here the number of traits, N, not N - 1

for normalization, because this is a definition and not a

statistical estimate of a population variance. The range of
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eigenvalue variance is from zero (all eigenvalues are

equal), to a rank-specific maximal eigenvalue variance.

The maximal eigenvalue variance is reached when only

one eigenvalue is larger than zero. In this case the first

eigenvalue is equal to N, and all the others equal to zero,

because of the constraint
PN

i¼1 ki ¼ N: This is the case if

all variables are fully correlated with each other. The

maximal eigenvalue variance thus is:

VarmaxðkÞ ¼
ðN � 1Þ2 þ

PN
i¼2 ð0� 1Þ2

N
¼ NðN � 1Þ

N
¼ N � 1

The range of eigenvalue variance is therefore zero to

(N - 1).

To account for the dependency on the size of the

matrix when eigenvalue variance is compared among

matrices, we can define the relative eigenvalue variance

by dividing the observed eigenvalue variance by the

maximum eigenvalue variance for the particular number

of traits:

VarrelðkÞ ¼
VarðkÞ

VarmaxðkÞ
¼ VarðkÞ

N � 1

The relative eigenvalue variance is independent of the

number of traits and can thus be used to compare

morphological integration across different matrices. The

range of this measure is from zero to one.

The relationship between correlatedness and eigenvalue

variance will in the following be explored both in homo-

geneous and heterogeneous matrices. Whereas for the

homogeneous matrices, where all off-diagonal elements are

equal, an analytical path is straightforward, we utilize both

empirical and analytical approaches for the heterogeneous

matrices.

Homogeneous Correlation Matrices

Here we consider homogeneous matrices, characterized

by all off-diagonal elements being equal (no variance

among correlations; see also Morrison 1976, pp. 289).

The eigenvalues of this set of matrices can easily be

described algebraically. Consider the (uniform) correlation

to be r and consider building the matrix by adding one

trait at a time. The trivial matrix with a single trait has

eigenvalue 1. Adding a trait leads to the simple 2 9 2

matrix,

RN¼2 ¼
1 r
r 1

� �

whose eigenvalues can simply be calculated by solving the

eigenvalue equation

detðRN¼2 � kIÞ ¼ 0

ð1� kÞ2 � r2 ¼ 0

For easier handling, we substitute x for (1 - k) and

solve by factorization (x - r) (x ? r) = 0, which has the

solutions x1 = (1 - k1) = r and x2 = (1 - k1) = (-r)

and hence k1,2 = 1 ± r.

For homogenous matrices of size N = 3 the eigenvalue

equation becomes

detðRN¼3 � kIÞ

¼ ð1� kÞ detðRN¼2 � kIÞ � r det
r r

r 1� k

� �

þ r det
r 1� k

r r

� �

detðRN¼3 � kIÞ ¼ ð1� kÞ3 � 3r2ð1� kÞ þ 2r3

Again, we substitute x for (1 - k) and obtain the

equation x3 - 3r2x ? 2r3 = 0 and solve with solutions

x1 = (1 - k1) = (-2r) and x2,3 = (1 - k1) = r and hence

k1 = 1 ? 2r, k2,3 = 1 - r.

The first eigenvalue seems to follow the rule 1 ? (N - 1)r,

where N is the number of traits, and the remaining eigenvalues

are (1 - r). It is easy to show that these are in fact solutions for

homogenous correlation matrices of any size N (see Appendix

1). The number of eigenvalues will increase by one to match

the number of traits, the eigenvalues following the first

eigenvalue are all equal to (1 - r). Thus the sum of the

eigenvalues remains equal to the number of traits
P

ki ¼ ð1þ ðN � 1ÞrÞ þ ðN � 1Þð1� rÞ ¼ N.

The eigenvalue variance can be obtained by substituting

the (1 ? (N–1)r) for k1, and (1 - r) for all remaining

eigenvalues:

VarðkÞ ¼ r2ðN � 1Þ

and

VarrelðkÞ ¼
r2ðN � 1Þ

N � 1
¼ r2

For homogenous correlation matrices, the relative eigen-

value variance is equal to the squared correlation coefficient.

These considerations suggest an alternative to the

eigenvalue variance as a measure of morphological inte-

gration, namely the relative standard deviation of

eigenvalues, which then is equal to the correlation for

homogenous correlation matrices:

SDre1ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðkÞ

p

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p ¼ r

Note that the above equation is valid for the matrices

involving either only positive, only negative, as well as

mixed-sign correlations. While the absolute eigenvalues
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of the matrices change, their variance and standard

deviation is independent of the sign of correlations. As

the eigenvalue variance scales with r2, the sign of the

correlations makes no difference.

