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ABSTRACT
There is significant interest in examining large datasets using com-
plex domain-specific queries. In many cases, these queries can be
accelerated using specialized indexes. Unfortunately, the develop-
ment of a practical index is difficult, because databases generally
require additional features such as updates, concurrency support,
crash recovery, etc. There are three major lines of work to alleviate
the pain: (1) automatic index composition/tuning which composes
indexes out of core data structure primitives to optimize for spe-
cific workloads; (2) generalized index templates which generalize
common data structures such as B+-trees for custom queries over
custom data types, and (3) data structure dynamization frameworks
such as the Bentley-Saxe method which converts a static data struc-
ture into an updatable data structure with bounded additional query
cost. The first two are limited to very specific queries and/or data
structures and, thus, are not suitable for building a general index
dynamization framework. The last one is more promising in its
generality but also has limitations on query types, deletion support,
and performance tuning. In this paper, we discuss the limitations
of the classic index dynamization techniques and propose a path
towards a more general and systematic solution. We demonstrate
the viability of our framework by realizing it as a C++20 metapro-
gramming library and conducting case studies on four example
queries with their corresponding static index structures. With this
framework, many theoretical/early-stage index designs can easily
be extended with support for updates, along with a wide tuning
space for query/update performance trade-offs. This allows index
designers to focus on efficient data layouts and query algorithms,
thereby dramatically narrowing the gap between novel index de-
signs and deployment.
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1 INTRODUCTION
Each year, the database community proposes dozens of novel index-
ing techniques that improve the performance of particular types
of workloads. While some of these new indexes seek to accelerate
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queries that are already well served, many instead aim to expand
the support of database systems for novel types of queries. As the
variety of query types in which users are interested continues to
explode, these new indexes are increasingly important. Recent ex-
amples of this can be seen in areas such as vector databases [19, 23]
and DNA sequence search [20, 25], where such specialized indexes
are critical for ensuring reasonable query performance.

In spite of this large body of work, the state of database practice
remains largely unaltered: the majority of modern indexes are built
upon a core set of classical data structures: the B+-tree, LSM-tree,
and hash table. This state of affairs does not arise from a lack of
interest, but rather from the extensive list of requirements placed
upon an index by modern data systems. These requirements include
concurrent operations, fault tolerance, insertion and deletion of
data, performance tuning, deployment in distributed systems, and
more. For example, a recent study found that specialized data struc-
tures allow for large improvements in both space and time costs
for query processing in Datalog, but demands the introduced index
structures support concurrent updates [34]. This presents a large
barrier to entry for newly proposed data structures, which must
manually integrate these features before they can be considered
ready for use in practical systems.

There are three major lines of work with the aim of reducing this
development burden. The first is automatic index composition/tun-
ing [5, 17, 18]. This technique automatically composes indexes out
of a core set of data structure primitives to optimize for particular
workloads. Existing work in this area is focused exclusively on 1-D
point lookup and range queries. The second is generalized index
templates, such as GiST [15, 21] and GIN [14]. These templates gen-
eralize commonly used data structures to support custom queries
over custom data types. For example, GiST [15, 21] generalizes B+-
tree for efficient predicate filtering against a variety of user-defined,
complex data types, and GIN [14] generalizes inverted indexes
to support text search in unstructured/semi-structured data types
(e.g., text documents, JSON objects etc.). Both of the aforementioned
techniques can only support a limited set of queries that can be an-
swered by the particular data structures they are based upon. They
cannot automate the development of new indexes based on special-
ized data structures that do not fit their models, such as succinct
tries [43], nor special query types such as independent range sam-
pling [16]. The third approach is the dynamization of existing static
data structures. This takes a static data structure and produces an
updatable data structure with bounded additional query cost. The
most commonly used dynamization approach is the Bentley-Saxe
method [6], which has been deployed to provide update support
to various static structures in the past [4, 12, 26, 32, 33, 39]. Unfor-
tunately, this method has a number of limitations that restrict its
applicability and requires significant per-data-structure customiza-
tion in practice. Specifically, we note the following limitations: (1)
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restrictions on the types of query that can be supported, (2) lim-
ited support for deletion, and (3) lack of configurability and poor
performance.

Of the three lines of work, we believe dynamization is the most
promising for producing indexes for novel query types. While there
are restrictions on supported query types, these are less onerous
than the other two approaches, which are tightly linked to spe-
cific data layouts. As a preliminary study, we applied the principles
of dynamization to a specific class of data structures for indepen-
dent range sampling, a query not supportable under the classic
dynamization models, and achieved good results [33]. This work
focuses on alleviating the pain points of dynamization approaches
in general, with the aim of producing a generalized framework
capable of extending a broader class of static data structures with
support for inserts, deletes, and, ultimately, other necessary index
features. Overall, we make the following contributions:
(1) We introduce two new classes of search problems to expand

the applicability and efficient deletion support of the classic
dynamization methods. In addition, we conduct a theoretical
analysis on the cost of applying a dynamization framework
on these new classes of queries and offer a comprehensive
taxonomy of search problems to guide the usage of various
techniques. (Section 3)

(2) We propose a more general dynamization framework with well-
defined programming interfaces and a wide tuning space to
address the poor performance and configurability limitations
of the classic dynamization methods. (Section 4.1 and 4.2)

(3) We discuss the basic strategies to extend our framework with
other practical index features like concurrency support and
fault tolerance. (Section 4.3)

(4) We conduct a comprehensive empirical case study of a proto-
type version of our framework for a variety of data structures
and query types to show how it can support more query/index
types and provide better performance than the classic solutions.
(Section 5)

Apart from that, we introduce the background on the classic
dynamization methods in Section 2. We discuss other related work
in Section 6, and conclude the paper in Section 7.

2 BACKGROUND
The Bentley-Saxe Method [6] is one of the most foundational and
widely used techniques for the dynamization of static data struc-
tures designed to answer specific types of query. In this section,
we provide a detailed review of the Bentley-Saxe method and its
limitations to motivate our technical contributions.

Formally, given a dataset domain 𝐷 , a query Q : PS(𝐷) ×𝑄 →
𝑅 is1 a function which accepts a set of records 𝑑 ⊆ 𝐷 and a tuple
of query parameters 𝑞 ∈ 𝑄 as inputs, and maps them to a result
𝑟 ∈ 𝑅. For example, consider a 1-dimensional range query Q over
the 𝑥 column a database table 𝑑 (𝑥 : INT4, 𝑦 : TEXT), which is a
subset of 𝐷 = dom(INT4) × dom(TEXT). The parameters are a closed
range [𝑥𝑙 , 𝑥ℎ] ∈ 𝑄 = dom(INT4) × dom(INT4). The function Q is
defined as returning all the records where 𝑥 is in a closed range
[𝑥𝑙 , 𝑥ℎ], i.e., Q(𝑑, [𝑥𝑙 , 𝑥ℎ]) = 𝜎𝑥∈[𝑥𝑙 ,𝑥ℎ ]𝑑 . A query can often be
answered more efficiently when a data structure instance 𝒾 ∈ I
1We use PS(𝑆 ) to denote the power set of 𝑆 .

is2 pre-built or maintained on the queried dataset 𝑑 . In the 1-D
range query example, this data structure could be a conventional
search tree (e.g., ISAM, B+-tree, and their variants), or learned
index (e.g., ALEX [10], PGM [12], RMI [22], TrieSpline [35], etc.).
However, it can be costly to maintain such data structures under
updates. This is because some of them are static by design (e.g.,
ISAM, RMI, TrieSpline), and those that are dynamic may suffer from
performance deterioration under adversarial update workloads.
This can be seen in the phenomenon of "waves of misery" in R-
trees [40] and B-trees [13], where spikes of many node splits occur
over short period of time under insertion-heavyworkload, as well as
in the significant performance regressions experienced by dynamic
learned indexes in the face of skewed key distributions [38, 41].
Decomposable SearchProblems and theBentley-SaxeMethod.
The Bentley-Saxe method was designed under the assumption
that many queries supported by specialized data structures can
be framed as decomposable search problems (DSP):

Definition 1 (Decomposable Search Problem). A search prob-
lem is a query Q : PS(𝐷) × 𝑄 → 𝑅 that can be answered with
a data structure (design) I efficiently. It is decomposable if and if
only there exists a O(1)-time commutative and associative bi-
nary query answer combine operator □ such that, ∀𝑞 ∈ 𝑄,∀𝑑 ⊆
𝐷,∀𝑑1, 𝑑2 𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑑1 ⊎ 𝑑2,

Q(𝑑, 𝑞) = Q(𝑑1, 𝑞) □ Q(𝑑2, 𝑞)

Consider a data structure 𝒾 ∈ I which answers a DSP and is
constructed from a set of records 𝑑 ∈ 𝐷 by a function 𝒾 = build(𝑑)
with cost 𝐵( |𝑑 |). This structure can be extended with support for
inserts and deletes if it satisfies an additional property,

Definition 2 (Record Identity). A data structure 𝒾 ∈ I built
over a domain of records 𝐷 satisfies record identity if and only if
it supports a function, unbuild : I → PS(𝐷), such that 𝒾 =

build(unbuild(𝒾)).

