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Abstract

Before implementing monitoring systems or reinforcements on a historic structure, it
is essential to understand how crack patterns may have originated and how they affect
the stability of the structure. Previous methods combining photogrammetry with
physics-based modeling have been successful in diagnosing the cause of crack forma-
tion. However, a limitation of existing methods is the manual comparison process to
ascertain damage origins. This research outlines a method combining physics-based
modeling and data-driven approaches to automate diagnostics for existing masonry
structures. This method was shown to quantitatively reproduce the cause of damage
for complex, 3D structures and was validated against a laboratory-scale experimen-
tal masonry wall. The newly automated procedure increases throughput by 10° times
compared to our prior method, allowing for the testing of orders of magnitude more
hypotheses than were previously possible. Although the approach is demonstrated
here for settlement-induced cracking, it has important implications for the broader

topic of data-driven masonry diagnostics.

1 | INTRODUCTION

Research has shown that every year the United States alone
demolishes 1 billion square feet of existing buildings and
replaces them with new ones. From this constant stream of
demolition and construction, nearly 43% of the materials end
up in a landfill (Merlino, 2018). Thus, preservation and adap-
tive reuse of existing structures can not only protect world her-
itage, but can also serve as sustainable infrastructure solutions
(Langston, 2010, 2012; Langston & Langston, 2008).
However, before existing structures can be preserved,
retrofit, or reused, a thorough diagnostic assessment is vital.
Diagnostics assessment synthesizes documentation (pho-
togrammetry, laser scanning, and photographs), archival
research, nondestructive evaluation (ground penetrating radar

and thermal imaging), and physics-based modeling, to iden-
tify and quantify the extents of damage as well as ascertain
their origins. By understanding the origins of damage on a
structure, efficient monitoring and preservation plans can be
implemented, as well as more accurate prognostics and cal-
culations about service life can be made (Harris, 2001; Watt,
2009).

Although current practices, such as condition assessments
and crack maps, can record the effects of stresses on a
structure, they do not record causes. Taking into account
only the structure’s present condition, condition assessments
alone cannot provide information about underlying catalysts
of damage or predictive insights into a structure’s poten-
tial for damage. For instance, damage on a structure could
have already stabilized and not be related to current risks
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(Taylor, 2005). To attain information regarding diagnostics
and prognostics, existing damage patterns have been con-
sidered in combination with nondestructive testing and/or
physics-based modeling.

Physics-based models can provide approximations of
existing conditions (Anderson & Burnham, 2004). Thus,
diagnostics has been commonly carried out by comparing
existing conditions with the results of physics-based model-
ing. Lourengo (2002) used force-displacement diagrams to
quantitatively compare the results of experimental testing
and a multisurface interface model. A comparison of force-
displacement diagrams was also used by Giordano, Mele, and
De Luca (2002) to compare numerical curves for ABAQUS,
CASTEM, and UDEC to experimental models. Subsequently,
this technique has been successfully utilized by others for
diagnostics of existing masonry structures (see Bui, Limam,
Sarhosis, & Hjiaj, 2017; Fang, Napolitano, Michiels, &
Adriaenssens, 2019; Giamundo, Sarhosis, Lignola, Sheng, &
Manfredi, 2014; Najafgholipour, Maheri, & Lourenco, 2013;
Sarhosis, Tsavdaridis, & Giannopoulos, 2014; Sarhosis,
Garrity, & Sheng, 2015).

Another conventional means of diagnosing damage on
an existing masonry structure is through a combination of
nondestructive testing methods, structural health monitor-
ing, and numerical modeling (Binda, Saisi, & Tiraboschi,
2000; Binda & Saisi, 2009; Bosiljkov, Uranjek, Zarnié, &
Bokan-Bosiljkov, 2010; Gentile & Saisi, 2007; Russo, 2013;
Shrestha et al., 2017). Anzani, Binda, Carpinteri, Invernizzi,
and Lacidogna (2010) used this approach when they suc-
cessfully combined pseudo-creep, sonic, and flat-jack tests,
acoustic emission techniques, and finite element modeling to
assess existing damage of historic masonry towers. In that
work, quantitative comparisons were only drawn between the
results of acoustic emission monitoring and the time of seis-
mic events. Qualitative methods were used to compare the
existing damage and the results of numerical modeling. A
similar approach was used by Milani, Valente, and Alessan-
dri (2017) when archival research, soil testing, laser scan-
ning, and numerical modeling were used to diagnose exist-
ing cracks on the narthex of the Church of the Nativity in
Bethlehem. This work comprehensively examined how exist-
ing damage could have arisen on the structure by qualitatively
comparing the cracks on the existing structure to the results
of a simulation. Qualitative comparison of existing crack pat-
terns to the results of simulation is prevalent in the literature
(Alessandri, Garutti, Mallardo, & Milani, 2015; Bayraktar,
Altunisik, Sevim, & Tiirker, 2011; Douglas, Napolitano, Gar-
lock, & Glisic, 2019; Michiels, Napolitano, Adriaenssens, &
Glisic, 2017; Ramos & Lourenco, 2004; Wood et al., 2017).

