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ABSTRACT
Overlay network is a non-intrusive mechanism to enhance the

existing network infrastructure by building a logical distributed

system on top of a physical underlay. A major difficulty in operat-

ing overlay networks is the lack of cooperation from the underlay,

which is usually under a different network administration. In par-

ticular, the lack of knowledge about the underlay topology and link

capacities makes the design of efficient overlay routing extremely

difficult. In contrast to existing solutions for overlay routing based

on simplistic assumptions such as known underlay topology or dis-

joint routing paths through the underlay, we aim at systematically

optimizing overlay routing without causing congestion, by extract-

ing necessary information about the underlay from measurements

taken at overlay nodes. To this end, we (i) identify the minimum

information for congestion-free overlay routing, and (ii) develop

polynomial-complexity algorithms to infer this information with

guaranteed accuracy. Our evaluations in NS3 based on real net-

work topologies demonstrate notable performance advantage of

the proposed solution over existing solutions.
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• Networks→ Overlay and other logical network structures;
Network performance modeling; Network measurement.
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1 INTRODUCTION
Overlay networks, referring to logical distributed systems running

on top of a physical communication underlay, have been widely

adopted to enhance the existing network infrastructure due to the

difficulty of deploying infrastructure-wide upgrades. Frequently,

overlay networks are used to provide value-adding functionalities
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Figure 1: Example of underlay-aware overlay routing.

that a best-effort IP-based underlay network cannot provide, such as

caching, traffic engineering, fast failover, and attack mitigation [21].

Meanwhile, the performance of an overlay network heavily relies on

the proper control of overlay routing. For instance, caching overlay

requires efficient routing between origin servers and edge servers

to provide notable performance gain in the case of cache misses

[21]. Large-scale applications spreading across multiple datacenters

need careful routing of inter-datacenter flows to avoid congestion

[4]. For mission-critical overlay applications, a proper selection of

backup routes between overlay nodes that are maximally disjoint

with primary routes is necessary for maintaining high Quality of

Service (QoS) in the case of failures [8].

Due to its importance, tremendous efforts have been devoted

to the design of overlay routing, e.g., [4, 8, 21, 24]. Compared to

classical routing problems, one of the unique challenges in overlay

routing is the lack of knowledge about the underlay, which can

lead to incorrect overlay routing decisions. As a concrete example,

consider the overlay-underlay network in Fig. 1, where link labels

denote their (propagation) delays, and each overlay link maps to

the shortest path (in delay) between its endpoints in the underlay.

Suppose that the overlay needs to route two large flows with source-

destination pairs (𝑎, 𝑒) and (𝑏, 𝑑), respectively. Further suppose that
each link in the underlay has sufficient capacity for one of the flows

but not both. Given the objective of minimizing the total delay, an

underlay-agnostic routing algorithm that is only aware of the indi-

vidual delays and capacities of overlay links will route both flows

over the direct overlay paths 𝑎 → 𝑒 and 𝑏 → 𝑑 . However, as these

paths share a common link (ℎ1, ℎ2) in the underlay, this routing

solution will cause congestion and hence poor performance. Mean-

while, an underlay-aware routing algorithm that has knowledge of

how the overlay links share links in the underlay will choose the

overlay paths 𝑎 → 𝑒 and 𝑏 → 𝑐 → 𝑑 , which will minimize the total

delay while avoiding congestion.

The need for overlay routing to be aware of the internal parame-

ters of the underlay (e.g., topology, routing protocol, link character-

istics) has been widely recognized. However, most of the existing

works either assume such information to be directly provided by

https://doi.org/10.1145/3565287.3610274
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the underlay [25, 27], or avoid explicitly requiring such knowledge

by performing overlay routing on a trial-and-error basis [8]. The

former approach is often inapplicable in practice due to the lack of

cooperation from the underlay, and the latter approach is inefficient

due to the exponentially large search space.

In this work, we aim at addressing these limitations by devel-

oping a framework for underlay-aware overlay routing that can

systematically optimize the routing among overlay nodes without

cooperation from the underlay. The core of our framework is a

set of network inference algorithms that can extract the necessary

information about the underlay from measurements within the

overlay to enable overlay route optimization without congestion.

1.1 Related Work
Overlay routing: Overlay routing aims at controlling data for-

warding among overlay nodes to optimize certain performance

metrics while avoiding congestion. Typical performance metrics

include routing cost [24], route update cost [25], and completion

time of data transfer [4, 27]. Most of these works either assumed a

cooperative underlay network whose internal parameters can be

directly observed by the overlay [25, 27], or ignored the sharing of

underlay links by the logical links between overlay nodes [4]. In
contrast, we address the more challenging problem of overlay routing
over an uncooperative underlay network, while accounting for the
underlay link sharing between overlay links.

The work most related to ours is [28], which encoded the knowl-

edge about the underlay as linear capacity constraints (LCCs), which
ensure that the total traffic load from the overlay does not exceed

the capacity of any underlay link. However, [28] resorted to a sim-

ple heuristic based on [12] to infer the LCCs, which could only

discover a small subset of LCCs that are insufficient for overlay

routing. In this regard, our contribution is a set of algorithms that
can infer the minimum set of LCCs sufficient for overlay routing from
observations at the overlay with guaranteed accuracy.

Network tomography: One key piece of information for rout-

ing is network topology. In the face of an uncooperative underlay,

the overlay has to infer its topology from measurements between

overlay nodes, known as network topology inference/tomography [7].

However, topology inference is a challenging task by itself. Most

existing solutions are based on the simplifying assumption that

the routing paths for each source/destination form a tree; see [15]

for a detailed review. The assumption of tree-based routing is fre-

quently violated due to round-trip probing, load balancing, and

network function traversals, but removing this assumption signifi-

cantly complicates topology inference, for which only a few results

exist [14, 15, 22]. Without the assumption of tree-based routing, the

routing topology can no longer be uniquely identified from end-to-

end measurements [15]. However, it is still possible to detect the

existence of links shared by a subset of paths [15, 22], which turns

out to be very useful for overlay routing as explained in Section 3.1.

However, the existing solutions in [15, 22] both had exponential

complexity. In this regard, our contribution is the first polynomial-
complexity algorithm for inferring how a set of arbitrary paths share
links in a blackbox network from end-to-end measurements.

Available capacity estimation: Another key piece of informa-

tion for routing is the available link capacities (in the presence

of background traffic). Available capacity estimation is a classical

problem for which many tools have been developed; see [3]. In

an uncooperative underlay, only tools based on end-to-end mea-

surements are applicable. In this regard, existing works focused on

inferring the available capacity at the bottleneck link of a given

path, based on either the probe gap model (PGM) [16] or the probe
rate model (PRM) [10]. To support overlay routing, we leverage
the existing single-path capacity estimation methods as subroutines
and develop an algorithm to estimate the total available capacity
over multiple paths with possibly shared links. Our work is weakly

related to shared bottleneck detection (SBD) [12], which aims at de-

tecting which subset of flows share a bottleneck. However, most

SBD methods only detect the existence of a shared bottleneck with-

out estimating its available capacity. More importantly, SBD works

under a given flow assignment and cannot characterize the feasible

region for all the flow assignments, which is the focus of our work.

1.2 Summary of Contributions
We study the problem of overlay routing over an uncooperative

underlay, with the following contributions:

1) We identify the minimum information about the underlay that

is both sufficient for congestion-free overlay routing and uniquely

identifiable from measurements between overlay nodes.

2) We develop the first polynomial-complexity algorithm to de-

tect the existence of underlay links shared exclusively by each

subset of paths between overlay nodes from end-to-end measure-

ments, under arbitrary routing in the underlay. We also develop a

greedy algorithm to estimate the effective capacity of the detected

links based on single-path available capacity estimation methods.

3) We prove that our detection results have error probabilities

that decay exponentially with the sample size, and our estimation re-

sults are no more than a constant factor away from the ground truth.

4) We test our solution against benchmarks via packet-level

simulations in NS3 based on real network topologies and link pa-

rameters. Our results show that despite facing inference errors,

our algorithms can still better characterize the feasible region for

overlay routing than existing solutions, which leads to notably less

congestion and better communication performance.