This property allows for inserting and deleting records through
reconstruction of the data structure,

ins(𝒾𝑖 , 𝑟 ) = build(unbuild(𝒾𝑖 ) ∪ {𝑟 })
del(𝒾𝑖 , 𝑟 ) = build(unbuild(𝒾𝑖 )/{𝑟 })

Given a DSP Q and a data structure 𝒾 ∈ I that can efficiently
answer Q, the Bentley-Saxe method provides support for insertion
and queries efficiently even if I is static. It does so by creating
up to ℎ = ⌈log2 𝑛⌉ data structure instances 𝒾0, 𝒾1, . . . , 𝒾ℎ−1, called
levels, where each data structure 𝒾𝑙 is empty or contains exactly
2𝑙 unique records such that

⋃︁ℎ−1
𝑙=0 unbuild(𝒾𝑙 ) = 𝑑 . For a partic-

ular 𝑛 = |𝑑 |, there is a unique set of levels that are non-empty,
which forms a binary decomposition of the current dataset size
𝑛. Whenever a new element 𝑥 ∈ 𝐷 is inserted into 𝑑 , there are
two possible cases: (1) 𝒾0 is empty, in which case we can con-
struct 𝒾0 = build({𝑥}); (2) 𝒾0, 𝒾1, . . . , 𝒾𝑙 ′ is a maximal sequence of
non-empty levels, for some 𝑙 ′ ≥ 0. In this case, we build 𝒾𝑙 ′+1 =

build({𝑥} ∪⋃︁𝑙 ′

𝑙=0 unbuild(𝒾𝑙 )), possibly creating a new level, and

2I denotes a specific data structure design, e.g., B-tree, or TrieSpline, where it is used
denote the set of all instances of this data structure for a domain 𝐷 .
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Figure 1: Illustration of inserts in the Bentley-Saxe Method.

then empty 𝒾0, 𝒾1, . . . , 𝒾𝑙 ′ . Approaches exist for improving recon-
struction performance when I supports a more efficient construc-
tion procedure based on merging existing structures, a property
called merge decomposable (MDSP).

Once again, let’s take 1-D range queries using a static learned
index (e.g., TrieSpline) as an example (Figure 1). Suppose we already
have 𝑛 = 10 elements in 𝑑 = {𝑥1, 𝑥2, . . . 𝑥10}, where the subscripts
represent the order in which they were inserted. Since (10)10 =

(0101)2, we have two empty learned indexes 𝒾0 and 𝒾2, while the
other two are 𝒾1 = build({𝑥9, 𝑥10}), and 𝒾3 = build({𝑥1, 𝑥2, . . . , 𝑥8}).
If we insert 𝑥11 now, we will create 𝒾0 = build({𝑥11}) since 𝒾0 is
empty. If we now insert another element 𝑥12, we will unbuild 𝒾0,
𝒾1, build a new learned index 𝒾2 over their union, together with
{𝑥12}, and then empty 𝒾0 and 𝒾1. Clearly, the amortized insertion
cost into this decomposed structure is 𝑂

(︂
𝐵 (𝑛)
𝑛 log2 𝑛

)︂
for the first

𝑛 insertions starting from an empty dataset. In the case of TrieS-
pline, the 𝐵(𝑛) = 𝑂 (𝑛), so the amortized insertion cost becomes
𝑂 (log2 𝑛), which is on par with standard tree indexes.

Support for efficient insertion in this way may come at a moder-
ate cost to the query complexity. Let 𝒬(𝑛) be the query complexity
for a single instance of I. For any query parameter 𝑞 ∈ 𝑄 , we can
utilize the query answer combine operator □ to answer the query
over the decomposed structure in 𝑂 (𝒬(𝑛) log2 𝑛) time as follows:

Q(𝑞, 𝑑) = □𝑙∈[0,⌈log2 𝑛⌉ ]∧𝒾𝑙 is nonemptyQ(𝑞, 𝒾𝑙 )

Here, we slightly abuse the notation Q(𝑞, 𝒾𝑙 ) to mean performing
query Q(𝑞, unbuild(𝒾𝑙 )) using the index 𝒾𝑙 . It is worth noting that
when 𝒬(𝑛) is Ω(𝑛𝜖 ) for some 𝜖 > 0, then the additional log2 𝑛
factor is absorbed in the final query complexity. This makes the
Bentley-Saxe method appealing as, in the worst-case, it only adds
up to a logarithmic factor of query overhead, and, for polynomial
time queries, it has no asymptotic effect at all.
(Restricted) Deletion Support. The Bentley-Saxe method also
supports deleting records. Most generally, a record𝑑𝑟 can be deleted
using the following scheme,

𝒾𝑟 = build(unbuild(𝒾)/𝑑𝑟 )
Unfortunately, it is provably impossible [6] to provide reasonable
performance bounds of this operation. This conclusion roots from
the fact that deletes might not affect a decomposed structure in
a deterministic manner. Any record can be deleted at any time,
irrespective of where it falls within the decomposed structure. This
makes it trivial to force worst-case behavior, such as by deleting
the records in the reverse order they were inserted.

However, more efficient delete support is possible, contingent
upon additional properties of the search problem. The first approach
requires that a search problem has a 𝑂 (1)-time inverse combine
operation (Δ), which can negate the effect of a set of records from

the query results provided by another set. More formally, it must
satisfy the following condition [30],

∀𝐴 ∈ PS(𝐷), 𝐵 ⊆ 𝐴,𝑞 ∈ 𝑄, Q(𝐴/𝐵, 𝑞) = Δ(Q(𝐴,𝑞),Q(𝐵, 𝑞))

Such problems are called invertible (INV) [6]. This allows for deletes
to be handled by introducing a second “ghost” structure and in-
serting deleted records into this. Queries are then run against both
the main and the ghost structure, and the inverse combine is used
to filter all the deleted records out of the final result. Another ap-
proach is to rely upon data-structure level support for deletes, a
property called Deletion Decomposability (DDSP) [30]. For struc-
tures with this property, deletes are supported by first using a global
dictionary to map each record to the structure to which it belongs
(which must be kept up to date as structures are reconstructed).
Deletes can then be performed by using this dictionary to find the
structure containing the record, and calling that structure’s delete
routine. A common approach for adding delete support to a static
structure is to use weak deletes. This approach doesn’t remove the
deleted record (leaving the structure static), but instead locates it
within the structure and marks it as deleted [29]. Queries must be
written so as to ignore these deleted records. We will generally
consider a DDSP to be a problem supporting deletes by means of
weak deletes in this work. Note that, for both DDSP and INV prob-
lems, the number of deleted records within a structure is usually
unbounded. The commonly proposed solution to this problem is
to track the number of deleted records and periodically rebuild
the entire structure to remove them when the count exceeds some
user-defined threshold [29].
Advantages of the Bentley-Saxe Method. Unlike the other two
index design frameworks discussed in Section 1, namely automated
index composition/tuning and generalized index templates, the
Bentley-Saxe method is not tied to a specific generalization of data
structure, data layout, or query type. Thus, it is applicable to a
broader range of queries and data structures than these techniques.
In addition, static data structures have their own advantages, which
the Bentley-Saxe method can, at least in part, preserve. They are
often tightly packed, which reduces storage requirements and pro-
vides better spatial locality; both of which can have significant
impacts on performance [32]. They are also often built with full
knowledge of the data distribution, allowing them to avoid query
performance deterioration problems due to adversarial workloads.
Limitations of Bentley-Saxe. Despite its clear advantages, there
are a number of problems which stand in the way of using the
Bentley-Saxe method as a general solution. We note the following
three limitations: (1) decomposability is a strong requirement that
restricts its applicability; (2) deletion support is dependent on query
or data structure specific properties; (3) it suffers from poor average
and tail insertion latencies and lacks any performance configura-
tion. Additionally, from the standpoint of ultimately producing a
practical database index, the Bentley-Saxe method does not itself
have any provisions for features beyond inserts (and sometimes
deletes), such as concurrency or fault-tolerance.