Although the previously discussed works have outlined
methods for comparing existing damage with the results of
nondestructive testing and/or physics-based modeling, none
of them considered more than one possible load case as the
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FIGURE 1 Diagram of MMWH showing the two types of
changes in state (Adapted from Elliott & Brook, 2007)

catalyst for damage. In reality, however, there are an infinite
combination of causes, which could have caused the exist-
ing damage pattern. Although the approach in the previous
literature is less time-consuming than an exhaustive explo-
ration of all possible loading scenarios (infinite), the method
of multiple working hypotheses (MMWH) provides a mid-
dle ground. Since it is not computationally possible to con-
sider every possible loading combination for every structure,
engineering judgment must be used in conjunction with back-
ground research on the structure to understand the appropriate
hypotheses to test. This promotes divergent thinking and min-
imizes the adverse effects of diagnostic bias while still being
computationally efficient.

1.1 | Method of multiple working hypotheses

As early as 1890, Thomas Chamberlin noted how the “dangers
of parental affection for a favorite theory” could bias induc-
tive reasoning (Chamberlin, 1992). To reduce the effects of
diagnostic bias, Chamberlin advocated for the MMWH. In
MMWH, a diagnostician develops a set of candidate mod-
els spanning the space of plausible damage scenarios; each
model represents the movements from a single causative fac-
tor, which changes the state of the structure. Figure 1 depicts
two types of changes in state: a series transition and a paral-
lel transition. In the series transition, there are several inter-
mediate states between A and B, which are caused by indi-
vidual factors x, y, and z. In the parallel transition, there are
no intermediate states between A and B; the change from A
to B is the result of all concurrent factors. The parallel tran-
sition highlights a critical difference between MMWH and
the development of alternative hypotheses: MMWH explic-
itly recognizes that more than one hypothesis may be true
at the same time (Elliott & Brook, 2007). This is important
for building diagnostics, where damage is often caused by
multiple mechanisms.

1.2 | Current methods for selecting a model

A common adage about statistical models states “All models
are wrong, but some are useful” (Box, 1979). If all models are
wrong, a method of selecting the most useful model, or the
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one that best represents the inference from the data, is vital
when comparing multiple hypotheses (Burnham & Ander-
son, 2004). By definition, information-theory-based model
selection attempts to (a) identify the model that best approx-
imates the data and (b) order models from most affine to
least (Anderson & Burnham, 2004; Burnham & Anderson,
2004).

Napolitano, Hess, Coe-Scharff, and Glisic (2019) exam-
ined how multiple finite-distinct element models could be
compared to existing conditions to understand potential
causes. Combinations of gravity and settlement were carried
out in a preliminary investigation of a foundation wall in the
Florence Baptistery. The results were qualitatively compared
to the existing condition to understand if the results would be
different enough to ascertain an affinity order. In addition, this
method was also used to compare potential causes of damage
in Palazzo Vecchio (Napolitano, Hess, & Glisic, 2019a) and
Morris Island Lighthouse (Blyth, Napolitano, & Glisic, 2019).

This work was expanded upon in Napolitano and Glisic
(2019a), where a method for diagnosing the most probable
causes of cracks on existing structures was outlined. A result
of this work was a statistical method that could be used to
quantitatively compare the locations of bricks in a photogram-
metry model and the locations of bricks in various physics-
based simulations. The method was compared to the results
of experimental testing and found to be successful. Subse-
quently, it was applied to further investigate the causes of
damage in the foundation of the Florence Baptistery (Napoli-
tano, Hess, & Glisic, 2019¢).