Roadmap. Section 2 formulates our problem, for which Sec-

tion 3 addresses the inference about the underlay, and Section 4

addresses the overlay routing. Both solutions are evaluated in Sec-

tion 5. Finally, Section 6 concludes the paper. All the proofs can
be found in the Supplementary Material.

2 PROBLEM FORMULATION
2.1 Network Model
The underlay network is modeled as a connected undirected graph

𝐺 = (𝑉 , 𝐸), where 𝑉 denotes the set of underlay nodes and 𝐸 the

set of underlay links. Each link 𝑒 ∈ 𝐸 has a finite capacity 𝐶𝑒 .

The overlay network, managed by a centralized entity such as an

overlay network operation center (ONOC) [5] or a software defined
wide area network (SD-WAN) controller [24], is modeled as a con-

nected directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 ⊆ 𝑉 is the set of nodes

that are part of the overlay (e.g., running the overlay application),

and each overlay link 𝑒 = (𝑖, 𝑗) ∈ 𝐸 denotes a tunnel between two

overlay nodes that maps to the underlay routing path 𝑝
𝑖, 𝑗

from
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node 𝑖 to node 𝑗 . We do not impose any limiting assumption on

the underlay routes, and allow asymmetric routing (i.e., 𝑝
𝑖, 𝑗

and

𝑝
𝑗,𝑖

may not be the same). In the sequel, we will use “tunnel” and

“overlay link” interchangeably.

Remark: The assumption of centralized management of the over-

lay is used to study the overlay routing problem without worrying

about coordination within the overlay; the extension to distributed

solutions is left to future work.

2.2 Objective of Overlay Routing
Given a set of flow demands 𝐻 , the goal of overlay routing is to

optimally satisfy these demands by controlling the data forwarding

among overlay nodes. We consider an uncooperative underlay by

assuming that: (i) the overlay can control how to route its flows

among the overlay nodes, but not how to route between adjacent

overlay nodes within the underlay; (ii) the overlay can observe

the overlay topology 𝐺 and the parameters of overlay links, but

not the underlay topology 𝐺 , its routing paths {𝑝
𝑖, 𝑗
} (𝑖, 𝑗) ∈𝐸 , or the

parameters of underlay links.

In the above context, a basic need of the overlay is to route its

flows to optimize certain performance metric of interest, subject

to capacity constraints imposed by the underlay. As a concrete

example, consider the objective of minimizing the overlay routing

cost as formulated below. Suppose that each flow demand ℎ ∈ 𝐻
specifies a source 𝑠ℎ ∈ 𝑉 , a destination 𝑡ℎ ∈ 𝑉 , and a fixed flow rate

𝑑ℎ . Sending a unit of flow over tunnel (𝑖, 𝑗) ∈ 𝐸 incurs a routing

cost of 𝑐𝑖 𝑗 ≥ 0, which can model considerations like bandwidth

leasing cost or QoS degradation cost (e.g., delay). The overlay can

control how the flows traverse overlay nodes through a decision

variable 𝑥ℎ
𝑖 𝑗
∈ {0, 1}, which indicates whether flow ℎ ∈ 𝐻 traverses

tunnel (𝑖, 𝑗) (in the direction of 𝑖 → 𝑗 ). Define 𝑏ℎ
𝑖
as 1 if 𝑖 = 𝑠ℎ , −1 if

𝑖 = 𝑡ℎ , and 0 otherwise. The minimum cost overlay routing problem

can be formulated as follows:

min

𝒙

∑
(𝑖, 𝑗) ∈𝐸

𝑐𝑖 𝑗

∑
ℎ∈𝐻

𝑑ℎ𝑥
ℎ
𝑖 𝑗 (1a)

s.t.

∑
(𝑖, 𝑗) ∈𝐸: 𝑒∈𝑝

𝑖,𝑗

∑
ℎ∈𝐻

𝑑ℎ𝑥
ℎ
𝑖 𝑗 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸, (1b)

∑
𝑗 ∈𝑉

𝑥ℎ𝑖 𝑗 =
∑
𝑗 ∈𝑉

𝑥ℎ𝑗𝑖 + 𝑏
ℎ
𝑖 , ∀ℎ ∈ 𝐻, 𝑖 ∈ 𝑉 , (1c)

𝑥ℎ𝑖 𝑗 ∈ {0, 1}, ∀ℎ ∈ 𝐻, (𝑖, 𝑗) ∈ 𝐸. (1d)

The objective (1a) is the total routing cost for the overlay. Constraint

(1b) is the per-link capacity constraint to ensure that the load on

each underlay link is within its capacity, constraint (1c) is the flow

conservation constraint to ensure that the overlay links in {(𝑖, 𝑗) ∈
𝐸 : 𝑥ℎ

𝑖 𝑗
= 1} form a path from 𝑠ℎ to 𝑡ℎ (∀ℎ ∈ 𝐻 ), and constraint

(1d) ensures that only one path is selected for each flow (assuming

single-path routing is required). Therefore, the optimal solution to

(1) provides the set of overlay paths to route the flows in 𝐻 that

achieves the minimum routing cost without causing congestion.

The optimization (1) is NP-hard, as it is a generalization of the

minimum-cost multiple-source unsplittable flow problem (MMUFP)
that is NP-hard [1]. Nevertheless, as an integer linear program-

ming (ILP) problem, it can be tackled by a number of heuristics

developed for MMUFP, e.g., greedy and LP relaxation with random-

ized rounding [1], and the optimal solution can also be computed

for small instances by existing ILP solvers via algorithms such as

branch-and-price-and-cut [2].

Remark 1: The formulation (1) is just an example of the possi-

ble objectives of overlay routing. Other formulations can also be

considered. For instance, in addition to the routing cost (1a), there

may also be a cost in setting up tunnels as considered in [24], and

instead of fixing the flow rate 𝑑ℎ , the overlay may want to design

𝑑ℎ to finish data transfer as soon as possible [4, 27]. We will focus

on the formulation (1) in this work for concreteness and leave the

study of other formulations to future work.

Remark 2: The optimization (1) assumes that there exists at least

one solution 𝒙 that can satisfy all the demands in 𝐻 within the

capacity constraint (1b), i.e., (1) is feasible. When this assumption

is violated, we can relax the constraint (1b) into∑
(𝑖, 𝑗) ∈𝐸: 𝑒∈𝑝

𝑖,𝑗

∑
ℎ∈𝐻

𝑑ℎ𝑥
ℎ
𝑖 𝑗 ≤ 𝐶𝑒𝜔, ∀𝑒 ∈ 𝐸, (2)

by introducing a new variable 𝜔 ≥ 1 to denote the maximum over-

loading factor for the underlay links.We can ensure feasibility while

discouraging overloading by adding a penalty term “𝑐𝜔 (𝜔 − 1)” to
the objective function (1a), where the parameter 𝑐𝜔 ≥ 0 controls

the tradeoff between cost and congestion. Setting 𝑐𝜔 to a large value

will make congestion avoidance the primary objective and cost min-

imization the secondary objective, which reduces the relaxed formu-

lation to (1) in underloaded cases and to aminimum overload overlay
routing problem, i.e., min 𝜔 s.t. (2), (1c), (1d), in overloaded cases.

2.3 Problem Statement
From (1), we can see that overlay routing depends on the underlay

primarily through the capacity constraint (1b), which requires two

pieces of information: (i) how the tunnels are routed through the

underlay (𝑝
𝑖, 𝑗
) (𝑖, 𝑗) ∈𝐸 , and (ii) the underlay link capacities (𝐶𝑒 )𝑒∈𝐸 .

While the overlay may have other considerations requiring further

information about the underlay, satisfying the capacity constraint

is a basic requirement, and is thus the focus of our work.

Compared to routing in flat networks, the main challenge for

routing in overlay networks is the lack of information about the

underlay. In contrast to existing works on overlay routing that

resorted to either the underlay’s cooperation or heuristic inference

methods to obtain the information they required (see Section 1.1),

we aim at developing a complete solution that infers the minimum

information needed for overlay routing based on measurements at

overlay nodeswith guaranteed accuracy, and then optimizes overlay

routing based on the inferred information, using the minimum cost

overlay routing problem (1) as a concrete example.

3 OVERLAY-BASED INFERENCE
We will first analyze the minimum information the overlay needs

about the underlay and then address how to infer this information.