3 BEYOND QUERY DECOMPOSABILITY
In this section, we consider extensions to the definition of decom-
posable search problems that allow the Bentley-Saxe method to



Table 1: Frequently Used Notation

Symbol Meaning
𝒬𝑠 (𝑛) Cost of local_query
𝐶𝑒 (𝑛) Cost of combine
𝑃 (𝑛) Cost of local_preproc
𝐷 (𝑛) Cost of distribute_query
𝑅(𝑛) Number of iterations necessary for an IDSP
R Query result
𝑞 Query parameters
𝒾𝑖 Index over data in partition 𝑖

𝑞𝑖 Local query parameters for partition 𝑖

𝒮𝑖 Local query state for partition 𝑖

R𝑖 Local query result for partition 𝑖

support more general query types and achieve wider deletion sup-
port. Further, we will develop a comprehensive taxonomy of search
problems to compare our new definitions with the classic theoreti-
cal work and provide a guide of what classes of search problems
can be supported effectively by index dynamization.

3.1 Extended Decomposability
The classic Bentley-Saxe method leverages an execution model
where the given query is broadcast, identically, to each data par-
tition, and then results are combined. This limits the applicability
of the Bentley-Saxe method to decomposable search problems. In
this subsection, we will use the problem of Independent Range
Sampling (IRS) as a pathological case to identify the pain points of
query decomposability and pave the way towards supporting more
general queries.

Formally, the IRS problem is defined as follows,

Definition 3 (Independent Range Sampling [36]). Let 𝐷 be a
set of 𝑛 points in R. Given a query interval 𝑞 = [𝑥,𝑦] and an integer 𝑘 ,
an independent range sampling query returns 𝑘 independent samples
from𝐷∩𝑞 with each point having equal probability of being sampled.

While drawing a sample from a single set of records is easy, it
becomes difficult when there are multiple partitions of records. This
is because the 𝑘 samples being drawn need to be distributed across
the different partitions in accordance with their weights under the
range query being sampled from (i.e., the number of records in
the partition that are also contained in the query interval). With
the original Bentley-Saxe method, one would have to provide two
interfaces for an arbitrary sampling index 𝒾 over a key field 𝑥

as follows: (1) a single (sampling) query interface Q((𝑘, 𝑙, 𝑟 ), 𝒾)
which draws an independent and uniform random sample with
replacement of size 𝑘 from 𝜎𝑥∈[𝑙,𝑟 ]𝒾; (2) a combine operator 𝑆1□𝑆2
which combines two samples of size 𝑘 into a single sample of size 𝑘 .
However, as shown in Algorithm 1, this requires augmenting each
sampled record with its inverse sampling probability (IRSQueryD
in Algorithm 1). Even with this adjustment, the combine operator
cannot be implemented in constant time in terms of sample size 𝑘
(IRSCombineD in Algorithm 1).

In fact, plugging Algorithm 1 into the original Bentley-Saxe
method, we obtain a query algorithm that runs in𝑂 (log2 𝑛+𝑘 log𝑛)
time, even though the underlying IRS data structure can achieve

Algorithm 1: IRS with decomposability
Input: 𝑘 : sample size, [𝑙, 𝑟 ]: key range to sample from
Output: 𝑆 : a sample size of size 𝑘 where each sample is

additionally annotated with its inverse probability
1 def IRSQueryD((k,l,r), 𝒾)

//draw a sample of size 𝑘 in range [𝑙, 𝑟 ]
2 𝑆0 ← 𝒾.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘, 𝑙, 𝑟 ) ;

//count how many records are in range [𝑙, 𝑟 ]
3 𝑐 ← 𝒾.𝑐𝑜𝑢𝑛𝑡 (𝑙, 𝑟 ) ;
4 return𝑆0 .𝑚𝑎𝑝 (lambda x : (𝑥, 𝑐)) ;
5 def IRSCombineD (𝑆1, 𝑆2)
6 if 𝑆1 = 𝜙 or 𝑆2 = 𝜙 then
7 return 𝑆1 ∪ 𝑆2 ;
8 𝑘 ← |𝑆1 | ; //both sets have size 𝑘

9 𝑐1 ← 𝑆1 .𝑟𝑒𝑑𝑢𝑐𝑒 (lambda (c0, (x, c)) : 𝑐0 + 𝑐, 0)/𝑘 ;
10 𝑐2 ← 𝑆2 .𝑟𝑒𝑑𝑢𝑐𝑒 (lambda (c0, (x, c)) : 𝑐0 + 𝑐, 0)/𝑘 ;
11 𝑘1 ← 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (k, 1.0 × (𝑐1 + 𝑐2)/𝑐2) ;

//𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘′, 𝑆′) draws 𝑘′ independent and
uniform samples from set 𝑆 ′, which is
𝑂 ( |𝑆 ′ | + 𝑘) time

12 𝑆 ← 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘1, 𝑆1) ∪ 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘2, 𝑆2) ;
13 return 𝑆.𝑚𝑎𝑝 (lambda (x, _) : (𝑥, 𝑐1 + 𝑐2)) ;

the optimal 𝑂 (log𝑛 + 𝑘) time [16]. Astute readers might have no-
ticed that the IRSCombineD function is non-constant in terms of
sample size 𝑘 , and thus does not satisfy the original Bentley-Saxe
method’s requirement that the combine operator run in 𝑂 (1) time.
[29] denoted this more general class of search problems as 𝐶 (𝑛)-
Decomposable Search Problems (C(n)-DSP), where the Bentley-Saxe
method can only provide 𝑂 ((𝒬(𝑛) +𝐶 (𝑛)) log𝑛) worst-case com-
plexity. Practically speaking, if a search problem has to admit a
non-𝑂 (1) time combine function, it generally involves larger inter-
mediate result sizes and more expensive combine operators, which
makes it much less attractive than bespoke dynamic indexes. In the
particular case of IRS, it might be better to use a standard aggregate
sampling B-tree [27], which supports updates and has a slightly
lower 𝑂 (𝑘 log𝑛) query complexity.

In [33], we addressed this problem by introducing a two-stage
sampling query process involving preprocessing to obtain theweights
of each partition and assigning appropriate sample sizes to each
partition. In this work, we formally extract an abstraction of this
two-stage query process to make it work for a broader class of
search problems, which we call extended Decomposable Search Prob-
lems (eDSP). In eDSP, a query is answered by running identical
preliminary queries against each partition, and using the results of
these to produce individualized local queries, and combining these
local results to create the query answer. This process is represented
using the following interface,
• local_preproc(𝒾𝑖 , 𝑞) → 𝒮𝑖

Pre-processes each partitionD𝑖 using index 𝒾𝑖 to produce meta-
information objects 𝒮𝑖 about the query result within this parti-
tion.

• distribute_query(𝒮1, . . . ,𝒮𝑚, 𝑞) → 𝑞1, . . . , 𝑞𝑚
Processes the list of meta-information𝒮𝑖 and emits a list of local
query parameters 𝑞𝑖 .



