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Abstract

These notes provide an introduction to the theory of hyperbolic systems of conservation
laws in one space dimension. The various chapters cover the following topics: 1. Meaning
of a conservation equation and definition of weak solutions. 2. Hyperbolic systems. Ex-
plicit solutions in the linear, constant coefficients case. Nonlinear effects: loss of regularity
and wave interactions. 3. Shock waves: Rankine-Hugoniot equations and admissibility
conditions. 4. Genuinely nonlinear and linearly degenerate characteristic fields. Centered
rarefaction waves. The general solution of the Riemann problem. Wave interaction es-
timates. 5. Weak solutions to the Cauchy problem, with initial data having small total
variation. Approximations generated by the front-tracking method and by the Glimm
scheme. 6. Continuous dependence of solutions w.r.t. the initial data, in the L1 dis-
tance. 7. Characterization of solutions which are limits of front tracking approximations.
Uniqueness of entropy-admissible weak solutions. 8. Vanishing viscosity approximations.
9. Extensions and open problems. The survey is concluded with an Appendix, reviewing
some basic analytical tools used in the previous sections.

Throughout the exposition, technical details are mostly left out. The main goal of
these notes is to convey basic ideas, also with the aid of a large number of figures.

1 Conservation Laws

1.1 The scalar conservation law

A scalar conservation law in one space dimension is a first order partial differential equation
of the form

ut + f(u)x = 0 . (1.1)

Here u = u(t, x) is called the conserved quantity, while f is the flux. The variable t denotes
time, while x is the one-dimensional space variable.

Equations of this type often describe transport phenomena. Integrating (1.1) over a given
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interval [a, b] one obtains

d

dt

∫ b

a
u(t, x) dx =

∫ b

a
ut(t, x) dx = −

∫ b

a
f(u(t, x))x dx

= f(u(t, a)) − f(u(t, b)) = [inflow at a] − [outflow at b] .

In other words, the quantity u is neither created nor destroyed: the total amount of u contained
inside any given interval [a, b] can change only due to the flow of u across boundary points
(fig. 1).

a b ξ x

u

Figure 1: Flow across two points.

Using the chain rule, (1.1) can be written in the quasilinear form

ut + a(u)ux = 0, (1.2)

where a = f ′ is the derivative of f . For smooth solutions, the two equations (1.1) and (1.2)
are entirely equivalent. However, if u has a jump at a point ξ, the left hand side of (1.2) will
contain the product of a discontinuous function a(u) with the distributional derivative ux,
which in this case contains a Dirac mass at the point ξ. In general, such a product is not well
defined. Hence (1.2) is meaningful only within a class of continuous functions. On the other
hand, working with the equation in divergence form (1.1) allows us to consider discontinuous
solutions as well, interpreted in distributional sense.

A function u = u(t, x) will be called a weak solution of (1.1) provided that
∫ ∫

{uφt + f(u)φx} dxdt = 0 (1.3)

for every continuously differentiable function with compact support φ ∈ C1
c . Notice that (1.3)

is meaningful as soon as both u and f(u) are locally integrable in the t-x plane.

Example 1 (traffic flow). Let ρ(t, x) be the density of cars on a highway, at the point x at
time t. For example, umay be the number of cars per kilometer (fig. 2). In first approximation,
we shall assume that ρ is continuous and that the velocity v of the cars depends only on their
density, say

v = v(ρ), with
dv

dρ
< 0.

Given any two points a, b on the highway, the number of cars between a and b therefore varies
according to the law

∫ b

a
ρt(t, x) dx =

d

dt

∫ b

a
ρ(t, x) dx = [inflow at a] − [outflow at b]

= v(ρ(t, a)) · ρ(t, a) − v(ρ(t, b)) · ρ(t, b) = −
∫ b

a
[v(ρ) ρ]x dx .

(1.4)
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Figure 2: The density of cars can be described by a conservation law.

Since (1.4) holds for all a, b, this leads to the conservation law

ρt + [v(ρ) ρ]x = 0,

where ρ is the conserved quantity and f(ρ) = v(ρ)ρ is the flux function.

1.2 Strictly hyperbolic systems

The main object of our study will be the n× n system of conservation laws






∂

∂t
u1 +

∂

∂x
[f1(u1, . . . , un)] = 0,

· · ·

∂

∂t
un +

∂

∂x
[fn(u1, . . . , un)] = 0.

(1.5)

For simplicity, this will still be written in the form (1.1), but keeping in mind that now
u = (u1, . . . , un) is a vector in IRn and that f = (f1, . . . , fn) is a map from IRn into IRn.
Calling

A(u)
.
= Df(u) =




∂f1

∂u1
· · · ∂f1

∂xn

· · ·
∂fn

∂u1
· · · ∂fn

∂xn


 ,

the n×n Jacobian matrix of the map f at the point u, the system (1.5) can be written in the
quasilinear form

ut +A(u)ux = 0. (1.6)

A C1 function u = u(t, x) provides a classical solution to (1.5) if and only if it solves (1.6). In
addition, for the conservative system (1.5) one can also consider weak solutions u ∈ L1

loc in
distributional sense, according (1.3).

In order to achieve the well-posedness of the initial value problem, a basic algebraic property
will now be introduced.

Definition 1 (strictly hyperbolic system). The system of conservation laws (1.5) is strictly
hyperbolic if, for every u, the Jacobian matrix A(u) = Df(u) has n real, distinct eigenvalues:
λ1(u) < · · · < λn(u).
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If the matrix A(u) has real distinct eigenvalues, one can find bases of left and right eigenvectors,
denoted by l1(u), . . . , ln(u) and r1(u), . . . , rn(u). The left eigenvectors are regarded as row
vectors, while right eigenvectors are column vectors. For every u ∈ IRn and i = 1, . . . , n, we
thus have

A(u)ri(u) = λi(u)ri(u), li(u)A(u) = λi(u)li(u).

It is convenient to choose dual bases of left and right eigenvectors, so that

|ri| = 1, li · rj =

{
1 if i = j,
0 if i 6= j.

(1.7)

Example 2 (gas dynamics). The Euler equations describing the evolution of a non viscous
gas take the form






ρt + (ρv)x = 0 (conservation of mass)
(ρv)t + (ρv2 + p)x = 0 (conservation of momentum)

(ρE)t + (ρEv + pv)x = 0 (conservation of energy)

Here ρ is the mass density, v is the velocity while E = e + v2/2 is the energy density per
unit mass. The system is closed by a constitutive relation of the form p = p(ρ, e), giving the
pressure as a function of the density and the internal energy. The particular form of p depends
on the gas under consideration.

1.3 Linear systems

We describe here two elementary cases where the solution of the initial value problem can be
written explicitly.

Consider the initial value problem for a scalar conservation law

ut + f(u)x = 0, (1.8)

u(0, x) = ū(x) . (1.9)

In the special case where the flux f is an affine function, say f(u) = λu+ c, the equation (1.8)
reduces to

ut + λux = 0. (1.10)

The Cauchy problem (1.9)-(1.10) admits an explicit solution, namely

u(t, x) = ū(x− λt). (1.11)

As shown in fig. 3, this has the form of a travelling wave, with speed λ = f ′(u). If ū ∈ C1, the
function u = u(t, x) defined by (1.11) is a classical solution. On the other hand, if the initial
condition ū is not differentiable and we only have ū ∈ L1

loc, the above function u can still be
interpreted as a weak solution in distributional sense.

Next, consider the linear homogeneous system with constant coefficients

ut +Aux = 0, u(0, x) = ū(x), (1.12)
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u(t)
tλ

u(0)

Figure 3: A travelling wave solution to the linear, scalar Cauchy problem (1.9)-(1.10)

u

2u

1

Figure 4: The solution to the linear hyperbolic system (1.12) is obtained as the superposition
of n travelling waves.

where A is a n × n hyperbolic matrix, with real eigenvalues λ1 < · · · < λn and right and left
eigenvectors ri, li, chosen as in (1.7).

Call ui
.
= li · u the coordinates of a vector u ∈ IRn w.r.t. the basis of right eigenvectors

{r1, · · · , rn}. Multiplying (1.12) on the left by l1, . . . , ln we obtain

(ui)t +λi(ui)x = (liu)t +λi(liu)x = liut + liAux = 0, ui(0, x) = liū(x)
.
= ūi(x).

Therefore, (1.12) decouples into n scalar Cauchy problems, which can be solved separately in
the same way as (1.9)-(1.10). The function

u(t, x) =
n∑

i=1

ūi(x− λit) ri (1.13)

now provides the explicit solution to (1.12), because

ut(t, x) =
n∑

i=1

−λi(li · ūx(x− λit))ri = −Aux(t, x).

Observe that in the scalar case (1.10) the initial profile is shifted with constant speed λ = f ′(u).
For the system (1.12), the initial profile is decomposed as a sum of n waves (fig. 4), each
travelling with one of the characteristic speeds λ1, . . . , λn.

1.4 Nonlinear effects

In the general case where the matrix A depends on the state u, new features will appear in
the solutions.
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u(t)

x

u(T)
u(0)

Figure 5: If the wave propagation speed depends on u, the profile of the solution changes in
time, eventually leading to shock formation at a finite time T .

(i) Since the eigenvalues λi now depend on u, the shape of the various components in the
solution will vary in time (fig. 5). Rarefaction waves will decay, and compression waves will
become steeper, possibly leading to shock formation in finite time.

(ii) Since the eigenvectors ri also depend on u, nontrivial interactions between different waves
will occur (fig. 6). The strength of the interacting waves may change, and new waves of
different families can be created, as a result of the interaction.

nonlinear

x

t

linear

Figure 6: Left: for the linear hyperbolic system (1.12), the solution is a simple superposition
of traveling waves. Right: For the general non-linear system (1.5), waves of different families
have nontrivial interactions.

The strong nonlinearity of the equations and the lack of regularity of solutions, also due to
the absence of second order terms that could provide a smoothing effect, account for most
of the difficulties encountered in a rigorous mathematical analysis of the system (1.1). It
is well known that the main techniques of abstract functional analysis do not apply in this
context. Solutions cannot be represented as fixed points of continuous transformations, or in
variational form, as critical points of suitable functionals. Dealing with vector valued functions,
comparison principles based on upper or lower solutions cannot be used. Moreover, the theory
of accretive operators and contractive nonlinear semigroups works well in the scalar case [26],
but does not apply to systems. For the above reasons, the theory of hyperbolic conservation
laws has largely developed by ad hoc methods, along two main lines.
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1. The BV setting, considered by J. Glimm [35]. Solutions are here constructed within a
space of functions with bounded variation, controlling the BV norm by a wave interaction
functional.

2. The L∞ setting, considered by L. Tartar and R. DiPerna [30], based on weak convergence
and a compensated compactness argument.

Both approaches yield results on the global existence of weak solutions. However, the method
of compensated compactness appears to be suitable only for 2×2 systems. Moreover, it is only
in the BV setting that the well-posedness of the Cauchy problem could recently be proved, as
well as the stability and convergence of vanishing viscosity approximations. In these lecture
we thus restrict ourselves to the analysis of BV solutions, referring to [30] or [52, 58] for the
alternative approach based on compensated compactness.

1.5 Loss of regularity

A basic feature of nonlinear systems of the form (1.1) is that, even for smooth initial data,
the solution of the Cauchy problem may develop discontinuities in finite time. To achieve a
global existence result, it is thus essential to work within a class of discontinuous functions,
interpreting the equations (1.1) in their distributional sense (1.3).

0

T

t

xx

Figure 7: At time T when characteristics start to intersect, a shock is produced.

The loss of regularity can be seen already in the solution to a scalar equation with nonlinear
flux. Consider the scalar Cauchy problem

ut + f(u)x = 0 u(0, x) = φ(x). (1.14)

In the case of smooth solutions, the equation can be written in quasilinear form

ut + f ′(u)ux = 0. (1.15)

Geometrically, this means that the directional derivative of u(t, x) in the direction of the vector

(1 , f ′(u)) vanishes. Hence u is constant on each line of the form
{
(t, x) ; x = x0+tf ′(u(x0))

}
.
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For each x0 ∈ IR we thus have

u

(
t, x0 + t f ′(φ(x0))

)
= φ(x0). (1.16)

This is indeed the solution to the first order PDE (1.15) provided by the classical method of
characteristics, see for example [33]. In general, beyond a finite time T , the map

x0 7→ x0 + t f ′(φ(x0))

is no longer one-to-one, and the implicit equation (1.16) does not define a single valued function
u = u(t, x). At time T a shock is formed, and the solution can be extended for t > T in the
weak sense, as in (1.3).

Example 3 (shock formation in Burgers’ equation). Consider the scalar conservation
law (inviscid Burgers’ equation)

ut +

(
u2

2

)

x

= 0 (1.17)

with initial condition

u(0, x) = ū(x) =
1

1 + x2
.

For t > 0 small the solution can be found by the method of characteristics. Indeed, if u is
smooth, (1.17) is equivalent to

ut + uux = 0. (1.18)

By (1.18) the directional derivative of the function u = u(t, x) along the vector (1, u) vanishes.
Therefore, u must be constant along the characteristic lines in the t-x plane:

t 7→ (t, x+ tū(x)) =

(
t, x+

t

1 + x2

)
.

For t < T
.
= 8/

√
27, these lines do not intersect (fig. 7). The solution to our Cauchy problem

is thus given implicitly by

u

(
t, x+

t

1 + x2

)
=

1

1 + x2
. (1.19)

On the other hand, when t > T , the characteristic lines start to intersect. As a result, the
map

x 7→ x+
t

1 + x2

is not one-to-one and (1.19) no longer defines a single valued solution of our Cauchy problem.

An alternative point of view is the following (fig. 5). As time increases, points on the graph of
u(t, ·) move horizontally with speed u, equal to their distance from the x-axis. This determines
a change in the profile of the solution. As t approaches the critical time T

.
= 8/

√
27, one has

lim
t→T−

{
inf
x∈IR

ux(t, x)
}

= −∞,

and no classical solution exists beyond time T . The solution can be prolonged for all times
t ≥ 0 only within a class discontinuous functions.
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1.6 Wave Interactions

Consider the quasilinear, strictly hyperbolic system

ut = −A(u)ux . (1.20)

If the matrix A is independent of u, then the solution can be obtained as a superposition
of travelling waves. On the other hand, if A depends on u, these waves can interact with
each other, producing additional waves. To understand this nonlinear effect, define the i-th
component of the gradient ux as

ui
x

.
= li · ux . (1.21)

We regard ui
x as the i-th component of the gradient ux w.r.t. the basis of eigenvectors

{r1(u), . . . , rn(u)}. Equivalently, one can also think of ui
x as the density of i-waves in the

solution u. From (1.21) and (1.7), (1.20) it follows

ux =
n∑

i=1

ui
xri(u) ut = −

n∑

i=1

λi(u)u
i
xri(u)

Differentiating the first equation w.r.t. t and the second one w.r.t. x, then equating the results,
one obtains a system of evolution equations for the scalar components ui

x, namely

(ui
x)t + (λiu

i
x)x =

∑

j>k

(λj − λk)

(
li · [rj , rk]

)
uj

xu
k
x . (1.22)

See [8] for details. Notice that the left hand side of (1.22) is in conservation form. However,
here the total amount of waves can increase in time, due to the source terms on the right hand
side. The source term

Sijk
.
= (λj − λk)

(
li · [rj , rk]

)
uj

xu
k
x

describes the amount of i-waves produced by the interaction of j-waves with k-waves. Here

λj − λk = [difference in speed]
= [rate at which j-waves and k-waves cross each other]

uj
xu

k
x = [density of j-waves] × [density of k-waves]

[rj, rk] = (Drk)rj − (Drj)rk (Lie bracket)
= [directional derivative of rk in the direction of rj]

− [directional derivative of rj in the direction of rk].

Finally, the product li · [rj , rk] gives the i-th component of the Lie bracket [rj , rk] along the
basis of eigenvectors {r1, . . . , rn}.

2 Weak Solutions

A basic feature of nonlinear hyperbolic systems is the possible loss of regularity: solutions
which are initially smooth may become discontinuous within finite time. In order to construct
solutions globally in time, we are thus forced to work in a space of discontinuous functions,
and interpret the conservation equations in a distributional sense.
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Definition 2 (weak solution). Let f : IRn 7→ IRn be a smooth vector field. A measurable
function u = u(t, x), defined on an open set Ω ⊆ IR × IR and with values in IRn, is a weak
solution of the system of conservation laws

ut + f(u)x = 0 (2.1)

if, for every C1 function φ : Ω 7→ IR with compact support, one has
∫∫

Ω
{uφt + f(u)φx} dxdt = 0. (2.2)

Observe that no continuity assumption is made on u. We only require u and f(u) to be locally
integrable in Ω. Notice also that weak solutions are defined up to L1 equivalence. A solution
is not affected by changing its values on a set of measure zero in the t-x plane.

An easy consequence of the above definition is the closure of the set of solutions w.r.t. con-
vergence in L1

loc.

Lemma 1. Let (um)m≥1 be a uniformly bounded sequence of distributional solutions of (2.1).
If um → u and f(um) → f(u) in L1

loc then the limit function u is also a weak solution.

Indeed, for every φ ∈ C1
c one has

∫∫

Ω
{uφt + f(u)φx} dxdt = lim

m→∞

∫∫

Ω
{um φt + f(um)φx} dxdt = 0.

We observe that, in particular, the assumptions of the lemma are satisfied if um → u in L1
loc

and the flux function f is bounded.

In the following, we shall be mainly interested in solutions defined on a strip [0, T ] × IR, with
an assigned initial condition

u(0, x) = ū(x). (2.3)

Here ū ∈ L1
loc(IR). To treat the initial value problem, it is convenient to require some additional

regularity w.r.t. time.

Definition 3 (weak solution to the Cauchy problem). A function u : [0, T ] × IR 7→ IRn

is a weak solution of the Cauchy problem (2.1), (2.3) if u is continuous as a function from [0, T ]
into L1

loc, the initial condition (2.3) holds and the restriction of u to the open strip ]0, T [×IR
is a distributional solution of (2.1).

Remark 1 (classical solutions). Let u be a weak solution of (2.1). If u is continuously
differentiable restricted to an open domain Ω̃ ⊆ Ω, then at every point (t, x) ∈ Ω̃, the function
u must satisfy the quasilinear system

ut +A(u)ux = 0 , (2.4)
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with A(u)
.
= Df(u). Indeed, from (2.2) an integration by parts yields

∫∫
[ut +A(u)ux]φdxdt = 0.

Since this holds for every φ ∈ C1
c (Ω̃), the identity (2.4) follows.

2.1 Rankine-Hugoniot conditions

Next, we look at a discontinuous solution and derive some conditions which must be satisfied
at points of jump. Consider first the simple case of a piecewise constant function, say

U(t, x) =

{
u+ if x > λt,
u− if x < λt,

(2.5)

for some u−, u+ ∈ IRn, λ ∈ IR.

t

x

n−

n+

Ω

Ω+

−

=λx t

Supp φ

u = u+

u = u−

Figure 8: Deriving the Rankine-Hugoniot equations.

Lemma 2. If the function U in (2.5) is a weak solution of the system of conservation laws
(2.1), then

λ (u+ − u−) = f(u+) − f(u−). (2.6)

Proof. Let φ = φ(t, x) be any continuously differentiable function with compact support. Let
Ω be an open disc containing the support of φ and consider the two domains

Ω+ .
= Ω ∩ {x > λt}, Ω− .