3.1 Minimum Information for Overlay Routing
A straightforward implementation of (1) requires detailed knowl-

edge of the underlay topology in terms of the routes (𝑝
𝑖, 𝑗
) (𝑖, 𝑗) ∈𝐸
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and the link capacities (𝐶𝑒 )𝑒∈𝐸 , in order to formulate constraint

(1b). A natural question is thus whether we can directly apply so-

lutions from topology inference to obtain this information. At a

first look, the answer seems negative without further assumptions,

because topology inference faces an inherent ambiguity that the

routing topology capable of generating a given set of end-to-end

measurements is generally not unique [15]. However, to support

overlay routing, there is actually no need to infer the underlay

topology. Instead, it suffices to infer just enough information to

compute the feasible region defined by constraint (1b).

To formalize this idea, we introduce the following notion, adapted

from [15, 22] to our problem.

Definition 3.1. A category of links traversed by 𝐹 out of 𝐸
(𝐹 ⊆ 𝐸) is the set of underlay links traversed by and only by the
tunnels in 𝐹 out of all the tunnels in 𝐸, i.e,1

Γ𝐹 (𝐸) B
( ⋂
(𝑖, 𝑗) ∈𝐹

𝑝
𝑖, 𝑗

)
\
( ⋃
(𝑖, 𝑗) ∈𝐸\𝐹

𝑝
𝑖, 𝑗

)
. (3)

A straightforward implication of the above definition is that the

paths measurable by the overlay induce the following partition of

the underlay links:

𝐸 =
⋃
𝐹 ⊆𝐸

Γ𝐹 (𝐸) . (4)

For example, in Fig. 1, if 𝐸 contains all the tunnels between the

nodes {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, then link (ℎ1, ℎ2) ∈ Γ𝐹 (𝐸) for 𝐹 B {(𝑎, 𝑒), (𝑒, 𝑎),
(𝑎, 𝑑), (𝑑, 𝑎), (𝑏, 𝑒), (𝑒, 𝑏), (𝑏, 𝑑), (𝑑,𝑏)}, because (ℎ1, ℎ2) is traversed
by all the tunnels in 𝐹 but no other tunnel in 𝐸.

Our key observation is that since all the links in the same cat-

egory are traversed by the same set of tunnels, they must carry

the same traffic load from the overlay. Therefore, we can reduce

the per-link capacity constraint (1b) to the following per-category
capacity constraint:∑

(𝑖, 𝑗) ∈𝐹

∑
ℎ∈𝐻

𝑑ℎ𝑥
ℎ
𝑖 𝑗 ≤ 𝐶𝐹 , ∀𝐹 ⊆ 𝐸 with Γ𝐹 (𝐸) ≠ ∅, (5)

where 𝐶𝐹 , referred to as the category capacity, is the minimum

capacity of all the links in category Γ𝐹 (𝐸), i.e.,
𝐶𝐹 B min

𝑒∈Γ𝐹 (𝐸)
𝐶𝑒 . (6)

The new constraint (5) is equivalent to the original constraint

(1b) in that an overlay routing solution satisfies one of these con-

straints if and only if it satisfies the other. However, instead of

requiring detailed information about the underlay (i.e., (𝑝
𝑖, 𝑗
) (𝑖, 𝑗) ∈𝐸

and (𝐶𝑒 )𝑒∈𝐸 ), implementing constraint (5) only requires the knowl-
edge of the nonempty categories and their capacities.

3.2 Detection of Nonempty Categories
The detection of nonempty categories from end-to-end measure-

ments has been used as an intermediate step in topology infer-

ence [15, 22]. The idea is to define an additive metric such that the

path-level metrics can be estimated from end-to-end measurements

and the category-level metrics can be estimated from the path-level

metrics. Then under the following assumption, we can detect the

nonempty categories as those with non-zero metrics.

1
We abuse the notation a little to use 𝑝 to denote the set of links traversed by path 𝑝 .

Assumption 1. All nonempty categories have non-zero metrics.

This assumption holds as long as all the underlay links have

positive metrics, which intuitively means that every link imposes

non-zero performance degradation (e.g., loss, delay, delay variation)

to packets traversing it. This assumption is reasonable, as a linkwith

no impact on communication performance will not be detectable

from end-to-end measurements.

3.2.1 Defining Additive Metrics. We first need to define a perfor-

mance metric 𝜃 · such that: (i) the link metrics are nonnegative and

additive, and (ii) the corresponding path metrics can be reliably

inferred from end-to-end performance measurements. Following

[15], we adopt a metric of the form:

𝜃𝑒 := − log𝛼𝑒 , (7)

where 𝛼𝑒 ∈ (0, 1) denotes the probability for a packet transmitted

over link 𝑒 to experience the “good state”, with different versions

of this metric for different definitions of 𝛼𝑒 . For example, if 𝛼𝑒 is

the probability for a packet to successfully traverse 𝑒 without being

lost, then (7) is the loss-based metric [18], and if 𝛼𝑒 is the probability
for a packet to traverse 𝑒 without incurring queueing delay, then

(7) is the utilization-based metric [18].
To make this metric additive, we assume that the states of dif-

ferent underlay links are independent of each other, which is a

common assumption in topology inference [15, 18, 19, 22]. More-

over, to discover shared links, we adopt a commonly-used probing

method of sending batches of concurrent probes over all the tunnels.

Due to the fact that packets arriving at a link in quick succession

experience very similar performance, probes in the same batch

are assumed to experience the same link state when traversing a

shared link, which is again a common assumption [15, 17, 18, 22].

Let 𝑆𝐹 ∈ {0, 1} indicate whether the probes in a batch experience

good states on all the tunnels in 𝐹 ⊆ 𝐸. As 𝑆𝐹 = 1 if and only if all

the underlay links in

⋃
(𝑖, 𝑗) ∈𝐹 𝑝𝑖, 𝑗 are in good states, we have

𝜌𝐹 B − log Pr{𝑆𝐹 = 1} = − log

©«
∏

𝑒∈⋃(𝑖,𝑗 )∈𝐹 𝑝
𝑖,𝑗

𝛼𝑒
ª®®¬

=
∑

𝑒∈⋃(𝑖,𝑗 )∈𝐹 𝑝
𝑖,𝑗

𝜃𝑒 , (8)

which means that 𝜃𝑒 defined in (7) is an additive metric over a

union of simultaneously probed paths. Here 𝜌𝐹 denotes the metric

for the union of paths for the tunnels in 𝐹 , which can be estimated

consistently by the overlay from observations of 𝑆𝐹 .

Remark: The assumptions of independent states at different links

and identical states at a shared link for probes in the same batch

are simplifying assumptions that may not hold strictly in practice.

Nevertheless, solutions derived from these assumptions have been

validated in Internet experiments [18]. We will stress-test our solu-

tion derived from these assumptions in NS3 simulations where the

assumptions may not hold (see Section 5).

3.2.2 Inferring Category Metrics. The overlay cannot directly gen-

erate equation (8) as it does not know the routing path 𝑝
𝑖, 𝑗

for
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each tunnel (𝑖, 𝑗) ∈ 𝐸. Nevertheless, the overlay can utilize the esti-

mate of 𝜌𝐹 to infer the following information about the categories

without any knowledge of the routing paths.

Definition 3.2. For a given category Γ𝐹 (𝐸), the associated cate-
gory metric𝑤𝐹 (𝐸) is defined as the sum metric for all the links in
category Γ𝐹 (𝐸), i.e.,𝑤𝐹 (𝐸) B

∑
𝑒∈Γ𝐹 (𝐸) 𝜃𝑒 .

The key is to note that by the definition of category, we have⋃
(𝑖, 𝑗) ∈𝐹

𝑝
𝑖, 𝑗

=
⋃

𝐹 ′⊆𝐸:𝐹 ′∩𝐹≠∅
Γ𝐹 ′ (𝐸), ∀𝐹 ⊆ 𝐸, (9)

which allows (8) to be rewritten as an equation of category metrics:

𝜌𝐹 =
∑

𝐹 ′⊆𝐸: 𝐹 ′∩𝐹≠∅
𝑤𝐹 ′ (𝐸), ∀𝐹 ⊆ 𝐸. (10)

Equations like (10) can be generated without prior knowledge of

the underlay topology. Moreover, these equations are known to

uniquely determine the category metrics.