Algorithm 2: IRS with Extended Decomposability
Input: 𝑘 : sample size, [𝑙, 𝑟 ]: key range to sample from

1 def local_preproc(𝑞 = (𝑘, 𝑙, 𝑟 ), 𝒾𝑖 )
//count how many records are in range [𝑙, 𝑟 ]

2 return 𝒾𝑖 .𝑐𝑜𝑢𝑛𝑡 (𝑙, 𝑟 ) ;
3 def distribute_query(𝒮1, . . ., 𝒮𝑚 , 𝑞 = (𝑘, 𝑙, 𝑟 ))

//Determine local query based on local states

4 𝑘1, . . . 𝑘𝑚 ← multinomial(𝑘,𝒮1, . . .𝒮𝑚) ;
5 for 𝑖 = 1..𝑚 do
6 𝑞𝑖 ← (𝑘𝑖 , 𝑙, 𝑟 ) ;
7 return 𝑞1 . . . 𝑞𝑚 ;
8 def local_query(𝒾𝑖 , 𝑞𝑖 = (𝑘𝑖 , 𝑙, 𝑟 ))

//Sample using the local sample size

9 return 𝒾𝑖 .𝑠𝑎𝑚𝑝𝑙𝑒 (𝑘𝑖 , 𝑙, 𝑟 ) ;
10 def combine(R1, . . . ,R𝑚 , 𝑞 = (𝑘, 𝑙, 𝑟 ))
11 return

⋃︁𝑚
𝑖=1 R𝑖 ; //Union results together

• local_query(𝒾𝑖 , 𝑞𝑖 ) → R𝑖
Executes the local query 𝑞𝑖 over partitionD𝑖 using index 𝒾𝑖 and
returns a partial result R𝑖 .

• combine(R1, . . .R𝑚, 𝑞) → R
Combines the partial results to produce the final answer.
Next, we use IRS as an example of using the eDSP interface and

analyze its query complexity (see Algorithm 2). During query pro-
cessing, we first run local_preproc to obtain meta-information
about each partition. In IRS, these are local partition weights. Then
we invoke distribute_query to aggregate the meta-information
and generate individualized parameters for each partition. In IRS,
these parameters are the random sample sizes drawn from a multi-
nomial distribution with the local partition weights. After that,
we execute each local query Q𝑖 with its corresponding index us-
ing local_query, and finally call combine over all the results to
obtain the final result. In IRS, local_query can easily be imple-
mented as an IRS query over the local sampling index with the
same query range and the previously computed random sample
size, and combine is simply the union of all samples. To reduce the
combination overhead, we switched from a binary operator that is
applied pairwise over the local query results, to a variadic one that
may process all the query results at once.

Let 𝒬𝑠 (𝑛) be the worst-case cost of local_query, 𝐶𝑒 (𝑛) be the
cost of combine, 𝑃 (𝑛) be the cost of local_preproc, and 𝐷 (𝑛) be
the cost of distribute_query. Then, the worst-case cost of answer-
ing an extended-decomposable query against an index decomposed
using the Bentley-Saxe method is,

𝑂
(︁
log2 𝑛 · 𝑃 (𝑛) + 𝐷 (𝑛) + log2 𝑛 ·𝒬𝑠 (𝑛) +𝐶𝑒 (𝑛)

)︁
Algorithm 2 demonstrates the usefulness of preprocessing for im-

proving query complexity. In particular, the ability to determine the
number of records within the query range allows for individualized
local queries to be constructed, which can be executed indepen-
dently and combined trivially using a simple union. Contrasting
this with Algorithm 1, the eDSP version is not only far simpler, but
is also asymptotically and practically faster for a typical sample size
in the thousands. For the dynamic IRS structure we create based on
eDSP, this interface enables sampling with a cost of 𝑂 (log2 𝑛 + 𝑘)

Algorithm 3: K-nn with Iterative Decomposability
Input: 𝑘 : result size, 𝑝: query point

1 def local_preproc(𝑞 = (𝑘, 𝑝), 𝒾𝑖 ))
//Initialize local query state

2 return 𝒾𝑖 .𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑠𝑡𝑎𝑡𝑒 (𝑘, 𝑝) ;
3 def distribute_query(𝒮1, ..., 𝒮𝑚 , 𝑞 = (𝑘, 𝑝))
4 for 𝑖 ← 1 . . .𝑚 do

//Local queries contain their current

index traversal state

5 𝑞𝑖 ← (𝑘, 𝑝,𝒮𝑖 ) ;
6 return 𝑞1 . . . 𝑞𝑚 ;
7 def local_query(𝒾𝑖 , 𝑞𝑖 = (𝑘, 𝑝,𝒮𝑖 ))

//Get 𝑘 nearest neighbors from the structure

8 (𝑟𝑖 ,𝒮𝑖 ) ← 𝒾𝑖 .𝑘𝑛𝑛_𝑓 𝑟𝑜𝑚(𝑘, 𝑝,𝒮𝑖 ) ;
9 return (𝑟𝑖 ,S𝑖 ) ; //The local result includes the

records and query state

10 def combine(R1, . . . ,R𝑚 , 𝑞 = (𝑘, 𝑝))
11 R = {} ;
12 𝑝𝑞 ← PriorityQueue() ;
13 for 𝑖 ← 1 . . .𝑚 do
14 𝑝𝑞.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖, 𝐷 (𝑝,R𝑖 .𝑓 𝑟𝑜𝑛𝑡 ())) ;
15 while |R | < 𝑘 ∧ there are still local results do
16 𝑖, 𝑑1 ← 𝑝𝑞.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ;

//Ensure records from ghost structures
sort directly before their corresponding
record.

17 if 𝑖𝑠_𝑓 𝑟𝑜𝑚_𝑔ℎ𝑜𝑠𝑡 (R𝑖 ).𝑓 𝑟𝑜𝑛𝑡 () then
18 Omit ghost and its record from the result set
19 else
20 R ← R ∪ R𝑖 .𝑑𝑒𝑞𝑢𝑒𝑢𝑒 () ;
21 𝑝𝑞.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑖, 𝐷 (𝑝,R𝑖 .𝑓 𝑟𝑜𝑛𝑡 ())) ;
22 return R ;
23 def repeat(𝑞 = (𝑘, 𝑝),R, 𝑞1, . . . 𝑞𝑚)
24 𝑚𝑖𝑠𝑠𝑖𝑛𝑔← 𝑘 − R .𝑠𝑖𝑧𝑒 () ;
25 if 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 > 0 then
26 for 𝑖 ← 1 . . .𝑚 do
27 𝑞𝑖 ← (𝑚𝑖𝑠𝑠𝑖𝑛𝑔, 𝑝, 𝑞𝑖 .𝒮𝑖 ) ;
28 return (𝑇𝑟𝑢𝑒, 𝑞1 . . . 𝑞𝑚) ;
29 return (𝐹𝑎𝑙𝑠𝑒, 𝑞1 . . . 𝑞𝑚) ;

as opposed to the 𝑂 (log2 𝑛 + 𝑘 log𝑛) cost of Algorithm 1. This so-
lution achieves the same complexity as our bespoke dynamization
framework for sampling indexes in [33] did for IRS. However, in-
stead of being a highly specialized system, eDSP provides a general
interface that can be used to solve a variety of problems (e.g., kNN
which will be described in more detail shortly).

3.2 Iterative Deletion Decomposability
Efficient support for deletion using the Bentley-Saxe method is
provably impossible in the general case [6]. Section 2 discussed two
special properties that enable efficient deletion: (1) INV where one
uses a ghost structure to store deleted records and perform inverse
combine to produce final results; (2) DDSP where one relies on data
structure specific weak deletions to ignore deleted records. Of the
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two, INV is preferable as it places no additional requirements on
the data structure and doesn’t require modification of the query,
aside from the addition of the inverse merge operation. Thus, it
seems reasonable to consider approaches for extending the set of
search problems that can be supported in an invertible manner.