There are several limitations of the method outlined in
Napolitano and Glisic (2019a). Since the method is manual,
the comparison of multiple cases is very time-consuming. If
there are n joints in a structure, where a joint is the interface
between two bricks, comparison with one load case requires
n computations. However, comparison of the locations where
cracking can occur with m load cases requires m X n computa-
tions. Thus, as the hypothesis space is expanded, the time can
increase dramatically. Furthermore, since there is a consider-
able time penalty for including a variety of different loading
conditions, this could allow diagnostic bias to be introduced
to the analysis.

In addition to being time-intensive, the previous method
was nonexhaustive. To limit the number of computations
needed, a subsample of the total number of joints, j,, at
which crack width was compared was randomly chosen. One
issue with that could be localized damage on a large struc-
ture. If a joint where there is displacement is not randomly
selected, then the diagnosis will not include that damage. In
this paper, a method is proposed that overcomes these limi-
tations. Through automation of the comparison process, not
only can the entirety of the structure, that is, every joint, be
accounted for, but the time for multiple comparisons can also
be dramatically reduced.
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1.3 | Research aim and scope

This work aims to demonstrate the ability to correctly infer the
cause of deformed (i.e., damaged) regions of masonry struc-
tures. In the current work, we limit the scope to settlement-
induced deformations and focus on accurately inferring the
parameters of the settlement event from a relatively sparse
library of examples. We make the use of earth mover’s dis-
tance (EMD) as a distance metric between these examples and
Gaussian process regression (GPR) to perform interpolation
on the resulting distances. Thus, while we make use of exist-
ing mathematical tools, the workflow combining them into a
method for masonry diagnostics is novel. To our knowledge,
this data-driven diagnostics approach has never before been
applied to masonry structures. Therefore, the computational
novelty in this work is an automated, quantitative method for
diagnosing the causes of crack patterns in masonry structures
by comparing the locations and magnitudes of cracks on an
existing structure to a series of simulated crack patterns.

First, the method was tested on a simulated 3D struc-
ture, where the ground-truth damage cause was known. This
enabled validation and profiling of the workflow perfor-
mance. The method was then applied to an experimental
(laboratory-scale) masonry wall with a diffuse crack pattern.
In this case, the ground-truth damage was again known, but
the positions and damage conditions had to be mapped from
the physical wall to the simulations.

2 | METHODS

2.1 | Point cloud segmentation

For this work, we consider the point cloud P representing
the surface of the damaged structure to be an input. P can
be obtained by a variety of well-established methods that
are described elsewhere (Barsanti, Remondino, Fenandez-
Palacios, & Visintini, 2014; Napolitano & Glisic, 2018; Patias
etal., 2013). Commonly, when damage assessments are done,
different damages are not separated out and attributed to indi-
vidual causes (Binda, Gambarotta, Lagomarsino, & Modena,
1999; Napolitano, Hess, & Glisic, 2019b). In those cases, the
results of diagnostics are heuristic. However, to optimize the
time and money spent on preservation and monitoring efforts,
it is more beneficial to be able to diagnose each damage
individually. This is particularly important for older masonry
structures, which have seen several damaging loading periods
over their service life.

In the present method, segmentation is used to break the
point cloud P, into distinct regions. This provides the twofold
benefit of allowing each segment P, to be analyzed indepen-
dently and reducing the computational burden by reducing the
O(N?) optimal transport problem (where N is the number of
points) into a O(n X N 1,3) problem (where 7 is the number of
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segments). The cubic complexity of optimal transport results
in significant cost savings when N; < N. From the segmen-
tation, we produce a mapping m(P) — { P;} (in this case, m is
simply the list of indices for each point in each segment). This
mapping is applied to each deformed geometry Q in the test
library (described in Section 2.2) such that segments P, and
Q, refer to the same region in space. Enforcing the mapping in
this way requires a known correspondence between points in
P and Q (in the case of one-to-one correspondence) or the use
of bounding volumes such as alpha shapes (when one-to-one
is not guaranteed). In this work, we obtain the correspondence
using the Hungarian algorithm since we composed P and QO
from brick centroids with the same number of bricks.