Theorem 3.1 (Theorem III.1 in [14]). Given the path metrics
(𝜌𝐹 )𝐹 ⊆𝐸,𝐹≠∅ , the category metrics (𝑤𝐹 )𝐹 ⊆𝐸,𝐹≠∅ are uniquely deter-
mined by (10).

This theorem, together with the fact that link metrics affect path

metrics only through category metrics, implies that the category

metrics are the metrics of the finest granularity that can be uniquely

identified by the overlay.

Example: Consider the network in Fig. 1. If only considering the

tunnels in 𝐸 = {(𝑎, 𝑒), (𝑎, 𝑑)}, we can partition the traversed un-

derlay links into three nonempty categories: Γ𝐹1
(𝐸) = {(ℎ2, 𝑒)} for

𝐹1 B {(𝑎, 𝑒)}, Γ𝐹2
(𝐸) = {(ℎ2, 𝑑)} for 𝐹2 B {(𝑎, 𝑑)}, and Γ𝐸 (𝐸) =

{(𝑎, ℎ1), (ℎ1, ℎ2)} (the other links are in category Γ∅ (𝐸)). Thus,
the category metrics are 𝑤𝐹1

(𝐸) = 𝜃 (ℎ2,𝑒) , 𝑤𝐹2
(𝐸) = 𝜃 (ℎ2,𝑑) , and

𝑤𝐸 (𝐸) = 𝜃 (𝑎,ℎ1) + 𝜃 (ℎ1,ℎ2) . Based on (10), we have a linear system:

𝜌𝐹1
= 𝑤𝐸 (𝐸) +𝑤𝐹1

(𝐸), (11a)

𝜌𝐹2
= 𝑤𝐸 (𝐸) +𝑤𝐹2

(𝐸), (11b)

𝜌𝐸 = 𝑤𝐸 (𝐸) +𝑤𝐹1
(𝐸) +𝑤𝐹2

(𝐸), (11c)

which uniquely determines (𝑤𝐹1
(𝐸),𝑤𝐹2

(𝐸),𝑤𝐸 (𝐸)). Meanwhile,

the same path metrics (𝜌𝐹1
, 𝜌𝐹2

, 𝜌𝐸 ) can be generated by many dif-

ferent topologies (e.g., there may be multiple links between ℎ2 and

𝑒 , or the tunnels (𝑎, 𝑒) and (𝑎, 𝑑) may join/branch multiple times) as

long as the category metrics (𝑤𝐹1
(𝐸),𝑤𝐹2

(𝐸),𝑤𝐸 (𝐸)) remain the

same, making the category metrics the finest granularity informa-

tion that the overlay can reliably infer from its measurements.

3.2.3 Taming Exponential Complexity. A straightforward solution

for detecting nonempty categories based on solving (10) faces a

severe limitation that the complexity grows at O(2 |𝐸 |), where
|𝐸 | = O(|𝑉 |2), as the number of equations/variables isO(2 |𝐸 |). This
renders the straightforward solution inapplicable beyond overlays

with just a few nodes. To address this limitation, we develop a novel

polynomial-complexity algorithm for category metric inference.

Our solution is based on dynamic programming. Instead of con-

sidering all the tunnels in one shot, we start with only a small

subset of tunnels, for which (10) can be solved within acceptable

time/space to obtain coarse-grained category metrics, and then

we gradually expand the set of considered tunnels to refine the

Algorithm 1: Category Metric Inference

input :Set of all tunnels 𝐸, estimator of path metric 𝜌·
output :Non-zero category metrics {𝑤𝐹 (𝐸) : 𝑤𝐹 (𝐸) ≠ 0}

1 solve (10) to compute 𝒘 (𝐸0) for an initial set of tunnels 𝐸0 ⊆ 𝐸;

2 for 𝑡 = 1, . . . , |𝐸 | − |𝐸0 | do
3 𝐸𝑡 ← 𝐸𝑡−1 ∪ {𝑒 } for an arbitrary tunnel 𝑒 ∈ 𝐸 \ 𝐸𝑡−1;

4 𝑤{𝑒} (𝐸𝑡 ) ← 𝜌𝐸𝑡 − 𝜌𝐸𝑡−1
;

5 for 𝐹 ∈ supp(𝒘 (𝐸𝑡−1)) in increasing order of |𝐹 | do
6 𝑤𝐹∪{𝑒} (𝐸𝑡 ) ← 𝜌 (𝐸𝑡−1\𝐹 )∪{𝑒} − 𝜌𝐸𝑡−1\𝐹 − 𝑤{𝑒} (𝐸𝑡 ) −∑

𝐹 ′⊂𝐹 :𝐹 ′∈supp(𝒘 (𝐸𝑡−1 ) ) 𝑤𝐹 ′∪{𝑒} (𝐸𝑡 ) ;
7 𝑤𝐹 (𝐸𝑡 ) ← 𝑤𝐹 (𝐸𝑡−1) − 𝑤𝐹∪{𝑒} (𝐸𝑡 ) ;
8 return {𝑤𝐹 (𝐸 |𝐸 |−|𝐸0 |) : 𝑤𝐹 (𝐸 |𝐸 |−|𝐸0 |) ≠ 0};

category metrics until all the tunnels are included. Our approach is

motivated by the following observations:

Lemma 3.1. The number of nonempty categories is upper-bounded
by the number of links in the underlay, i.e., |{Γ𝐹 (𝐸 ′) : 𝐹 ⊆ 𝐸 ′, Γ𝐹 (𝐸 ′) ≠
∅}| ≤ |{𝑒 : 𝑒 ∈ ∪(𝑢,𝑣) ∈𝐸′𝑝𝑢,𝑣}| ≤ |𝐸 | for any 𝐸

′ ⊆ 𝐸.

Lemma 3.2. For any 𝐸 ′ ⊂ 𝐸 and 𝑒 ∈ 𝐸 \ 𝐸 ′, 𝑤𝐹 (𝐸 ′) = 0 implies
𝑤𝐹 (𝐸 ′ ∪ {𝑒}) = 𝑤𝐹∪{𝑒 } (𝐸 ′ ∪ {𝑒}) = 0, for all 𝐹 ⊆ 𝐸 ′ and 𝐹 ≠ ∅.

Lemma 3.3. For any 𝐸 ′ ⊂ 𝐸 and 𝑒 ∈ 𝐸 \ 𝐸 ′, 𝑤𝐹 (𝐸 ′) = 𝑤𝐹 (𝐸 ′ ∪
{𝑒}) +𝑤𝐹∪{𝑒 } (𝐸 ′ ∪ {𝑒}).

Lemma 3.1 means that the vector of category metrics is sparse,

and Lemma 3.2 means that the sparsity pattern of this vector for a

subset of tunnels can be used to estimate its sparsity pattern as we

consider more tunnels. Lemma 3.3 allows us to use the previously

computed category metrics defined for a subset of tunnels to solve

for the new category metrics when considering one more tunnel.

Algorithm: Based on the above observations, we develop a dy-

namic programming algorithm for computing the non-zero cat-

egory metrics for any given set of tunnels, as shown in Algo-

rithm 1. We ignore estimation error in 𝜌 · for now to focus on

the main idea; how to handle estimation error will be discussed

later. Here, 𝐸𝑡 denotes the set of tunnels considered in iteration 𝑡 ,

𝒘 (𝐸𝑡 ) B (𝑤𝐹 (𝐸𝑡 ))𝐹 ⊆𝐸𝑡 ,𝐹≠∅ , and supp(𝒘 (𝐸𝑡 )) B {𝐹 ⊆ 𝐸𝑡 : 𝐹 ≠

∅, 𝑤𝐹 (𝐸𝑡 ) ≠ 0}. The algorithm first uses measurements from a

small set of tunnels 𝐸0 to compute a vector of coarse-grained cate-

gory metrics𝒘 (𝐸0) by directly solving (10). It then gradually refines
the solution by expanding the set of considered tunnels. In iteration

𝑡 , the equations corresponding to 𝐸𝑡 = 𝐸𝑡−1 ∪ {𝑒} can be classified

into two types:

𝜌𝐹 =
∑

𝐹 ′⊆𝐸𝑡−1,𝐹
′∩𝐹≠∅

(
𝑤𝐹 ′ (𝐸𝑡 ) +𝑤𝐹 ′∪{𝑒 } (𝐸𝑡 )