One major limitation of invertible queries is that the size of the
result is not controllable. For queries such as top-k, k-NN, and
sampling, the query result must be of a specified size. However,
the total size of the result cannot be known until after the local
results have been merged.3 In principle, such queries could be
answered by repeating the entire query (expanding the value of 𝑘
for deterministic queries, or repeating as is for sampling queries),
until a sufficient number of records has been obtained. But this
requires throwing away and repeating a large amount of work.
Thanks to the local query state objects introduced in our definition
of eDSP, a more efficient solution is available. From this observation,
we propose a new class of Iterative Deletion Decomposable search
problems (IDSP). Iterative Deletion Decomposability extends the
definition of extended decomposability, with a fifth operation,
• repeat(Q,R,Q1, . . . ,Q𝑚) → (B,Q1, . . . ,Q𝑚)

Evaluates the combined query result in light of the query. If a
repetition is necessary to satisfy constraints in the query (e.g.,
result set size), optionally update the local queries as needed
and return true. Otherwise, return false.

If this routine returns true, then the query is repeated from the
distribute_query stage. Otherwise, the result set is returned. The
solution to an iterative decomposable query, which requires 𝑅(𝑛)
iterations, will have a worst-case query time of,

𝑂
(︁
log2 𝑛 · 𝑃 (𝑛) + 𝑅(𝑛)

(︁
𝐷 (𝑛) + log2 𝑛 ·𝑄𝑠 (𝑛) +𝐶𝑒 (𝑛)

)︁ )︁
Note that it is very important for 𝑅(𝑛) to be bounded for such
queries. This can be handled by bounding the number of deleted
records within the structure, such as by using the heavy-handed
full reconstruction approach [6, 29], or partial-reconstruction based
techniques [33].

As an example, consider k-NN queries using a ghost structure
for deletes (see Algorithm 3). Following combine, sufficiently many
ghost records could possibly be present in the local results to drop

3A similar problem is faced by sampling, even if it is supported using weak deletes,
due to statistical requirements for independence [33]. The approach discussed here
works for these queries as well.

the size of the output below 𝑘 . In this case, the query can be re-
peated by storing local state information,𝒮𝑖 , within the local query
object, allowing it to be “resumed” from where it left off to return
more records. The local queries can then be repeatedly performed,
requesting the relevant number of missing records, until a suffi-
cient number of non-deleted records is returned. This algorithm also
demonstrates a complex combine operation that is facilitated by the
eDSP variadic combine function. Performing this same task using
a binary operator would be both slower and more complicated.

3.3 A Taxonomy of Search Problems
In this subsection, we combine our new definitions with classi-
cal ones to yield a taxonomy of search problems. We summarize
this taxonomy with the Venn diagram in Figure 2, which shows
the relationship among the different classes of search problems
mentioned thus far, and places several important search problems
within this taxonomy. For clarity, the general taxonomy (Figure 2a)
is presented as separate from the taxonomy of search problems with
efficient deletion support (Figure 2b). Importantly, these two taxo-
momies are not inclusive of all possible search problems. Queries
which can be positioned within these taxomomies are supported by
our techniques; however, there exist types of query (most notably,
graph queries) which do fall into this framework and are thus not
supportable using our techniques.

Figure 2a shows the various search problem classes discussed so
far. ISAM, TrieSpline [35], and succinct trie [43] based queries are
considered MDSPs because the data structures support a more effi-
cient construction via merging sorted runs of records, rather than
re-sorting in full each time. VPTrees [42] and alias structures [37],
on the other hand, must be fully reconstructed and don’t admit
any merge-based optimizations. Sampling queries benefit greatly
from the eDSP query interface, and so are classified as eDSPs rather
than𝐶 (𝑛)-DSPs. k-NN requires performing a second round of k-NN
in order to select the k-closest records from the result set during
combine, and so is classified here as a 𝐶 (𝑛)-DSP. Range queries
could be considered either a normal DSP, or 𝐶 (𝑛)-DSP, depending
on whether the cost of copying records from the local results into
the query result is considered,4 and is a 𝐶 (𝑛)-DSP if the final re-
sult set should be sorted. Point lookups against unique indexes are
normal DSPs, with combine simply accepting the record.

Figure 2b shows the various search problem classes pertaining
to deletes. We have positioned INV as a subset of DDSP, because in
principle any INV search problem admits a DDSP solutionwhere the
data structure itself contains a ghost structure for its records, and
the local_query operation handles the inverse combine internally.
Our definition of IDSP allows delete support for both queries that
would otherwise not be supported at all (such as IRS), and with
queries for which ghost structures would not otherwise be possible
(VPTree). Range counts are considered fully invertible because their
results can be merged and inverted in constant time (using + for □
and − for Δ), although these also can be answered less efficiently
using weak deletions under deletion decomposability. On the other

4In [33], we assumed a constant-time combine operation. In that work, the supported
queries allowed for the writing of sampled records directly into a result set, without
materializing and combining local result sets explicitly. This is not generally possible,
and relied on specific properties of the query. As a result, we do not make the same
assumption here, when considering a more general problem.



hand, a full range query is not considered invertible because the Δ
operator would need to perform a merge of sorted runs to properly
cancel out deletes. K-NN, as we’ve already seen, requires the IDSP
interface to support ghost structures, and sampling requires the
IDSP interface to support weak deletes. Sampling, generally, cannot
support the Δ operator and thus cannot support INV deletes with a
ghost structure at all under the original INV.

4 FRAMEWORK IMPLEMENTATION
This section details our reference implementation of a framework
based upon the above theoretical discussion. Our implementation
uses meta-programming in C++20 with concepts to allow the user
to plug in their own data structures and queries, so long as they
implement the necessary interfaces.

4.1 Interfaces
Records. The framework builds data structures containing user-
defined records. These records must be a C++ struct with an
equality comparison operator, but are otherwise unconstrained.
The framework itself makes no assumptions about record contents,
ordering among records (or lack thereof), etc. Variable-length data
can be supported in off-record storage using pointers. The frame-
work wraps each record automatically with a header for facilitating
deletion support.
Shards. Within our framework, the underlying data structure is
represented using an abstraction called a shard. Shards must be
constructable in two ways: (1) from a set of records and (2) from a
set of shards. The former constructor allows for shard construction
from arbitrary sets of unordered records, while the latter facilitates
various optimizations for the construction of shards for MDSPs.
Shards must also expose a point lookup operation,5 which is used
by the framework for delete support for DDSPs.
Queries. The query object should implement all four interfaces
for eDSP (Section 3.1). Further, it may provide an additional ver-
sion of local_preproc and local_query for an unsorted array of
records,6 and repeat to support IDSP problems.

4.2 Internal Structure and Mechanisms
Our framework partitions data using a relaxed version of the classic
Bently-Saxe method’s binary decomposition, along with a mutable
(unsorted) buffer into which records are initially inserted. When
the mutable buffer’s size reaches a user-specified capacity, 𝑁𝐵 , it is
flushed to produce a shard. These shards are arranged into a series
of increasingly large levels. A configurable parameter called the
scale factor controls the level growth: The 𝑖th level has a capacity
of 𝑁𝐵 × 𝑠𝑖+1 records. Unlike in Bentley-Saxe, these levels can be
partially full, which facilitates the less aggressive reconstruction
procedure shown in Algorithm 5. Additionally, the records on each
level can be arranged into either a single shard, or in up to 𝑠 shards
with capacity 𝑁𝐵 × 𝑠𝑖 each. We call this decision the layout policy,
with the former policy being called leveling and the latter tiering.

5For data structures which do not natively support efficient point-lookups, this feature
can be added by including auxiliary data structures, such as hash tables, to the shard.
6In the worst case, when there is no trivial solution for queries on unsorted array, one
can still call build on these data to get a temporary static data structure and answer
the query using it.
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Figure 3: An overview of the general structure of the dynamization
framework using (a) leveling and (b) tiering layout policies, with
a scale factor 3. Each shard is shown as a dotted box, wrapping its
associated dataset (𝐷𝑖 ) and index (𝐼𝑖 ).