We apply Mini-Batch K-Means (MBKM) (Béjar Alonso,
2013) to generate the segmentation mapping m, with the
only input parameter being the number of segments n.
Since the purpose of the segmentation is strictly to provide
independent diagnostics for different regions of the structure,
the particular choice of segments is driven by the user’s
preference (i.e., which segmentation will provide the most
helpful information). The number of neighbors for MBKM
is left to the readers’ engineering judgment. A study illus-
trating the sensitivity to segmentation has been included
in Section 3.1.1. This provides a convenient way to group
compact portions of the point cloud together. In our testing,
we found the workflow to be robust to the particular choice
of segmentation, including the number of segments and
algorithm applied. Therefore, any other clustering technique
or manual point selection (e.g., user-specified bounding
boxes) should be equivalent in practice.

2.2 | Physics-based modeling

Distinct element modeling (DEM), a method of discontinu-
ous structural analysis, was used for the physics-based model-
ing since it has been applied successfully in previous masonry
research (Giordano et al., 2002; Kavanaugh, Morris, Napoli-
tano, & Jorquera-Lucerga, 2017; Lemos, 1998; Lemos, 2007,
2019; Napolitano & Glisic, 2019b; Napolitano, Lansing, &
Glisic, 2019; Papantonopoulos, Psycharis, Papastamatiou,
Lemos, & Mouzakis, 2002). 3DEC, a distinct element mod-
eling software package (Cundall & Hart, 2015), was used to
simulate the masonry elements as rigid bodies. As cracking
at the joints frequently dominates fracturing of the individual
brick elements, this is an acceptable approximation (Asteris
et al., 2015). The details of the numerical model and material
properties can be found in (Napolitano & Glisic, 2019a).

For this work, we used a postulated undamaged state U
(in the form of a triangulated mesh) and parameterized dam-
age conditions ¢ as inputs to the DEM simulation. The DEM
simulation can then be thought of as a function .S, which
returns a deformed state Q according to the transformation
S(U;c) - Q.Each state Q, therefore, corresponds to the state
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P, and should be expected to be in given the damage condi-
tion c. By comparing each hypothesized damaged structure
described by Q to the observed damaged structure described
by P, we hope to identify the true damage c°, which affected
the masonry structure. As aforementioned, since it is not com-
putationally possible to hypothesize every possible loading
combination, engineering judgment must be used in conjunc-
tion with background research on the structure to understand
the appropriate hypotheses to test.

2.3 | Distance metric

To create a quantitative correspondence between P and Q
(i.e., to decide how well each hypothesis matches the observed
facts), we must define a distance metric that acts on point
clouds. We use the EMD, which is a measure of the distance
between two probability distributions and is proportional to
the minimum amount of work required to transform one distri-
bution into the other (Lupu, Selios, & Warner, 2017; Rubner,
Tomasi, & Guibas, 2000; Yilmaz, 2009). In this case, EMD
is the cost associated with the optimal transport of points
between two point clouds (i.e., two discrete distributions in 3D
space). To make this even more concrete, we remark that the
distance d(P, Q) = EMD(P, Q) has units of length, describ-
ing the total distance required to move the points in P through
space to exactly align with Q. We utilize the Python Opti-
mal Transport library to perform the calculation (Flamary &
Courty, 2017).

2.4 | Interpolation between observations

Although the EMD metric provides a quantitative way to
evaluate individual hypotheses, it becomes computationally
intractable to identify the perfect value for ¢ when damage
conditions are parameterized in continuous space. Instead, we
generate a library of hypotheses {(Q;c),} and evaluate the
distance between the existing conditions and every hypoth-
esized structure, d(P, Q,). Because each Q, is paired with
a ¢, and P with c°, these distances can now be considered
a proxy for the otherwise unknown d(c°, c¢,). We, therefore,
apply GPR to approximate this distance field (Williams &
Rasmussen, 1996). GPR is a Bayesian method for model
selection and updating commonly used in the literature. Zhou,
Yan, and Ou (2013) used GPR to calculate the relationship
between design parameters and response characteristics of
cable-stayed bridges. Xia and Tang (2013) used GPR to char-
acterize the dynamic response of structures with high levels
of uncertainty. Additionally, Wan and Ren (2014) used GPR
and finite element analysis for model updating and parameter
selection to ascertain uncertainty bounds for existing struc-
tures. In the current work, GPR effectively provides an inter-
polation of d(c°, c¢) to enable continuously varying ¢ from the
discrete set of ¢, in the library.
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FIGURE 2 Work flow summarizing the method used in this paper

In practice, we interpolate £ = d~! to weight the model
more strongly in regions where the distance is low (i.e., the
guess is good) compared to regions where the distance is high.
The result of this inversion is that the field estimated by GPR
corresponds to the likelihood of ¢ being the true damage con-
dition, measured in units of m~!. For instance, a value of
10 m~! indicates a 10X less precise match compared to a value
of 100 m~!, since the optimal transport costs 0.1 m in the first
case compared to 0.01 m in the second case.