= Ω ∩ {x < λt} ,

as in fig. 8. Introducing the vector field v
.
= (Uφ, f(U)φ), and recalling that U is constant

separately on Ω− and on Ω+, we write the identity (2.2) as

∫∫

Ω+∪Ω−

{
Uφt + f(U)φx

}
dxdt =

(∫∫

Ω+

+

∫∫

Ω−

)
divv dxdt = 0. (2.7)

We now apply the divergence theorem separately on the two domains Ω+,Ω−. Call n+,n−

the outer unit normals to Ω+,Ω−, respectively. Observe that φ = 0 on the boundary ∂Ω.
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Therefore, the only portion of the boundaries ∂Ω−, ∂Ω+ where v 6= 0 is the line where x = λt.
Denoting by ds the differential of the arc-length, along the line {x = λt} we have

n+ ds = (λ, − 1) dt n− ds = (−λ, 1) dt ,

0 =

∫∫

Ω+∪Ω−

divv dxdt =

∫

∂Ω+

n+ · v ds+

∫

∂Ω−

n− · v ds

=

∫
[λu+ − f(u+)]φ(t, λt) dt +

∫
[ − λu− + f(u−)]φ(t, λt) dt .

Therefore, the identity

∫
[λ(u+ − u−) − f(u+) + f(u−)]φ(t, λt) dt = 0

must hold for every function φ ∈ C1
c . This implies (2.6).

The vector equations (2.6) are the famous Rankine-Hugoniot conditions. They form a set
of n scalar equations relating the right and left states u+, u− ∈ IRn and the speed λ of the
discontinuity, namely:

[speed of the shock] × [jump in the state] = [jump in the flux].

An alternative way of writing these conditions is as follows. Denote by A(u) = Df(u) the
n× n Jacobian matrix of f at u. For any u, v ∈ IRn, define the averaged matrix

A(u, v)
.
=

∫ 1

0
A(θv + (1 − θ)u) dθ (2.8)

and call λi(u, v), i = 1, . . . , n, its eigenvalues. We observe that A(u, v) = A(v, u) and A(u, u) =
A(u). The equations (2.6) can now be written in the equivalent form

λ (u+−u−) = f(u+)−f(u−) =

∫ 1

0
Df(θu++(1−θ)u−) ·(u+−u−) dθ = A(u−, u+) ·(u+−u−).

(2.9)
In other words, the Rankine-Hugoniot conditions hold if and only if the jump u+ − u− is an
eigenvector of the averaged matrix A(u−, u+) and the speed λ coincides with the corresponding
eigenvalue.

uu+ u−

−

f (u)’

λ

+

x

u

u

f

Figure 9: The Rankine-Hugoniot equation in the scalar case.
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Remark 2. In the scalar case, one arbitrarily assign the left and right states u−, u+ ∈ IR and
determine the shock speed as

λ =
f(u+) − f(u−)

u+ − u−
=

1

u+ − u−

∫ u+

u−

f ′(s) ds . (2.10)

A geometric interpretation of these identities (see fig. 9) is that

[speed of the shock] = [slope of secant line through u−, u+ on the graph of f ]

= [average of the characteristic speeds between u− and u+].

We now consider a more general solution u = u(t, x) of (2.1) and show that the Rankine-
Hugoniot equations are still satisfied at every point (τ, ξ) where u has an approximate jump,
in the following sense.

Definition 4 (approximate jump). We say that a function u = u(t, x) has an approximate
jump discontinuity at the point (τ, ξ) if there exists vectors u+ 6= u− and a speed λ such that,
defining U as in (2.5), there holds

lim
r→0+

1

r2

∫ r

−r

∫ r

−r
|u(τ + t, ξ + x) − U(t, x)| dxdt = 0. (2.11)

Moreover, we say that u is approximately continuous at the point (τ, ξ) if the above relations
hold with u+ = u− (and λ arbitrary).

Observe that the above definitions depend only on the L1 equivalence class of u. Indeed,
the limit in (2.11) is unaffected if the values of u are changed on a set N ⊂ IR2 of Lebesgue
measure zero.

λ.
x = 

x

t
−u

+
uτ

ξ

Figure 10: A point of approximate jump. Looking through a microscope, i.e. rescaling the
variables t, x in a neighborhood of the point (τ, ξ), the function u becomes arbitrarily close
(in an integral sense) to the piecewise constant function U in (2.5).

Example 4 (a piecewise smooth function). Let g−, g+ : IR2 7→ IRn be any two continuous
functions and let x = γ(t) be a smooth curve, with derivative γ̇(t)

.
= d

dtγ(t). Define the function
(see fig. 10)

u(t, x)
.
=

{
g−(t, x) if x < γ(t),
g+(t, x) if x > γ(t).
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At a point (τ, ξ), with ξ = γ(τ), call u−
.
= g−(τ, ξ), u+ .

= g+(τ, ξ). If u+ = u−, then u is
continuous at (τ, ξ), hence also approximately continuous. On the other hand, if u+ 6= u−,
then u has an approximate jump at (τ, ξ). Indeed, the limit (2.11) holds with λ = γ̇(τ) and
U as in (2.5).

We now prove the Rankine-Hugoniot conditions in the more general case of a point of approx-
imate jump.

Theorem 1 (Rankine-Hugoniot equations). Let u be a bounded distributional solution
of (2.1) having an approximate jump at a point (τ, ξ). In other words, assume that (2.11)
holds, for some states u−, u+ and a speed λ, with U as in (2.5). Then the Rankine-Hugoniot
equations (2.6) hold.

Proof. For any given θ > 0, the rescaled function

uθ(t, x)
.
= u(τ + θt, ξ + θx)

is also a solution to the system of conservation laws. We claim that, as θ → 0, the convergence
uθ → U holds in L1

loc(IR
2; IRn). Indeed, for any R > 0 one has

lim
θ→0

∫ R

−R

∫ R

−R
|uθ(t, x) − U(t, x)| dxdt = lim

θ→0

1

θ2

∫ θR

−θR

∫ θR

−θR
|u(τ + t, ξ + x) − U(t, x)| dxdt = 0

because of (2.11). Lemma 1 now implies that U itself is a distributional solution of (2.1),
hence by Lemma 2 the Rankine-Hugoniot equations (2.6) hold.

2.2 Construction of Shock Curves

In this section we consider the following problem. Given u0 ∈ IRn, find the states u ∈ IRn

which, for some speed λ, satisfy the Rankine-Hugoniot equations

λ(u− u0) = f(u) − f(u0) = A(u0, u)(u − u0). (2.12)

Trivially, the equations (2.12) are satisfied by setting u = u0, with λ ∈ IR arbitrary. Our
aim is to construct non-trivial solutions with u close to u0, relying on the implicit function
theorem. Since this goal cannot be achieved by looking directly at the system (2.12), we adopt
an alternative formulation.

Fix i ∈ {1, . . . , n}. By a classical result in linear algebra, the jump u−u0 is a right i-eigenvector
of the averaged matrix A(u0, u) if and only if it is orthogonal to all left eigenvectors lj(u0, u)
of A(u0, u), for every j 6= i. This means

ψj(u)
.
= lj(u0, u) · (u− u0) = 0 for all j 6= i. (2.13)

Instead of the system (2.12) of n equations in the n + 1 variables (u, λ) = (u1, . . . , un, λ), we
thus look at the system (2.13), consisting of n− 1 equations for the n variables (u1, . . . , un).

The point u = u0 is of course a solution. Moreover, the definition (2.8) trivially implies
A(u0, u0) = A(u0), hence lj(u0, u0) = lj(u0) for all j. Linearizing the system (2.13) at u = u0
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we obtain the linear system of n− 1 equations

lj(u0) · (u− u0) = 0 j 6= i. (2.14)

Since the left eigenvectors lj(u0) are linearly independent, this has maximum rank.

We can thus apply the implicit function theorem to the nonlinear system (2.13) and conclude
that, for each i ∈ {1, . . . , n}, there exists a curve s 7→ Si(s)(u0) of points that satisfy (2.13).
At the point u0, this curve has to be perpendicular to all vectors lj(u0), for j 6= i. Therefore,
it must be tangent to the i-th eigenvector ri(u0).

i
r (u  )

0u u = S (s)(u  )

0

0

i

Figure 11: Parameterization of the i-th shock curve through a point u0.

2.3 Admissibility conditions

To motivate the following discussion, we first observe that the concept of weak solution is
usually not stringent enough to achieve uniqueness for a Cauchy problem. In some cases,
infinitely many weak solutions can be found, all with the same initial condition.

u = 1

xx0

α
1

0

x=    t/2α

αu = 
u = 0

Figure 12: A family of solutions of Burgers’ equation, all with the same initial data.

Example 5 (multiple weak solutions). For Burgers’ equation

ut + (u2/2)x = 0 , (2.15)

consider the Cauchy problem with initial data

u(0, x) =

{
1 if x ≥ 0,
0 if x < 0.

As shown in fig. 12, for every 0 < α < 1, a weak solution is

uα(t, x) =






0 if x < αt/2,
α if αt/2 ≤ x < (1 + α)t/2,
1 if x ≥ (1 + α)t/2 .

(2.16)

Indeed, the piecewise constant function uα trivially satisfies the equation outside the jumps.
Moreover, the Rankine-Hugoniot conditions hold along the two lines of discontinuity {x =
αt/2} and {x = (1 + α)t/2}, for all t > 0.
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From the previous example it is clear that, in order to achieve the uniqueness of solutions
and their continuous dependence on the initial data, the notion of weak solution must be
supplemented with further “admissibility conditions”. Three main approaches can be followed.

I - Singular limits.

Assume that, by physical considerations, the system of conservation laws (2.1) can be regarded
as an approximation to a more general system, say

ut + f(u)x = εΛ(u), (2.17)

for some ε > 0 small. Here Λ(u) is typically a higher order differential operator.

We then say that a weak solution u = u(t, x) of the system of conservation laws (2.1) is
“admissible” if there exists a sequence of solutions uε to the perturbed equation (2.17) which
converges to u in L1

loc, as ε→ 0+.

A natural choice is to take the diffusion operator Λ(u)
.
= uxx . This leads to

Admissibility Condition 1 (vanishing viscosity). A weak solution u of (2.1) is admissible
in the vanishing viscosity sense if there exists a sequence of smooth solutions uε to

uε
t + f(uε)x = εuε

xx (2.18)

which converge to u in L1
loc as ε→ 0+ .

The main drawback of this approach is that it is very difficult to provide a priori estimates on
general solutions to the higher order system (2.17), and characterize the corresponding limits
as ε → 0+. For the vanishing viscosity approximations (2.18), this goal has been reached
only recently in [7], within the class of solutions with small total variation. From the above
condition, however, one can deduce other conditions which can be more easily verified in
practice.

II - Entropy conditions.

An alternative approach relies on the concept of entropy.

Definition 5 (entropy and entropy flux). A continuously differentiable function η : IRn 7→
IR is called an entropy for the system of conservation laws (2.1), with entropy flux q : IRn 7→ IR,
if for all u ∈ IRn there holds

Dη(u) ·Df(u) = Dq(u). (2.19)

An immediate consequence of (2.19) is that, if u = u(t, x) is a C1 solution of (2.1), then

η(u)t + q(u)x = 0. (2.20)

Indeed,

η(u)t + q(u)x = Dη(u)ut +Dq(u)ux = Dη(u)( −Df(u)ux) +Dq(u)ux = 0.
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In other words, for a smooth solution u, not only the quantities u1, . . . , un are conserved but
the additional conservation law (2.20) holds as well. However one should be aware that, when
u is discontinuous, the quantity η(u) may not be conserved.

Example 6. Consider Burgers’ equation (2.15). Here the flux is f(u) = u2/2. Taking
η(u) = u3 and q(u) = (3/4)u4, one checks that the equation (2.19) is satisfied. Hence η is an
entropy and q is the corresponding entropy flux. We observe that the function

u(0, x) =

{
1 if x < t/2,
0 if x ≥ t/2,

is a (discontinuous) weak solution of (2.15). However, it does not satisfy (2.20) in distribution
sense. Indeed, calling u− = 1, u+ = 0 the left and right states, and λ = 1/2 the speed of the
shock, one has

3

4
= q(u+) − q(u−) 6= λ

[
η(u+) − η(u−)

]
=

1

2
.

We now study how a convex entropy behaves in the presence of a small diffusion term. Assume
η, q ∈ C2, with η convex. Multiplying both sides of (2.18) on the left by Dη(uε) and using
(2.19) one finds

[η(uε)]t + [q(uε)]x = εDη(uε)uε
xx = ε

{
[η(uε)]xx −D2η(uε) · (uε

x ⊗ uε
x)
}
. (2.21)

Observe that the last term in (2.21) satisfies

D2η(uε)(uε
x ⊗ uε

x) =
n∑

i,j=1

∂2η(uε)

∂ui∂uj
· ∂u

ε
i

∂x

∂uε
j

∂x
≥ 0,

because η is convex, hence its second derivative at any point uε is a positive semidefinite
quadratic form. Multiplying (2.21) by a nonnegative smooth function ϕ with compact support
and integrating by parts, we thus have

∫∫
{η(uε)ϕt + q(uε)ϕx} dxdt ≥ − ε

∫∫
η(uε)ϕxx dxdt.

If uε → u in L1 as ε→ 0, the previous inequality yields
∫∫

{η(u)ϕt + q(u)ϕx} dxdt ≥ 0 (2.22)

whenever ϕ ∈ C1
c , ϕ ≥ 0. The above can be restated by saying that η(u)t + q(u)x ≤ 0 in

distribution sense. The previous analysis leads to:

Admissibility Condition 2 (entropy inequality). A weak solution u of (2.1) is entropy-
admissible if

η(u)t + q(u)x ≤ 0 (2.23)

in the sense of distributions, for every pair (η, q), where η is a convex entropy for (2.1) and q
is the corresponding entropy flux.

For the piecewise constant function U in (2.5), an application of the divergence theorem shows
that η(U)t + q(U)x ≤ 0 in distribution if and only if

λ [η(u+) − η(u−)] ≥ q(u+) − q(u−). (2.24)
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More generally, let u = u(t, x) be a bounded function which satisfies the conservation law
(2.1). Assume that u has an approximate jump at (τ, ξ), so that (2.11) holds with U as in
(2.5). Then, by the rescaling argument used in the proof of Theorem 1, one can show that
the inequality (2.24) must again hold.

We remark that the above admissibility condition can be useful only if some nontrivial convex
entropy for the system (2.1) is known. For n× n systems of conservation laws, the equations
(2.19) can be regarded as a first order system of n equations for the two scalar variables η, q,
namely

( ∂η
∂u1

· · · ∂η
∂un

)




∂f1

∂u1
· · · ∂f1

∂un

· · ·
∂fn

∂u1
· · · ∂fn

∂un



 = ( ∂q
∂u1

· · · ∂q
∂un

) .

When n ≥ 3, this system is overdetermined. In general, one should thus expect to find
solutions only in the case n ≤ 2. However, there are important physical examples of larger
systems which admit a nontrivial entropy function.

III - Stability conditions.

Admissibility conditions on shocks can also be derived purely from stability consideration,
without any reference to physical models.

We consider first the scalar case. Let U = U(t, x) be the piecewise constant solution introduced
in (2.5), with left and right states u−, u+. Let us slightly perturb the initial data by inserting
an intermediate state u∗ ∈ [u−, u+], as in fig. 13. The original shock is thus split in two smaller
shocks, whose speeds are determined by the Rankine-Hugoniot equations.

To ensure that the L1 distance between the original solution and the perturbed one does not
increase in time, we need:

[speed of jump behind] ≥ [speed of jump ahead].

By (2.10), this is the case if and only if

f(u∗) − f(u−)

u∗ − u−
≥ f(u+) − f(u∗)

u+ − u∗
for all u∗ ∈ [u−, u+] . (2.25)

u

u

u

u

_

*

xx

+u

*u

_ +

Figure 13: In both cases u− < u+ or u− > u+, the solution is stable if the speed of the shock
behind is greater or equal than the speed of the one ahead.

From (2.25) we thus obtain the following stability conditions (see fig. 14).

• If u− < u+, on the interval [u−, u+] the graph of f should remain above the secant line.
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f

u uu u + -+-

f

u u* *

Figure 14: Geometric interpretation of the stability conditions (2.25).

• If u+ < u−, on the interval [u+, u−] the graph of f should remain below the secant line.

Next, we seek a generalization of this stability conditions, valid also for n × n hyperbolic
systems. Observe that, still in the scalar case, the condition (2.25) is equivalent to

f(u∗) − f(u−)

u∗ − u−
≥ f(u+) − f(u−)

u+ − u−
for all u∗ ∈ [u−, u+] . (2.26)

In other words, the speed of the original shock (u−, u+) should be not greater than the speed
of any intermediate shock (u−, u∗), where u∗ ∈ [u−, u+] is any intermediate state.

f(u)

−u
−u+u+u*u u*

f(u)

Figure 15: Geometric interpretation of the stability conditions (2.26).

Next, we consider n × n hyperbolic systems. As in Subsection 2.2, we let s 7→ Si(s)(u
−)

describe the i-shock curve through u−. This is the curve of all states u that can be connected
to u− by a shock of the i-th family.

Observe that, if u+ = Si(σ)(u−) and u∗ = Si(s)(u
−) are two points on the i-shock curve

through u−, in general it is not true that the two states u+ and u∗ can be connected by a
shock. For this reason, a straightforward generalization of the condition (2.25) to systems is
not possible. However, the equivalent condition (2.26) has a natural extension to the vector
valued case, namely:

Admissibility Condition 3 (Liu condition). Let u+ = Si(σ)(u−) for some σ ∈ IR. We
say that the shock with left and right states u−, u+ satisfies the Liu admissibility condition
provided that its speed is less or equal to the speed of every smaller shock, joining u− with
an intermediate state u∗ = Si(s)(u

−), s ∈ [0, σ].

This condition was introduced by T.P.Liu in [46]. Much later, the paper [7] showed that,
among solutions with small total variation, the Liu condition completely characterizes the
ones which can be obtained as vanishing viscosity limits.
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+u− u* −σu   = S  (  ) (u  )i

Figure 16: The i-shock (u−, u+) satisfies the Liu admissibility conditions if its speed satisfies
λi(u

−, u+) ≤ λi(u
−, u∗) for every intermediate state u∗ along the i-shock curve through u−.

We conclude this section by mentioning another admissibility condition, introduced by P.Lax
in [42] and widely used in the literature.

Admissibility Condition 4 (Lax condition). A shock of the i-th family, connecting the
states u−, u+ and travelling with speed λ = λi(u

−, u+), satisfies the Lax admissibility condition
if

λi(u
−) ≥ λi(u

−, u+) ≥ λi(u
+). (2.27)

To appreciate the geometric meaning of this condition, consider a piecewise smooth solution,
having a discontinuity along the line x = γ(t), where the solution jumps from a left state
u− to a right state u+ (see fig. 17). According to (2.9), this discontinuity must travel with
a speed λ

.
= γ̇ = λi(u

−, u+) equal to the i-eigenvalue of the averaged matrix A(u−, u+), for
some i ∈ {1, . . . , n}. If we now look at the i-characteristics, i.e. at the solutions of the O.D.E.

ẋ = λi(u(t, x)),

we see that the Lax condition requires that these lines run into the shock, from both sides.

admissible

t

x

t

x

not  admissible

Figure 17: Left: a shock satisfying the Lax condition. As time increases, characteristics run
toward the shock, from both sides. Right: the two shocks in the weak solution (2.16) violate
this condition.