Algorithm 4: Query with Dynamization Framework
Input: 𝑞: query parameters, 𝑏: mutable buffer, 𝑆 : static

index shards at all levels
Output: 𝑅: query results

1 𝒮𝑏 ← local_preproc𝑏𝑢𝑓 𝑓 𝑒𝑟 (𝑏, 𝑞); 𝒮← {} ;
2 for 𝑠 ∈ 𝑆 do
3 𝒮← 𝒮 ∪ (𝑠, local_preproc(𝑠, 𝑞));
4 (𝑞𝑏 , 𝑞1, . . . 𝑞𝑚) ← distribute_query(𝒮𝑏 ,𝒮, 𝑞) ;
5 R ← {}; rpt← ⊥ ;
6 do
7 𝑙𝑜𝑐𝑅 ← {} ;
8 𝑙𝑜𝑐𝑅 ← 𝑙𝑜𝑐𝑅 ∪ local_query𝑏𝑢𝑓 𝑓 𝑒𝑟 (𝑏, 𝑞𝑏 ) ;
9 for 𝑠 ∈ 𝑆 do
10 𝑙𝑜𝑐𝑅 ← 𝑙𝑜𝑐𝑅 ∪ local_query(𝑠, 𝑞𝑠 )
11 R ← R ∪ combine(𝑙𝑜𝑐𝑅, 𝑞𝑏 , 𝑞1, . . . , 𝑞𝑚);
12 (rpt, 𝑞𝑏 , 𝑞1, . . . , 𝑞𝑚) ← repeat(𝑞,R, 𝑞𝑏 , 𝑞1, . . . , 𝑞𝑚);
13 while rpt;
14 return R

An overview of the framework is shown in Figure 3, showing the
leveling and tiering layout policies. Note that the classic Bentley-
Saxe method (BSM) is a special case where the layout policy is
leveling with 𝑠 = 2, 𝑁𝐵 = 1, and the reconstruction procedure
eagerly reconstructs a final target level from a sequence of full
(source) levels.
Query Procedure. Queries are processed according to the iterative
deletion decomposable interface described in Section 3.2 (Algo-
rithm 4). The worst-case cost of answering a query is,

𝑂
(︁
P(𝑛, 𝑁𝐵) + 𝑅(𝑛)

(︁
𝐷 (𝑛) +𝒬𝐵 (𝑁𝐵) + log2 𝑛 ·𝒬𝑠 (𝑛) +𝐶𝑒 (𝑛)

)︁ )︁
where P(𝑛, 𝑁𝐵) = 𝑃𝐵 (𝑁𝐵) + 𝑃 (𝑛) · log𝑠 𝑛 is the preprocessing cost
for the buffer and the shards, and 𝒬𝐵 (𝑁𝐵) is the cost of querying
the buffer.
Insertion Procedure. The insertion procedure is shown in Algo-
rithm 5. Records are inserted by wrapping them with a framework
header and appending them to the end of the mutable buffer. If



Algorithm 5: Insertion with Dynamization Framework
Input: 𝑟 : new record to insert

1 if buffer is not full then
2 buffer.append(𝑟 );
3 return
4 idx← 0;
5 for 𝑖 ← 0 · · · n_levels do
6 if level𝑖 can hold records in level𝑖−1 then
7 idx = i;
8 break;
9 for 𝑖 ← idx · · · 1 do
10 if layout_policy = LEVELING then
11 level𝑖 ← merge_shards(level𝑖 , level𝑖−1) ;
12 if layout_policy = TIERING then
13 new_shard← merge_shards(level𝑖−1) ;
14 level𝑖 ← add_shard(level𝑖 , new_shard) ;
15 level0 ← add_shard(level0, build_shard(buffer));
16 buffer.append(𝑟 );
17 return

the buffer is full, it must be flushed before the new record is in-
serted. This is done by reconstructing the first level (target) using
the records currently within it, and those in the buffer (source).
If there is insufficient space in the first level for the new records,
then this same procedure is recursively applied until a level that
can sustain a reconstruction is found. When using leveling, this
reconstruction occurs by building a new shard using the records
from the source level or buffer, and the target level, and replacing
the shard in the target with the new one. For tiering, a new shard is
created using only the records from the source level or buffer, and
then this new shard is placed within the target level.

Consider a data structure which requires𝐶𝑟 (𝑛) cost to build from
a sequence of shards of the same type. The framework will contain
log𝑠 𝑛 levels. The amortized insertion cost of the record is the total
cost associated with moving the record from the buffer to the final
level of a structure with 𝑛 records, amortized over the number of
records. Because 𝑁𝐵 is a small constant, the costs associated with
the buffer insert and flush can be neglected, giving us an amortized
insertion cost of,

𝑂

(︃
𝐶𝑟 (𝑛)
𝑛

log𝑠 𝑛
)︃

Note that the difference between layout policies is a constant factor,
𝑠 , and so it does not show up in these asymptotic analyses. However,
the layout policy does affect real performance, and this effect will
be demonstrated in Section 5.1.
Delete Procedure.Our implementation supports deletes using two
mechanisms: tagging and tombstones. These mechanisms support
the two classes of delete-supporting search problems: tagging for
DDSP and tombstones for INV. IDSP support functions transpar-
ently with both mechanisms. These two mechanisms differ slightly
in the details of their implementation from the theoretical proce-
dures for these classes of problem discussed in Section 2.

Traditionally, DDSPs use a framework-level point-lookup to
identify the shard containing the record to be deleted, and then a
shard-level delete to remove it. The overhead of maintaining this

structure during reconstructions is non-trivial, and so we decided
instead to push the point-lookup onto the shard level. Thus, each
shard for a DDSP must implement a point_lookup routine. Deletes
are then performed by calling this routine on each shard (and the
buffer) until the record is found, and tagging it as deleted by setting
a bit in its header. Assuming the cost of point_lookup to be 𝐿(𝑛),
then the worst case cost of a tagged delete will be,7

𝑂
(︁
𝑁𝐵 + 𝐿(𝑛) log𝑠 𝑛

)︁
Tombstone-based deletes for INV problems work by inserting a

new record that is identical to the one being deleted, except with
a tombstone bit set in its header. As a result, tombstone deletes
have the same cost as a normal insert. One benefit of this design is
that tombstones and records appearing together in the local results
simplifies the interface, as combine can both merge records and
cancel deleted ones at the same time, rather than needing two
separate routines. Tombstones also allow a principled solution to a
significant drawback of ghost structures: difficulty in controlling
the number of deleted records in the structure. This is because
tombstones, being stored within the same structure as the records
themselves, allow deleted records to be removed automatically
during reconstruction, when the tombstone meets its record. It is
the responsibility of the user to implement this functionality in
their shard construction routine, if it is desired.

Bounding the number of deleted records within the structure
is necessary to control the cost of IDSP queries. Neither deletion
mechanism removes records directly, but both have properties that
can be used to enforce this bound. Tagged records can be dropped
during reconstruction, and tombstones will eventually cancel with
their corresponding record when they meet during a reconstruction.
To provide a strict bound, each shard can keep track of the number
of tagged records or tombstones it contains. When this number
exceeds the bound, a preemptive reconstruction can be triggered.
For tagging, one round of reconstruction suffices to maintain the
bound, but for tombstones multiple reconstructions may need to
occur before all shards respect the bound. Whichever technique
for deletion is used, the user must slightly modify their eDSP rou-
tines so as (1) to ignore tagged records in the local_preproc and
local_query if the search problems is DDSP (or its iterative vari-
ant); (2) or to filter their result sets based on tombstone records in
combine if the search problem is INV (or its iterative variant).