2.5 | Summary of the method

We have integrated the procedures introduced above into a
single workflow (Figure 2) for diagnosing crack patterns
on masonry structures, which we summarize here. A point
cloud P representing an existing, damaged structure is first
acquired. Based on knowledge of the structure and possible
damage patterns ascertained through archival research, a pos-
tulated undamaged state is generated in the form of a trian-
gulated mesh U (e.g., manually using computer aided design
[CAD]). Then, a library of hypothesized damaged structures
{O,} is generated by applying hypothesized damage condi-
tions {c,} using DEM simulation, acting as S(U;c,) = Q.
Using MBKM clustering, P is segmented into discrete sec-
tions and a mapping m(P) — { P;} is generated. This mapping
is applied to each Q, to generate segments {Q, ;}, which are
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used to compute distances d; , = d(P;, Qy ;). For each seg-
ment i (or for any combination thereof), the inferred like-
lihood field L(c) ~ d(c;, ¢;)”! is estimated by GPR. Thus,
while our prior methodology required a comparison of indi-
vidual hypotheses, the proposed approach provides an esti-
mate for the likelihood of every possible hypothesis allowed
by the given parameterization of the damage conditions (and
within some reasonable range compared to hypotheses in the
library).

3 | RESULTS AND DISCUSSION

3.1 | Application to synthetic test case

We first demonstrate the method on the synthetic struc-
ture shown in Figure 3. The use of synthetic data, where
the ground-truth damage condition ¢° is known, is neces-
sary to establish the accuracy of the method. We obtained
a damaged structure P (N =9,633 discrete elements),
depicted in Figure 4, by simulating the deformation of the
masonry structure under two settlement loads. One set-
tlement load occurs at the location (x,y) = (1.63,—1.73)
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FIGURE 3 Geometry of synthetic masonry structure, including
individual brick dimensions
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FIGURE 4 Displacement magnitude of each brick in the synthetic
structure due to two different settlement events
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with an amplitude a = 0.157 m; the amplitude refers to
the depth of the settlement, which is the maximum of the
Gaussian kernel. A second occurs at (0.62,3.22) with an
amplitude of 0.160 m. In both cases, the settlement was
imposed as a Gaussian kernel with dispersion ¢ = 0.5 m.
We parameterize the ground-truth damage condition as ¢°® =
(1.63,-1.73,0.157),(0.62,3.22,0.160). Note that the two
independent damage events demonstrate the applicability of
the method to multiple ¢°.

We generated a library of 256 Q, by selecting c,
from a uniform random distribution on the domain x €
[—0.39,4.94], y € [-2.80,5.13], and a € [0.00, 0.30]. These
again were imposed as a Gaussian kernel with dispersion
o = 0.5 m. Note that each hypothesis included only a sin-
gle settlement event, in contrast to the ground-truth, which
was constructed from multiple. We first computed the EMD
between the full point clouds as d(P, Q,) without segmen-
tation and generated a continuous estimate of the likelihood
field by applying GPR to the inverted distances.

The results of the full point cloud comparison are illustrated
in Figure 5. Since the likelihood field is a continuous quantity
in (x, y, a), we have rendered the values of the field at five
discrete points in a. The brighter values (yellow) correspond
to (x, y) settlement centers, which most probably caused the
damages on the target structure; the ground-truth damage con-
ditions are illustrated as black crosses. Note the two distinct
bright areas, which indicate that settlement is most likely to
have occurred there; the results of the likelihood map qual-
itatively correspond to the true conditions. In this case, the
highest likelihood of 68.7 m~! is obtained at the location
¢ = (0.51,3.28, 0.198), which roughly corresponds to the sec-
ond settlement event, albeit at a larger amplitude. This com-
pares to the 58.6 m~! and 64.6 m~! for the two true settlement
events, and an average field value of 33.3 m~!. In other words,
the estimate from the GPR is that the true damage conditions
are about twice as likely compared to the average over the
investigated range. Thus, despite good qualitative agreement,
the result is relatively weak.

