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CHAPTER 1

Perceptron and Elementary Linear Classifiers

1. Hyperplanes and Half-Spaces

Definition 1.1 (Hyperplane). Let w ∈ Rn be a constant vector in n-dimensional space
and let b ∈ R be a constant scalar. The set of points

(1.1) H =
{
x ∈ Rn|wTx = b

}

is a hyperplane in n-dimensional space. Note the use of column vectors for w and x in this
definition.

Example 1.2. Consider the hyper-plane 2x1 +3x2 +x3 = 5. This is shown in Figure 1.1.
This hyperplane is composed of the set of points (x1, x2, x3) ∈ R3 satisfying 2x1+3x2+x3 = 5.

Figure 1.1. A hyperplane in 3 dimensional space: A hyperplane is the set of points
satisfying an equation wTx = b, where k is a constant in R and w is a constant
vector in Rn and x is a variable vector in Rn. The equation is written as a matrix
multiplication using our assumption that all vectors are column vectors.

This can be plotted implicitly or explicitly by solving for one of the variables, say x3. We
can write x3 as a function of the other two variables as:

(1.2) x3 = 5− 2x1 − 3x2
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Definition 1.3 (Half-Space). Let w ∈ Rn be a constant vector in n-dimensional space
and let b ∈ R be a constant scalar. The sets of points

Hl(w, b) =
{
x ∈ Rn|wTx ≤ b

}
(1.3)

Hu(w, b) =
{
x ∈ Rn|wTx ≥ b

}
(1.4)

are the half-spaces defined by the hyperplane wTx = b. If b = 0, it is sufficient to write
Hl(w) or Hu(w).

Example 1.4. Consider the two dimensional hyperplane (line) x1 + x2 = 1. Then the
two half-spaces associated with this hyper-plane are shown in Figure 1.2. A half-space is
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Figure 1.2. Two half-spaces defined by a hyper-plane: A half-space is so named
because any hyper-plane divides Rn (the space in which it resides) into two halves,
the side “on top” and the side “on the bottom.”

so named because the hyperplane wTx = b literally separates Rn into two halves: the half
above the hyperplane and the half below the hyperplane.

Definition 1.5 (Polyhedral Set). If P ⊆ Rn is the intersection of a finite number of
half-spaces, then P is a polyhedral set. Formally, let w1, . . . ,wm ∈ Rn be a finite set of
constant vectors and let b1, . . . , bm ∈ R be constants. Consider the set of half-spaces:

Hi = {x|wT
i x ≤ bi}

Then the set:

(1.5) P =
m⋂

i=1

Hi

is a polyhedral set.

Exercise 1.1. Show that the familiar triangle (polygon) with points (0, 0), (1, 0) and
(0, 1) is a polyhedral set by finding three half-spaces whose intersection defines it.
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Remark 1.6. Note that a half-space is tautologically a polyhedral set. A hyperplane
defined by wTx = b is a polyhedral set because it consists of all the points in the half-spaces
defined by the inequalities wTx ≥ b and wTx ≤ b. One can use this fact to show the
following theorem, whose proof is outside the scope of this course.

Theorem 1.7. Every polyhedral set is convex.

2. Linear Separability and Binary Linear Classifiers

Definition 1.8 (Linear Separability). Let X = {xi}Ni=1 ⊂ Rn be a set of (n-dimensional)
vectors (features) with an associated binary classification yi ∈ {0, 1} (i = 1, . . . , N). Then
(X,y) is linearly separable if there is a constant w ∈ Rn so that yi = 1 if and only if
wTxi > 0. That is, all vectors in Class 1 lie in Hu(w).

Example 1.9. An example of a separating hyperplane using the hyperplane 2x1 + 3x2 +
x3 = 5 is shown in Figure 1.3. For example, if x1 = x2 = x3 where given, then 2(1)+3(1)+1 =
6 > 5. Thus, this would be a blue point, assuming this is a separating hyperplane for the
data sample.