4.3 Further Extensions
Because the framework functions as an append-only structure built
over static data, it admits a number of other possible feature ex-
tensions beyond dynamization, including concurrency and fault
tolerance. These systems are not fully realized within the frame-
work at present, but are left as future work.
Concurrent Operations. The ability to efficiently perform concur-
rent updates and queries in a serializable manner is important for
database indexes. In our framework, inserts, deletes,8 and queries
7Note that 𝑁𝐵 will be very small relative to 𝑛, but not necessarily relative to log𝑠 𝑛,
and so it is left in this cost expression despite us neglecting it for the insert cost.
8Tombstones are naturally serialized because they are append-only. When using
tagging, however, the static structures will be manipulated in-place. Tagged deletes
can still be serialized by time-stamping them, however, and adding this timestamp
into the record header.
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Figure 4: Design Space Evaluation (Triespline)

can be easily serialized as atomic operations at the framework
level, without requiring any data structure changes. This is because
all inserts and tombstone deletes are buffer appends, and all data
structures are static. This allows a fixed, immutable snapshot to
be obtained by each query, made up of a prefix of records in the
buffer and a set of the static structures. This model can also help
address one of the major performance concerns of dynamization
techniques: insertion tail latency. Reconstructions can be performed
in the background, while growing the buffer temporarily to sustain
further inserts. This can help hide the latencies resulting from the
reconstructions. Theoretically, so long as the buffer is allowed to
grow,𝑂 (1) inserts can be perpetually sustained while the structure
gradually catches up. In practice, this isn’t feasible because the size
of the buffer has negative effects on query performance.
Fault Tolerance. Another important feature for a database index is
fault-tolerance/crash recovery. It is necessary for most databases to
provide durability guarantees, and to be able to quickly recover from
system failures. While our implementation of the framework only
supports in-memory indexes, and durability is not the topic of this
work, it is worth noting that our framework could easily be extended
to automatically add crash recovery features to data structures.
Trivially, because all inserts pass through themutable buffer, a write-
ahead log could be added to ensure that the records are written to
durable storage prior to appearing in the index. Additionally, the
static nature of the data structures facilitates periodic background
checkpointing of the shards, allowing recovery to be be accelerated
by reading backups of the static structures from disk and building
new shards from the records inserted into the log following the last
checkpoint. Tagged deletes couldn’t be reliably preserved in this
manner, as they alter the structures in place and could be missed by
checkpointing alone, but these operations could also be written to
the log and replayed during recovery. Note that this checkpointing
approach would require additional interfaces to be implemented
by the shard, whereas the pure write-ahead log approach could be
done transparently – albeit with worse recovery time.

5 EVALUATION
In this section, we demonstrate the effectiveness of our proposed
dynamization framework with comprehensive case studies. We first
verify its configurability with a parameter sweep. Then, we apply
our framework to four different queries and their corresponding
static indexes: (1) independent range sampling (IRS) query with
ISAM; (2) k-NN query with VP-Tree; (3) string match with fast
succinct trie; (4) 1D range queries with learned indexes.
Experimental Setup. Our testing was performed on a dual-socket
Intel server with 384GiB of memory and 40 physical cores. Update
throughputs were measured starting after 10% of the dataset had
been inserted, and include a mixture of 95% inserts and 5% deletes.
Query latencies are averages and were measured by repeatedly
querying the index after completing all the inserts and deletes. Index
size figures do not include the raw storage for the records. We ran
all tests on a single-thread and without background compaction,
unless otherwise stated. We tested with several datasets,
• For range and sampling indexes, we used the book, fb, and osm

datasets from SOSD [24]. Each has 200 million 64-bit keys (to
which we added 64-bit values).
• For vector indexes, we used the Spanish Billion Words (SBW)

dataset [7], containing about 1 million 300-dimensional vectors
of doubles, and a sample of 10 million 128-dimensional vectors
of unsigned longs from the BigANN dataset [1].

• For string indexes, we used the genome of the brown bear (ur-
sarc) broken into 30 million unique 70-80 character chunks [2],
and a list of about 400,000 English words (english) [3].

5.1 Design Parameter Examination
First, we evaluated a dynamized version of Triespline [35] for an-
swering range queries across a variety of different configuration
parameters to assess the effect that these configurations have on the
performance of the structure. The full SOSD OSM dataset was used
for this testing. In Figures 4a and 4c we examine the effect of buffer
size with a fixed scale factor of 8. Figures 4b and 4d show the effect
of varying the scale factor with a fixed buffer size of 12000. The
Bentley-Saxe method’s performance under the same circumstances
is represented on each chart by the solid red line. These results show
that our leveling policy can approach the Bentley-Saxe method’s
query performance while generally maintaining better insertion
throughput, while tiering allows for even more insertion through-
put, at the cost of query latency. Raising the buffer size results in a
direct improvement in insertion throughput, however significantly
harms query latency over values of around 12,000 due to the cost
of scanning the buffer. It’s worth noting that this particular buffer
capacity is roughly half of our test machine’s L1 cache size. It makes
sense that it is important to size the buffer to fit well into the cache
for good query performance, as this significantly reduces the cost
of scanning it. Raising the scale factor has very different results
depending upon layout policy. For leveling, higher scale factors
hurt insertion performance (due to write amplification) while query
latency is relatively unchanged. For tiering, higher scale factors
improve insertion throughput at the cost of query latency. Gen-
erally, these results demonstrate that the framework provides a
large space for performance configuration based on the needs of
the situation, allowing for meaningful trade-offs between insertion
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Figure 5: IRS Index Evaluation

and query performance to be made. Included in this trade-off space
are points which are strictly superior to Bentley-Saxe in terms of
both insertion and query performance.

Based on these results, we standardized on a layout policy of
tiering, a scale factor of 𝑠 = 8 and a buffer size of about half of the
L1 cache size. These were selected to strike a reasonable balance
between insertion and query performance, but using the results
discussed above, the framework can be tuned according to a user’s
requirements for query and insertion performance. As a final note,
the selection of delete mechanism is largely a function of the search
problem. Not all search problems are invertible (which is the require-
ment for using tombstones). When both are supported, tombstones
are generally preferable for better update throughput.

5.2 Case Studies
Independent Range Sampling.We use a static ISAM tree struc-
ture forI, which lays the records out in a sorted array and generates
internal nodes with routing information on top of this array to accel-
erate searches, and answer queries using Algorithm 2. This results
in the following asymptotic costs for framework operations,

Insert: 𝑂
(︁
log𝑠 𝑛

)︁
Query: 𝑂

(︃
log𝑠 𝑛 log𝑓 𝑛 +

𝑘

1 − 𝛿

)︃
Delete: 𝑂

(︂
log𝑠 𝑛 log𝑓 𝑛

)︂
where 𝛿 is a bound on the number of deleted records (0.05) and 𝑓

is the fanout of the ISAM Tree (16).
We compare the extended IRS structure produced by our frame-

work (DE-IRS) to Olken’s method [28] for sampling using a B+-Tree
with aggregate weight tags (AGG B+Tree), as well as against a
single, static instance of the ISAM tree (ISAM). We also include
the numbers from our previous work [33] which proposed a be-
spoke dynamization framework for sampling indexes (Bespoke
[33]) to demonstrate the overhead of generalizing it. We performed
random range sampling queries with a controlled selectivity of
0.01% and a sample size of 𝑘 = 1000. DE-IRS was configured with
𝑁𝐵 = 12000, 𝑠 = 8, tiering, and tagging deletes. The results of
this testing can be seen in Figure 5. Compared to the conventional,
B-tree based solution, DE-IRS sees significantly improved sampling

latency and update throughputs. Our framework was able to re-
tain some of the static ISAM tree’s read performance advantage
over the conventional index, while also allowing for high update
throughput. In addition, our new generalized framework doesn’t
introduce significant cost over the specialized implementation.
k-NN Queries on High-dimensional Metric Spaces. We ex-
tend the static Vantage Point Tree (VPTree) [42] to support k-NN
queries on high dimensional space. A VPTree is a binary tree that
is constructed by recursively selecting a point, and partitioning
records based on their distance from that point. This results in a
hard-to-update structure that can be constructed in𝑂 (𝑛 log𝑛) time
and can answer k-NN queries in 𝑂 (𝑘 log𝑛) time. Our dynamized
VPTree answers queries using the process detailed in Algorithm 3.
This results in the following asymptotic costs for each operation,