Generating Random Correlation Matrices

To build the heterogeneous correlation matrices, the off-

diagonal elements of the matrix were randomly drawn

from the normal distribution with various variance levels

(see Fig. 1). The correlations were constrained to the

values between -1 and ?1. When the variance of cor-

relation values in the matrix is equal to zero this yields

homogeneous matrices with each correlation being the

same, while increasing the variance of the distribution

from which the pair wise correlations are drawn increases

the heterogeneity of the correlations within matrix. If

necessary, the matrices were subsequently bent to assure

they were nonnegative (Jorjani et al. 2003). Singular

matrices are commonly obtained in quantitative genetic

analyses (Searle 1961; Cheverud 1988). Matrix bending

shrinks the eigenvalues around the mean eigenvalue until

the smallest eigenvalue is greater than or equal to 0. New

matrices were produced in such cases by multiplication of

the shrunken eigenvalues with the original eigenvectors.

These matrices were then studied instead of the original

ones, if the originally generated matrices were not non-

negative definite. For all generated matrices, the relative

variance and the relative standard deviation of eigen-

values were calculated. We also calculated the mean

absolute correlation. The mean correlation substitutes for

the uniform correlation coefficient r in the above homo-

geneous matrices.

Heterogeneous Correlation Matrices

To explore the relationship between the correlatedness and

the eigenvalue variance in heterogeneous matrices empiri-

cally, we generated 1000 random matrices, with sizes of

4–30 traits, and randomly drawn pair wise correlations. We

recorded the mean absolute pair wise correlation. As

described above, the eigenvalue variance and eigenvalue

standard deviation is independent of the sign of correlation.

On the contrary, when calculating the mean correlation in

matrices with positive and negative pair wise correlations,

these would partially cancel out instead of giving a measure

of correlatedness. For this reason, the absolute correlation

values are used (Cane 1993). In Fig. 1, we plot the two

measures of eigenvalue distribution against the mean abso-

lute correlation in the matrix. Plots A and B show this

relationship for two levels of matrix heterogeneity, as

measured by the coefficient of variation. Plot A shows cases

with CV \ 0.6 and plot B with CV [ 0.6. The plots dem-

onstrate that the general relationship between the mean

correlation of the correlation matrix and the eigenvalue

variance, or eigenvalue standard deviation is maintained in

heterogeneous correlation matrices. However, the observed

values lay consistently above the lines for the corresponding

homogeneous matrices with r equal to the mean absolute

correlation. Hence the two measures, r2 (or r) and relative

eigenvalue variance (or relative standard deviation) differ in

heterogeneous matrices.
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Fig. 1 The relationship between relative (i.e., matrix size invariant)

eigenvalue variance, respectively relative standard deviation of

eigenvalues, and the mean correlation in heterogeneous matrices;

for different degrees of matrix heterogeneity: CV \ 0.6 (a) and

CV [ 0.6 (b). Note that the general squared and linear tendencies are

maintained, however the results (i.e., empirical rel SD (k) and rel

Var(k)) are consistently above the lines predicted for the

homogeneous matrices in which r corresponds to �r of the heteroge-

neous matrices. Straight line predicts the relative eigenvalue standard

deviation, while quadratic line predicts the relative eigenvalue

variance of the corresponding homogeneous matrix. Absolute value

of correlations was used to calculate �r. Note that due to the absolute

correlation being limited to 1.0, the high mean absolute correlation

necessarily means that the matrices will be less heterogeneous
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To explore the effect of heterogeneity of correlation on

eigenvalue variance analytically, we consider a 3 9 3

matrix with the following structure:

RN¼3 ¼
1 r � e r

r � e 1 r þ e
r r þ e 1

2

4

3

5

Note that the mean correlation of this matrix is r, while

the standard deviation is 2
3
e.

The eigenvalue equation of this matrix is

detðRN¼3 � kIÞ ¼ ð1� kÞ ð1� kÞ2 � ðr þ eÞ2
h i

� ðr � eÞ ðr � eÞð1� kÞ � rðr þ eÞ½ �
þ r ðr � eÞðr þ eÞ � rð1� kÞ½ �

after substituting x for (1 - k) and multiplying out

detðRN¼3 � kIÞ ¼ x3 � xð3r2 þ 2e2Þ þ 2r3 � 2re2

We do not present a formal solution of this polynomial

as it is rather complex. The numerical examples of this

equation are plotted in Fig. 2 (mean correlations r = 0.3

and 0.7, and deviations e = 0.05, 0.10, 0.15, 0.20, 0.25,

and 0.30 for each of the mean r values), and reveal that the

three solutions can be approximated. Compared to the

solutions for homogeneous matrices the first solution

(x1 = -2r) varies only marginally with increasing e, and

the remaining two solutions vary equidistantly around r,

with a deviation (±d) from r increasing with increasing e.
We therefore approximate the three solutions with

x1& -2r, x2 & r - de, x3 & r ? de

The variance of eigenvalues is then:

VarðkÞ � 4r2 þ ðr þ dÞ2 þ ðr � dÞ2

3
¼ 2r2 þ 2

3
d2

Or, in general

k1 � 1þ ðN � 1Þr
ki [ 1 � 1� ðr þ diÞ

Note that in the above model, correlations are

symmetrically distributed. Then,
PN

i¼1 di ¼ 0 and 1
N

PN
i¼1

d2
i ¼ r2 [ 0. This model will respect the constraint

that
PN

j¼1 kj ¼ N. It is then easy to see that

Varðk e 6¼ 0j Þ[ Varðk e ¼ 0j Þ because

Varðk e 6¼ 0Þ � ðN � 1Þr2 þ r2
�
�

Varðk e 6¼ 0Þ � Varðk e ¼ 0Þj þ r2
�
�

The eigenvalue variance in random heterogeneous

matrix is therefore strictly greater than the eigenvalue

variance in the corresponding homogeneous matrix with r

corresponding to the mean correlation of heterogeneous

matrix. Heterogeneity of correlation therefore increases

eigenvalue variance as well as eigenvalue standard devia-

tion of the correlation matrix. This explains the pattern we

see in the Fig. 1, where the scatter invariably lays above

the line of SD(k) and Var(k) for the corresponding

homogeneous matrices.

The formulation above decomposes the eigenvalue

variance into the effects of mean correlation and the dis-

persion around mean in heterogeneous correlation matrix.

The consequence is that equivalent eigenvalue variance can

be achieved by different combinations of both

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

x   (= 1-λ)

r=0.3, ε=0.05 

r=0.3, ε=0.1 

r=0.3, ε=0.15 

r=0.3, ε=0.2 

r=0.3, ε=0.25 

r=0.3, ε=0.3 

r=0.7, ε=0.05 

r=0.7, ε=0.1 

r=0.7, ε=0.15 

r=0.7, ε=0.2 

r=0.7, ε=0.25 

r=0.7, ε=0.3 

x3
-x

(3
r2

+
2ε

2 )
+

2r
3 -

2r
ε

Fig. 2 The plot of the polynomial with solutions equal to the three

(1 - k) of the heterogeneous correlation matrix with N = 3. The

three solutions of the polynomial are the intersections of the curve

with x-axis. The two groups of curves show the cases with mean

correlations of r = 0.3 and 0.7. The within-group variances are due to

deviations from the mean correlation (e = 0.05, 0.10, 0.15, 0.20, 0.25,

and 0.30). Note that the solution to the left of 0 is almost invariant

with the varying e, and hence dependent solely on r, whereas the two

solutions[0 vary dependent on e. We use this fact to approximate the

eigenvalues of heterogeneous matrices (see text)
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contributions. For example, the same integration level can

be reached by a relatively low mean correlation with strong

dispersion, or by a high mean correlation with less

dispersion. A simple consideration is sufficient to see when

this is the case for two matrices, using the above results,

divided by (N - 1) to calculate relative eigenvalue

variance:

r2
1 þ

r2
1

N1 � 1
¼ r2

2 þ
r2

2

N2 � 1

Thus two matrices have the same relative eigenvalue

variance score if the above equation is satisfied. However

note also that the model assumes symmetrically distributed

correlations. Correlation coefficient r is restricted to

Bmax rj j ¼ 1. It follows that the maximal symmetrical

deviations possible for a particular �r diminish as the absolute

correlation increases. Maximal correlation variance

corresponding to each �r at symmetrical distribution can be

easily derived (Appendix 2) and amounts to r2
max ¼

1� �rj jð Þ2. As a consequence, possible pairs of (�r; r2) that

overlap in their integration scores (measured as relative

eigenvalue variance) are restricted.

Non-Random Heterogeneous Matrix: Independent

Modules

An especially relevant case of heterogeneous matrices are

modular matrices, in which clusters of traits are more strongly

correlated within than between such clusters. Here we con-

sider a simple case of non-hierarchical modular matrices,

where the within-module correlations are different from zero

and homogeneous for the module, and between-module

correlations are zero, i.e., the modules are independent from

each other. The distribution of correlations corresponding to

such modular matrix is a k-modal distribution, where k is the

number of modules. Each of the modules in this case can be

considered as a separate homogeneous submatrix. An

example of such correlation matrix is:

RN¼7 ¼

1 rw1 rw1 0 0 0 0

1 rw1 0 0 0 0

1 0 0 0 0

1 rw2 rw2 rw2

1 rw2 rw2

1 rw2

1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

where rw1, rw2 are within-module correlations. There are

two modules in the above case (k = 2) with sizes N1 = 3

and N2 = 4. The clusters are non-overlapping and together

account for the whole matrix: N = N1 ? N2.