)
, (12)

𝜌𝐹∪{𝑒 } =
∑

𝐹 ′⊆𝐸𝑡−1,𝐹
′∩𝐹≠∅

(
𝑤𝐹 ′ (𝐸𝑡 ) +𝑤𝐹 ′∪{𝑒 } (𝐸𝑡 )

)
+

∑
𝐹 ′⊆𝐸𝑡−1\𝐹

𝑤𝐹 ′∪{𝑒 } (𝐸𝑡 ), (13)

where (12) is ∀𝐹 ⊆ 𝐸𝑡−1, 𝐹 ≠ ∅ and (13) is ∀𝐹 ⊆ 𝐸𝑡−1. Given the

solution𝒘 (𝐸𝑡−1) from the previous iteration, equations of type (12)

become redundant, as their information is already contained in

the simpler equations𝑤𝐹 (𝐸𝑡−1) = 𝑤𝐹 (𝐸𝑡 ) +𝑤𝐹∪{𝑒 } (𝐸𝑡 ) based on
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Lemma 3.3. Equations of type (13) can be rewritten as∑
𝐹 ′⊆𝐹

𝑤𝐹 ′∪{𝑒 } (𝐸𝑡 ) = 𝜌 (𝐸𝑡−1\𝐹 )∪{𝑒 } − 𝜌𝐸𝑡−1\𝐹 . (14)

For 𝐹 = ∅, (14) contains only one unknown variable𝑤 {𝑒 } (𝐸𝑡 ), and
hence can be used to compute𝑤 {𝑒 } (𝐸𝑡 ) as in line 4. Based on this

initial solution, we can use (14) to gradually solve 𝑤𝐹∪{𝑒 } (𝐸𝑡 ) in
the increasing order of |𝐹 | as in line 6, because when we try to solve

𝑤𝐹∪{𝑒 } (𝐸𝑡 ), the values of 𝑤𝐹 ′∪{𝑒 } (𝐸𝑡 ) for any 𝐹 ′ ⊂ 𝐹 have been

obtained. Once𝑤𝐹∪{𝑒 } (𝐸𝑡 ) is obtained, we can apply Lemma 3.3 to

compute𝑤𝐹 (𝐸𝑡 ) as in line 7. In this process, we use the observation

in Lemma 3.2 to reduce complexity by only computing𝑤𝐹 (𝐸𝑡 ) and
𝑤𝐹∪{𝑒 } (𝐸𝑡 ) for 𝐹 ⊆ 𝐸𝑡−1 satisfying 𝐹 ≠ ∅ and𝑤𝐹 (𝐸𝑡−1) ≠ 0. Note

that 𝐸 |𝐸 |− |𝐸0 | = 𝐸.

Complexity: Algorithm 1 significantly improves the complexity

of category metric inference compared to the straightforward so-

lution. Specifically, under perfect estimation of the path metrics,

each iteration (lines 2–7) incurs 𝑂 ( |𝐸 |2) operations, stores 𝑂 ( |𝐸 |)
variables, and performs𝑂 ( |𝐸 |) estimations of path metrics, because

the number of non-zero category metrics |supp(𝒘 (𝐸𝑡−1)) | ≤ |𝐸 | by
Lemma 3.1. As there are 𝑂 ( |𝐸 |) iterations, the total complexity is

𝑂 ( |𝐸 | · |𝐸 |2) in time, 𝑂 ( |𝐸 |) in space (reused across iterations), and

𝑂 ( |𝐸 | · |𝐸 |) in the number of path metric estimations.

Handling errors: In practice, errors in the estimated path metrics

𝜌 · may cause the inferred category metrics �̂� (𝐸𝑡 ) to be non-zero

for more than |𝐸 | categories. If an upper bound |�̂� | on the number

of underlay links is known, we can enforce |supp(�̂� (𝐸𝑡 )) | ≤ |�̂� |
at the end of each iteration by setting all but the top |�̂� | values
to zero. Alternatively, we can perform a hypothesis test for each

inferred category metric �̂�𝐹 (𝐸𝑡 ) to determine whether𝑤𝐹 (𝐸𝑡 ) = 0

(and set �̂�𝐹 (𝐸𝑡 ) to zero if so), for which several existing tests can

be applied [22].

Further speedups: Another idea for reducing the complexity of

category metric inference is to filer out empty categories based

on link sharing information, originally proposed in [22]. The basic

idea is that since Γ𝐹 (𝐸) ≠ ∅ only if there is at least one link shared

by all the tunnels in 𝐹 , we can set𝑤𝐹 (𝐸) = 0 if ∃𝐹 ′ ⊆ 𝐹 that does

not have any shared link, i.e.,

⋂
(𝑖, 𝑗) ∈𝐹 ′ 𝑝𝑖, 𝑗 = ∅. Specifically, pair-

wise link sharing between two paths can be detected easily, e.g., by

testing whether their delays are correlated. We can then filter out

empty categories by setting 𝑤𝐹 (𝐸) = 0 if ∃(𝑖, 𝑗), (𝑖 ′, 𝑗 ′) ∈ 𝐹 such

that 𝑝
𝑖, 𝑗
∩ 𝑝

𝑖′, 𝑗 ′
= ∅ (indicated by having zero delay covariance).

While applying such filtering alone will not reduce the complexity

sufficiently (the remaining number of categories can still be large),

we can combine the filtering with our dynamic programming al-

gorithm to achieve further speedup. Generally, given a collection

of tunnel sets Ψ B {𝐹 ⊆ 𝐸 :

⋂
(𝑖, 𝑗) ∈𝐹 𝑝𝑖, 𝑗 = ∅} known to have no

common link, we can incorporate this information into Algorithm 1

by adding𝑤𝐹 ′ (𝐸𝑡 ) ← 0 after line 6 (where 𝐹 ′ = 𝐹 ∪ {𝑒}) and line 7

(where 𝐹 ′ = 𝐹 ) if ∃𝐹 ′′ ⊆ 𝐹 ′ such that 𝐹 ′′ ∈ Ψ. In the special case

of |𝐹 | = 2 for all 𝐹 ∈ Ψ, adding this filtering step increases the time

complexity to 𝑂 ( |𝐸 | · |𝐸 | · ( |𝐸 | + |𝐸 |2)) in theory, but in practice

can actually accelerate Algorithm 1 by reducing the number of

variables while improving the accuracy.

3.2.4 Performance Analysis. We now quantify the error in detect-

ing nonempty categories using the inferred category metrics. Let

𝜂 > 0 denote the detection threshold such that category Γ𝐹 (𝐸) is
detected as nonempty if and only if its inferred metric �̂�𝐹 (𝐸) > 𝜂.

To gain explicit insights, our analysis will focus on the vanilla case

where �̂� (𝐸) is obtained by directly solving (10) based on the esti-

mated path metrics �̂�. The modifications introduced in Section 3.2.3

make it difficult to obtain explicit insights through analysis, and

thus will be evaluated empirically (see Section 5).

All the errors originate from the error in estimating the path

metric 𝜌𝐹 defined in (8). As common in the literature [17, 18], we

assume that 𝜌𝐹 is estimated by plugging the empirical probability

𝑆𝐹 B
1

𝑇

∑𝑇
𝑡=1

𝑆𝐹,𝑡 into (8):

𝜌𝐹 B − log 𝑆𝐹 , (15)

where 𝑆𝐹,𝑡 ∈ {0, 1} indicates whether the probes in the 𝑡-th batch

experience good states on all the tunnels in 𝐹 . We now analyze the

error in nonempty category detection as a function of the sample

size 𝑇 and other parameters.

We start by deriving the solution to (10) in closed form.

Lemma 3.4. Each category metric is related to the path metrics by

𝑤𝐹 (𝐸) =
∑
𝐹 ′⊆𝐹
(−1) |𝐹

′ |+1𝜌 (𝐸\𝐹 )∪𝐹 ′, ∀𝐹 ⊆ 𝐸, 𝐹 ≠ ∅. (16)

We then analyze the error in estimating 𝜌𝐹 by (15). Let 𝑠𝐹 B
Pr{𝑆𝐹 = 1} for ease of presentation.