To produce a direct comparison between the multiple-
settlement ground-truth and the single settlement library,
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FIGURE 6 Segmented point cloud for 3D structure

we segmented the structure into eight segments (shown in
Figure 6) using MBKM. As discussed above, the choice of
n = 8 is driven purely by engineering judgment and does not
substantially affect the analysis; an analysis of the effect of
different segmentation is presented later in Section 3.1.1. We
applied the selected segment mapping m to each of the 256 O
as described and calculated the discrete distances d(P, Q)
and thus the resulting likelihood fields correspond to only a
single segment of the original geometry.

The likelihood field for Segment O only (blue in Figure 6),
corresponding to the segment directly over the first settle-
ment event, is shown in Figure 7. The most likely cause of
settlement occurs at (1.79, —1.65,0.156) with a magnitude of
575 m™!, compared to the true value ¢ = (1.63,—-1.73,0.157)
(indicated by the black cross) with a magnitude of 558 m~!,
and the average likelihood of 105m~!. As indicated by the
visual representation of the likelihood field, this means the
true value lies within a highly localized region of high inten-
sity. The amplitude is highly confined to the a = 0.15 slice,
but there is a somewhat diffuse pattern in the (x, y) plane. It is
essentially bounded by potential encounters with other walls,
which would provide counterexamples to this case which did
not settle along the other walls in the small room.

Similarly, the likelihood field for Segment 7 only (gray
in Figure 6), corresponding to the segment directly over the
second settlement event, is shown in Figure 8. The most

FIGURE 5 Estimate of the likelihood field £(c) obtained from full point cloud P. Field rendered over (x, y) slices for discrete amplitudes a as
listed in each panel. Yellow color (lightest) indicates greater likelihood (in units of m~"). Black crosses indicate the two components of ¢°. White

lines are centroids of bricks to illustrate the position of the structure relative to the position of settlement centers
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likely cause of settlement occurs at (0.67,3.28,0.204) with
a magnitude of 723 m~!, compared to the true value ¢ =
(0.62,3.22,0.160) (indicated by the black cross) with a mag-
nitude of 679 m~!, and the average likelihood of 94 m~!. In
this case, the localization is stronger in the x — y plane and
weaker in the direction of a, which can be seen in the bright
yellow spot at a = 0.22. It is interesting to note that this prob-
ably arises from the fact that the settlement does not occur
directly under the wall, so it in fact may be completely equiv-
alent for a certain set of (x, a) pairs: distance from the wall
increases along with the depth, the settlement felt by the wall
remains constant.

3.1.1 | Sensitivity to segmentation

To quantify the effect of different segmentations on the results
of the analysis, we perform segmentation with MBKM using
five random seeds at each of n=7, n =8, and n =9 (for
a total of 15 segmentations, Figure 9). Although the peak
likelihood values reported do appear to exhibit some varia-
tion, recall that these typically exist in the center of a cloud
of highly likely conditions. Furthermore, these damage con-
ditions correspond to fairly diffuse settlements and as such
exhibit intrinsic degeneracy to the effective settlement expe-
rienced by each wall (i.e., multiple conditions may result in
nearly identical settlement). We, therefore, conclude that the
results are relatively insensitive to the particular choice of seg-
mentation.

3.1.2 | Sensitivity to noise

A major concern with the use of this synthetic data set is the
lack of noise introduced from point cloud acquisition. In a real
system, measurement noise on the order of mm is introduced.
To quantify the effect of such noise on our results, we artifi-
cially applied random noise to every point in P from a uni-
form distribution over [—6, +6] in each of (x, y, z). We then
repeated the analysis for Segment 7 (i.e., P;) as described
above. For each value of 6, we recorded the Z-score, z =
(L(c®) — n)/o, where p and o are the mean and standard devi-
ation of L(c) over all c in the investigated range. This indicates
the predicted significance of the true value c® compared to the
background. We also measured error in predicted value as the
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Euclidean distance between the location of peak likelihood
and c°.