The eigenvalues in this special case follow the deriva-

tions above for homogeneous matrices, but separately for

each submatrix. The eigenvalues are:

k1 ¼ 1þ ðN1 � 1Þrw1 ¼ 1þ 2rw1

k2 ¼ 1þ ðN2 � 1Þrw2 ¼ 1þ 3rw2

k3; k4 ¼ 1� rw1

k5; k6; k7 ¼ 1� rw2

Or, in general the indices of modules are i = {1, 2, 3,…k}

there are k leading eigenvalues ki:

k1; i ¼ 1þ ðNi � 1Þ rwi

where rwi is the within-module correlation of the i-th

module and there are (Ni - 1) remaining eigenvalues kj,i

per module:

kj;i ¼ 1� rwi

where Ni is the size of the i-th module, and j is the index of

eigenvalues belonging to the same module j = {2, 3,… Ni}

Eigenvalue variance is then

VarðkÞ

¼
Pk

i¼1 1� 1þ Ni�1ð Þrwið Þð Þ2þ Ni�1ð Þ 1� 1�rwið Þð Þ2
� �

N

¼
Pk

i¼1 Nir
2
wi Ni�1ð Þ
N

For some examples of special cases, see Appendix 3. In

this simple case with independent homogeneous

submodules, eigenvalue variance amounts to the

weighted arithmetic mean of the eigenvalue variances of

homogeneous submatrices, r2(N - 1), where the weight is

equal to the size of each module. It is important for our

purpose here to notice that eigenvalue variance is therefore

affected by the module size and within-module correlation

in the same way these two parameters affect eigenvalue

variance in the homogeneous (i.e., uni-modular) matrices.

A more general analysis of heterogeneous matrices to

see how different modular structures in particular, and non-

randomness in general, affect the measure of integration

exceeds the scope of this paper and requires a separate

treatment (in prep.; see also Kotz et al. 1984). Here, we

restrict ourselves to show a general relationship between

correlation coefficients and eigenvalue dispersion on sim-

ulated matrices, without restricting the distribution of r to

be symmetrical. We will in the following refer to the

r-scale, when correlation coefficients are measured as

the Pearson’s product–moment correlations on the scale

-1 B r B 1; and we will refer to the z-scale, when talking

about the transforms of the correlation coefficients, trans-

formed to be normally distributed on a continuous scale

-? B z B ? and related to the r-scale by the Fisher’s

162 Evol Biol (2009) 36:157–170
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z-transformation (Fisher 1928). We restrict ourselves to

non-singular matrices, i.e., all off-diagonal elements are

smaller than 1j j on r-scale.

For Fig. 3, the matrices were generated by drawing z-

values from normal distribution with various combinations

of means and variances. This yielded a more general rep-

resentation of matrices, including the ones with high mean

correlation and hence strongly skewed distribution on the

r-scale. Next the average z was calculated across the off-

diagonal elements of the matrix, and transformed by the

inverse of Fisher’s z-transformation (Fisher 1928) onto the

r-scale ð rj jzÞ.The whole matrix was consequently trans-

formed to the r-scale, and the relative eigenvalue variance,

relative eigenvalue standard deviation, the average rj j, and

rj j2 were calculated. Figure 3 shows the behavior of

eigenvalue variance and standard deviation, as well as rj j,
squared rj j, average inverse-transformed rj jz, and squared

rj jz. The two values rj j, rj j2 are represented by lines. The X-

axis is on the r-scale. The relationship between r and z is

well known (Fisher 1928). With respect to this relationship

the plot simply shows that the average correlation calcu-

lated on z-scale and back-transformed exceeds the rj j
(calculated on the r-scale), increasingly so at higher rj jz.
This is because the distribution of correlation at high

average r is increasingly skewed towards zero. Figure 3

also shows that eigenvalue variance and eigenvalue dis-

tribution follow the rj j2, and rj j, respectively, rather than

the back-transformed rj jz (the latter was suggested by Van

Valen 1965). This is consistent with the result on a subset

of heterogeneous matrices with symmetrical distribution of

correlations (Fig. 1). Also note, that the scatter lays above

the values of rj j2, respectively rj j, as in Fig. 1. However, in

this case the deviation of eigenvalue dispersion from the

rj j2 cannot be expressed as variance of correlations, due to

the non-symmetrical distribution of r. See Appendix 4 for a

version of the equation for eigenvalue variance when the

requirement for symmetry is relaxed.

Sample Size

Note that for the present purpose we paid no attention to

sample size, but dealt with ideal matrices, as if built from

an infinite population. With finite sample size, r2 becomes

biased upwards and correspondingly, the dispersion of

eigenvalues, measured by the standard deviation or vari-

ance, changes. Thus, when testing hypotheses of

integration as deviation of the observed eigenvalue dis-

persion from the one expected in a random correlation

matrix, the sample size used to derive the empirical cor-

relation matrix needs to be considered as it will influence

the expected null distribution. Even for uncorrelated ran-

dom variables, the estimated correlation matrix will have

non-zero off diagonal elements and the eigenvalue variance

will be larger than zero. The expected value of the eigen-

value variance for the finite sample correlation matrices for

uncorrelated variables is ðN � 1Þ=M, where N is the

number of variables and M is the sample size (Wagner

1984). Hence the standard deviation of eigenvalues should

be tested against
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ=M

p
, and the relative standard

deviation against
ffiffiffiffiffiffiffiffiffi
1=M

p
, the expectations for a random

population correlation matrix based on sample size M.
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Fig. 3 The relative eigenvalue variance and relative standard devi-