Lemma 3.5. For 𝑇 ≫ 1, the bias of (15) satisfies

E[𝜌𝐹 ] − 𝜌𝐹 ≈
1 − 𝑠𝐹
2𝑠𝐹𝑇

, (17)

and the variance satisfies

var[𝜌𝐹 ] ≈
1 − 𝑠𝐹
𝑠𝐹𝑇

, (18)

where smaller terms at the order of 𝑜 (1/𝑇 ) have been ignored.

By the central limit theorem, the distribution of 𝑆𝐹 is asymptot-

ically Gaussian. While due to the nonlinear transform − log(·), the
distribution of 𝜌𝐹 is not exactly Gaussian, the delta method [26] sug-

gested that it is well approximated by the Gaussian distribution for

large 𝑇 . Formally, the delta method [26] states that for a sequence

of random variables (𝑋𝑛)𝑛≥1 satisfying

√
𝑛 (𝑋𝑛 − 𝜇)

𝐷−→ N(0, 𝜎2)
and a function 𝑓 (𝑥) such that the first derivative 𝑓 ′(𝑥) exists and
is non-zero, we have

√
𝑛 (𝑓 (𝑋𝑛) − 𝑓 (𝜇)) 𝐷−→ N

(
0, (𝑓 ′(𝜇))2𝜎2

)
, (19)

where

𝐷−→ denotes the convergence in distribution. Our problem

satisfies these conditions with

√
𝑇 (𝑆𝐹 − 𝑠𝐹 )

𝐷−→ N(0, 𝑠𝐹 (1 − 𝑠𝐹 )),
𝑓 (𝑥) = − log(𝑥), 𝑓 (𝑆𝐹 ) = 𝜌𝐹 , and 𝑓 (𝑠𝐹 ) = 𝜌𝐹 . Under the Gaussian

approximation, we can analyze the error in nonempty category

detection in closed form as follows.
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Theorem 3.2. Suppose that the pathmetric estimation errors {𝜌𝐹−
𝜌𝐹 }𝐹 ⊆𝐸,𝐹≠∅ can be modeled as independent Gaussian random vari-
ables with mean and variance given by Lemma 3.5. If𝑤𝐹 (𝐸) = 0, then

Pr{�̂�𝐹 (𝐸) > 𝜂} = 1 − Φ
(
𝜂
√
𝑇 − ˜𝛿𝐹 (𝐸)/

√
𝑇

𝛿𝐹 (𝐸)

)
(20)

≈ 𝛿𝐹 (𝐸)
𝜂
√

2𝜋𝑇
exp

(
− 𝜂2

2𝛿𝐹 (𝐸)2
𝑇

)
, (21)

and if𝑤𝐹 (𝐸) > 𝜂, then

Pr{�̂�𝐹 (𝐸)≤𝜂} = Φ

(
(𝜂 −𝑤𝐹 (𝐸))

√
𝑇 − ˜𝛿𝐹 (𝐸)/

√
𝑇

𝛿𝐹 (𝐸)

)
(22)

≈ 𝛿𝐹 (𝐸)
(𝑤𝐹 (𝐸) − 𝜂)

√
2𝜋𝑇

exp

(
− (𝜂 −𝑤𝐹 (𝐸))2

2𝛿𝐹 (𝐸)2
𝑇

)
, (23)

where Φ(·) is the CDF of the standard Gaussian distribution,

𝛿𝐹 (𝐸) B
√ ∑

𝐹 ′:𝐸\𝐹 ⊆𝐹 ′
(1 − 𝑠𝐹 ′)/𝑠𝐹 ′, (24)

˜𝛿𝐹 (𝐸) B
∑

𝐹 ′:𝐸\𝐹 ⊆𝐹 ′
(−1) |𝐹

′ |− |𝐸\𝐹 |+1 (1 − 𝑠𝐹 ′)/(2𝑠𝐹 ′), (25)

and the “≈” in (21) and (23) holds for 𝑇 ≫ 1.

Remark: Theorem 3.2 states that both the false alarm probabil-

ity (21) and the miss probability (23) decay exponentially with the

sample size 𝑇 , with the error exponent controlled by the detection

threshold 𝜂. The threshold 𝜂 essentially controls what kinds of cate-

gories are detectable, in the sense that a category must have at least

one link in the “bad state” (e.g., with backlogged queue) with proba-

bility > 1 − 𝑒−𝜂 to be detectable with exponentially decaying error.

3.3 Estimation of Category Capacities
We now address the estimation of the capacity for each detected

nonempty category. In the sequel, we will simply denote a cate-

gory Γ𝐹 (𝐸) as Γ𝐹 and a category metric𝑤𝐹 (𝐸) as𝑤𝐹 since they are

always defined with respect to all the tunnels in 𝐸.

In absence of any prior knowledge, the overlay has to measure

the category capacities. However, the minimum link capacity𝐶𝐹 for

a nonempty category Γ𝐹 will not be measurable by the overlay if no

flow assignment in the overlay can saturate the minimum-capacity

link. To address this issue, we define a notion called effective cat-
egory capacity 𝐶𝐹 as follows.

Definition 3.3. For each 𝐹 ⊆ 𝐸, the effective category capacity

𝐶𝐹 is the maximum flow that can be sent through the tunnels in 𝐹 , i.e.,

𝐶𝐹 := max

(𝑓𝑒 )𝑒∈𝐸

∑
𝑒∈𝐹

𝑓𝑒 (26a)

s.t.
∑
𝑒′∈𝐹 ′

𝑓𝑒′ ≤ 𝐶𝐹 ′, ∀𝐹 ′ ⊆ 𝐸, Γ𝐹 ′ ≠ ∅, (26b)

𝑓𝑒 ≥ 0, ∀𝑒 ∈ 𝐸. (26c)

The effective category capacity is equivalent to the category

capacity defined in (6) in that they induce the same feasible region

for overlay routing, except that the effective category capacity is

always achievable by the overlay. Thus, it suffices for the overlay

to estimate the effective capacity of each nonempty category.

Algorithm 2: Effective Category Capacity Estimation

input : set F of category indices of interest (e.g.,

F B {𝐹 ⊆ 𝐸 : �̂�𝐹 > 𝜂 }
output :Estimated effective category capacities {𝐶𝐹 }𝐹 ∈F

1 for each 𝐹 B {𝑒𝑖1 , · · · , 𝑒𝑖 |𝐹 | } ∈ F do
2 𝑓𝑒𝑖

1

← 𝐶𝑒𝑖
1

(0) ;
3 for 𝑗 = 2, · · · , |𝐹 | do
4 𝑓𝑒𝑖 𝑗

← 𝐶𝑒𝑖 𝑗
(𝒇 ) ;

5 𝐶𝐹 ←
∑|𝐹 |

𝑗=1
𝑓𝑒𝑖 𝑗

;

6 return {𝐶𝐹 }𝐹 ∈F ;

Although how to estimate the combined capacity over multi-

ple tunnels (i.e., paths) has not been solved systematically, how

to estimate the available capacity of a single tunnel has been well

understood [10, 16]. Thus, we will build on top of these existing

solutions to develop an algorithm for estimating𝐶𝐹 . Our algorithm

assumes a subroutine that can estimate the residual capacity of a tun-
nel 𝑒 under an existing flow assignment𝒇 , which can be implemented

by any of the existing available capacity estimation methods. Let

𝐶𝑒 (𝒇 ) denote the true residual capacity of 𝑒 under 𝒇 and 𝐶𝑒 (𝒇 ) the
estimate given by the subroutine.

Algorithm: Given this subroutine, we propose an algorithm in

Algorithm 2. For each tunnel set of interest 𝐹 , this algorithm goes

through the tunnels in 𝐹 in an arbitrary order, and tries to assign as

much flow as possible onto each tunnel 𝑒𝑖 𝑗 according to the resid-

ual capacity estimated by the subroutine, without backtracking the

flow assignment for 𝑒𝑖1 , . . . , 𝑒𝑖 𝑗−1
(lines 2–4). The effective category

capacity is then estimated as the sum flow (line 5).