3 The Riemann Problem

In this chapter we construct the solution to the Riemann problem, consisting of the system of
conservation laws

ut + f(u)x = 0 (3.1)

together with the simple, piecewise constant initial data

u(0, x) = ū(x)
.
=

{
u− if x < 0,
u+ if x > 0.

(3.2)
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This will provide the basic building block toward the solution of the Cauchy problem with
more general initial data.

This problem was first studied by B. Riemann in [54], in connection with the 2× 2 system of
isentropic gas dynamics. In [42], P. Lax constructed solutions to the Riemann problem for a
wide class of n× n strictly hyperbolic systems. Further results were provided by T. P. Liu in
[45], dealing with systems under generic assumptions. The paper [6] by S. Bianchini provides
a fully general construction, valid even for systems not in conservation form. In this case,
“solutions” are interpreted as limits of vanishing viscosity approximations.

The central role played by the Riemann problem, within the general theory of conservation
laws, can be explained in terms of symmetries. We observe that, if u = u(t, x) is a weak
solution of (3.1), then for every θ > 0 the rescaled function

uθ(t, x)
.
= u(θt, θx) (3.3)

provides yet another solution. Among all solutions to a system of conservation laws, the
Riemann problems yield precisely those weak solutions which are invariant w.r.t. the above
rescaling: uθ = u for every θ > 0 (see fig. 18).

x

ω
0
= u−

ω
1

2ω

3ω = u+

t

0

Figure 18: The solution to a Riemann problem is constant along rays through the origin, in
the t-x plane. Hence it is invariant w.r.t. the symmetry transformation (3.3).

3.1 Some examples

We begin by describing the explicit solution of the Riemann problem (3.1)-(3.2) in a few
elementary cases.

Example 7. Consider a scalar conservation law with linear flux f(u) = λu+ c.

As shown in fig. 19, the solution of the Riemann problem is

u(t, x) =

{
u− if x < λt,
u+ if x > λt.

It consists of a single jump, called a contact discontinuity, traveling with speed λ.
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t

x

u−

u+

0

u(t)λf (u) =’

λ

Figure 19: A contact discontinuity. Here the characteristic speed f ′(u) ≡ λ is constant, for all
values of u ∈ [u−, u+].

Example 8. Consider a scalar conservation law with strictly convex flux, so that u 7→ f ′(u)
is strictly increasing. Moreover, assume that u+ > u−.

The solution is then a centered rarefaction wave, obtained by the method of characteristics
(fig. 20).

u(t, x) =





u− if x
t < f ′(u−),

u+ if x
t > f ′(u+),

ω if x
t = f ′(ω) for some ω ∈ [u−, u+].

(3.4)

Since the mapping ω 7→ f ′(ω) is strictly increasing, for x
t ∈ [f ′(u−) , f ′(u+)] there exists a

unique value ω ∈ [u−, u+] such that x
t = f ′(ω). The above function u is thus well defined.

x

u−

u+
f (u)’

f (u)’

u(t)

t

0

Figure 20: The centered rarefaction wave defined at (3.4).

Example 9. Consider again a scalar conservation law with strictly convex flux. However, we
now assume that u+ < u−.

The solution consists of a single shock:

u(t, x) =

{
u− if x < λt,
u+ if x > λt,

(3.5)

As usual, the shock speed is determined by the Rankine-Hugoniot equations (2.10). We observe
that this shock satisfies both the Liu and the Lax admissibility conditions.

Remark 3. The formula (3.5) defines a weak solution to the Riemann problem also in
Example 8. However, if u− < u+, this solution does not satisfy the Liu admissibility condition.
The Lax condition fails as well.
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0

f (u)’

u

u

u(t)

u  − u+ −
f(u  ) − f(u  )

λ = 
+ −λ t

−

+

x

Figure 21: A shock satisfying the admissibility conditions.

On the other hand, if u+ < u−, the formula (3.4) does not define a single valued function
(fig. 21). Hence it cannot provide a solution in Example 9.

Example 10. Consider the Riemann problem for a linear system:

ut +Aux = 0 u(0, x) =

{
u− if x < 0,
u+ if x > 0.

For linear systems, the general solution to the Cauchy problem was already constructed in
(1.13).

1

2

x / t = λ 3

x0

t

= uω
0

−
3ω = u+

ω ω
1

2

x / t = λ

x / t = λ

Figure 22: Solution to the Riemann problem for a linear system.

For this particular initial data, the solution can be obtained as follows. Write the vector
u+ − u− as a linear combination of eigenvectors of A, i.e.

u+ − u− =
n∑

j=1

cjrj .

Define the intermediate states

ωi
.
= u− +

∑

j≤i

cjrj , i = 0, . . . , n.

The solution then takes the form

u(t, x) =





ω0 = u− for x/t < λ1,
. . .

ωi for λi < x/t < λi+1,
. . .

ωn = u+ for x/t > λn.

(3.6)
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Notice that, in this linear case, the general solution to the Riemann problem consists of n
jumps. The i-th jump: ωi − ωi−1 = ciri is parallel to the i-eigenvector of the matrix A and
travels with speed λi, given by the corresponding eigenvalue (fig. 22).

3.2 A class of hyperbolic systems

We shall consider hyperbolic systems which satisfy the following simplifying assumption, in-
troduced by P. Lax [42].

(H) For each i = 1, . . . , n, the i-th field is either genuinely nonlinear, so that Dλi(u) ·ri(u) > 0
for all u, or linearly degenerate, with Dλi(u) · ri(u) = 0 for all u.

We recall thatDλi denotes the gradient of the scalar function u 7→ λi(u). HenceDλi(u)·ri(u) is
the directional derivative of λi in the direction of the vector ri. Notice that, in the genuinely
nonlinear case, the i-th eigenvalue λi is strictly increasing along each integral curve of the
corresponding field of eigenvectors ri. In the linearly degenerate case, on the other hand,
the eigenvalue λi is constant along each such curve (see fig. 23). With the above assumption
(H), we are ruling out the possibility that, along some integral curve of an eigenvector ri,
the corresponding eigenvalue λi may partly increase and partly decrease, having several local
maxima and minima.

0

2r1r

u
0

u1

u2

R
2
(σ)(u  )

Figure 23: Integral curves of the vector fields r1(u), r2(u).

Example 11 (isentropic gas dynamics). Denote by ρ the density of a gas, by v = ρ−1

its specific volume and by u its velocity. A simple model for isentropic gas dynamics (in
Lagrangian coordinates) is then provided by the so-called “p-system”

{
vt − ux = 0 ,

ut + p(v)x = 0 .
(3.7)

Here p = p(v) is a function which determines the pressure in terms of of the specific volume.
An appropriate choice is p(v) = kv−γ , with 1 ≤ γ ≤ 3. In the region where v > 0, the Jacobian
matrix of the system is

A
.
= Df =

(
0 −1

p′(v) 0

)
.
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The eigenvalues and eigenvectors are found to be

λ1 = −
√
−p′(v) , λ2 =

√
−p′(v) , (3.8)

r1 =




1

√
−p′(v)


 , r2 =




−1

√
−p′(v)


 . (3.9)

It is now clear that the system is strictly hyperbolic provided that p′(v) < 0 for all v > 0.
Moreover, observing that

Dλ1 · r1 =
p′′(v)

2
√
−p′(v) = Dλ2 · r2 ,

we conclude that both characteristic fields are genuinely nonlinear if p′′(v) > 0 for all v > 0.

As we shall see in the sequel, if the assumption (H) holds, then the solution of the Riemann
problem has a simple structure consisting of the superposition of n elementary waves: shocks,
rarefactions or contact discontinuities. This considerably simplifies all further analysis. On
the other hand, for strictly hyperbolic systems that do not satisfy the condition (H), basic
existence and stability results can still be obtained, but at the price of heavier technicalities
[45].

3.3 Elementary waves

Fix a state u0 ∈ IRn and an index i ∈ {1, . . . , n}. As before, let ri(u) be an i-eigenvector of
the Jacobian matrix A(u) = Df(u). The integral curve of the vector field ri through the point
u0 is called the i-rarefaction curve through u0. It is obtained by solving the Cauchy problem
in state space:

du

dσ
= ri(u), u(0) = u0. (3.10)

We shall denote this curve as
σ 7→ Ri(σ)(u0). (3.11)

Clearly, the parametrization depends on the choice of the eigenvectors ri. In particular, if we
impose the normalization |ri(u)| ≡ 1, then the rarefaction curve (3.11) will be parameterized
by arc-length. In the genuinely nonlinear case, we always choose the orientation so that the
eigenvalue λi(u) increases as the parameter σ increases along the curve.

Next, for a fixed u0 ∈ IRn and i ∈ {1, . . . , n}, we consider the i-shock curve through u0. This
is the set of states u which can be connected to u0 by an i-shock. As in Section 2.2, this curve
will be parameterized as

σ 7→ Si(σ)(u0). (3.12)

Using a suitable parametrization (say, by arclength), one can show that the two curves Ri, Si

have a second order contact at the point u0 (see fig. 24). More precisely, the following estimates
hold. {

Ri(σ)(u0) = u0 + σri(u0) + O(1) · σ2,
Si(σ)(u0) = u0 + σri(u0) + O(1) · σ2,

(3.13)

∣∣∣Ri(σ)(u0) − Si(σ)(u0)
∣∣∣ = O(1) · σ3, (3.14)
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λi

(
Si(σ)(u0), u0

)
= λi(u0) +

σ

2
Dλi(u0) · ri(u0) + O(1) · σ2. (3.15)

Here and throughout the following, the Landau symbol O(1) denotes a quantity whose absolute
value satisfies a uniform bound, depending only on the system (3.1).

u
0

Ri

iS

r (u )
0i

Figure 24: The i-shock curve and the i-rarefaction curve through a point u0.

Toward the general solution of the Riemann problem (3.1)-(3.2), we first study three special
cases.

1. Centered Rarefaction Waves. Let the i-th field be genuinely nonlinear, and assume
that u+ lies on the positive i-rarefaction curve through u−, i.e. u+ = Ri(σ)(u−) for some
σ > 0. For each s ∈ [0, σ], define the characteristic speed

λi(s) = λi(Ri(s)(u
−)).

Observe that, by genuine nonlinearity, the map s 7→ λi(s) is strictly increasing. Hence, for
every λ ∈ [λi(u

−), λi(u
+)], there is a unique value s ∈ [0, σ] such that λ = λi(s). For t ≥ 0,

we claim that the function

u(t, x) =





u− if x/t < λi(u
−),

Ri(s)(u
−) if x/t = λi(s) ∈ [λi(u

−), λi(u
+)],

u+ if x/t > λi(u
+),

(3.16)

is a piecewise smooth solution of the Riemann problem, continuous for t > 0. Indeed, from
the definition it follows

lim
t→0+

‖u(t, ·) − ū‖
L1 = 0.

Moreover, the equation (3.1) is trivially satisfied in the sectors where x < tλi(u
−) or x >

tλi(u
+), because here ut = ux = 0. Next, assume x = tλi(s) for some s ∈ ]0, σ[ . Since u is

constant along each ray through the origin {x/t = c}, we have

ut(t, x) +
x

t
ux(t, x) = 0. (3.17)

We now observe that the definition (3.16) implies x/t = λi(u(t, x)). By construction, the vector
ux has the same direction as ri(u), hence it is an eigenvector of the Jacobian matrix A(u)

.
=

Df(u) with eigenvalue λi(u). On the sector of the t-x plane where λi(u
−) < x/t < λi(u

+)
we thus have

ut +A(u)ux = ut + λi(u)ux = 0 ,

proving our claim. As shown in fig. 25, at a fixed time t > 0, the profile x 7→ u(t, x) is obtained
as follows. Consider the rarefaction curve Ri joining u− with u+, on the hyperplane where
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x = 0. Move each point of this curve horizontally, in the amount t λi(u). The new curve
yields the graph of u(t, ·). Notice that the assumption σ > 0 is essential for the validity of
this construction. In the opposite case σ < 0, the definition (3.16) would yield a triple-valued
function in the region where x/t ∈ [λi(u

+) , λi(u
−)].

−

u −

2u

u+ u(t)

0 x

t

u
1

x0

− u = uu = u
+

t
x =λ

i
(u  ) x

t =λ (u  )
i

+

Figure 25: A solution to the Riemann problem consisting of centered rarefaction wave. Left:
the profile of the solution at a fixed time t, in the x-u space. Right: the values of u in the t-x
plane.

2. Shocks. Assume again that the i-th family is genuinely nonlinear and that the state u+ is
connected to the right of u− by an i-shock, i.e. u+ = Si(σ)(u−). Then, calling λ

.
= λi(u

+, u−)
the Rankine-Hugoniot speed of the shock, the function

u(t, x) =

{
u− if x < λt,
u+ if x > λt,

(3.18)

provides a piecewise constant solution to the Riemann problem. Observe that, if σ < 0, than
this solution is entropy admissible in the sense of Lax. Indeed, since the speed is monotonically
increasing along the shock curve, recalling (3.15) we have

λi(u
+) < λi(u

−, u+) < λi(u
−). (3.19)

Hence the Lax admissibility conditions (2.27) hold. In the case σ > 0, however, one has
λi(u

−) < λi(u
+) and the conditions (2.27) are violated.

t

u = u− u = u  +

x =    tλ

x0

Figure 26: A solution consisting of a single shock, or a contact discontinuity.

3. Contact discontinuities. Assume that the i-th field is linearly degenerate and that
the state u+ lies on the i-th rarefaction curve through u−, i.e. u+ = Ri(σ)(u−) for some
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σ. By assumption, the i-th characteristic speed λi is constant along this curve. Choosing
λ = λ(u−), the piecewise constant function (3.18) then provides a solution to our Riemann
problem. Indeed, the Rankine-Hugoniot conditions hold at the point of jump:

f(u+) − f(u−) =

∫ σ

0
Df(Ri(s)(u

−)) ri(Ri(s)(u
−)) ds

=

∫ σ

0
λ(u−) ri(Ri(s)(u

−)) ds = λi(u
−) · [Ri(σ)(u−) − u−].

(3.20)

In this case, the Lax entropy condition holds regardless of the sign of σ. Indeed,

λi(u
+) = λi(u

−, u+) = λi(u
−). (3.21)

Observe that, according to (3.20), for linearly degenerate fields the shock and rarefaction
curves actually coincide: Si(σ)(u0) = Ri(σ)(u0) for all σ.

The above results can be summarized as follows. For a fixed left state u− and i ∈ {1, . . . , n}
define the mixed curve

Ψi(σ)(u−) =

{
Ri(σ)(u−) if σ ≥ 0,
Si(σ)(u−) if σ < 0.

(3.22)

In the special case where u+ = Ψi(σ)(u−) for some σ, the Riemann problem can then be
solved by an elementary wave: a rarefaction, a shock or a contact discontinuity.

3.4 General solution of the Riemann problem

Relying on the previous analysis, the solution of the general Riemann problem (3.1)-(3.2) can
now be obtained by finding intermediate states ω0 = u−, ω1, . . . , ωn = u+ such that each
pair of adiacent states ωi−1, ωi can be connected by an elementary wave, i. e.

ωi = Ψi(σi)(ωi−1) i = 1, . . . , n. (3.23)

This can be done whenever u+ is sufficiently close to u−. Indeed, consider the map

Λ(σ1, . . . , σn) = Ψn(σn) ◦ · · · ◦ Ψ1(σ1)(u
−).

Taking a first order Taylor expansion at the point (σ1, . . . , σn) = (0, . . . , 0) we obtain the affine
map

(σ1, . . . , σn) 7→ u− +
n∑

i=1

σiri(u
−).

Since {r1, . . . , rn} is a basis of the space IRn, the above map has full rank (it is one-to-one and
surjective). We can thus apply the implicit function theorem and conclude that the nonlinear
mapping Λ is a continuous bijection of a neighborhood of the origin in IRn onto a neighborhood
of u− (figure 27).

Therefore, for u+ sufficiently close to u−, there exist unique wave strengths σ1, . . . σn such
that

u+ = Ψn(σn) ◦ · · · ◦ Ψ1(σ1)(u
−). (3.24)
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Figure 27: The range of the map (σ1, σ2) 7→ Ψ2(σ2)◦Ψ1(σ1)(u
−) covers a whole neighborhood

of u−.

In turn, these determine the intermediate states ωi in (3.23). The complete solution is now
obtained by piecing together the solutions of the n Riemann problems

ut + f(u)x = 0, u(0, x) =

{
ωi−1 if x < 0,
ωi if x > 0,

(3.25)

on different sectors of the t-x plane. By construction, each of these problems has an entropy-
admissible solution consisting of a simple wave of the i-th characteristic family. More precisely:

CASE 1: The i-th characteristic field is genuinely nonlinear and σi > 0. Then the solution
of (3.25) consists of a centered rarefaction wave. The i-th characteristic speeds range over the
interval [λ−i , λ

+
i ], defined as

λ−i
.
= λi(ωi−1), λ+

i
.
= λi(ωi).

CASE 2: Either the i-th characteristic field is genuinely nonlinear and σi ≤ 0, or else the
i-th characteristic field is linearly degenerate (with σi arbitrary). Then the solution of (3.25)
consists of an admissible shock or a contact discontinuity, travelling with Rankine-Hugoniot
speed

λ−i
.
= λ+

i
.
= λi(ωi−1, ωi).

The solution to the original problem (3.1)-(3.2) can now be constructed by piecing together
the solutions of the n Riemann problems (3.25), i = 1, . . . , n. Indeed, for σ1, . . . , σn suffi-
ciently small, the speeds λ−i , λ

+
i introduced above remain close to the corresponding eigenval-

ues λi(u
−) of the matrix A(u−). By strict hyperbolicity and continuity, we can thus assume

that the intervals [λ−i , λ
+
i ] are disjoint, i.e.

λ−1 ≤ λ+
1 < λ−2 ≤ λ+

2 < · · · < λ−n ≤ λ+
n .

Therefore, a piecewise smooth solution u : [0,∞)× IR 7→ IRn is well defined by the assignment

u(t, x) =






u− = ω0 if x/t ∈ ] −∞, λ−1 [ ,

Ri(s)(ωi−1) if x/t = λi(Ri(s)(ωi−1)) ∈ [λ−i , λ
+
i [ ,

ωi if x/t ∈ [λ+
i , λ

−
i+1[ ,

u+ = ωn if x/t ∈ [λ+
n , ∞[ .

(3.26)
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Figure 28: A solution to the Riemann problem, consisting of a 1-shock, a 2-contact, and a
3-rarefaction.

Observe that this solution is self-similar, having the form u(t, x) = ψ(x/t), with ψ : IR 7→ IRn

possibly discontinuous.

3.5 The Riemann problem for the p-system

Example 12 (the p-system). Consider again the equations for isentropic gas dynamics (in
Lagrangian coordinates) {

vt − ux = 0 ,
ut + p(v)x = 0 .

(3.27)

We now study the Riemann problem, for general initial data

U(0, x) =

{
U− = (v−, u−) if x < 0,
U+ = (v+, u+) if x > 0,

(3.28)

assuming, that v−, v+ > 0.

By (3.9), the 1-rarefaction curve through U− is obtained by solving the Cauchy problem

du

dv
=
√
−p′(v), u(v−) = u−.

This yields the curve

R1 =
{
(v, u); u− u− =

∫ v

v−

√
−p′(y) dy

}
. (3.29)

Similarly, the 2-rarefaction curve through the point U− is

R2 =
{
(v, u); u− u− = −

∫ v

v−

√
−p′(y) dy

}
. (3.30)

Next, the shock curves S1, S2 through U− are derived from the Rankine-Hugoniot conditions

λ(v − v−) = −(u− u−), λ(u− u−) = p(v) − p(v−). (3.31)
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Figure 29: Shocks and rarefaction curves through the point U− = (v−, u−).