Insert: 𝑂
(︁
log𝑛 · log𝑠 𝑛

)︁
Query: 𝑂

(︂
𝑁𝐵 log𝑘 + 𝑘 log𝑛 · log𝑓 𝑛 + log𝑛

)︂
Delete: 𝑂

(︁
log𝑠 𝑛

)︁
In our experiments, we set up our extended VPTree (DE-VPTree)

with 𝑁𝐵 = 1400, 𝑠 = 8, tiering, and delete tagging. We compare it
against a dynamic baselineM-Tree [9], which partitions records
based on high-dimensional spheres and supports updates by split-
ting and merging these partitions, a standard Bentley-Saxe dy-
namization of VPTree [26] (BSM-VPTree), and a static VPTree
(VPTree). The tested M-Tree use a random selection process for
node splitting. We used L2 distance as our metric, and executed ran-
dom k-NN queries with 𝑘 = 1000. The results are shown in Figure 6.
In this case, the static nature of the VPTree allows it to dominate the
M-tree in query latency, and the simpler reconstruction procedure
shows a significant insertion performance improvement as well.
It’s interesting to note that the VPTree performs better, in terms of
insertion, on the BigANN dataset. This dataset has more records
than SBW, but the records have fewer dimensions. This is due to
the repeated reconstructions of the dynamized version benefiting
greatly from a faster record comparison function. The M-tree on the
other hand sees significant performance degradation as the number
of records grows. DE-VPTree sees significantly improved update
performance, and similar query performance, to BSM-VPTree.
Exact String Search with Fast Succinct Tries. We next consider
point lookups against variable length string data using the Fast
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Figure 6: k-NN Index Evaluation
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Figure 7: FST Evaluation

Succinct Trie [43]. This is an example of a succinct data structure,
which uses a highly compact representation that is difficult to up-
date. Each shard stores a sorted list of pointers to the strings, along
with an instance of the FST built over it.

Insert: 𝑂
(︁
log𝑠 𝑛

)︁
Query: 𝑂

(︁
𝑁𝐵 + log𝑛 log𝑠 𝑛

)︁
Delete: 𝑂

(︁
log𝑠 𝑛

)︁
We compare a dynamized version of FST (DE-FST) using our

framework with tiering, tombstone deletes, 𝑠 = 8 and 𝑁𝑏 = 12000
with a Bentley-Saxe dynamization (BSM-FST) as well as the static
baseline (FST). Figure 7a shows that the our framework enables
a significantly larger update throughput compared to BSM, and
Figure 7b demonstrates that it does this without introducing signif-
icantly higher query latency due to the less aggressive reconstruc-
tion. Further, Figure 7c shows that, particularly for larger data (the
ursarc dataset had 100 times more strings than english), the extra
storage cost introduced by the framework (due to fragmentation of
the data structure) is relatively small.
Range Queries with Learned Indexes. Finally, we examine the
application of our framework to static learned indexes for 1D range
queries. We compare to two dynamic baselines: PGM [12], which
uses a Bentley-Saxe inspired system for its own update support,
and ALEX [10], which is designed from the ground up to support
updates. We use the framework to add update support to the static
learned index TrieSpline [35] (DE-TS), as well as the static version
of PGM (DE-PGM). We also evaluated a standard Bentley-Saxe

dynamization of TrieSpline (BSM-TS). DE-TS and DE-PGM both
used 𝑁𝐵 = 12000 and 𝑠 = 8, tiering, and tombstone deletes. Each
shard stores 𝐷𝑖 as a sorted array of records, uses an instance of
the learned index for I𝑖 . The local query routine uses the learned
index to locate the first key in the query range and then iterates
over the sorted array until the end of the range is reached. The
mutable buffer query performs filtering over a full scan. No local
preprocessing is needed, and the combine operation combines the
result sets. The asymptotic complexity analysis of learned index are
not well-established, and so we omit it for our extended indexes.

We examine range queries with a selectivity of 0.1% and exclude
the time required to copy records into a result set. Figure 8a shows
the update throughput of all competitors. The pure Bentley-Saxe
solution performs the worst in all cases by a very large margin,
and our DE-TS consistently performs best. Our DE-PGM performs
better than PGM in these tests, however note that we are using
PGM in its default configuration. PGM supports a similar set of con-
figurable parameters for trading off between insertion and query
performance to our own framework. It’s inclusion here is simply
to demonstrate that our general solution has performance that is
on-par with the specialized one used by PGM. ALEX performs
relatively well on the books dataset (which has a simple key dis-
tribution), but see significant performance regressions for more
complex distributions of keys. Figure 8b shows that PGM, in its
default configuration, has terrible query performance relative to the
other solutions, which all perform fairly similarly beyond that. This
result that PGM performs well on inserts and poorly on queries
is aligned with the results of [38], and so isn’t terribly surprising.
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Figure 8c shows that the static solutions, dynamized or not, have
a massive advantage over ALEX in terms of index size. This is
because ALEX, like a B+-Tree, leaves gaps to store future inserts,
vastly inflating its storage requirements.
Preliminary Concurrency Support. We additionally demon-
strate the capacity of our framework to support concurrent inserts
and queries in Figure 9. In this test, a single thread attempts to insert
data into the index at a constant rate, while a specified number
of query threads repeatedly execute IRS queries. For AGG B+Tree,
the aggregate weight tags require locking the entire path, from
root to leaf, during inserts and queries, to ensure consistency in
weight updates. Our approach has very little interference between
the query threads and insert threads, and so maintains its insert
performance, compared to the lock-based approach required by
AGG B+Tree. This proof-of-concept implementation is not fully
developed, but these preliminary results show promise.

6 RELATEDWORKS
Bentley-Saxe dynamization techniques have been applied to a large
number of problems in the past. For example, [26] applies the tech-
niques to metric indexing structures, but does not apply any special
mitigations for performance or concurrency as we do. Other ap-
plications, such as to sampling data structures [33, 39], genetic
sequence search [31], and learned indexes [12], are highly special-
ized to a particular data structure or limited set of data structures,
and don’t present a consistent framework capable of dynamizing
arbitrary structures. With this work, we present a dynamization
framework capable of covering a very large number of structures,
beyond those demonstrated in the paper itself.

Beyond dynamization, other techniques have been applied to
ease the creation of indexes. The classic examples of this are the
Generalized Search Tree (GiST) [15, 21] and Generalized Inverted
Index (GIN) [14]. Like our work, these provide a set of interfaces
which the user can implement, based on which a concurrently
updatable index is generated. However, GiST is built on a general-
ization of a search tree and GIN on an inverted index, and so they
are limited in their support for specialized queries that cannot be
easily represented using their underlying structures. Our approach
requires the user to implement more of the index, but in exchange
for this extra work allows much more flexibility in terms of query
types that can be supported.

Finally, a recent line of work seeks to optimize range indexes
for specific workloads by automatically composing them out of a
set of structural primitives [5, 8, 11, 17, 18]. These techniques have
been shown to be highly effective at creating instance optimized
indexes [11], but they are restricted to range indexes, and most
of them do not support updates. While similar to our work in
the sense that they seek to automate parts of index design, they
are targeted at performance optimization, and not broader data
structure and/or query support, and so address a different problem
than our framework.

7 CONCLUSION
In this paper, we have presented extensions to traditional Bentley-
Saxe dynamization targeted at helping to address the three major
problems with the technique: limited support for queries due to the
requirements of decomposability, limited support for deletes, and
poor performance and configurability. Based on these extensions,
we developed and presented a general framework that is capable
of extending many static data structures with support for inserts
and deletes, requiring only a small amount of shim code between
the framework and the data structure. We also discussed how this
framework could add support for fault-tolerance and concurrency,
and including basic preliminary support for concurrency in our
presented implementation. Our implementation of this framework
was demonstrated across four different types of data structure:
learned indexes, metric indexes, sampling indexes, and succinct
tries. In all cases, it exhibited good insertion and query performance
compared to the Bentley-Saxe method and dynamic baselines, as
well as enabling support for queries that otherwise could not be
supported in Bentley-Saxe.
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