Complexity: As Algorithm 2 invokes an existing single-path avail-

able capacity estimation method as subroutine, its exact complexity

will depend on the complexity of the subroutine. Nevertheless, as

the complexity of the subroutine is independent of the size of the

overlay-underlay network, we can analyze the complexity of Al-

gorithm 2 in terms of the number of invocations of the subroutine,

which equals𝑂 ( |F | · |𝐸 |). As the number of nonempty categories is

upper-bounded by the number of underlay links |𝐸 |, under reason-
ably accurate nonempty category detection, the number of detected

nonempty categories |F | will be 𝑂 ( |𝐸 |), and thus the complexity

of Algorithm 2 will be 𝑂 ( |𝐸 | · |𝐸 |).
Accuracy: We now analyze how the estimated effective category

capacity 𝐶𝐹 provided by Algorithm 2 compares to the true value.

Under the assumption that the subroutine does not overestimate

the residual capacities of individual tunnels, which is typical for

PGM-based methods [16], it is easy to see that the flow assignment

in Algorithm 2 is feasible for the underlay link capacities, i.e., feasi-

ble for (26). Thus, the achieved sum rate can only underestimate

the effective category capacity, i.e., 𝐶𝐹 ≤ 𝐶𝐹 . Meanwhile, if the

subroutine is accurate, then the estimate can only be a constant

factor smaller as stated below.

Theorem 3.3. If the estimation for single-tunnel residual capacity
is accurate (i.e., 𝐶𝑒 (𝒇 ) = 𝐶𝑒 (𝒇 )), then Algorithm 2 achieves 1/𝑞𝐹 -
approximation. More precisely, 𝐶𝐹 ≥ 𝐶𝐹 ≥ 𝐶𝐹 /𝑞𝐹 , where

𝑞𝐹 B max

𝑒∈𝐹
|{𝐹 ′⊆𝐸 : 𝑒 ∈ 𝐹 ′, Γ𝐹 ′ ≠ ∅, |𝐹 ′ ∩ 𝐹 |>1}| (27)
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Figure 2: Illustration of overall solution.

is the maximum number of nonempty categories a tunnel in 𝐹 tra-
verses that are shared by at least another tunnel in 𝐹 .

Even if the subroutine incurs error, Algorithm 2 still achieves a

constant-factor approximation under the following condition.

Corollary 3.3.1. If the estimate𝐶𝑒 (𝒇 ) for any single-tunnel resid-
ual capacity 𝐶𝑒 (𝒇 ) satisfies 𝐶𝑒 (𝒇 ) ≥ 𝐶𝑒 (𝒇 ) ≥ 𝐶𝑒 (𝒇 )/𝑞, then Algo-
rithm 2 achieves 1/(𝑞 · 𝑞𝐹 )-approximation. More precisely, 𝐶𝐹 ≥
𝐶𝐹 ≥ 𝐶𝐹 /(𝑞 · 𝑞𝐹 ), where 𝑞𝐹 is defined in (27).

Remark: We have shown in [9] that the approximation ratio in

Theorem 3.3 is tight, i.e., there exist instances where Algorithm 2

underestimates the effective capacity of a category by a factor arbi-

trarily close to 1/𝑞𝐹 . However, we have observed that the worst case
rarely occurs, and Algorithm 2 is usually accurate as long as its sub-

routine for estimating single-tunnel residual capacity is accurate.

4 UNDERLAY-AWARE OVERLAY ROUTING
4.1 Overall Solution
By detecting the nonempty categories F (via Algorithm 1) and esti-

mating the effective category capacities {𝐶𝐹 }𝐹 ∈F (via Algorithm 2),

the overlay can generate capacity constraints in the form of∑
(𝑖, 𝑗) ∈𝐹

∑
ℎ∈𝐻

𝑑ℎ𝑥
ℎ
𝑖 𝑗 ≤ 𝐶𝐹 , ∀𝐹 ∈ F , (28)

and use them in place of (1b) in overlay routing optimizations such

as (1). Fig. 2 illustrates the workflow of the overall proposed solu-

tion. Note that the centralized controller is just an illustration of

the fact that the current work does not focus on the coordination

within the overlay (which is left to future work).

4.2 Performance Analysis
Both nonempty category detection and category capacity estima-

tion are subject to inference errors, which will affect the accuracy of

the generated constraint (28) and thus the performance of overlay

routing. We now analyze the impact of these errors.

There are four types of inference errors: false alarm/miss in

nonempty category detection and under/over-estimation of cate-

gory capacity. A false alarm in nonempty category detection will

cause the generation of a superfluous constraint in overlay routing,

which may lead to suboptimal routing decisions. Meanwhile, a miss

will cause a constraint to bemissing, whichmay lead to an infeasible

routing decision that causes congestion in the underlay. Similarly,

an underestimated category capacity will lead to a constraint that

is too tight, potentially causing suboptimality, while an overesti-

mated category capacity will lead to a constraint that is too loose,

potentially causing congestion. While the extent of suboptimality

will depend on the specific routing objective and network instance,

AttMpls AboveNet GTS-CE BellCanada

|𝑉 | 25 23 149 48

|𝐸 | 114 62 386 130

𝐶𝑒 (Gbps) 1 1 1 1

link delays (𝜇s) [206,4973] [100, 13800] [5,1081] [78, 6160]

Table 1: Characteristics of the tested underlay topologies.

which is hard to characterize analytically, the congestion proba-

bility can be analyzed in closed form. Specifically, as discussed in

Section 3.3, the category capacity estimation typically incurs only

underestimation errors, which will not cause congestion. Thus, the

only cause of congestion is the failure in detecting some nonempty

category, the probability of which will decay exponentially in 𝑇

(#batches of probes for estimating the path metrics) as follows.

Theorem 4.1. Let F ∗ := {𝐹 ⊆ 𝐸 : Γ𝐹 ≠ ∅} be the true set of
nonempty categories. Suppose that the (effective) category capacity
estimation is performed by Algorithm 2 with a subroutine for single-
tunnel residual capacity estimation that has no overestimation error,
and every nonempty category satisfies𝑤𝐹 > 𝜂, where 𝜂 is the thresh-
old for nonempty category detection. Then under the assumption of
Theorem 3.2, the probability for the proposed underlay-aware overlay
routing to cause congestion is upper-bounded by

|F ∗ |Φ
(
(𝜂 −𝑤𝐹 ∗ )

√
𝑇 − ˜𝛿𝐹 ∗/

√
𝑇

𝛿𝐹 ∗

)
≈ |F ∗ |𝛿𝐹 ∗
(𝑤𝐹 ∗ − 𝜂)

√
2𝜋𝑇

exp

(
− (𝑤𝐹 ∗ − 𝜂)2

2𝛿2

𝐹 ∗
𝑇

)
, (29)

where 𝛿𝐹 , ˜𝛿𝐹 , and Φ are defined as in Theorem 3.2 (omitting “(𝐸)”),
and 𝐹 ∗ := arg max𝐹 ∈F∗ Pr{�̂�𝐹 ≤ 𝜂}.

5 PERFORMANCE EVALUATION
5.1 Evaluation Setup
In this section, we will test the proposed solutions via packet-level

simulations in NS3, which is a widely used discrete event simulator.

To construct diverse and realistic scenarios, we simulate the un-

derlay network according to four real networks from the Internet

Topology Zoo [13] with different densities and sizes, and set the

link capacities and delays according to [6]. The characteristics of

each topology are summarized in Table 1.

Each underlay is assumed to follow shortest path routing based

on hop count. Following [11], we generate cross traffic on each un-

derlay link according to an ON-OFF process, where the duration of

each ON period follows a truncated Pareto distribution, with shape

parameter 2.04 and scale/upper-bound parameter set to the mini-

mum/maximum round-trip time (RTT) of the tunnels traversing this

link. The duration of each OFF period follows the same distribution

with a different scale parameter, configured to yield a link utiliza-

tion randomly drawn from [10%, 40%]. Following [23], we randomly

draw the sizes of cross-traffic packets from 50, 576, and 1460 bytes

with probabilities 0.4, 0.2, and 0.4, respectively. We set the overlay

packet size to 50 bytes for probing and 1000 bytes for routing.