Using the first equation in (3.31) to eliminate λ, these shock curves are computed as

S1 =

{
(v, u); −(u− u−)2 = (v − v−)(p(v) − p(v−)), λ

.
= −u− u−

v − v−
< 0

}
, (3.32)

S2 =

{
(v, u); −(u− u−)2 = (v − v−)(p(v) − p(v−)), λ

.
= −u− u−

v − v−
> 0

}
. (3.33)

Recalling (3.8)-(3.9) and the assumptions p′(v) < 0, p′′(v) > 0, we now compute the directional
derivatives

(Dλ1)r1 = (Dλ2)r2 =
p′′(v)

2
√
−p′(v) > 0. (3.34)

By (3.34) it is clear that the Riemann problem (3.27)-(3.28) admits a solution in the form of
a centered rarefaction wave in the two cases U+ ∈ R1, v

+ > v−, or else U+ ∈ R2, v
+ < v−.

On the other hand, a shock connecting U− with U+ will be admissible provided that either
U+ ∈ S1 and v+ < v−, or else U+ ∈ S2 and v+ > v−.

Taking the above admissibility conditions into account, we thus obtain four lines originating
from the point U− = (v−, u−), i.e. the two rarefaction curves

σ 7→ R1(σ), R2(σ) σ ≥ 0,

and the two shock curves
σ 7→ S1(σ), S2(σ) σ ≤ 0.

In turn, these curves divide a neighborhood of U− into four regions (fig 29):

Ω1, bordering on R1, S2, Ω2, bordering on R1, R2,
Ω3, bordering on S1, S2, Ω4, bordering on S1, R2.

For U+ sufficiently close to U−, the structure of the general solution to the Riemann problem
is now determined by the location of the state U+, with respect to the curves Ri, Si (fig 30).

31



CASE 1: U+ ∈ Ω1. The solution consists of a 1-rarefaction wave and a 2-shock.

CASE 2: U+ ∈ Ω2. The solution consists of two centered rarefaction waves.

CASE 3: U+ ∈ Ω3. The solution consists of two shocks.

CASE 4: U+ ∈ Ω4. The solution consists of a 1-shock and a 2-rarefaction wave.

U

Case 1

Case 2

Case 3

Case 4

R R

U−

U−

U
U

+
−

R S

S

S

U−

U+

U+

+

S

R

Figure 30: Solution to the Riemann problem for the p-system. The four different cases.

Remark 4. Consider a 2 × 2 strictly hyperbolic system of conservation laws. Assume that
the i-th characteristic field is genuinely nonlinear. The relative position of the i-shock and the
i-rarefaction curve through a point u0 can be determined as follows (fig. 24). Let σ 7→ Ri(σ)
be the i-rarefaction curve, parameterized so that λi(Ri(σ)) = λi(u0) + σ. Assume that, for
some constant α, the point

Si(σ) = Ri(σ) + (ασ3 + o(σ3))rj(u0) (3.35)

lies on the i-shock curve through u0, for all σ. Here the Landau symbol o(σ3) denotes a
higher order infinitesimal, as σ → 0. The wedge product of two vectors in IR2 is defined as(
a
b

)
∧
(
c
d

)
.
= ad− bc. We then have

Ψ(σ)
.
=
[
Ri(σ) + (ασ3 + o(σ3))rj(u0) − u0

]
∧
[
f
(
Ri(σ) + (ασ3 + o(σ3))rj(u0)

)
− f(u0)

]

.
= A(σ) ∧B(σ) ≡ 0 .

Indeed, the Rankine-Hugoniot equations imply that the vectors A(σ) and B(σ) are parallel.
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According to Leibnitz’ rule, the fourth derivative is computed by

d4

dσ4
Ψ =

(
d4

dσ4
A

)
∧B + 4

(
d3

dσ3
A

)
∧
(
d

dσ
B

)
+ 6

(
d2

dσ2
A

)
∧
(
d2

dσ2
B

)

+4

(
d

dσ
A

)
∧
(
d3

dσ3
B

)
+A ∧

(
d4

dσ4
B

)

By the choice of the parametrization, d
dσλi(Ri(σ)) ≡ 1. Hence

d

dσ
f(Ri(σ)) = λi(Ri(σ))

d

dσ
Ri(σ) ,

d2

dσ2
f(Ri(σ)) =

d

dσ
Ri(σ) + λi(Ri(σ))

d2

dσ2
Ri(σ) ,

d3

dσ3
f(Ri(σ)) = 2

d2

dσ2
Ri(σ) + λi(Ri(σ))

d3

dσ3
Ri(σ) .

For convenience, we write ri • rj .
= (Drj)ri to denote the directional derivative of rj in the

direction of ri. At σ = 0 we have

A = B = 0 ,
d

dσ
Ri = ri(u0) ,

d2

dσ2
Ri = (ri • ri)(u0) .

Using the above identities and the fact that the wedge product is anti-symmetric, we conclude

d4

dσ4
Ψ

∣∣∣∣∣
σ=0

= 4

(
d3

dσ3
Ri + 6αrj

)
∧
(
λi

d

dσ
Ri

)
+ 6

(
d2

dσ2
Ri

)
∧
(
d

dσ
Ri + λi

d2

dσ2
Ri

)

+4

(
d

dσ
Ri

)
∧
(

2
d2

dσ2
Ri + λi

d3

dσ3
Ri + 6αλjrj

)

= 24α(λi − λj)(rj ∧ ri) − 2(ri • ri) ∧ ri = 0 .

The i-shock curve through u0 is thus traced by points Si(σ) at (3.35), with

α =
(ri • ri) ∧ ri

12(λi − λj)(rj ∧ ri)
. (3.36)

The sign of α in (3.36) gives the position of the i-shock curve, relative to the i-rarefaction
curve, near the point u0. In particular, if (ri • ri)∧ ri 6= 0, it is clear that these two curves do
not coincide.

3.6 Error and interaction estimates

In this final section we provide two types of estimates, which will play a key role in the analysis
of front tracking approximations.

Fix a left state u−, a right state u+, and a speed λ. If these satisfy the Rankine-Hugoniot
equations, we have

λ(u+ − u−) − [f(u+) − f(u−)] = 0.
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On the other hand, if these values are chosen arbitrarily, the only available estimate is

λ(u+ − u−) − [f(u+) − f(u−)] = O(1) · |u+ − u−|. (3.37)

Here an throughout the sequel, the Landau symbol O(1) denotes a quantity which remains
uniformly bounded as all variables u−, u+, λ, σ . . . range on bounded sets. The next lemma
describes by how much the Rankine-Hugoniot equation fail to be satisfied, if the point u+ lies
on the i-rarefaction curve through u− and we choose λ to be the i-th characteristic speed at
the point u−.

Lemma 3 (error estimate). For σ > 0 small, one has the estimate

λk(u
−)
[
Rk(σ)(u−) − u−] −

[
f(Rk(σ)(u−)) − f(u−)

]
= O(1) · σ2 . (3.38)

Proof. Call E(σ) the left hand side of (3.38). Clearly E(0) = 0. Differentiating w.r.t. σ at
the point σ = 0 and recalling that dRk/dσ = rk, we find

dE

dσ

∣∣∣∣
σ=0

= λk(u
−)rk(u

−) −Df(u−)rk(u
−) = 0 .

Since E varies smoothly with u− and σ, the estimate (3.38) follows by Taylor’s formula.
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Figure 31: Wave interactions. Strengths of the incoming and outgoing waves.

Next, consider a left state ul, a middle state um and a right state ur (fig. 31, left). Assume that
the pair (ul, um) is connected by a j-wave of strength σ′, while the pair (um, ur) is connected
by an i-wave of strength σ′′, with i < j. We are interested in the strength of the waves
(σ1, . . . , σn) in the solution of the Riemann problem where u− = ul and u+ = ur. Roughly
speaking, these are the waves determined by the interaction of the σ′ and σ′′. The next lemma
shows that σi ≈ σ′′, σj ≈ σ′ while σk ≈ 0 for k 6= i, j.

A different type of interaction is considered in fig. 31, right. Here the pair (ul, um) is connected
by an i-wave of strength σ′, while the pair (um, ur) is connected by a second i-wave, say of
strength σ′′. In this case, the strengths (σ1, . . . , σn) of the outgoing waves satisfy σi ≈ σ′ +σ′′

while σk ≈ 0 for k 6= i. As usual, O(1) will denote a quantity which remains uniformly
bounded as u−, σ′, σ′′ range on bounded sets.
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Lemma 4 (interaction estimates). Consider the Riemann problem (3.1)-(3.2).

(i) Recalling (3.22), assume that the right state is given by

u+ = Ψi(σ
′′) ◦ Ψj(σ

′)(u−). (3.39)

Let the solution consist of waves of size (σ1, . . . , σn), as in (3.24). Then

|σi − σ′′| + |σj − σ′| +
∑

k 6=i,j

|σk| = O(1) · |σ′σ′′| . (3.40)

(ii) Next, assume that the right state is given by

u+ = Ψi(σ
′′) ◦ Ψi(σ

′)(u−), (3.41)

Then the waves (σ1, . . . , σn) in the solution of the Riemann problem are estimated by

|σi − σ′ − σ′′| +
∑

k 6=i

|σk| = O(1) · |σ′σ′′|(|σ′| + |σ′′|) . (3.42)

For a proof we refer to [11].

4 Global solutions to the Cauchy problem

In this chapter we study the global existence of weak solutions to the general Cauchy problem

ut + f(u)x = 0, (4.1)

u(0, x) = ū(x). (4.2)

Here the flux function f : IRn 7→ IRn is smooth, defined on a neighborhood of the origin. We
always assume that the system is strictly hyperbolic, and that the assumption (H) holds.

A fundamental result proved by Glimm [35] provides the global existence of an entropy weak
solution, for all initial data with suitably small total variation.

Theorem 2 (global existence of weak solutions). Assume that the system (4.1) is
strictly hyperbolic, and that each characteristic field is either linearly degenerate or genuinely
nonlinear.

Then there exists a constant δ0 > 0 such that, for every initial condition ū ∈ L1(IR; IRn) with

Tot.Var.{ū} ≤ δ0 , (4.3)

the Cauchy problem (4.1)-(4.2) has a weak solution u = u(t, x) defined for all t ≥ 0.
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In addition, one can prove the existence of a global solution satisfying all the admissibility
conditions introduced in Section 2.3. A proof of Theorem 2 requires two main steps:

(i) Construct a sequence of approximate solutions uν .

(ii) Show that a subsequence converges in L1
loc to a weak solution u of the Cauchy problem.

Approximate solutions can be constructed by piecing together solutions to several Riemann
problems. Two techniques have been developed in the literature:

- In the Glimm scheme (fig. 40) one considers a fixed grid of points (tj, xk) = (j∆t , k∆x) in
the t-x plane, and solves a Riemann problem at each node of the grid.

- In a front tracking approximation, one constructs a piecewise constant approximate solution
u = u(t, x), whose jumps are located along a finite number of segments in the t-x plane
(fig. 33). A new Riemann problem is solved at each point where two fronts interact. These
points depend on the particular solution being constructed.

Having constructed a sequence of approximate solutions (uν)ν≥1, to extract a converging
subsequence one needs a uniform bound on the total variation Tot.Var.{um(t, ·)}, uniformly
valid for t > 0 and m ≥ 1. Following [35], this can be achieved by introducing a suitable wave
interaction functional.

ν
u u

u
1 2

Figure 32: Without a bound on the total variation, a sequence of approximate solutions may
oscillate more and more, without admitting any convergent subsequence.

4.1 Front tracking approximations

In this section we describe the construction of front tracking approximations. This method
was developed in [27], [29], and in [9] respectively for scalar conservation laws, for 2 × 2
systems, and for general n × n systems satisfying the assumptions (H). Further versions of
this algorithm can also be found in [5, 39, 57]. An extension to fully general n × n systems,
without the assumptions (H), is provided in [4].

Let the initial condition ū be given and fix ε > 0. We now describe an algorithm which
produces a piecewise constant approximate solution to the Cauchy problem (4.1)-(4.2). The
construction (fig. 33) starts at time t = 0 by taking a piecewise constant approximation u(0, ·)

36



x

t

0

t1

t3

t4

t2

σ’

xα

xβ

σ

Figure 33: An approximate solution obtained by front tracking.

of ū, such that

Tot.Var.{u(0, ·)} ≤ Tot.Var.{ū} ,
∫

|u(0, x) − ū(x)| dx ≤ ε . (4.4)

Let x1 < · · · < xN be the points where u(0, ·) is discontinuous. For each α = 1, . . . ,N , the
Riemann problem generated by the jump (u(0, xα−), u(0, xα+)) is approximately solved on a
forward neighborhood of (0, xα) in the t-x plane by a piecewise constant function, according
to the following procedure.

Accurate Riemann Solver. Consider the general Riemann problem at a point (t̄, x̄),

vt + f(v)x = 0, v(t̄, x) =

{
u− if x < x̄,
u+ if x > x̄,

(4.5)

Recalling (3.22), let ω0, . . . , ωn be the intermediate states and σ1, . . . , σn be the strengths of
the waves in the solution, so that

ω0 = u−, ωn = u+, ωi = Ψi(σi)(ωi−1) i = 1, . . . , n. (4.6)

If all jumps (ωi−1, ωi) were shocks or contact discontinuities, then this solution would be
already piecewise constant. In general, the exact solution of (4.5) is not piecewise constant,
because of the presence of centered rarefaction waves. These will be approximated by piecewise
constant rarefaction fans, inserting additional states ωi,j as follows.
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Figure 34: Replacing a centered rarefaction wave by a rarefaction fan.
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If the i-th characteristic field is genuinely nonlinear and σi > 0, we divide the centered i-
rarefaction into a number pi of smaller i-waves, each with strength σi/pi. Here we choose the
integer pi big enough so that σ/pi < ε. For j = 1, . . . , pi, we now define the intermediate
states and wave-fronts (fig. 34)

ωi,j = Ri(jσi/pi)(ωi−1), xi,j(t) = x̄+ (t− t̄)λi(ωi,j−1). (4.7)

Replacing each centered rarefaction wave with a rarefaction fan, we thus obtain a piecewise
constant approxiamate solution to the Riemann problem (fig. 35).
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Figure 35: Left: the exact solution to a Riemann problem. Right: a piecewise constant
approximation. The centered rarefaction wave of the 3-d family has been replaced by a
rarefaction fan.

We now resume the construction of a front tracking solution to the original Cauchy problem
(4.1)-(4.2). Having solved all the Riemann problems at time t = 0, the approximate solution
u can be prolonged until a first time t1 is reached, when two wave-fronts interact (fig. 33).
Since u(t1, ·) is still a piecewise constant function, the corresponding Riemann problems can
again be approximately solved within the class of piecewise constant functions. The solution
u is then continued up to a time t2 where a second interaction takes place, etc. . . We remark
that, by an arbitrary small change in the speed of one of the wave fronts, it is not restrictive
to assume that at most two incoming fronts collide, at each given time t > 0. This will
considerably simplify all subsequent analysis, since we don’t need to consider the case where
three or more incoming fronts meet together.

The above construction can be continued for all times t > 0, as long as

(i) The total variation Tot.Var.{u(t, ·)} remains small enough. This guarantees that all jumps
u(t, x−), u(t, x+) are small, hence the corresponding Riemann problems admit a solution.

(ii) The total number of fronts remains finite.

Bounds on the total variations will be discussed in the next section. Here we observe that a
naive implementation of the front tracking algorithm can produce an infinite number of fronts
within finite time (fig. 36).

As shown in [9], this can be avoided by occasionally implementing a Simplified Riemann Solver,
which introduces one single additional front (fig. 37). In this case, the solution is continued
by means of two outgoing fronts of exactly the same strength as the incoming one. All other
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Figure 36: Left: the number of wave fronts can become infinite in finite time. Right: by using
the simplified Riemann solver at two interaction points P and Q, the total number of fronts
remains bounded.

waves resulting from the interaction are lumped together in a single front, traveling with a
constant speed λ̂, strictly larger than all characteristic speeds.

’ NP

σ’
"σ σ’ σ"

σ" σ

simplified Riemann solveraccurate Riemann solver

Figure 37: Left: the solution to a Riemann problem obtained by the Accurate Riemann
Solver introduces several new wave fronts. Right: the Simplified Riemann solver produces two
outgoing fronts of the same strength as the incoming ones, plus a small Non-Physical front.

In the end, for a given ε > 0, this modified front tracking algorithm generates a piecewise
constant ε-approximate solution u = u(t, x), defined as follows.

Definition 6 (front tracking approximate solution). A piecewise constant function
u = u(t, x), defined for t ≥ 0, x ∈ R, is called an ε-approximate front tracking solution to the
Cauchy problem (4.1)-(4.2) provided that

(i) The initial condition is approximately attained, namely ‖u(0, ·) − ū‖L1 ≤ ε.

(ii) All shock fronts and all contact discontinuities satisfy the Rankine-Hugoniot equations, as
well as the admissibility conditions.

(iii) Each rarefaction front has strength ≤ ε.

(iv) At each time t > 0, the total strength of all non-physical fronts in u(t, ·) is ≤ ε.

(v) The total variation of u(t, ·) satisfies a uniform bound, depending only on Tot.Var.{ū}.
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- By a shock front we mean a jump whose right and left states satisfy u+ = Si(σ)(u−) for
some σ ∈ IR and i ∈ {1, . . . , n}. This travels with Rankine-Hugoniot speed λ = λi(u

−, u+) =
f(u+)−f(u−)

u+−u− .

- By a rarefaction front we mean a jump whose right and left states satisfy u+ = Ri(σ)(u−)
for some σ, i. This travels with speed λ = λi(u

+), i.e. with the characteristic speed of its
right state.

- By a non-physical front we mean a jump whose right and left states u+, u− are arbitrary.
This travels with a fixed speed λ̂, strictly greater than all characteristic speeds.

4.2 Bounds on the total variation

In this section we derive bounds on the total variation of a front tracking approximation
u(t, ·), uniformly valid for all t ≥ 0. These estimates will be obtained from Lemma 4, using
an interaction functional.

We begin by introducing some notation. At a fixed time t, let xα, α = 1, . . . ,N , be the
locations of the fronts in u(t, ·). Moreover, let |σα| be the strength of the wave-front at xα,
say of the family kα ∈ {1, . . . , n}. Consider the two functionals

V (t)
.
= V (u(t))

.
=
∑

α

|σα| , (4.8)

measuring the total strength of waves in u(t, ·), and

Q(t)
.
= Q(u(t))

.
=

∑

(α,β)∈A

|σασβ| , (4.9)

measuring the wave interaction potential. In (4.9), the summation ranges over the set A of all
couples of approaching wave-fronts:

Definition 7 (approaching fronts). Two fronts, located at points xα < xβ and belonging
to the characteristic families kα, kβ ∈ {1, . . . , n} respectively, are approaching if kα > kβ or
else if kα = kβ and at least one of the wave-fronts is a shock of a genuinely nonlinear family.

Roughly speaking, two fronts are approaching if the one behind has the larger speed (and
hence it can collide with the other, at a future time).