The selected metrics are reported in Figure 10 as a func-
tion of 6 over three decades. As expected, introducing noise
to the point cloud decreases the Z-score for the true value
and increases the prediction error. Unsurprisingly, 6 = 0.1 m
seems to be untenable compared to model dimensions on the
order of 5 m. However, it is encouraging to see that for the
magnitude of noise expected from typical point cloud acqui-
sition methods (on the order of 1073 m), the method is quite
robust. In fact, the error did not increase between 10~4 m and
1073 m in our test case.

Using DEM, each brick in the simulation needs to be mod-
eled individually. After creating the postulated undamaged
structure, U, the centroids and/or vertices of each brick can
be extracted. This work illustrated how the method would per-
form under the minimum required conditions. A user could
additionally consider each vertex instead of the centroid to
increase the density of the point cloud.

3.1.3 | Sensitivity to library size

We also performed a sensitivity study to understand the effects
of data volume supplied to the GPR. As aforementioned,
while the EMD metric provides a quantitative way to evaluate
individual hypotheses, it becomes computationally intractable
to identify the perfect value for ¢ when damage conditions
are parameterized in continuous space. Thus, we generated
a library of hypotheses {(Q;c),} so that we can evaluate
the distance between the existing one and every hypothe-
sized structure, d(P,Q,). The number of simulations was
randomly down-selected from the original 256 generated for
Section 3.1 to measure the performance with different library
sizes. Again, we measure the error between peak likelihood
and true value and report the result as a function of library
size in Figure 11.

As the number of simulations in the library increases,
the interpolation results improve, and thus the error in the
prediction declines. These results show that while an increase
in the number of simulations can reduce the distance to
the ground-truth value, the median return-on-investment
declines and the variance of data points stabilizes after

600

FIGURE 7 Estimate of the likelihood field £(c) obtained from P,. Details otherwise same as Figure 5
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FIGURE 8 Estimate of the likelihood field £(c) obtained from P,. Details otherwise same as Figure 5
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FIGURE 9 Representation of different segmentations resulting from MBKM with different »n and random seed. Reported mean y and standard

deviation o are for the given n. Each instance is reported with its maximum likelihood (x, y, @) and likelihood magnitude

approximately 100 simulations for this particular case. Note
that the convergence near 256 arises from the sampling
protocol (down-selecting from the original library), rather
than anything unusual about that library size.

3.2 | Validation with experimental case

We also applied our method to a laboratory-scale experimen-
tal case study from our prior work to validate the method

on a real (physical) structure. For an in-depth discussion of
the experiment, see Napolitano and Glisic (2019a); in this
work, only the pertinent aspects of the experiment have been
distilled and summarized. A single-leaf, dry-joint masonry
test wall was constructed on a base consisting of cinder
blocks and a manual jack. Orthorectified photographs were
used to capture the centroids of each brick after cracking to
acquire P. The corner of the wall was settled to a depth of
0.021 + 0.0001 m for a width of 2x brick length to induce a
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long-range displacement event. The depth of settlement was
determined by the depth at which cracking was evident; it
was not carried further to avoid complete failure of the wall.
The bricks have dimensions of 193 X 55X 90+ 1 mm (as
indicated in Figure 12) and a density of 2,508.67 + 10 kg/m”.

As with the simulated data in the preceding section, the true
damage condition c® is known, but is not utilized in generating
the prediction. The undamaged structure is represented by a
uniform wall of identical bricks (such assumptions would typ-
ically be made in generating U with CAD). We then produce

: g
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FIGURE 11 Effects of the library size (in number of simulations)
on the error between peak likelihood and true value. Black line with
squares on it indicates median value, while upper and lower blue lines
indicate 75th and 25th percentiles, respectively (from 10 samples at

each size)
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FIGURE 12 Geometry and definition of variables used in

experimental setup

the simulation library by varying the settlement center x, set-
tlement width w, and settlement amplitude a. Thus, the dam-
age condition is ¢° = (1.25,0.39,0.021). In this case study,
we do not utilize segmentation since there are a small number
of bricks (N = 93).