To create the overlay, we select 10 nodes with the lowest degree

as the overlay nodes while maintaining a pairwise distance of at

least two hops, which leads to 90 (directed) overlay tunnels and 2
90

potential categories. The number of nonempty categories for each
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AttMpls AboveNet GTS-CE BellCanada

#empty cat. 2
90 − 69 2

90 − 51 2
90 − 59 2

90 − 51

#nonempty cat. 69 51 59 51

#false alarms 603 542 2159 1695

#misses 20 25 40 27

Table 2: Misses and false alarms in category detection.

topology is given in Table 2. As for the demands 𝒅 = (𝑑ℎ)ℎ∈𝐻 in (1),

we first generate an initial demand 𝒅0 based on the gravity model

[20]. Then, we scale it by a factor 𝛼 to ensure that there exists a rout-

ing solution to satisfy 𝛼𝒅0 with a given maximum link utilization.

5.2 Benchmarks
We evaluate the following solutions:

(1) “Agnostic”: a baseline that treats all the tunnels as indepen-

dent logical links, i.e., ignoring their sharing of links;

(2) “LCC”: the state-of-the-art solution from [28], under two

optimistic assumptions: (i) perfect clustering of the detected

flows based on their shared dominant bottlenecks, and (ii)

improved accuracy in the capacity constraints based on the

residual capacities instead of the total capacities as in [28];

(3) “Proposed”: our proposed solution as depicted in Section 4.1;

(4) “Enhanced proposed”: an enhanced version of our solution

with two added sets of constraints: one set from “LCC” for

fair comparison (due to the optimistic assumptions given to

it) and another set obtained by running Algorithms 1–2 for

each set of tunnels sharing the same source.

5.3 Evaluation Results
5.3.1 Nonempty Category Detection. We estimate 𝜌𝐹 as in (15),

where a probe is considered to experience good state on a tunnel if

its delay is below a threshold. To determine the threshold, we profile

the delay on each tunnel during light traffic and set the threshold as

the mean delay plus three standard deviations. We select 9 tunnels

with the same (randomly selected) source to form 𝐸0. A category

Γ𝐹 is detected to be nonempty if its inferred metric satisfies �̂�𝐹 > 𝜂.

As our estimation of the effective category capacities is accurate

(see Table 3), false alarms will not hurt overlay routing, and thus we

set 𝜂 to a small value (10
−5

in our simulation) to minimize misses.

The resulting numbers of false alarms/misses are given in Table 2,

which are the median of 20 Monte Carlo runs, each containing

2 × 10
4
batches of probes. Despite the large number of false alarms,

the false alarm rate is very low due to the exponentially many

categories that are empty. Meanwhile, we observe a high miss rate,

primarily due to the error in estimating 𝜌𝐹 . Such errors come from

two phenomena: (i) for tunnels with different sources, probes in

the same batch may arrive at a shared link at different times and

experience different queueing delays; (ii) a link shared by a large

number of tunnels will receive many probes in a batch, where the

earlier probes will experience different queueing delays from the

later ones.

5.3.2 Category Capacity Estimation. Next, we evaluate the nor-
malized mean absolute error (|𝐶𝐹 −𝐶𝐹 |/𝐶𝐹 ) of Algorithm 2. To

separate the impact of errors in its subroutine, we evaluate two

versions of Algorithm 2, one using the true value of 𝐶𝑒𝑖 𝑗 (𝒇 ) in
Line 5 (i.e., ideal subroutine) and the other using the estimated

AttMpls AboveNet GTS-CE BellCanada

ideal subroutine 0.10% 0.13% 0.13% 0.4%

pathload 1.07% 1.18% 1.15% 1.49%

Table 3: Errors in effective category capacity estimation.

𝐶𝑒𝑖 𝑗 (𝒇 ) obtained from pathload2 [10]. The results averaged over 20

Monte Carlo runs are given in Table 3. Surprisingly, Algorithm 2

can estimate the effective category capacities almost perfectly when

the subroutine estimates the single-tunnel residual capacities cor-

rectly, indicating that the worst-case ratio in Theorem 3.3 is rarely

achieved. Slightly more error is incurred when using a realistic

subroutine, but the overall estimation remains highly accurate.

5.3.3 Approximation of Feasible Region. Despite the large num-

bers of misses and false alarms, the feasible region induced by

the inferred capacity constraint (28) may still approximate the

true feasible region induced by (1b) (equivalently (5)), if the su-

perfluous constraints caused by false alarms have similar effect

as the missing constraints caused by misses. Denote the true fea-

sible region of the rates through the tunnels as P := {𝒚 ≥ 0 :∑
(𝑖, 𝑗) ∈𝐸:𝑒∈𝑝

𝑖,𝑗

𝑦𝑖 𝑗 ≤ 𝐶𝑒 , ∀𝑒 ∈ 𝐸}, and the inferred feasible region

as
ˆP := {𝒚 ≥ 0 :

∑
(𝑖, 𝑗) ∈𝐹 𝑦𝑖 𝑗 ≤ 𝐶𝐹 , ∀𝐹 ∈ F }. We define

ˆP
similarly for each of the benchmarks. We measure the consistency

between these two regions by randomly sampling extreme points

from one region and calculating the maximum constraint viola-

tion for the other region. We observe that the extreme points of

P almost always satisfy the constraints of
ˆP for all the solutions

(omitted), but the extreme points of
ˆP can violate the constraints

of P (i.e., causing congestion), as shown in Fig. 3. We see from

Fig. 3 that (i) the constraint violation of “Agnostic” is most severe,

(ii) our proposed solution notably reduces the constraint violation

compared to both “Agnostic” and “LCC”, and (iii) the enhancement

to our solution can further reduce the constraint violation but only

slightly. In summary, despite the notable inference errors, our solution
can still characterize the feasible region for overlay routing much
more accurately than the existing solutions.
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Figure 3: Constraint violation for randomly-sampled ex-
treme points of the estimated feasible region.

5.3.4 Performance of Overlay Routing. When the demands are suf-

ficiently light such that even “Agnostic” does not encounter any

congestion, there is no need to consider link sharing among tunnels

and all the overlay routing solutions achieve similar performance

(omitted). We thus focus on scenarios where at least one link will be

congested under one of the tested routing solutions, by scaling the

2
Pathload is an adaptive algorithm that sends a train of probes at a time and tunes its

rate to measure the residual capacity. In our simulation, the train length is set to 5000

probes, but the total number of trains is a variable in [2, 15].
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Figure 4: Performance of overlay routing.

demands to achieve a maximum link utilization of 90% under per-

fect knowledge about the underlay. We evaluate the performance of

minimum cost overlay routing in terms of both congestion and rout-

ing cost. Here, we set the routing cost 𝑐𝑖 𝑗 for each tunnel (𝑖, 𝑗) ∈ 𝐸
to the sum (propagation) delay of the links traversed by this tunnel.

To measure congestion, we evaluate the maximum load on any

underlay link in excess of its capacity. The result in Fig. 4 (a) shows

that “Agnostic” incurs the most congestion due to ignoring link

sharing among the tunnels, followed by “LCC” that only considers a

subset of the capacity constraints corresponding to the bottlenecks

shared by tunnels with the same destination. Our proposed solution

and its enhanced version can notably reduce the congestion, thanks

to their better accuracy in approximating the feasible region (Fig. 3).

These observations also apply to the sum of excess loads.

To measure routing cost, we simulate overlay routing for 20,000

milliseconds and measure the average end-to-end delay over all the

received packets, repeated for 20 Monte Carlo runs. We then nor-

malize the average delay: given the average delay
¯𝜙 obtained from

simulation, we evaluate ( ¯𝜙 − ¯𝜙0)/ ¯𝜙0, where
¯𝜙0 is the average delay

under the optimal routing solution based on perfect knowledge

about the underlay. The result in Fig. 4 (b) confirms that (i) underlay-

aware overlay routing (our solutions and “LCC”) can notably out-

perform underlay-agnostic overlay routing (“Agnostic”), and (ii) by

inferring the key information to characterize the feasible region, our

solutions can substantially outperform “LCC” for well-connected

underlays (AttMpls, Abovenet, BellCanada). Meanwhile, all the so-

lutions perform similarly for sparsely-connected underlays (GtsCe).

6 CONCLUSION
We studied the problem of overlay routing over an uncooperative

underlay with unknown topology and link capacities. We identified

the minimum information needed by the overlay for congestion-

free overlay routing, and then developed polynomial-complexity

algorithms to infer this information with guaranteed accuracy. Our

NS3 simulations based on realistic settings demonstrated the supe-

rior performance of our algorithms in characterizing the feasible

region and improving the performance of overlay routing.
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