Now consider the approximate solution u = u(t, x) constructed by the front tracking algorithm.
It is clear that the quantities V (u(t)), Q(u(t)) remain constant except at times where an
interaction occurs. At a time τ where two fronts of strength |σ′|, |σ′′| collide, the interaction
estimates (3.40) or (3.42) yield

∆V (τ)
.
= V (τ+) − V (τ−) = O(1) · |σ′σ′′|, (4.10)

∆Q(τ)
.
= Q(τ+) −Q(τ−) = − |σ′σ′′| + O(1) · |σ′σ′′| · V (τ−). (4.11)

Indeed (fig. 38), after time τ the two colliding fronts σ′, σ′′ are no longer approaching. Hence
the product |σ′σ′′| is no longer counted within the summation (4.9). On the other hand, the
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Figure 38: Estimating the change in the total variation at a time where two fronts interact.

new waves emerging from the interaction (having strength O(1) · |σ′σ′′|) can approach all the
other fronts not involved in the interaction (which have total strength ≤ V (τ−) ).

If V remains sufficiently small, so that O(1) · V (τ−) ≤ 1/2, from (4.11) it follows

Q(τ+) −Q(τ−) ≤ − |σ′σ′′|
2

. (4.12)

By (4.10) and (4.12) we can thus choose a constant C0 large enough so that the quantity

Υ(t)
.
= V (t) + C0Q(t)

decreases at every interaction time, provided that V remains sufficiently small.

We now observe that the total strength of waves is an equivalent way of measuring the total
variation. Indeed, for some constant C one has

Tot.Var.{u(t)} ≤ V (u(t)) ≤ C · Tot.Var.{u(t)} . (4.13)

Moreover, the definitions (4.8)-(4.9) trivially imply Q ≤ V 2. If the total variation of the initial
data u(0, ·) is sufficiently small, the previous estimates show that the quantity V + C0Q is
nonincreasing in time. Therefore

Tot.Var.{u(t)} ≤ V (u(t)) ≤ V (u(0)) + C0Q(u(0)) . (4.14)

This provides a uniform bound on the total variation of u(t, ·) valid for all times t ≥ 0.

An important consequence of the bound (4.14) is that, at every time τ where two fronts
interact, the corresponding Riemann problem can always be solved. Indeed, the left and right
states differ by the quantity

|u+ − u−| ≤ Tot.Var.{u(τ)} ,

which remains small.

Another consequence of the bound on the total variation is the continuity of t 7→ u(t, ·) as a
function with values in L1

loc. More precisely, there exists a Lipschitz constant L′ such that

∫ ∞

−∞
|u(t, x) − u(t′, x)| dx ≤ L′|t− t′| for all t, t′ ≥ 0 . (4.15)
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Indeed, if no interaction occurs inside the interval [t, t′], the left hand side of (4.15) can be
estimated simply as

‖u(t) − u(t′)‖
L1 ≤ |t− t′|∑α |σα| |ẋα|

≤ |t− t′| · [total strength of all wave fronts] · [maximum speed]

≤ L′ · |t− t′|,

(4.16)

for some uniform constant L′. The case where one or more interactions take place within [t, t′]
is handled in the same way, observing that the map t 7→ u(t, ·) is continuous across interaction
times.

4.3 Convergence to a limit solution

Given any sequence εν → 0+, by the front tracking algorithm we obtain a sequence of piecewise
constant functions uν , where each unu is an εν-approximate solution to the Cauchy problem
(4.1)-(4.2).

By (4.15) the maps t 7→ uν(t, ·) are uniformly Lipschitz continuous w.r.t. the L1 distance. We
can thus apply Helly’s compactness theorem (see Theorem A.1 in the Appendix) and extract
a subsequence which converges to some limit function u in L1

loc, also satisfying (4.15).

By the second relation in (4.4), as εν → 0 we have uν(0) → ū in L1
loc. Hence the initial

condition (4.2) is clearly attained. To prove that u is a weak solution of the Cauchy problem,
it remains to show that, for every φ ∈ C1

c with compact support contained in the open half
plane where t > 0, one has

∫ ∞

0

∫ ∞

−∞
φt(t, x)u(t, x) + φx(t, x)f(u(t, x)) dxdt = 0. (4.17)

Since the uν are uniformly bounded and f is uniformly continuous on bounded sets, it suffices
to prove that

lim
ν→0

∫ ∞

0

∫ ∞

−∞

{
φt(t, x)uν(t, x) + φx(t, x)f(uν(t, x))

}
dxdt = 0. (4.18)

Choose T > 0 such that φ(t, x) = 0 whenever t /∈ [0, T ]. For a fixed ν, at any time t call
x1(t) < · · · < xN (t) the points where uν(t, ·) has a jump, and set

∆uν(t, xα)
.
= uν(t, xα+) − uν(t, xα−), ∆f(uν(t, xα))

.
= f(uν(t, xα+)) − f(uν(t, xα−)).

Observe that the polygonal lines x = xα(t) subdivide the strip [0, T ] × IR into finitely many
regions Γj where uν is constant (fig. 39). Introducing the vector

Φ
.
= (φ · uν , φ · f(uν)),

by the divergence theorem the double integral in (4.18) can be written as

∑

j

∫∫

Γj

div Φ(t, x) dtdx =
∑

j

∫

∂Γj

Φ · n dσ. (4.19)
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Figure 39: Estimating the error in an approximate solution obtained by front tracking.

Here ∂Γj is the oriented boundary of Γj, while n denotes an outer normal. Observe that
ndσ = ±(ẋα,−1)dt along each polygonal line x = xα(t), while φ(t, x) = 0 along the lines
t = 0, t = T . By (4.19) the expression within square brackets in (4.18) is computed by

∫ T

0

∑

α

[
ẋα(t) · ∆uν(t, xα) − ∆f(uν(t, xα))

]
φ(t, xα(t)) dt . (4.20)

Here, for each t ∈ [0, T ], the sum ranges over all fronts of uν(t, ·). To estimate the above
integral, let σα be the signed strength of the wave-front at xα. If this wave is a shock or or
contact discontinuity, by construction the Rankine-Hugoniot equations are satisfied exactly,
i.e.

ẋα(t) · ∆uν(t, xα) − ∆f(uν(t, xα)) = 0. (4.21)

On the other hand, if the wave at xα is a rarefaction front, its strength will satisfy σα ∈ ]0, εν [ .
Therefore, the error estimate (3.38) yields

∣∣∣ẋα(t) · ∆uν(t, xα) − ∆f(uν(t, xα))
∣∣∣ = O(1) · |σα|2 = O(1) · εν |σα| . (4.22)

Finally, if the jump at xα is a non-physical front of strength |σα| .= |uν(xα+) − uν(xα−)|, by
(3.37) we have the estimate

∣∣∣ẋα(t) · ∆uν(t, xα) − ∆f(uν(t, xα))
∣∣∣ = O(1) · |σα| . (4.23)

Summing over all wave-fronts and recalling that the total strength of waves in uν(t, ·) satisfies
a uniform bound independent of t, ν, we obtain

lim sup
ν→∞

∣∣∣∣∣
∑

α

[
ẋα(t) · ∆uν(t, xα) − ∆f(uν(t, xα))

]
φ(t, xα(t))

∣∣∣∣∣

≤
(

max
t,x

|φ(t, x)|
)
· lim sup

ν→∞

{
O(1) ·

∑

α∈R

εν |σα| + O(1) ·
∑

α∈NP

|σα|
}

= 0.

(4.24)

The limit (4.18) is now a consequence of (4.24). This shows that u is a weak solution to the
Cauchy problem. For all further details of the proof we refer to [11].
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5 The Glimm scheme

The fundamental paper of Glimm [35] contained the first rigorous proof of existence of global
weak solutions to hyperbolic systems of conservation laws. For several years, the Glimm ap-
proximation scheme has provided the foundation for most of the theoretical results on the
subject. We shall now describe this algorithm in a somewhat simplified setting, for systems
where all characteristic speeds remain inside the interval [0, 1]. This is not a restrictive as-
sumption. Indeed, consider any hyperbolic system of the form

ut +A(u)ux = 0,

and assume that all eigenvalues of A remain inside the interval [−M,M ]. Performing the
linear change of independent variables

y = x+Mt, τ = 2Mt,

we obtain a new system

uτ +A∗(u)uy = 0, A∗(u)
.
=

1

2M
A(u) +

1

2
I

where all eigenvalues of the matrix A∗ now lie inside the interval [0, 1].

To construct an approximate solution to the Cauchy problem

ut + f(u)x = 0, u(0, x) = ū(x), (5.1)

we start with a grid in the t-x plane having step size ∆t = ∆x, with nodes at the points

Pjk = (tj , xk)
.
= (j∆t, k∆x) j, k ∈ ZZ .

Moreover, we shall need a sequence of real numbers θ1, θ2, θ3, . . . uniformly distributed over
the interval [0, 1]. This means that, for every λ ∈ [0, 1], the percentage of points θi, 1 ≤ i ≤ N
which fall inside [0, λ] should approach λ as N → ∞, i.e.:

lim
N→∞

#{j ; 1 ≤ j ≤ N, θj ∈ [0, λ] }
N

= λ for each λ ∈ [0, 1]. (5.2)

By #I we denote here the cardinality of a set I.

At time t = 0, the Glimm algorithm starts by taking an approximation of the initial data ū,
which is constant on each interval of the form ]xk−1, xk[ , and has jumps only at the nodal
points xk

.
= k∆x. To fix the ideas, we shall take

u(0, x) = ū(xk) for all x ∈ [xk, xk+1[ . (5.3)

For times t > 0 sufficiently small, the solution is then obtained by solving the Riemann
problems corresponding to the jumps of the initial approximation u(0, ·) at the nodes xk.
Since by assumption all waves speeds are contained in [0, 1], waves generated from different
nodes remain separated at least until the time t1 = ∆t. The solution can thus be prolonged
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on the whole time interval [0, ∆t[ . For bigger times, waves emerging from different nodes
may cross each other, and the solution would become extremely complicated. To prevent
this, a restarting procedure is adopted. Namely, at time t1 = ∆t the function u(t1−, ·) is
approximated by a new function u(t1+, ·) which is piecewise constant, having jumps exactly at
the nodes xk

.
= k∆x. Our approximate solution u can now be constructed on the further time

interval [∆t, 2∆t[ , again by piecing together the solutions of the various Riemann problems
determined by the jumps at the nodal points xk. At time t2 = 2∆t, this solution is again
approximated by a piecewise constant function, etc. . .

A key aspect of the construction is the restarting procedure. At each time tj
.
= j∆t, we need

to approximate u(tj−, ·) with a a piecewise constant function u(tj+, ·), having jumps precisely
at the nodal points xk. This is achieved by a random sampling technique. More precisely, we
look at the number θj in our uniformly distributed sequence. On each interval [xk−1, xk[ , the
old value of our solution at the intermediate point x∗k = θjxk + (1− θj)xk−1 becomes the new
value over the whole interval:

u(tj+, x) = u(tj−, θjxk + (1 − θj)xk−1) for all x ∈ [xk−1, xk[ . (5.4)

An approximate solution constructed in this way is shown in fig. 40. The asterisks mark the
points where the function is sampled. For sake of illustration, we choose θ1 = 1/2, θ2 = 1/3.
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Figure 40: An approximate solution constructed by the Glimm scheme.

For a strictly hyperbolic system of conservation laws, satisfying the hypotheses (H) in Sec-
tion 3, the fundamental results of J.Glimm [35] and T.P.Liu [47] have established that

1. If the initial data ū has small total variation, then an approximate solution can be con-
structed by the above algorithm for all times t ≥ 0. The total variation of u(t, ·) remains
small.

2. Letting the grid size ∆t = ∆x tend to zero and using always the same sequence of numbers
θj ∈ [0, 1], one obtains a sequence of approximate solutions uν . By Helly’s compactness
theorem, one can extract a subsequence that converges to some limit function u = u(t, x) in
L1

loc.

3. If the numbers θj are uniformly distributed over the interval [0, 1], i.e. if (5.2) holds, then
the limit function u provides a weak solution to the Cauchy problem (5.1).

The importance of the sequence θj being uniformly distributed can be best appreciated in the
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following example.

Example 10. Consider a Cauchy problem of the form (5.1). Assume that the exact solution
consists of exactly one single shock, travelling with speed λ ∈ [0, 1], say

U(t, x) =

{
u+ if x > λt,
u− if x < λt.

t

x

*

*

*

*

*

*

*

*

*

*

u=u

u=u+

∆

∆t

x

−

Figure 41: Applying the Glimm scheme to a solution consisting of a single shock.

Consider an approximation of this solution obtained by implementing the Glimm algorithm
(fig. 41). By construction, at each time tj

.
= j∆t, the position of the shock in this approximate

solution must coincide with one of the nodes of the grid. Observe that, passing from tj−1 to
tj, the position x(t) of the shock remains the same if the j-th sampling point lies on the left,
while it moves forward by ∆x if the j-th sampling point lies on the right. In other words,

x(tj) =

{
x(tj−1) if θj ∈ ]λ, 1],
x(tj−1) + ∆x if θj ∈ [0, λ].

(5.5)

Let us fix a time T > 0, and take ∆t
.
= T/N . From (5.5) it now follows

x(T ) = #{j ; 1 ≤ j ≤ N, θj ∈ [0, λ] } · ∆t

=
#{j ; 1 ≤ j ≤ N, θj ∈ [0, λ] }

N
· T .

It is now clear that the assumption (5.2) on the uniform distribution of the sequence {θj}j≥1 is
precisely what is needed to guarantee that, as N → ∞ (equivalently, as ∆t→ 0), the location
x(T ) of the shock in the approximate solution converges to the exact value λT .

Remark 7. At each restarting time tj we need to approximate the BV function u(tj−, ·)
with a new function which is piecewise constant on each interval [xk−1, xk[ . Instead of the
sampling procedure (5.4), an alternative method consists of taking average values:

u(tj+, x)
.
=

1

∆x

∫ xk

xk−1

u(tj−, y) dy for all x ∈ [xk−1, xk[ . (5.6)
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Figure 42: Approximations leading to the Godunov scheme.

Calling ujk the constant value of u(tj+) on the interval [xk−1, xk[ , an application of the
divergence theorem on the square Γjk (fig. 42) yields

uj+1,k = uj,k + [f(uj,k−1) − f(uj,k)] (5.7)

Indeed, all wave speeds are in [0, 1], hence

u(t, xk−1) = uj,k−1, u(t, xk) = uj,k for all t ∈ [tj , tj+1[ .

The finite difference scheme (5.6) is the simplest version of the Godunov (upwind) scheme. It
is very easy to implement numerically, since it does not require the solution of any Riemann
problem. Unfortunately, as shown in [14], in general it is not possible to obtain a priori
bounds on the total variation of solutions constructed by the Godunov method. Proving the
convergence of these approximations remains an outstanding open problem.

The remaining part of this chapter will be concerned with error bounds, for solutions generated
by the Glimm scheme.

Observe that, at each restarting time tj = j∆t, the replacement of u(tj−) with the piecewise
constant function u(tj+) produces an error measured by

‖u(tj+) − u(tj−)‖
L1

As the time step ∆t = T/N approaches zero, the total sum of all these errors does not converge
to zero, in general. This can be easily seen in Example 10, where we have

N∑

j=1

‖u(tj+) − u(tj−)‖
L1 ≥

N∑

j=1

|u+ − u−| · ∆t · min {(1 − λ), λ}

= |u+ − u−| · T · min {(1 − λ), λ}.

This fact makes it difficult to obtain sharp error estimates for solutions generated by the
Glimm scheme. Roughly speaking, the approximate solutions converge to the correct one not
because the total errors become small, but because, by a sort of randomness in the sampling
choice, small errors eventually cancel each other in the limit.
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Clearly, the speed of convergence of the Glimm approximate solutions as ∆t,∆x→ 0 strongly
depends on how well the sequence {θi} approximates a uniform distribution on the interval
[0, 1]. In this connection, let us introduce

Definition 8. Let a sequence of numbers θj ∈ [0, 1] be given. For fixed integers 0 ≤ m < n,
the discrepancy of the set {θm, . . . , θn−1} is defined as

Dm,n
.
= sup

λ∈[0,1]

∣∣∣∣λ− #{j ; m ≤ j < n, θj ∈ [0, λ] }
n−m

∣∣∣∣ . (5.8)

We now describe a simple method for defining the numbers θj, so that the corresponding
discrepancies Dm,n approach zero as n−m → ∞, at a nearly optimal rate. Write the integer
k in decimal digits, then invert the order of the digits and put a zero in front:

θ1 = 0.1 , . . . , θ759 = 0.957 , . . . , θ39022 = 0.22093 , . . . (5.9)

For the sequence (5.9) one can prove that the discrepancies satisfy

Dm,n ≤ C · 1 + ln(n−m)

n−m
for all n > m ≥ 0 (5.10)

for some constant C. For approximate solutions constructed in terms of the above sequences
(θj), using the restarting procedures (5.3)-(5.4), the following estimates were proved in [21].

Theorem 3 (error estimates for the Glimm scheme). Given any initial data ū ∈ L1

with small total variation, call uexact(t, ·) = Stū the exact solution of the Cauchy problem
(5.1). Moreover, let uGlimm(t, ·) be the approximate solution generated by the Glimm scheme,
in connection with a grid of size ∆t = ∆x and a fixed sequence (θj)j≥0 satisfying (5.10). For
every fixed time T ≥ 0, letting the grid size tend to zero, one has the error estimate

lim
∆x→0

‖uGlimm(T, ·) − uexact(T, ·)‖
L1√

∆x · | ln ∆x|
= 0 . (5.11)

In other words, the L1 error tends to zero faster then
√

∆x · | ln ∆x|, i.e. slightly slower than
the square root of the grid size.

To prove Theorem 6, using a fundamental lemma of T.P.Liu [47], one first constructs a front
tracking approximate solution u = u(t, x) that coincides with uGlimm at the initial time t = 0
and at the terminal time t = T . The L1 distance between u(T, ·) and the exact solution ST ū
can then be estimated using the error formula (10.7). For all details we refer to [21].

6 Continuous dependence on the initial data

Consider again the Cauchy problem (4.1)-(4.2), for a strictly hyperbolic system of conserva-
tion laws, satisfying the assumptions (H). Given two solutions u, v, in order to estimate the
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difference ‖u(t)−v(t)‖L1 one could adopt a standard approach. Namely, set w = u−v, derive
an evolution equation for w, and show that

d

dt
‖w(t)‖ ≤ C ‖w(t)‖ . (6.1)

By Gronwall’s lemma, this implies

‖u(t) − v(t)‖ ≤ eCt‖u(0) − v(0)‖ .

In particular, if u(0) = v(0), then u(t) = v(t) for all t > 0, proving the uniqueness of the
solution to the Cauchy problem.

The above approach works well for smooth solutions of the hyperbolic system (4.1), but fails
in the presence of shocks. Indeed, for two solutions u, v of a hyperbolic system containing
shocks, the L1 distance can increase rapidly during short time intervals (fig. 43).

|| u(t) − v(t) ||

x

t1

t

2t

0 t
21

t t

jumps in  v

jumps in  u

L
1

Figure 43: Left: the solutions u and v differ only in the location of the shocks, and for the
time of interaction. Right: even if u and v are very close, during the short time interval
between interaction times, the distance ‖u− v‖L1 can increase rapidly.