ation of eigenvalues in the correlation matrices with non-symmetrical

distribution of correlation. The matrices were produced with z values

and consequently transformed by inverse Fisher’s z-transformation

onto r-scale. The two averages, one calculated from z-scaled data and

subsequently transformed onto r-scale (�rz), and the one calculated on

r-scale ð �rj jÞ are compared. The two lines show �rj j and its squared

values. The data are separated by different degrees of heterogeneity as

in Fig. 1: CV\0.6 (a) and CV[0.6 (b). The x-axis scales according

to the r-scale. Note that eigenvalue variance (red scatter) and SD

(orange scatter) follow the respective �r2 and rj j values, not the values

calculated in z-distribution (blue)
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Examples

To demonstrate how the relative integration measures

perform on real data, and compare it to other indices, we

applied it to several datasets: cranial measurements taken

on cotton-top tamarins (Saguinus oedipus), measurements

on wings of the Northern Goshawk (Accipiter gentilis), and

mouse skeletal measurements. For the description of

datasets, see Appendix 5. In the Tamarin cranial dataset the

standard deviation and variance of eigenvalues were cal-

culated for correlation matrices consisting of left and right

side measurements separately, as well as for the combined

total matrix. The plots of the eigenvalues of the three

datasets are shown in Fig. 4. Table 1 lists the level of

integration for several phenotypic datasets. The observed

standard deviation is listed next to the relative standard

deviation that can be compared between partial and total

datasets, as well as among datasets with different numbers

of variables. In Table 1, we also provide our results com-

pared with ones produced by several other proposed

measures of integration (see short descriptions in Appendix

6). A concern with comparing these measures is that they

may not be on the same scale and thus be hard to compare,

however most (with exception of absolute eigenvalue

variance and absolute standard deviation) are on the scale

0–1. In fact, for most of the indices (but see Hansen and

Houle 2008) it is not well defined exactly what attribute of

the correlation matrix the integration measure represents

and how it should scale. Therefore the primary question

here is whether they correspond on the ordinal scale, i.e.,

whether the order from the less to more integrated phe-

notypes is maintained across integration measures. All the

measures in Table 1 and Fig. 5 were applied to correlation

matrices which already consist of dimensionless quantities.
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Fig. 4 The eigenvalue

distributions of the empirical

datasets. The measurement error

was assumed to be independent

and the error variance has been

subtracted from the diagonal of

the covariance matrix, prior to

building correlation matrix.

Negative eigenvalues are not

plotted. Note that the integration

is higher in the combined

(L ? R) Tamarin dataset than in

the separate lateral datasets.

Also note very high integration

in Accipiter wing, where most

variation is concentrated in the

leading eigenvalue, while the

remaining eigenvalues are

almost equal
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Even though the measures yield considerably different

values, the rank of integration is maintained across the

different measures in these examples. Van Valen’s (1965)

z-measure gives similar values as the relative eigenvalue

variance for weakly integrated data, while giving much

lower values in the strongly integrated data from the bird

wing. As expected the relative standard deviation of

eigenvalues gives similar values as the mean absolute

correlation. The relative standard deviation of eigenvalues,

however, is always larger than the mean absolute

correlation because of the effect of variation among the

correlation coefficients. Only for homogenous correlation

matrices these two measures the same (see above), but the

mean absolute correlation ignores the effect of deviations

from homogeneity on morphological integration, i.e., on

variance allocation among eigenvectors (see above for the

analytical proof). Hence we argue that the mean absolute

correlation consistently underestimates the degree of mor-

phological integration. We also calculated the new

integration measure by Hansen and Houle (2008) using

Table 1 Comparison of integration levels measured by the proposed index to the ones measured by several other commonly used indices on

empirical data

dataset M N observed SD (k) rel. SD (k)
ffiffiffi
1
M

q
Ia Var(k)b rel. Var(k) ic zd Ir

e

Tamarin L 275 16 1.252 0.323 0.06 0.418 1.568 0.104 0.768 0.118 0.256

Tamarin R 275 16 1.214 0.314 0.06 0.401 1.474 0.098 0.684 0.114 0.246

Tamarin RL 275 32 1.750 0.314 0.06 0.401 3.063 0.099 0.752 0.108 0.235

Mouse skeleton 1040 70 2.820 0.339 0.03 0.520 7.952 0.115 0.791 0.138 0.298

Accipiter wing 64 7 2.324 0.949 0.125 0.948 5.401 0.900 0.975 0.688 0.948

a Cheverud et al. (1983): (1-geometric mean of eigenvalues)
b Wagner (1984): eigenvalue variance
c Hansen and Houle (2008): (1-autonomy)
d Van Valen (1965): mean of the Fisher’s z-transformed correlation, back-transformed onto the 0–1 scale
e Cane (1993): mean absolute r

The measure is originally based on covariance matrix, however here we used correlation matrix (variance-standardized data). M: the sample size;

N: the number of traits; SD(k): standard deviation of eigenvalues; rel. SD(k): relative standard deviation of eigenvalues;
ffiffiffiffiffiffiffiffiffi
1=M

p
: the value of rel.