The likelihood field for damage on the entire wall is
illustrated in Figure 13. The condition predicted from the
peak likelihood is settlement at (1.25,0.44,0.022) (mag-
nitude £ = 163 m~!') compared to the true value of ¢° =
(1.25,0.39,0.021) (magnitude £ = 157 m~') and an average
value of £ = 72 m~!. Note that the prediction of w = 0.44 m
is nearly identical to the true w = 0.39 m in practice because
only integer number of bricks are settled. This result illustrates
that the method can accurately determine the cause of dam-
age, even when making assumptions about the structure of
the undamaged wall (e.g., identical bricks in U') and introduc-
ing noise from the point cloud acquisition through orthorecti-
fied photographs.

3.3 | Comparison to previous method

As discussed, the main limitation of the statistical method out-
lined in Napolitano and Glisic (2019a) is the amount of time
required for comparison since the process is manual. In the
previous work, the difference between the existing conditions
and the numerical simulations (fractional distance) was com-
puted on a subset of the total joints. The equations for calculat-
ing fractional distance and the subset of joints can be found in
Napolitano and Glisic (2019a). Fractional distances were then
manually compared between the existing conditions and five
hypothesized simulations (requiring about 20 min of manual
effort, or 240 s per hypothesis). The hypothesized simulation
with the smallest fractional distance was selected to be the
most probable cause of the existing damage on the structure.

With the present method, the experimental wall was
compared to a library of 256 possible cases in 0.25 s, or
1073 s per hypothesis on desktop PC with 32.0 GB of
RAM and an Intel Core i7-770K CPU @4.20zGHz (for
completeness, the synthetic wall took 83 s). Even without the
newly developed interpolation capabilities, this represents an
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FIGURE 13 Estimate of the likelihood field £(c) obtained from the experimental wall. Details otherwise same as Figure 5

increase in throughput on the order of 10°x since it required
1073 s per hypothesis and the previous method required
240 s per hypothesis. Additionally, the manual method did
not allow for separation of damage patterns (i.e., segmenta-
tion) and thus delivered only a heuristic diagnosis, whereas
the present method provides much more detailed informa-
tion. In addition, the data-driven GPR approach enables a
smooth interpolation in the parameter space, allowing for the
possibility of hypotheses not present in the library.

4 | CONCLUSIONS

This paper outlines a method for diagnosing existing crack
patterns on masonry structures, which introduces a hybrid
physics-based modeling and data-driven approach. In particu-
lar, DEM is used to simulate the response of several masonry
structures under diverse loading conditions, MBKM is used
to segment regions of the existing and simulated point clouds,
EMD is used to compare existing and simulated point clouds,
and GPR is used to interpolate between those results. The
method was validated against the results of a synthetic 3D
structure with known ground-truth damage conditions. It was
successfully able to interpolate from a library of prior exam-
ples to find the two independent causes of damage in different
regions of the structure.

In addition, the method was validated using a case study
based on prior laboratory-scale experimental testing. A dif-
fuse cracking pattern was induced on the experimental wall,
and the method was shown to be capable of quantitatively
diagnosing the cause of damage. Several sensitivity studies
were conducted to show robust handling of noise in the input
point clouds, insensitivity to a particular choice of segments,
as well as effect of reducing volume of prior examples. To
understand how this new method compared to state-of-the-
art methods in the field, it was directly compared for the
experimental wall. Compared to our prior approach, this tech-
nique is on the order of 10°x faster and requires far less
human intervention. This not only improves throughput, but
also reduces diagnostic bias by including far more hypotheses
in the evaluated set. Therefore, the computational novelty of
this research is an automated, quantitative method for diag-
nosing the causes of crack patterns in masonry structures.

There are a few notable limitations of the present technique.
First, point cloud acquisition from the exterior is not sufficient
for “real” masonry structures consisting of multiple layers of
material. Additional assumptions must then be made for the
structure of the interior to arrive at a suitable U. This may
be addressed in the future by the inclusion of an ensemble of
{U,}, which could be included as a parameter to test by the
distance calculations.

The success of GPR interpolation requires that £ be rel-
atively smooth, which implies that the damage conditions ¢
must be amenable to parameterization. Furthermore, gener-
ation of a suitable simulation library becomes difficult for
high-dimensional c. That is, when many damage conditions
are possible and the ranges cannot be easily bounded, much
simulation effort may be wasted in regions with very low
likelihood. Ideally, engineering judgment would be used to
restrict parameter ranges when possible and separate damage
into independent events, such as how two settlements events
were predicted from a library of only single-settlement events
in Section 3.1.
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