6.1 Unique solutions to the scalar conservation law

In the case of a scalar conservation law, the fundamental works of A.I. Volpert [61] and
S. Kruzhkov [41] have established:

Theorem 4 (well posedness for the scalar Cauchy problem). Let f : IR 7→ IR be
any smooth flux. Then, for any initial data ū ∈ L∞, the Cauchy problem (4.1)-(4.2) has a
unique entropy-admissible weak solution, defined for all times t ≥ 0. The corresponding flow
is contractive in the L1 distance. Namely, for any two admissible solutions, one has

‖u(t) − v(t)‖L1 ≤ ‖u(0) − v(0)‖L1 for all t ≥ 0 . (6.2)

For a proof in the one-dimensional case, see [11]. We observe that the L1 distance between
two solutions u, v remains constant in time, as long as shocks do not appear. Indeed, as shown
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in fig. 44, one can fill the region enclosed between the graphs {y = u(x)} and {y = v(x)} at
time t = 0 with thin rectangles. As long as the solutions u, v remain continuous, they can
be constructed by the method of characteristics. In particular, the region between the two
graphs is obtained by shifting horizontally each rectangle, with constant speed f ′(y).

On the other hand, if a shock in one of the solutions crosses the graph of the other solution,
then the L1 distance ‖u− v‖L1 decreases in time (fig. 45).

u(t)

v(t)

x

x

wave  speed u(0)

v(0)

Figure 44: The L1 distance between two continuous solutions remains constant in time.

x

v(t)

x

wave  speed
u(0)

v(0)

u(t)

Figure 45: The L1 distance decreases when a shock in one solution crosses the graph of the
other solution.

6.2 Linear Hyperbolic Systems

We consider here another special case, where the system is linear with constant coefficients.

ut +Aux = 0 u ∈ IRn. (6.3)
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Let {l1, . . . , ln} and {r1, . . . , rn} be dual bases of left and right eigenvectors of the matrix A,
as in (1.7). Instead of the Euclidean norm

‖u‖L1
.
=

∫
|u(x)| dx

one can use the equivalent norm

‖u‖A
.
=

n∑

i=1

∫
|li · u(x)| dx . (6.4)

By linearity, for any two solutions u, v, the difference w = u−v satisfies still the same equation:

wt +Awx = 0 .

From the explicit representation (1.13), it now follows that

‖w(t)‖A = ‖w(0)‖A for all t ∈ IR .

In other words, the flow generated by the linear homogeneous equation (6.3) is a group of
isometries w.r.t. the distance ‖u− v‖A, namely

‖u(t) − v(t)‖A = ‖u(0) − v(0)‖A for all t ∈ IR .

6.3 Nonlinear systems

We always assume that the system (4.1) is strictly hyperbolic, and satisfies the hypotheses
(H), so that each characteristic field is either linearly degenerate or genuinely nonlinear. The
analysis in the previous chapter has shown the existence of a global entropy weak solution
of the Cauchy problem for every initial data with sufficiently small total variation. More
precisely, recalling the definitions (4.8)-(4.9), consider a domain of the form

D = cl
{
u ∈ L1(IR; IRn); u is piecewise constant, Υ(u)

.
= V (u) + C0 ·Q(u) < δ0

}
, (6.5)

where cl denotes closure in L1. With a suitable choice of the constants C0 and δ0 > 0, for every
ū ∈ D, one can construct a sequence of ε-approximate front tracking solutions converging to
a weak solution u taking values inside D. Observe that, since the proof of convergence relied
on a compactness argument, no information was obtained on the uniqueness of the limit. The
main goal of the section is to show that this limit is unique and depends continuously on the
initial data.

Theorem 5. For every ū ∈ D, as ε → 0 every sequence of ε-approximate solutions uε :
[0,∞[ 7→ D of the Cauchy problem (4.1)-(4.2), obtained by the front tracking method, converges
to a unique limit solution u : [0,∞[ 7→ D. The map (ū, t) 7→ u(t, ·) .

= Stū is a uniformly
Lipschitz semigroup, i.e.:

S0ū = ū, Ss(Stū) = Ss+tū, (6.6)

‖Stū− Ssv̄‖L1 ≤ L · (‖ū− v̄‖L1 + |t− s|) for all ū, v̄ ∈ D, s, t ≥ 0. (6.7)
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This result was first proved in [15] for 2 × 2 systems, then in [16] for general n × n systems,
using a (lengthy and technical) homotopy method. Here the idea is to consider a path of initial
data γ0 : θ 7→ uθ(0) connecting u(0) with v(0). Then one constructs the path γt : θ 7→ uθ(t)
connecting the corresponding solutions at time t. By careful estimates on the tangent vector
zθ(t)

.
= duθ(t)/dθ, one shows that the length of γt can be uniformly bounded in terms of the

length of the initial path γ0.

u(0)

v(0)

z (0)θ

u (0)θ

u  (t)θ

z  (t)θ

u(t)

v(t)

Figure 46: Estimating the distance between two solutions by a homotopy method.

Relying on some original ideas introduced by T.P.Liu and T.Yang in [50, 51], the paper [20]
provided a much simpler proof of the continuous dependence result, which will be described
here. An extension of the above result to initial-boundary value problems for hyperbolic
conservation laws has recently appeared in [31]. All of the above results deal with solutions
having small total variation. The existence of solutions, and the well posedness of the Cauchy
problem for large BV data was studied respectively in [56] and in [43].

To prove the uniqueness of the limit of front tracking approximations, we need to estimate
the distance between any two ε-approximate solutions u, v of (4.1). For this purpose we
introduce a functional Φ = Φ(u, v), uniformly equivalent to the L1 distance, which is “almost
decreasing” along pairs of solutions. Recalling the construction of shock curves at (3.12), given
two piecewise constant functions u, v : IR 7→ Rn, we consider the scalar functions qi defined
implicitly by

v(x) = Sn(qn(x)) ◦ · · · ◦ S1(q1(x))(u(x)). (6.8)

u

v

= u(x)0ω

ω1

2

x

q
1

= v(x)ω

3
q

ω

λ3

xα

σα αx
3

1λ

Figure 47: Decomposing a jump (u(x), v(x)) in terms of n (possibly non-admissible) shocks.

Remark 5. If we wanted to solve the Riemann problem with data u− = u(x) and u+ =
v(x) only in terms of shock waves (possibly not entropy-admissible), then the corresponding
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intermediate states would be

ω0(x) = u(x), ωi(x) = Si(qi(x)) ◦ · · · ◦ S1(q1(x))(u(x)) i = 1, . . . , n. (6.9)

Moreover, q1(x), . . . , qn(x) would be the sizes of these shocks (fig. 47). Since the pair of
states (ωi−1, ωi) is connected by a shock, the corresponding speed λi(u

−, u+) is well defined.
In particular, one can determine whether the i-shock qi located at x is approaching a j-
wave located at some other point x′. It is useful to think of qi(x) as the strength of the
i-th component in the jump (u(x), v(x)). In the linear case (6.3) we would simply have
qi = li · (v − u), and our functional would eventually reduce to (6.4).

If the shock curves are parameterized by arc-length, on a compact neighborhood of the origin
one has

|v(x) − u(x)| ≤
n∑

i=1

|qi(x)| ≤ C |v(x) − u(x)| (6.10)

for some constant C. We now consider the functional

Φ(u, v)
.
=

n∑

i=1

∫ ∞

−∞
|qi(x)|Wi(x) dx, (6.11)

where the weights Wi are defined by setting:

Wi(x)
.
= 1 + κ1 · [total strength of waves in u and in v which approach the i-wave qi(x)]

+κ2 · [wave interaction potentials of u and of v]

.
= 1 + κ1Ai(x) + κ2[Q(u) +Q(v)].

(6.12)
Since these weights remain uniformly bounded as u ranges in the domain D, from (6.10)–(6.12)
it follows

‖u− v‖L1 ≤ Φ(u, v) ≤ C1 · ‖v − u‖L1 (6.13)

for some constant C1 and all u, v ∈ D. A key estimate proved in [20] shows that, for any two
ε-approximate front tracking solutions u, v : [0, T ] 7→ D, there holds

d

dt
Φ(u(t), v(t)) ≤ C2ε, (6.14)

for some constant C2.

Relying on this estimate, we now prove Theorem 5. Let ū ∈ D be given. Consider any sequence
(uν)ν≥1, such that each uν is an εν -approximate front tracking solution of the Cauchy problem
(4.1)-(4.2). For every µ, ν ≥ 1 and t ≥ 0, by (6.13) and (6.14) it now follows

‖uµ(t) − uν(t)‖
L1 ≤ Φ(uµ(t), uν(t))

≤ Φ(uµ(0), uν(0)) +C2t · max{εµ, εν}
≤ C1‖uµ(0) − uν(0)‖L1 + C2t · max{εµ, εν}.

(6.15)

Since the right hand side of (6.15) approaches zero as µ, ν → ∞, the sequence is Cauchy and
converges to a unique limit. The semigroup property (6.6) is an immediate consequence of
uniqueness. Finally, let ū, v̄ ∈ D be given. For each ν ≥ 1, let uν , vν be εν -approximate front
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tracking solutions of the Cauchy problem, with initial data ū and v̄, respectively. Using again
(6.13) and (6.14) we deduce

‖uν(t) − vν(t)‖
L1 ≤ Φ(uν(t), vν(t))

≤ Φ(uν(0), vν(0)) + C2tεν

≤ C1

(
‖uν(0) − ū‖L1 + ‖ū− v̄‖L1 + ‖v̄ − vν(0)‖L1

)
+ C2tεν .

Letting ν → ∞ we obtain ‖u(t) − v(t)‖
L1 ≤ C1 · ‖ū− v̄‖L1 , proving the Lipschitz continuous

dependence w.r.t. the initial data.

7 Uniqueness of solutions

According to the analysis in the previous chapters, the solution of the Cauchy problem (4.1)-
(4.2) obtained as limit of front tracking approximations is unique and depends Lipschitz con-
tinuously on the initial data, in the L1 norm. This basic result, however, leaves open the
question whether other weak solutions may exist, possibly constructed by different approxi-
mation algorithms. We will show that this is not the case: indeed, every entropy admissible
solution, satisfying some minimal regularity assumptions, necessarily coincides with the one
obtained as limit of front tracking approximations.

7.1 An error estimate for front tracking approximations

As a first step, we estimate the distance between an approximate solution, obtained by the
front tracking method, and the exact solution of the Cauchy problem (4.1)-(4.2), given by
the semigroup trajectory t 7→ u(t, ·) = Stū . Let uε : [0, T ] 7→ D be an ε-approximate front
tracking solution, according to Definition 6. We claim that the corresponding error can then
be estimated as

‖uε(T, ·) − ST ū‖L1 = O(1) · ε(1 + T ). (7.1)

To see this, we first estimate the limit

lim
h→0+

‖uε(τ + h) − Shu
ε(τ)‖

L1

h

at any time τ ∈ [0, T ] where no wave-front interaction takes place. Let uε(τ, ·) have jumps at
points x1 < · · · < xN .

For each α, call ωα the self-similar solution of the Riemann problem with data u± = u(τ, xα±) .
We observe that, for h > 0 small enough, the semigroup trajectory h 7→ Shu(τ) is obtained
by piecing together the solutions of these Riemann problems (fig. 48). Splitting the set of all
wave-fronts into shocks, rarefactions, and non-physical fronts, we estimate

lim
h→0+

‖uε(τ + h) − S̃hu
ε(τ)‖

L1

h

=
∑

α∈R∪S∪NP

(
lim

h→0+

1

h

∫ xα+ρ

xα−ρ
|uε(τ + h, x) − ωα(h, x− xα)| dx

)

=
∑

α∈R

O(1) · ε |σα| +
∑

α∈NP

O(1) · |σα| = O(1) · ε .

(7.2)
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Figure 48: The exact solution (dotted lines) which, at time τ , coincides with the value of a
piecewise constant front tracking approximation.

Here ρ can be any suitably small positive number. From the the bound (7.2) and the error
formula (10.7) in the Appendix, we finally obtain

‖uε(T, ·) − ST ū‖L1 ≤ ‖STu
ε(0, ·) − ST ū‖L1 + ‖uε(T, ·) − STu

ε(0, ·)‖
L1

≤ L · ‖uε(0, ·) − ū‖
L1 + L ·

∫ T

0

{
lim inf
h→0+

‖uε(τ + h) − Shu
ε(τ)‖

L1

h

}
dτ

= O(1) · ε+ O(1) · εT.

7.2 Characterization of semigroup trajectories

In this section, we describe a set of conditions which, among all weak solutions of the system
(4.1) characterizes precisely the ones obtained as limits of front tracking approximations.
These conditions, introduced in [10], are obtained by locally comparing a given solution with
two types of approximations.

τ
x

u −

u+

u(  , x)τ

ξ

t

xξ

Figure 49: In a forward neighborhood of a point of jump, an admissible solution u should be
asymptotically equivalent to the solution to a Riemannn problem

1. Comparison with solutions to a Riemann problem.

Let u = u(t, x) be a weak solution. Fix a point (τ, ξ). Define U ♯ = U ♯
(τ,ξ) as the solution of

the Riemann problem corresponding to the jump at (τ, ξ):

wt + f(w)x = 0, w(τ, x) =

{
u+ .

= u(τ, ξ+) if x > ξ
u−

.
= u(τ, ξ−) if x < ξ
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We expect that, if u satisfies the admissibility conditions, then u will be asymptotically equal
to U ♯ in a forward neighborhood of the point (τ, ξ). More precisely, for every λ̂ > 0, one
should have

lim
h→0+

1

h

∫ ξ+hλ̂

ξ−hλ̂

∣∣∣∣∣u(τ + h, x) − U ♯
(τ,ξ)(τ + h, x)

∣∣∣∣∣ dx = 0. (E1)

2. Comparison with solutions to a linear hyperbolic problem.

Fix again a point (τ, ξ), and choose λ̂ > 0 larger than all wave speeds. Define U ♭ = U ♭
(τ,ξ) as

the solution of the linear Cauchy problem

wt + Ãwx = 0 w(τ, x) = u(τ, x)

with “frozen” coefficients: Ã
.
= A(u(τ, ξ)). Then, for a < ξ < b and h > 0, we expect that

the difference between these two solutions should be estimated by

1

h

∫ b−λ̂h

a+λ̂h

∣∣∣∣∣u(τ + h, x) − U ♭(τ + h, x)

∣∣∣∣∣ dx = O(1) ·
(

Tot.Var. {u(τ, ·); ]a, b[ }
)2

(E2)

a b  ξ
τ

τ + h
I h

Figure 50: The solution to a linearized hyperbolic system.

A heuristic motivation for the above estimate is as follows. The functions u,w satisfy

ut = −A(u)ux , wt = −Ãwx , u(τ) = w(τ).

Hence

∫ b−λ̂h

a+λ̂h

∣∣∣∣∣u(τ+h, x)−U ♭(τ+h, x)

∣∣∣∣∣ dx ≈
∫ τ+h

τ

∫

J(t)

∣∣∣∣A(u(t, x))ux−A(u(τ, ξ))wx

∣∣∣∣ dxdt , (7.3)

where J(t)
.
= ]a+ (t− τ)λ̂ , b− (t− τ)λ̂ [ . We now have

∫

J(t)

(
|ux(t, x)| + |wx(t, x)|

)
dx = O(1) · Tot.Var.

{
u(τ, ·); ]a, b[

}
,

sup
τ<t<τ+h, x∈J(t)

∣∣∣∣∣A(u(t, x)) −A(u(τ, ξ))

∣∣∣∣∣ = O(1) · Tot.Var.{u(τ, ·); ]a, b[ } .

Therefore, for each time t ∈ [τ, τ + h], the integrand on the right hand side of (7.3) is of the
same order of magnitude as the square of the total variation. This yields (E2).

It can be proved that all solutions obtained as limits of front tracking approximations satisfy
the estimates (E1)-(E2), for every τ, ξ, a, b. The following theorem, proved in [10], shows that
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the estimates (E1)-(E2) completely characterize semigroup trajectories, among all Lipschitz
continuous functions u : [0, T ] 7→ L1 with values in the domain D defined at (6.5) .

Theorem 6 (characterization of semigroup trajectories). Let u : [0, T ] 7→ D be Lips-
chitz continuous w.r.t. the L1 distance. Then u is a weak solution to the system of conservation
laws

ut + f(u)x = 0

obtained as limit of front tracking approximations if and only if the estimates (E1)-(E2) are
satisfied for a.e. τ ∈ [0, T ], at every ξ ∈ IR.

The proof is based on the fact that the two estimates (E1) and (E2) together imply that

lim
h→0+

‖u(τ + h) − Shu(τ)‖L1

h
= 0 for a.e. τ. (7.4)

Hence, by the error formula (10.7) in the Appendix,

‖u(t) − Stu(0)‖L1 ≤ L ·
∫ T

0

{
lim inf
h→0+

‖u(τ + h) − Shu(τ)‖L1

h

}
dτ = 0

for all t ≥ 0.

x x x
τ

+ hτ

u(  ,x)τ

i−1 i

Figure 51: Proving the asymptotic error estimate (7.4).

In order to prove (7.4), choose points xi such that Tot.Var.
{
u(τ) ; ]xi−1 , xi[

}
< ε for

every i. For h > 0 small, we split an integral over the entire real line into a sum of integrals
over different intervals, as shown in fig. 51:

1

h

∫ ∞

−∞

∣∣∣∣u(τ + h, x) − Shu(τ)(x)

∣∣∣∣ dx

=
∑

i

1

h

∫ xi+λ̂h

xi−λ̂h

{∣∣∣u(τ + h, x) − U ♯
i (τ + h, x)

∣∣∣ +
∣∣∣Shu(τ)(x) − U ♯

i (τ + h, x)
∣∣∣
}
dx

+
∑

i

1

h

∫ xi−λ̂h

xi−1+λ̂h

{∣∣∣u(τ + h, x) − U ♭
i (τ + h, x)

∣∣∣ +
∣∣∣Shu(τ)(x) − U ♭

i (τ + h, x)
∣∣∣
}
dx

=
∑

i

Ai +
∑

i

Bi .
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The estimate (E1) implies Ai → 0 as h → 0, while the estimate (E2) implies Bi ≤ ε ·
Tot.Var.

{
u(τ) ; ]xi−1 , xi[

}
, and hence

∑

i

Bi ≤ ε · Tot.Var.
{
u(τ) ; IR

}
= O(ε).

Since ε > 0 is arbitrary, this proves (7.4).

7.3 Uniqueness theorems

Relying on Theorem 6, there is a natural strategy in order to prove uniqueness of solutions to
the Cauchy problem:

• introduce a suitable set of admissibility + regularity assumptions,

• show that these assumptions imply the estimates (E1) and (E2).

For sake of clarity, a complete set of assumptions is listed below.

(A1) (Conservation Equations) The function u = u(t, x) is a weak solution of the Cauchy
problem (4.1)-(4.2), taking values within the domain D of a semigroup S. More precisely,
u : [0, T ] 7→ D is continuous w.r.t. the L1 distance. The identity u(0, ·) = ū holds in L1, and
moreover ∫∫

(uϕt + f(u)ϕx) dxdt = 0 (7.5)

for every C1 function ϕ with compact support contained inside the open strip ]0, T [×IR.

(A2) (Lax Admissibility Conditions) Let u have an approximate jump discontinuity at
some point (τ, ξ) ∈ ]0, T [×IR. More precisely, assume that there exists states u−, u+ ∈ IRn

and a speed λ ∈ IR such that, calling

U(t, x)
.
=

{
u− if x < λt,
u+ if x > λt,

(7.6)

there holds

lim
r→0+

1

r2

∫ r

−r

∫ r

−r

∣∣∣u(τ + t, ξ + x) − U(t, x)
∣∣∣ dxdt = 0. (7.7)

By Theorem 1, the piecewise constant function U must be a weak solution to the system of
conservation laws, satisfying the Rankine-Hugoniot equations (2.6). In particular, the jump
u+−u− should be an eigenvector of the averaged matrix A(u−, u+), say of the i-th family, for
some i ∈ {1, . . . , n}. In this case, we assume that the following shock admissibility conditions
hold:

λi(u
−) ≥ λ ≥ λi(u

+). (7.8)

(A3) (Tame Oscillation Condition) For some constants C, λ̂ the following holds. For
every point x ∈ IR and every t, h > 0 one has

|u(t+ h, x) − u(t, x)| ≤ C · Tot.Var.
{
u(t, ·) ; [x− λ̂h, x+ λ̂h]

}
. (7.9)
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(A4) (Bounded Variation Condition) There exists δ > 0 such that, for every space-like
curve {t = τ(x)} with |dτ/dx| ≤ δ a.e., the function x 7→ u(τ(x), x) has locally bounded
variation.

t+h

t

x

γ

ba

Figure 52: The tame oscillation and the bounded variation condition.