Figure 1.3. A separating hyperplane in R3. Notice all points above the hyperplane
are colored blue (in Class 1). All points below are colored red (in Class 0).
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Definition 1.10 (Binary Linear Classifier). Given a set of vectors X = {xi}Ni=1 ⊂ Rn, a
binary linear classifier defined by the hyperplane wTx = 0 is the function:

(1.6) f(x; w) =

{
1 if wTx > 0

0 otherwise

Remark 1.11 (Affine Classifiers). It may be the case that the desired classifier is given
by the hyperplane wTx = b for some b 6= 0. In this case, each vector xi = 〈x1, . . . , xn〉 may
be transformed into a new vector x̃i = 〈1, x1, . . . , xn〉 ∈ Rn+1. The new vector w̃ = 〈−b|w〉
will separate the data since:

w̃T x̃ = 0 ⇐⇒ −b+ wTx = 0 ⇐⇒ wTx = b

Proposition 1.12. Given a set of vectors X = {xi}Ni=1 ⊂ Rn with an associated binary
classification yi ∈ {0, 1} (i = 1, . . . , N), there is a (correct) binary linear classifier for X if
and only if (X,y) is linearly separable.

Exercise 1.2. Prove the Proposition 1.12.

3. Separation as an Optimization Problem

Remark 1.13. Finding a linear classifier (assuming one exists) can be phrased as an
optimization problem with a straight forward set of constraints. Given a set of vectors
X = {xi}Ni=1 ⊂ Rn with an associated binary classification yi ∈ {0, 1} (i = 1, . . . , N),
suppose that:

C0 = {i ∈ {1, . . . , N} : yi = 0}
C1 = {i ∈ {1, . . . , N} : yi = 1}

then constraints for a linear classifier problem are:

(1.7)

{
wTxi ≤ 0 ∀i ∈ C0

wTxi ≥ 0 ∀i ∈ C1

In this problem, the decision variables are contained in the vector w, while the parameters
are (X,y). Notice, we relax the strict equality so that we can use max and min rather than
inf and sup. Let WLC be the feasible region defined by the inequalities in Expression 1.7.
This feasible region is a polyhedral set.

Proposition 1.14. If WLC is non-empty and consists of more than a single point, then
there are an infinite number of vectors w satisfying the inequalities in Expression 1.7.

Proof. The result follows from the convexity of WLC . �

Remark 1.15. To pick a specific w ∈ WLC requires the imposition of an objective func-
tion and (presumably) an algorithm for optimizing that objective function. The remainder
of this chapter introduces two such objective functions.
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4. Perceptron

Remark 1.16. The Perceptron is (perhaps) the oldest machine learning algorithm (ap-
proach) and was originally developed by the Cornell Aeronautical Laboratory and funded
by the Office of Naval Research. The algorithm is also the first feed forward neural net-
work, which we will discuss in later chapters. At its core, the Perceptron is an algorithm for
learning w to build a linear classifier given data and binary classifiers (X,y).

Remark 1.17. For the Perceptron algorithm presented below, we assume that Remark
1.11 is used. We will use the binary linear classifier function from Definition 1.10, but in an
algorithmic way. To facilitate this, define:

(1.8) fP (x) =

{
1 if x > 0

0 otherwise

Students who have taken differential equations may note this is a form of the Heaviside step
function. Note further that:

fP (wTx) = f(x)

where f is given in Definition 1.10.

Perceptron

Input: A finite set of vectors X = {xi}Ni=1 ⊂ Rn,
Input: A binary classification yi ∈ {0, 1} (i = 1, . . . , N) of the data.
Input: A learning rate α� 1.
Input: A maximum iteration number K ≥ 1.
Input: A convergence threshold ε ≥ 0.

(1) k := 0
(2) wk := 0 {Random initialization is also acceptable.}
(3) do
(4) for each j ∈ {1, . . . , N} do
(5) z := fP (wT

k+j−1xj)

(6) wk+j := wk+j−1 + α (yj − z)xj
(7) end for
(8) k := k +N
(9) while k/N ≤ K and |wk −wk−N | > ε

Algorithm 1. Perceptron algorithm for computing w.