SD(k) expected in random correlation matrix with no integration, based on the sample size; the indices are described in Appendix 6. The results

are compared graphically in Fig. 5
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Fig. 5 The values of different

integration indices for the

exemplary empirical data in

comparison. Note that the

Hansen and Houle’s (2008)

average integration (i),
originally based on covariance

matrix, is calculated here on

correlation matrix (i.e.,

variance-standardized matrix).

Note that the particular

exemplary datasets maintain

their relative ranking under

different measures, but the

absolute magnitudes of

integration measurement vary
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correlation matrices, although their measure is originally

based on covariance matrices and has a different theoretical

basis than the other more intuitive measures. While the

absolute values differ relative to other measures, the results

are the same on an ordinal scale.

In conclusion, we show that the relative standard devi-

ation of eigenvalues of correlation matrices scales linearly

with the mean absolute correlation (Cane 1993) but is only

identical to this measure if the correlation matrix is

homogeneous. For random heterogeneous correlation

matrices the mean absolute correlation consistently

underestimates integration, since it is invariant with respect

to the differences among correlation coefficients. Hence

unequal allocation of variance due to variation among

correlation coefficients is not reflected in the mean absolute

correlation coefficient, but is captured by the relative

standard deviation of eigenvalues. We thus suggest that this

measure, or its squared version, is a better reflection of

overall morphological integration. We furthermore show

that this relationship is not limited to the random matrices

with symmetrical distribution of correlation coefficients,

but that the eigenvalue variance and standard deviation also

follow the pattern in more general, asymmetrical distribu-

tions of correlations.
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Appendix 1

Let R be a homogenous correlation matrix of size N with

Rij ¼ r for all i = j. If 1 = (1,…,1) is an eigenvector of

R and k1 = 1 ? (N - 1)r the corresponding eigenvalue,

then R1 ¼ k11. Considering this equation component

wise:

ðR1Þi ¼ ðk11Þi

ðR1Þi ¼
XN

j¼1

Rij1j

we see that the right hand side of the latter equation is

simply the row sum of the i-th row. Because of the

symmetry of R this sum is the same for all rows in

R, and which has (N - 1) terms of size r and one

equal to 1:

XN

j¼1

Rij1j ¼ 1þ ðN � 1Þr ¼ k11i

The other eigenvalues of R can be obtained by

considering the constraint
PN

i¼1 ki ¼ trR ¼ N, from

which we see that

XN

i¼1

ki ¼ k1 þ
XN

i¼2

ki ¼ N

XN

i¼2

ki ¼ N � k1

XN

i¼2

ki ¼ N � 1� ðN � 1Þr

XN

i¼2

ki ¼ ðN � 1Þð1� rÞ

Due to the symmetry of the R matrix the N - 1 non-

leading eigenvalues are all the same and ki [ 1 = 1 - r.

Appendix 2

To derive the maximum variance corresponding to a par-

ticular �r, we consider maximal symmetrical dispersal of r.

Maximum dispersal is reached when half of the sample size

is located at outermost values, in equal distances to both

sides from the �r. This can be expressed as

VarmaxðrÞ ¼
N2�N

4
ri max � �rð Þ2þ N2�N

4
ri min � �rð Þ2

N2�N
2

¼ 1

2
ri max � �rð Þ2þ ri min � �rð Þ2

h i

where rimax, rimin are the maximal and minimal values of ri,

given the symmetrical distribution. For example, if �r ¼ 0:2,

the rmax = 1 and rmin = 0.2 - (1 - 0.2) = -0.6. In

general:

rmax ¼ �r þ 1� �rj jð Þ
rmin ¼ �r � 1� �rj jð Þ

And therefore, the correlation variance of the maximal

symmetrical dispersion for a given average r is:

VarmaxðrÞ ¼ ð1� �rj jÞ2 ¼ �r2 � 2 �rj j þ 1

Appendix 3

Here we investigate the eigenvalue variance in two special

cases of non-hierarchical modular matrices. General

equation for eigenvalue variance in matrices with k

homogeneous submodules, each of size Ni, and of no cor-

relation between modules is:
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VarðkÞ

¼
Pk

i¼1 1þ Ni�1ð Þrwið Þ�1ð Þ2þ Ni�1ð Þ 1�rwið Þ�1ð Þ2
� �

N

¼
Pk

i¼1 Nir
2
wi Ni�1ð Þ
N

It is helpful to consider a case where all modules are of the

same size, Ni¼N
k ; and

Pk

i¼1

Ni¼N, and equal within-module

correlation rw. In this case the equation simplifies to

VarðkÞ ¼ r2
w

N

k
� 1

� �

N [ k, thus eigenvalue variance (i.e., integration) is lower

than in a homogeneous (unimodular) matrix by a factor

N � k

kðN � 1Þ

To compare it with integration estimated from the

overall mean correlation, we calculate overall mean

correlation:

�r ¼ rwk NiðNi � 1Þð Þ
NðN � 1Þ ¼ rw

Ni � 1

N � 1

And therefore

VarðkÞ� �r2 ¼ r2
w

Ni � 1

N � 1

� �2

Here, the two integration levels differ by a factor

N � k

kðN � 1Þ2

the factor is smaller than 1, indicating that the estimate by

the mean squared correlation is lower than the true inte-

gration of modular matrix. In fact we can see that the

smaller the module size (and the greater thus the k), the

smaller this factor will be.

The second case considered here is a case with different-

sized modules of equal within-module correlation.

VarðkÞ ¼ r2
w

Pk
i¼1 N2

i � Ni

N
¼ r2

w

Pk
i¼1 N2

i

N
� 1

 !

In which case only the term of the eigenvalue variance

describing the effect of submodule size is averaged.

Appendix 4

Eigenvalue Variance for the Three-Trait Case with

Unsymmetrical Distribution of Correlation

The correlation coefficients in matrices underlying this

consideration are normally distributed on a Fisher’s

z-transformed scale (Fisher 1928), but not on the Pearson’s

correlation scale -1 \ r \ 1. Note that in the following we

refer to the result of the normalizing Fisher’s z-transformation

as to the z-scale. This is not to be confused with z-standard-

ization of normal distribution. The Pearson’s product–

moment correlations (r) are referred to as being on the r-scale.

Consider a given mean correlation on r-scale ð�rÞ and

given maximum deviation from the mean (d) on z-scale.

The �r has a corresponding value when transformed to

z-scale, and the deviation d is added and subtracted to gain

the lowest and the highest values of the correlation coef-

ficients on the z-scale. The two values were back-

transformed onto the r-scale and the deviations e1, e2 from

�r were calculated as differences of the extreme values

from the mean. The third correlation coefficient is

e3 = 0 - e1 - e2 due to the constraint of �r, i.e.,
P

ei ¼ 0.

The three off-diagonal elements of the correlation matrix

are now ð�r þ e1Þ; ð�r � e2Þ; ð�r þ e3Þ. The corresponding

eigenvalue polynomial (as in previous symmetrical case,

see text), substituting x for (1 - k) and multiplying out

reduces to

det RN¼3 � kIð Þ
¼ x3 � x 3r2 þ 2r e1 � e2 þ e3ð Þ þ e2

1 þ e2
2 þ e2

3

	 


þ 2r r2 þ r e1 � e2 þ e3ð Þ þ e1e3 � e1e2 � e2e3

	 


� 2e1e2e3

Figure 6 shows plot of a family of polynomials with

different combinations of parameters �r and d; the three

solutions representing the three xi(=1 - ki). Bundles of

polynomials share the same mean correlation of matrix ð�rÞ,
but differ in dispersion of correlations (d).

Analogous to the matrices with symmetrical distribution

of correlation coefficients (main part of the text), we do not

present the exact solutions, but rather approximate the three

solutions here. Note that the three solutions follow the same

pattern as above in symmetrical matrices. The following can

be concluded from the plot: (i) when allowing the asym-

metrical distribution of correlation, the heterogeneity affects

all three eigenvalues; (ii) the effect of heterogeneity of

matrix on first eigenvalue is smaller at higher rj j; (iii) the first

eigenvalue increases with increased heterogeneity (i.e., x1

decreases) while the remaining two diverge.

Approximating the three solutions in a way similar to

symmetrical situation, but noting that all three eigenvalues

vary depending on the heterogeneity, rather than only the

second and the third, we consider the following solutions:

x1 � �2�r � de1

x2 � �r � de2

x3 � �r þ de3

and the resulting eigenvalues are
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k1 � 1þ 2�r þ de1

k2 � 1� �r � de2ð Þ
k3 � 1� �r þ de3ð Þ

If we substitute these into the equation for eigenvalue

variance, it yields for three traits:

VarðkÞ

¼ 1

N
ðN�1Þ2�r2þ2�r2þ2�r ðN�1Þd1�d2�d3ð Þþ

XN

i¼1

d2
i

 !

And after some rearrangement for a general case:

VarðkÞ ¼ðN � 1Þ �r2

þ 1

N

XN

i¼1

d2
i þ 2�r ðN � 1Þd1 �

XN

i¼2

di

 !" #

¼ ðN � 1Þ �r2 þ 1

N

XN

i¼1

d2
i þ 2�r

XN

i¼2

ðd1 � diÞ
" #

This version corresponds to the eigenvalue variance

equation for the heterogeneous matrices with symmetrical

distribution of correlations, but involves an additional term

(that yields zero if the distribution is symmetrical). This

equation also shows that the eigenvalue variance in

heterogeneous matrices will be greater than the

corresponding eigenvalue variance of the homogeneous

matrix of the same average correlation.