Remark 6. The condition (A3) restricts the oscillation of the solution. An equivalent,
more intuitive formulation is the following (see fig. 52). For some constant λ̂ larger than all
characteristic speeds, given any interval [a, b] and t ≥ 0, the oscillation of u on the triangle
∆

.
= {(s, y) : s ≥ t, a+ λ̂(s− t) < y < b− λ̂(s− t)}, defined as

Osc{u; ∆} .
= sup

(s,y),(s′,y′)∈∆
|u(s, y) − u(s′, y′)|,

is bounded by a constant multiple of the total variation of u(t, ·) on [a, b].

The assumption (A4) simply requires that, for some fixed δ > 0, the function u has bounded
variation along every space-like curve γ which is “almost horizontal” (fig. 52). Indeed, the
condition is imposed only along curves of the form {t = τ(x); x ∈ [a, b]} with

|τ(x) − τ(x′)| ≤ δ|x− x′| for all x, x′ ∈ [a, b].

One can prove that all of the above assumptions are satisfied by weak solutions obtained as
limits of Glimm or wave-front tracking approximations [11]. The following result shows that
the entropy weak solution of the Cauchy problem (4.1)-(4.2) is unique within the class of
functions that satisfy either the additional regularity condition (A3), or (A4).

Theorem 7. Assume that the function u : [0, T ] 7→ D is continuous (w.r.t. the L1 distance),
taking values in the domain of the semigroup S generated by the system (4.1). If (A1), (A2)
and (A3) hold, then

u(t, ·) = Stū for all t ∈ [0, T ]. (7.10)

In particular, the weak solution that satisfies these conditions is unique. The same conclusion
holds if the assumption (A3) is replaced by (A4).

The first part of this theorem was proved in [17], the second part in [19]. Both of these papers
extend the result in [18], where this approach to uniqueness was first developed.
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8 The Vanishing Viscosity Approach

In view of the previous uniqueness and stability results, one expects that the entropy-
admissible weak solutions of the hyperbolic system

ut + f(u)x = 0 (8.1)

should coincide with the unique limits of solutions to the parabolic system

uε
t + f(uε)x = ε uε

xx (8.2)

letting the viscosity coefficient ε→ 0. For smooth solutions, this convergence is easy to show.
However, one should keep in mind that a weak solution of the hyperbolic system (8.1) in general
is only a function with bounded variation, possibly with a countable number of discontinuities.
In this case, as the smooth functions uε approach the discontinuous solution u, near points of
jump their gradients uε

x tend to infinity (fig. 53), while their second derivatives uε
xx become

even more singular. Therefore, establishing the convergence uε → u is a highly nontrivial
matter. In earlier literature, results in this direction relied on three different approaches:

1 - Comparison principles for parabolic equations. For a scalar conservation law, the
existence, uniqueness and global stability of vanishing viscosity solutions was first established
by Oleinik [53] in one space dimension. The famous paper by Kruzhkov [41] covers the more
general class of L∞ solutions and is also valid in several space dimensions.

2 - Singular perturbations. This technique was developed by Goodman and Xin [37],
and covers the case where the limit solution u is piecewise smooth, with a finite number of
non-interacting, entropy admissible shocks. See also [60] and [55], for further results in this
direction.

3 - Compensated compactness. With this approach, introduced by Tartar and DiPerna
[30], one first considers a weakly convergent subsequence uε ⇀ u. For a class of 2× 2 systems,
one can show that this weak limit u actually provides a distributional solution to the non-
linear system (8.1). The proof relies on a compensated compactness argument, based on the
representation of the weak limit in terms of Young measures, which must reduce to a Dirac
mass due to the presence of a large family of entropies.

x

u

u

ε

Figure 53: A discontinuous solution to the hyperbolic system and a viscous approximation.

Since the hyperbolic Cauchy problem is known to be well posed within a space of functions with
small total variation, it is natural to develop a theory of vanishing viscosity approximations
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within the same space BV. This was indeed accomplished in [7], in the more general framework
of nonlinear hyperbolic systems not necessarily in conservation form. The only assumptions
needed here are the strict hyperbolicity of the system and the small total variation of the
initial data.

Theorem 8 (BV estimates and convergence of vanishing viscosity approximations).
Consider the Cauchy problem for the hyperbolic system with viscosity

uε
t +A(uε)uε

x = ε uε
xx uε(0, x) = ū(x) . (8.3)

Assume that the matrices A(u) are strictly hyperbolic (i.e., they have real, distinct eigenvalues),
and depend smoothly on u in a neighborhood of the origin. Then there exist constants C,L,L′

and δ > 0 such that the following holds. If

Tot.Var.{ū} < δ , ‖ū‖L∞ < δ, (8.4)

then for each ε > 0 the Cauchy problem (8.3)ε has a unique solution uε, defined for all t ≥ 0.
Adopting a semigroup notation, this will be written as t 7→ uε(t, ·) .

= Sε
t ū.

In addition, one has:

BV bounds : Tot.Var.{Sε
t ū} ≤ C Tot.Var.{ū} . (8.5)

L1 stability : ‖Sε
t ū−Sε

t v̄‖L1 ≤ L ‖ū− v̄‖
L1 , (8.6)

‖Sε
t ū− Sε

s ū‖L1 ≤ L′
(
|t− s| + |

√
εt−√

εs |
)
. (8.7)

Convergence: As ε → 0+, the solutions uε converge to the trajectories of a semigroup S
such that

‖Stū− Ssv̄‖L1 ≤ L ‖ū− v̄‖L1 + L′ |t− s| . (8.8)

These vanishing viscosity limits can be regarded as the unique vanishing viscosity solutions of
the hyperbolic Cauchy problem

ut +A(u)ux = 0, u(0, x) = ū(x) . (8.9)

In the conservative case A(u) = Df(u), every vanishing viscosity solution is a weak solution
of

ut + f(u)x = 0, u(0, x) = ū(x) , (8.10)

satisfying the Liu admissibility conditions.

Assuming, in addition, that each characteristic field is genuinely nonlinear or linearly degen-
erate, the vanishing viscosity solutions coincide with the unique limits of Glimm and front
tracking approximations.

61



In the genuinely nonlinear case, an estimate on the rate of convergence of these viscous ap-
proximations was provided in [22]:

Theorem 9 (convergence rate). For the strictly hyperbolic system of conservation laws
(8.10), assume that every characteristic field is genuinely nonlinear. At any time t > 0, the
difference between the corresponding solutions of (8.3) and (8.10) can be estimated as

‖uε(t, ·) − u(t, ·)‖
L1 = O(1) · (1 + t)

√
ε| ln ε| Tot.Var.{ū} .

In the following sections we outline the main ideas of the proof of Theorem 8. For details, see
[7] or the lecture notes [12].

8.1 Local decomposition by travelling waves

As a preliminary, observe that uε is a solution of (8.3) if and only if the rescaled function
u(t, x)

.
= uε(εt, εx) is a solution of the parabolic system with unit viscosity

ut +A(u)ux = uxx , (8.11)

with initial data u(0, x) = ū(εx). Clearly, the stretching of the space variable has no effect
on the total variation. Notice however that the values of uε on a fixed time interval [0, T ]
correspond to the values of u on the much longer time interval [0, T/ε]. To obtain the desired
BV bounds for the viscous solutions uε, it suffices to study solutions of (8.11). However, we
need estimates uniformly valid for all times t ≥ 0 , depending only on the total variation of
the initial data ū.

To provide a uniform estimate on Tot.Var.{u(t, ·)} = ‖ux(t, ·)‖L1 , we decompose the gradient
ux along a basis of unit vectors r̃1, . . . , r̃n, say

ux =
∑

i

vir̃i . (8.12)

We then derive an evolution equation for these gradient components, of the form

vi,t + (λ̃ivi)x − vi,xx = φi i = 1, . . . , n , (8.13)

Since the left hand side of (8.13) is in conservation form, we have

‖ux(t)‖ ≤
n∑

i=1

‖vi(t, ·)‖L1 ≤
∑

i

(
‖vi(0, ·)‖L1 +

∫ t

0
‖φi(s, ·)‖L1 ds

)
. (8.14)

A crucial point in the entire analysis is the choice of the unit vectors r̃i. A natural guess would
be to take r̃i = ri(u), the i-th eigenvector of the hyperbolic matrix A(u). This was indeed the
decomposition used in Section 1.6. As in (1.21), we thus write

ux =
∑

i

ui
xri ui

x
.
= li · ux , (8.15)
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so that (8.11) takes the form

ut = −
∑

i

λiu
i
xri +

∑

i

(ui
xri)x . (8.16)

Differentiating the first equation in (8.15) w.r.t. t and the equation in (8.16) w.r.t. x, and
equating the results, we obtain an evolution equation for the gradient components ui

x, namely

(ui
x)t + (λiu

i
x)x − (ui

x)xx = φi(u, u
1
x, . . . , u

n
x)

.
= li ·

∑

j<k

λk[rk, rj ]u
j
xu

k
x

+ li ·


2

∑

j,k

(rk • rj)(uj
x)xu

k
x +

∑

j,k,ℓ

(
rℓ • (rk • rj) − (rℓ • rk) • rj

)
uj

xu
k
xu

ℓ
x



 .

(8.17)

Here rk • rj .
= (Drj)rk denotes the directional derivative of rj along rk, while [rk, rj ]

.
=

(Drj)rk − (Drk)rj is the Lie bracket of the two vector fields. Relying on the above for-
mula, in order to achieve BV bounds uniformly valid for t ∈ [0,∞[ , we would need∫ ∞

0

∫
|φi| dxdt < ∞. Unfortunately this does not hold, in general. Indeed, for a typi-

cal solution having the form of a travelling wave u(t, x) = ū(x− λt), the source terms do not
vanish identically: φi 6≡ 0. Therefore

∫ t

0

∫
|φi(τ, x)| dxdτ = t ·

∫
|φi(0, x)| dx → ∞ as t→ ∞

u(t)u(0)

x

Figure 54: For a viscous travelling wave, the source terms φi are usually not integrable.

To readdress this situation, a key idea is to decompose ux not along the eigenvectors r1, . . . , rn
of A(u), but along a basis {r̃1, . . . r̃n} of gradients of viscous travelling waves.

We recall that a travelling wave solution of the viscous hyperbolic system (8.11) is a solution
of the form

u(t, x) = U(x− σt) (8.18)

Here the constant σ = −Ut/Ux is the speed of the wave. Inserting (8.18) in (8.11), we see that
the function U should satisfy the second order O.D.E.

U ′′ = (A(U) − σ)U ′ . (8.19)

As shown in fig. 55, we wish to decompose ux =
∑

i U
′
i locally as sum of gradients of trav-

elling waves. More precisely, given (u, ux, uxx) at a point x, we seek travelling wave profiles
U1, . . . , Un such that

U ′′
i = (A(Ui) − σi)U

′
i Ui(x) = u(x) i = 1, . . . , n, (8.20)
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+
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Figure 55: Decomposing the function u as the superposition of two viscous traveling profiles,
in a neighborhood of a point x.

∑

i

U ′
i(x) = ux(x) ,

∑

i

U ′′
i (x) = uxx(x). (8.21)

Observe that, having fixed u(x), the system (8.20)-(8.21) yields

• n+ n scalar equations

• n2 +n free parameters: the vectors U ′
1(x), . . . , U

′
n(x) ∈ IRn, describing the first derivatives

of the travelling waves, and the scalars σ1, . . . , σn, describing the speeds.

For n > 1, the system is under-determined. To achieve a unique decomposition, further
restrictions must thus be imposed on the choice of the travelling wave profiles. Indeed, for
each given state u ∈ IRn and i = 1, . . . , n, we should select a 2-parameter family of travelling
waves through u. This is done using the center manifold theorem.

To begin with, we replace the second order O.D.E. (8.19) describing travelling waves with an
equivalent first order system: 





u̇ = v
v̇ = (A(u) − σ)v
σ̇ = 0

(8.22)

This consists of n + n + 1 O.D.E’s. Notice that the last equation simply says that the
speed σ is a constant. Fix a state u∗ ∈ IRn. Linearizing (8.19) at the equilibrium point
P ∗ = (u∗, 0, λi(u

∗)), one obtains the system



u̇

v̇

σ̇




=




0 I 0

0 A(u∗) − λi(u
∗)I 0

0 0 0







u

v

σ




∈ IRn+n+1. (8.23)

Recalling that A(u∗) is a n× n matrix with real and distinct eigenvalues, one checks that the
center subspace Ni for the (2n + 1) × (2n + 1) matrix in (8.23) (i.e., the invariant subspace
corresponding to all generalized eigenvalues with zero real part) has dimension n+ 2.

By the center manifold theorem, for each i = 1, . . . , n, the nonlinear system (8.22) has a center
manifold Mi of dimension n+ 2, tangent to the center subspace Ni at P ∗.

A more detailed analysis shows that on Mi we can choose coordinates (u, vi, σi) ∈ IRn+1+1.
Here vi is the signed strength of the travelling wave profile through u, and σi is its speed.
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Figure 56: The linear subspace Ni and the center manifold Mi tangent to Ni at the equilibrium
point P ∗.

In other words, at any given point x̄, for every (u, vi, σi) in a neighborhood of (u∗, 0, λi(u
∗)),

there exists a unique solution to (8.19) such that

Ui(x̄) = u, U ′′
i = (A(Ui) − σi)U

′
i , U ′

i(x̄) = vir̃i

for some unit vector r̃i = r̃i(u, v
i, σi).

The previous construction in terms of center manifold trajectories provides a decomposition
of ux along a basis of generalized eigenvectors: r̃i(u, v

i, σi). These are unit vectors, close to
the usual eigenvectors ri(u) of the matrix A(u), which depend on two additional parameters.

Defining the corresponding generalized eigenvalues in terms of a scalar product:

λ̃i(u, v
i, σi)

.
= 〈r̃i , A(u)r̃i〉,

one can prove the key identity

(A(u) − λ̃i)r̃i = vi(r̃i,ur̃i + r̃i,v(λ̃i − σi)). (8.24)

This replaces the standard identity

(A(u) − λi)ri = 0 (8.25)

satisfied by the eigenvectors and eigenvalues of A(u). The additional terms on the right hand
side of (8.24) play a crucial role, achieving a cancellation in the source terms φi in (8.13).
Eventually, this allows us to prove that these source terms are globally integrable, in t and x.

8.2 Evolution of gradient components

Let (u, ux, uxx) ∈ IR3n be given, in a neighborhood of the origin. For convenience, instead
of the decomposition (8.20)-(8.21), it is convenient to set ut = uxx − A(u)ux and seek a
decomposition of the form





ux =
∑

vir̃i(u, v
i, σi)

ut =
∑

wir̃i(u, v
i, σi)

with σi ≈ −w
i

vi
.

After a lengthy computation, one finds that these components satisfy a system of evolution
equations of the form {

vi
t + (λ̃iv

i)x − vi
xx = φi

wi
t + (λ̃iw

i)x − wi
xx = ψi

(8.26)
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A detailed analysis of the right hand sides of (8.26) shows that these source terms can be
estimated as

φi, ψi = O(1) ·∑j |wj + σjv
j | ·
(
|vjwj | + |vj

x| + |wj
x|
)

(wrong speed)

+O(1) ·∑j |wj
xv

j − vj
xw

j | (change in speed, linear)

+O(1) ·∑j

∣∣∣vj
(

wj

vj

)

x

∣∣∣
2

(change in speed, quadratic)

+O(1) ·∑j 6=k

(
|vjvk| + |vj

xv
k| + |vjwk| + |vj

xw
k| + |wjwk|

)

(interaction of waves of different families)

See [7] for detailed computations. Here we can only give an intuitive motivation for how these
source terms arise. If u is precisely a j-travelling wave profile on the center manifold Mj , say
u(t, x) = Uj(x − σjt), then by the key identity (8.24) it follows that all source terms vanish
identically (fig. 57). In essence, the size of these source terms is determined by the distance
of the second order jet (u, ux, uxx) from the closest travelling wave profile.

jU

Uk

’xx

u =Uj

 

Figure 57: If u coincides with a traveling wave profile, say of the j-th family, then all source
terms vanish identically.

x ’x

u

UU

x
0

j

Uk

Uj

Figure 58: Source terms arise because of (i) Interactions of j-waves with k-waves, (ii)
Interactions between waves of the same j-th family, if their speed varies with x, (iii) Points
x0 where the decomposition in traveling profiles cannot be performed exactly.

Wrong speed. In a traveling wave profile u(t, x) = U(t−σt), the speed is the constant value
σ = −Ut/Ux. However, near a point x0 where ux = 0, the speed of a travelling wave would
be σ = −ut/ux → ∞. Since we want σi ≈ λi(u

∗), close to the i-th characteristic speed, a
cut-off function is used. These source terms describe by how much the identity σi = −wi/vi

is violated.
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Change in wave speed. These terms account for local interactions of waves of the same
family. Think of the viscous travelling j-wave that best approximates u at a point x, and
at a nearby point x′. In general, these two profiles will not be the same, hence some local
interaction between them will occur. A measure of how much the j-travelling profile changes,
as the point x varies, is provided by the change in speed: (σj)x

Assuming that the speed satisfies σj = −wj/vj , one has

∣∣∣(σj)x
∣∣∣ =

|wj
xv

j − vj
xw

j |
|vj |2 .

The terms related to change in wave speeds can thus be written as products:

[strength of the wave]2 × [rate of change of the speed]α

with α = 1, 2. More precisely,

O(1) ·
n∑

j=1

|vj |2
∣∣∣(σj)x

∣∣∣+ O(1) ·
n∑

j=1

|vj |2
∣∣∣(σj)x

∣∣∣
2
.

Transversal wave interactions. In general, at a given point x, waves of distinct families
j 6= k are present. These terms model interactions between these different waves.

8.3 Lyapunov functionals

We seek uniform bounds on the norms ‖vi(t)‖L1 , ‖wi(t)‖L1 , independent of time. Since the
left hand sides of the equations (8.26) are in conservation form, it suffices to show that all
source terms are uniformly integrable in both variables t, x. To prove that

∫ ∞

0
‖φi(τ)‖L1 dτ <∞ ,

∫ ∞

0
‖ψi(τ)‖L1 dτ <∞ ,

we construct suitable Lyapunov functionals Ψ(u) ≥ 0 such that

‖φi(t)‖L1 , ‖ψi(t)‖L1 ≤ − d

dt
Ψ(u(t))

In other words, at each time t, the L1 norm of source terms should be controlled by the rate
of decrease of the functional. A summary of the basic estimates is as follows:

Wrong speed =⇒ Parabolic energy estimates
Change in wave speed, linear =⇒ Area functional

Change in wave speed, quadratic =⇒ Curve length functional
Interaction of waves of different families =⇒ Wave interaction potential

In the remainder of this section we describe the main ideas involved in the construction of
these functionals.
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1 - Lyapunov functionals for a pair of linear parabolic equations.

Consider the system of two linear, scalar parabolic equations
{

zt + [λ(t, x) z]x − zxx = 0,
z∗t + [λ∗(t, x) z∗]x − z∗xx = 0.

Assume that the propagation speeds λ and λ∗ are strictly different:

inf
t,x
λ∗(t, x) − sup

t,x
λ(t, x) ≥ c > 0.

It is useful to think of z(·) as the density of waves with slow speed λ, while z∗(·) is the density
of waves with fast speed λ∗. The instantaneous amount of interaction between z and z∗ is
defined as

I(t)
.
=

∫
|z(t, x)| · |z∗(t, x)| dx.

*

x

z
z

Figure 59: Interaction of two viscous waves of different families.

In order to bound the total amount of interaction, we introduce a potential for transversal
wave interactions:

Q(z, z♯)
.
=

∫∫
K(x− y) |z(x)| |z♯(y)| dxdy , (8.27)

with

K(s)
.
=

{
1/c if s ≥ 0,
ecs/2/c if s < 0.

(8.28)

Computing the distributional derivatives of the kernelK, one checks that cK ′−2K ′′ is precisely
the Dirac distribution, i.e. a unit mass at the origin. We now compute

d

dt
Q(z(t), z♯(t)) =

d

dt

∫∫
K(x− y)|z(x)| |z♯(y)| dxdy

=

∫∫
K(x− y)

{(
zxx − (λz)x

)
sgn z(x)|z♯(y)| + |z(x)|

(
z♯
yy − (λ♯z♯)y

)
sgn z♯(y)

}
dxdy

≤
∫∫

K ′(x− y)
{
λ|z(x)| |z♯(y)| − λ♯|z(x)| |z♯(y)|

}
dxdy

+

∫∫
K ′′(x− y)

{
|z(x)| |z♯(y)| + |z(x)| |z♯(y)|

}
dxdy

≤ −
∫∫

(cK ′ − 2K ′′)|z(x)| |z♯(y)| dxdy = −
∫

|z(x)| |z♯(x)| dx

Therefore, since Q ≥ 0, for every T ≥ 0 we have
∫ T

0

∫
|z(t, x)| |z♯(t, x)| dxdt ≤ Q

(
z(0), z♯(0)

)
−Q

(
z(T ), z♯(T )

)
≤ 1

c
‖z(0)‖

L1‖z♯(0)‖
L1 .
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Figure 60: The exponentially decreasing kernel K in (8.28).

Using functionals of the form (8.27), one can control the source terms

O(1) ·
∑

j 6=k

[
|vjvk| + |vj

xv
k| + |vjwk| + |vj

xw
k| + |wjwk|

]

accounting for interaction of waves of different families.

2 - Lyapunov functionals for a scalar viscous conservation law

Consider a scalar conservation law with viscosity:

ut + f(u)x = uxx . (8.29)

We seek functionals that decrease in time, along every solution of (8.29). As t → +∞, we
expect that the solution will approach a viscous travelling wave profile. One could thus look
for a Lyapunov functional describing how far u is from a viscous travelling wave profile.

x

u(0) u(t)

Figure 61: As t → +∞, the solution to a scalar viscous conservation law is expected to
approach a traveling wave profile.

For this purpose, it is convenient to adopt a variable transformation. Given a scalar function
u = u(x), consider the curve

γ
.
=

(
u

f(u) − ux

)
=

(
conserved quantity

flux

)
(8.30)

Observe that u(·) is a travelling wave profile if and only if the corresponding curve γ is a
segment. Indeed

− ut

ux
=

f(u)x − uxx

ux
= constant = [wave speed]

if and only if
d

du

[
f(u) − ux

]
=

[
f(u) − ux

]

x
· 1

ux
= constant.
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Figure 62: Left: the graph of a function u = u(x). Right: the corresponding curve x 7→ γ(x) =(
u(x), f(u(x)) − ux(x)

)

If now u = u(t, x) provides a solution to the viscous conservation law (8.29), the corresponding
curve γ in (8.30) evolves according to the vector equation

γt + f ′(u)γx = γxx . (8.31)

Recalling that

γ
.
=

(
u

f(u) − ux

)
, γx =

(
v
w

)
.
=

(
ux

−ut

)
, (8.32)

we find two functionals associated with (8.31). One is

Curve Length: L(γ)
.
=

∫
|γx| dx =

∫ √
v2 +w2 dx . (8.33)

Indeed, a direct computation yields

d

dt
L(γ(t)) = −

∫ |v|
[
(w/v)x

]2

(1 + (w/v)2)3/2
dx .

Using functionals of this type, one controls the source terms

O(1) ·
∣∣∣∣∣v

j

(
wj

vj

)

x

∣∣∣∣∣

2

(change in wave speed, quadratic).

γ 

γ(0)

x
γ (y)

x
(x)

Figure 63: Defining the area functional.
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The second functional is (see fig. 63)

Area functional: Q(γ)
.
=

1

2

∫∫

x<y

∣∣∣∣γx(x) ∧ γx(y)

∣∣∣∣ dx dy (8.34)

If γ evolves in the direction of curvature, then Q controls the area swept by the curve: |dA| ≤
−dQ. This can best be understood thinking of polygonal approximations (fig. 64). If γ is a
polygonal with sides vj , the double integral in (8.34) is computed by a finite sum:

Q(γ) =
1

2

∑

i<j

|vi ∧ vj |. (8.35)

If we now replace two consecutive edges vh,vk by a single segment, the area of the corre-
sponding triangle is

|dA| =
1

2
|vh ∧ vk| ≤ −dQ

Indeed, the term 1
2 |vh ∧ vk| is now missing from the sum in (8.35), while the sum of all other

terms remains the same, or decreases.

γ

γ’

v
γ

v

γ’
k

h

Figure 64: The decrease in the area functional bounds the area swept by the curve in its
motion.

Recalling (8.31)-(8.32), we now compute

−dQ
dt

≥
∣∣∣∣
dA

dt

∣∣∣∣ =

∫
|γt ∧ γx| dx =

∫
|γxx ∧ γx| dx =

∫
|vxw − vwx| dx .

As a consequence, the integral over time of the right hand side can be estimated by

∫ ∞

0

∫
|vxw − vwx| dx dt ≤

∫ ∞

0

∣∣∣∣
d

dt
Q(γ(t))

∣∣∣∣ dt ≤ Q(γ(0))

Using functionals of this type, one can control the source terms

O(1) · |vj
xw

j − vjwj
x| (change in wave speed, linear).

8.4 Continuous dependence on the initial data

The techniques described in the previous section provide uniform estimates on the total vari-
ation of a solution u to the system (8.11). Similar techniques can also be used to estimate the
size of first order perturbations.
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Indeed, let u be solution of (8.11) and assume that, for each ε > 0, the function

uε(t, x) = u(t, x) + ε z(t, x) + o(ε)

is also a solution, with o(ε) denoting an infinitesimal of higher order w.r.t. ε. Inserting the
above expansion in (8.11) and collecting terms of order ε, one finds that the function z must
satisfy the the linearized variational equation

zt + [DA(u) · z]ux +A(u)zx = zxx . (8.36)

Assuming that the total variation of u remains small, one can prove the estimate

‖z(t, ·)‖
L1 ≤ L ‖z(0, ·)‖

L1 for all t ≥ 0 , (8.37)

for a uniform constant L. The above estimate is valid for every solution u of (8.11) having
small total variation and every L1 solution of the corresponding system (8.36).

Relying on (8.37), a standard homotopy argument yields the Lipschitz continuity of the flow
of (8.11) w.r.t. the initial data, uniformly in time. Indeed, let any two solutions u, v of (8.11)
be given (fig. 46). We can connect them by a smooth path of solutions uθ, whose initial data
satisfy

uθ(0, x)
.
= θu(0, x) + (1 − θ)v(0, x) θ ∈ [0, 1] .

The distance ‖u(t, ·)−v(t, ·)‖
L1 at any later time t > 0 is clearly bounded by the length of the

path θ 7→ uθ(t). In turn, this can be computed by integrating the norm of a tangent vector.
Calling zθ .

= duθ/dθ, each vector zθ is a solution of the corresponding equation (8.36), with u
replaced by uθ. Using (8.38) we thus obtain

‖u(t, ·) − v(t, ·)‖
L1 ≤

∫ 1

0

∥∥∥∥
d

dθ
uθ(t)

∥∥∥∥
L1

dθ =

∫ 1

0
‖zθ(t)‖

L1 dθ

≤ L

∫ 1

0
‖zθ(0)‖

L1 dθ = L ‖u(0, ·) − v(0, ·)‖
L1 .

(8.38)

8.5 The semigroup of vanishing viscosity limit solutions

The estimates on the total variation and on the continuous dependence on the initial data,
obtained in the previous sections were valid for solutions of the system (8.11) with unit viscosity
matrix. By the simple rescaling of coordinates t 7→ εt, x 7→ εx, all of the above estimates
remain valid for solutions uε of the system (8.3)ε. In this way we obtain the a priori bounds
(8.5) and (8.6).

As soon as the global BV bounds are established, by a compactness argument one obtains the
existence of a strong limit uεm → u in L1

loc, for some sequence εm → 0. In the conservative
case where A = Df , by Lemma 1 in Section 2 this limit u = u(t, x) provides a weak solution
to the Cauchy problem (8.10).

At this stage, it only remains to prove that the limit is unique, i.e. it does not depend on the
choice of the sequence εm → 0. For a system in conservative form, and with the standard as-
sumption (H) that each field is either genuinely nonlinear or linearly degenerate, we can apply
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Theorem 7 in Section 7, and conclude that the limit of vanishing viscosity approximations is
unique and coincides with the limit of Glimm and of front tracking approximations.

To handle the general non-conservative case, some additional work is required. Relying on
the analysis in [6], one first considers Riemann initial data and shows that in this special
case the vanishing viscosity solution is unique and can be accurately described. In a second
step, one proves that any weak solution obtained as limit vanishing viscosity approximations
is also a “viscosity solution”, i.e. it satisfies the local integral estimates (E1)-(E2) in section
7.2, where U ♯ is now the unique solution of a Riemann problem obtained as limit of viscous
approximations [6]. By an argument introduced in [10], a Lipschitz semigroup is completely
determined as soon as one specifies its local behavior for piecewise constant initial data.
Characterizing its trajectories as “viscosity solutions” one thus establishes the uniqueness of
the semigroup of vanishing viscosity limits.

9 Extensions and open problems

With the papers [35, 20, 7], the well-posedness of the Cauchy problem for hyperbolic conserva-
tion laws in one space dimension has been essentially settled, within the class of solutions with
small total variation. Extensions of these well-posedness results to the initial-boundary value
problem and to balance laws with source terms can be found in [31] and in [1], respectively.

A major remaining open problem concerns the solutions with large total variation. As proved
by M. Lewicka [43], for a large class of hyperbolic systems the solutions are unique and depend
continuously on the initial data, as long as their total variation remains bounded. The key
issue is whether the total variation can blow up in finite time, if the initial data is sufficiently
large. An example constructed by K. Jenssen [40] shows that this can indeed happen, for some
strictly hyperbolic system. One should remark, however, that the 3 × 3 system considered
in [40] does not come from any realistic physical model. In particular, it does not admit
any strictly convex entropy. One may thus conjecture that the presence of a strictly convex
entropy restricts the possibility of a finite time blow up. More specifically, it is an important
open problem to understand whether finite blow up in the total variation norm can occur for
solutions to the Euler equations of gas dynamics.

We remark that, since hyperbolic conservation laws are a class of nonlinear evolution equations,
one might expect to observe some rich dynamics: periodic orbits, bifurcation, chaotic behavior,
etc. . . However, the present theory does not include any of this. The reason is that, as long
as one considers only solutions with small total variation, the dynamics is mostly trivial.
As proved by T.P.Liu [48], letting time t → +∞, every solution with small total variation
converges asymptotically to the solution of a Riemann problem. It is only for large BV
solutions that some interesting dynamics will likely be observed - provided that some global
existence theorem can be established.

In connection with vanishing viscosity approximations, uniform BV bounds for systems of
balance laws with dissipative sources were established in [24]. Viscous approximations to
the initial-boundary value problem, with suitable boundary conditions, have been studied by
Ancona and Bianchini [2].
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Up to now, all results on a priori BV bounds, stability and convergence of viscous approxima-
tions have dealt with “artificial viscosity”, assuming that the diffusion coefficient is indepen-
dent of the state u. A more realistic model would be

ut + f(u)x = (B(u)ux)x , (9.1)

where B is a positive definite viscosity matrix, possibly depending on the state u. It remains
an outstanding open problem to establish similar results in connection with the more general
system (9.1).

10 Appendix

We collect here some results of mathematical analysis, which were used in previous sections.

10.1 Compactness theorems

Let Ω be an open subset of IRm. We denote by L1
loc(Ω; IRn) the space of locally integrable

functions on Ω. This is the space of all functions u : Ω 7→ IRn whose restriction to every
compact subset K ⊂ Ω is integrable. The space L1

loc is not a normed space. However, it is a
Fréchet space: for every compact K ⊂ Ω, the mapping

u 7→
∫

K
|u(x)| dx

is a seminorm on L1
loc.

Next, consider a (possibly unbounded) interval J ⊆ IR and a map u : J 7→ IRn. The total
variation of u is defined as

Tot.Var.{u} .
= sup





N∑

j=1

|u(xj) − u(xj−1)|


 , (10.1)

where the supremum is taken over all N ≥ 1 and all (N + 1)-tuples of points xj ∈ J such that
x0 < x1 < · · · < xN . If the right hand side of (10.1) is bounded, we say that u has bounded
variation, and write u ∈ BV .

Lemma A.1 (properties of functions with bounded variation). Let u : ]a, b[ 7→ IRn

have bounded variation. Then, for every x ∈ ]a, b[ , the left and right limits

u(x−)
.
= lim

y→x−
u(y), u(x+)

.
= lim

y→x+
u(y)

are well defined. Moreover, u has at most countably many points of discontinuity.

By the above lemma, if u has bounded variation, we can redefine the value of u at each point
of jump by setting u(x)

.
= u(x+). In particular, if we are only interested in the L1-equivalence
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class of a BV function u, by possibly changing the values of u at countably many points we
can assume that u is right continuous.

We state below a version of Helly’s compactness theorem, which provides the basic tool in the
proof of existence of weak solutions. For a proof, see [11].

Theorem A.1 (compactness for a family of BV functions). Consider a sequence of
functions uν : [0,∞[×IR 7→ IRn with the following properties.

Tot.Var.{uν(t, ·)} ≤ C, |uν(t, x)| ≤ M for all t, x, (10.2)
∫ ∞

−∞
|uν(t, x) − uν(s, x)| dx ≤ L|t− s| for all t, s ≥ 0, (10.3)

for some constants C,M,L. Then there exists a subsequence uµ which converges to some
function u in L1

loc([0,∞) × IR; IRn). This limit function satisfies
∫ ∞

−∞
|u(t, x) − u(s, x)| dx ≤ L|t− s| for all t, s ≥ 0. (10.4)

The point values of the limit function u can be uniquely determined by requiring that

u(t, x) = u(t, x+)
.
= lim

y→x+
u(t, y) for all t, x. (10.5)

In this case, one has

Tot.Var.{u(t, ·)} ≤ C, |u(t, x)| ≤M for all t, x. (10.6)

10.2 An elementary error estimate

Let D be a closed subset of a Banach space E and consider a Lipschitz continuous semigroup
S : D × [0,∞[ 7→ D. More precisely, assume that

(i) S0u = u, SsStu = Ss+tu,

(ii) ‖Stu− Ssv‖ ≤ L · ‖u− v‖ + L′ · |t− s|.

Given a Lipschitz continuous map w : [0, T ] 7→ D, the following theorem estimates the dif-
ference between w and the trajectory of the semigroup S starting at w(0). For the proof we
again refer to [11].

Theorem A.2 (error estimate for a Lipschitz flow). Let S : D × [0,∞[ 7→ D be a
continuous flow satisfying the properties (i)-(ii). For every Lipschitz continuous map w :
[0, T ] 7→ D one then has the estimate

‖w(T ) − S
T
w(0)‖ ≤ L

∫ T

0

{
lim inf
h→0+

‖w(t+ h) − Shw(t)‖
h

}
dt. (10.7)
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Figure 65: Comparing the approximate solution w with the trajectory of the semigroup having
the same initial data.

Remark 8. The integrand in (10.7) can be regarded as the instantaneous error rate for w at
time t. Since the flow is uniformly Lipschitz continuous, during the time interval [t, T ] this
error is amplified at most by a factor L (see fig. 65).

10.3 The center manifold theorem

Let A be an n × n matrix and consider the Cauchy problem for a linear system of O.D.E’s
with constant coefficients

ẋ = Ax , x(0) = x̄ . (10.8)

The explicit solution can be written as

x(t) = etAx̄ , etA
.
=

∞∑

k=0

tkAk

k!
.

We say that a subspace V ⊂ IRn is invariant for the flow of (10.8) if x ∈ V implies eAtx ∈ V
for all t ∈ IR. A natural way to decompose the space IRn as the sum of three invariant
subspaces is now described. Consider the eigenvalues of A, i.e. the zeroes of the polynomial
p(ζ)

.
= det(ζI −A). These are finitely many points in the complex plane.

The space IRn can then be decomposed as the sum of a stable, an unstable and a center
subspace, respectively spanned by the (generalized) eigenvectors corresponding to eigenvalues
with negative, positive and zero real part. We thus have

IRn = V s ⊕ V u ⊕ V c

with continuous projections

πs : IRn 7→ V s , πu : IRn 7→ V u , πc : IRn 7→ V c ,

x = πsx+ πcx+ πux .

These projections commute with A and hence with the exponential eAt as well:

πse
At = eAtπs , πue

At = eAtπu , πce
At = eAtπc .
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Figure 66: The center subspace V c and the center manifold M, tangent to V c at the origin.

In particular, these subspaces are invariant for the flow of (10.8).

Next, consider the nonlinear system
ẋ = f(x). (10.9)

Assume that f(0) = 0 and Df(0) = A, so that (10.8) provides a first order Taylor approxima-
tion to (10.9). According to the center manifold theorem, the nonlinear system (10.9) admits
an invariant manifold M, which at the origin is tangent to the center subspace V c, as shown
in fig. 66. In the following theorem, the solution of (10.9) with initial data x(0) = x0 will be
denoted by t 7→ x(t, x0). For a proof we refer to [13].

Theorem A.3 (existence and properties of center manifold). Let f : IRn 7→ IRn be
a vector field in Ck+1 (here k ≥ 1), with f(0) = 0. Consider the matrix A = Df(0), and
let V s, V u, V c be the corresponding stable, unstable, and center subspaces. Then there exists
δ > 0 and a local center manifold M with the following properties.

(i) There exists a Ck function φ : V c 7→ IRn with πc φ(xc) = xc such that

M =
{
φ(xc) ; xc ∈ V c , |xc| < δ

}
.

(ii) The manifold M is locally invariant for the flow of (10.9), i.e. x0 ∈ M implies x(t, x0) ∈
M, for all t sufficiently close to zero.

(iii) M is tangent to V c at the origin.

(iv) Every globally bounded orbit remaining in a suitably small neighborhood of the origin is
entirely contained inside M.

(v) Given any trajectory such that x(t) → 0 as t → +∞, there exists η > 0 and a trajectory
t 7→ y(t) ∈ M on the center manifold such that

eηt |x(t) − y(t)| → 0 as t→ +∞ .
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