Appendix 5

Phenotypic Datasets

Tamarin Cranial Dataset

This dataset is comprised of 16 linear lateral cranial mea-

surements on the skull of 275 individuals of the pure bred

cotton-top tamarin (Saguinus oedipus). Detailed description

of the population, measurement method and the list of

measurements can be found in Hutchison and Cheverud

(1995). The linear measurements were derived from 3D

coordinate data for 16 landmarks per each side of the skull.

All landmarks were taken twice, to estimate the measure-

ment error and improve repeatability of short measurements

by using their average. The average repeatability per trait of

these data was 0.788 on the right and 0.776 on the left side.

Bird Wing Dataset

The lengths of seven wing feathers have been measured on

64 museum specimens of Eurasian Goshawk (Accipiter

gentilis gentilis, data are available in online supplementary

material, Table S1). This dataset comprises the first five

primary—(‘hand’) as well as the third and the fifth sec-

ondary (‘‘forearm’’) flight feathers, counted from distal end

of the wing towards the body. The feathers were measured

as a distance from bend of the wing (i.e., wrist joint) to the

tip of the feather along the shaft, measured over the folded

wing. The sample size consists of individuals covering
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Fig. 6 The plot of the polynomial with solutions equal to the three

(1 - k) of the heterogeneous correlation matrix with N = 3, but with

relaxed constraint on symmetry of the correlation distribution. The

three solutions of the polynomial are the intersections of the curve

with x-axis. The two groups of curves show the mean correlations of

r = 0.3 and 0.7. The within-group variability is due to variable

deviations from the mean correlation (e = 0.05, 0.10, 0.15, 0.20, 0.25,

and 0.30). Note that, in contrast to the analogous plot in Fig. 3 where

the correlation distribution in underlying matrices was constrained to

be symmetrical, in this plot the solution to the left of 0 is not invariant

with the varying e. Rather, similar to the two solutions [0, it varies

dependent on e
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most of the subspecies range. All measurements were taken

three-fold. The average repeatability of single measure-

ments in these data is 0.978.

Mouse Skeletal Dataset

Phenotypic traits comprise 70 skeletal measurements rep-

resenting the cranium, axial and appendicular skeleton, as

well as body weight at 10 weeks and at necropsy. The

experimental population results from an intercross of

inbred mouse strains LG/J and SM/J, selected for large and

small body weight at 60 days of age, respectively. The data

stems from two consecutive analogous intercrosses, com-

prising a total of 1040 F2 mice. For the list of

measurements and details on measurement techniques see

Kenney-Hunt et al. (2008). Extreme outliers were identi-

fied by being more than 2.7 standard deviations from the

sample mean (SYSTAT 10.2) and were eliminated to avoid

biasing the data. The data were corrected for the effects of

dam, litter size, experimental block, sex, age at necropsy,

and intercross. The correction was done by regressing each

of the phenotypic trait measurements on all of the respec-

tive predictor variables (dam, litter size, sex, etc.) and

taking the residuals as corrected scores for the trait. The

repeatability was assessed for each trait by repeated mea-

surements on 30–50 individuals and amounts on average

0.93, with the range from 0.82 to 0.992 for single traits.

Appendix 6

Several Other Indices of Integration

Some of the listed measures require the matrices to be non-

negative, or even positive definite. Errorless phenotypic

matrices are always at least non-negative definite, however

due to error, either sampling or measurement error,

empirical matrices are often negative. To apply the meth-

ods 2 and 5 to the empirical datasets in the paper, we used

only dimensions with eigenvalues greater than zero, in case

the matrices were not positive definite.

1. Van Valen (1965) suggested calculating the average

Fisher’s z-transformed correlation, and transforming it

back to the scale 0–1.

2. Cheverud et al. (1983) defined the index of integration

as one minus the geometric mean of eigenvalues of a

correlation matrix:

I ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
YN

i¼1

ki
N

v
u
u
t

3. Wagner (1984) suggested the variance of eigenvalues

of a correlation matrix. We provide also the relative

eigenvalue variance, as described in the main body of

this paper:

VarrelðkÞ ¼
VarðkÞ

max VarðkÞ ¼
VarðkÞ
N � 1

4. Cane (1993) used an average absolute pair wise

correlation

5. Hansen and Houle (2008) suggested a measure that is

based on covariance matrix and applies the harmonic

mean of eigenvalues (H(k)):

i ¼ 1� H kð Þ
k

1þ
1þ I 1

k

	 

þ IðkÞ � HðkÞ

k

k þ 1

" #" #

where

I
1

k

� �

¼
Var 1

ki

� �

1
ki

� �2
IðkÞ ¼ VarðkÞ

ðkÞ2

The data for this procedure need to be on similar scale,

which can be accomplished by variance or mean

standardization. We used variance standardization in the

examples, which corresponds to correlation.
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