Example 1.18. Consider the exceptionally simple data set of row-vectors written in
matrix form:

X =




−2 −2
−1 −1
1 1
2 2




and suppose that y = 〈0, 0, 1, 1〉. The data is illustrated in Figure 4(a). Red data points
corresponding yi = 1. We modify X so that each data element begins with a 1, thus

5
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Figure 1.4. An example of the operation of the perceptron algorithm on a simple
data set.

obtaining:

X̃ =




1 −2 −2
1 −1 −1
1 1 1
1 2 2




Beginning with w1 = 〈0, 0, 0〉, we compute:

wTx1 =
[
0 0 0

]



1
−2
−2


 = 0

and:

z = fP (0) = 0

Since y1 = 0, we know that α(y1 − z) = 0 and thus w1 = w0. The same is true for the next
point x2 = 〈1,−1,−1〉. For the third point however, now that:

wTx3 =
[
0 0 0

]



1
1
1


 = 0,

so z = fP (0) = 0 but, y3 = 1. Thus:

w3 =




0
0
0


+ α(1− 0)




1
1
1


 =



α
α
α




On x4, we compute:

wTx3 =
[
α α α

]



1
2
2


 = 5α,

so z = fP (5α) = 1 and y4 = 1. Thus α(y1 − z) = 0 and w4 = w3. This completes the inner
for-loop (Lines 4 - 7). We now test whether At this point k = 4 and we can use this to
determine if we’ve completed enough iterations. Now, that |w4 −w0|2 = 3α2. If this value

6



is less than ε, stop. Otherwise, the outer do-loop (Lines 3 - 9) are executed again. On any
subsequent execution, wk will not change because the w = 〈α, α, α〉 produces a separating
hyperplane for the data (we assumed α � 1). Thus, the perceptron algorithm converges in
this case. The resulting separating hyperplane when α = 0.05 is shown in Figure 4(b).

5. Derivation of the Perceptron Algorithm

Definition 1.19 (Sigmoid Function). The sigmoid function or logistic function (with
parameter β) is the function:

(1.9) S(x; β) =
1

1 + e−βx

A plot when β = 1 is shown in Figure 1.5.

-10 -5 5 10
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Figure 1.5. The sigmoid or logistic function is an “S”-shaped function that is a
relaxation of the step-function.

Definition 1.20 (Step Function with Half-Maximum Convention). The Heaviside step
function with half-maximum convention is the function:

(1.10) H(x) =





0 if x < 0
1
2

if x = 0

1 if x > 0

Remark 1.21. The next theorem relies on results on function sequence convergence from
real and functional analysis, which are outside the scope of this course. However, we provide
a reasonable justification.

Theorem 1.22. For all ε there exists an β so that:

(1.11)

∫ ∞

−∞
|S(x; β)−H(x)|2 dx < ε

Thus, limβ→∞ S(x; β) = H(x).
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Remark 1.23. Given two functions f, g : R→ R, the L2-norm is the expression:

(1.12)

(∫ ∞

−∞
|f(x)− g(x)|2dx

)1
2

The integral is usually taken to be a Lebesgue integral but that is way outside of the scope of
these notes. It suffices to say that the integral is a generalization of the Riemann integral that
one learns about in Calculus. Generally speaking, we might think of a sequence of functions :
f1, f2, . . . , fk, . . . and talk about this sequence of functions converging to another function g
in the L2-norm. This is exactly what we mean when we write: limβ→∞ S(x; β) = H(x).

Sketch of Proof. Ignore the jump discontinuity in H(x). We may compute:
∫ ∞

−∞
|S(x; β)−H(x)|2dx =

∫ 0

−∞
|S(x; β)|2dx+

∫ ∞

0

|S(x; β)− 1|2dx

and show this converges. Consider:
∫ 0

−∞
|S(x; β)|2dx =

∫ 0

−∞

1

(1 + e−βx)2
dx

Let u = e−βx, then du = −βe−βxdx = −βudx. Substitution yields:
∫ 0

−∞

1

(1 + e−βx)2
dx =

∫ 1

∞

−1

βu(1 + u)2
du =

∫ ∞

1

1

βu(1 + u)2
du

Using partial fraction expansion we can write:

1

βu(1 + u)2
=

1

β

(
1

u
− 2

(1 + u)2
− u

(1 + u)2

)

Each piece can then be integrated in-turn:∫
1

u
du = log(u)

∫ −2

(1 + u)2
=

2

1 + u∫ −u
(1 + u)2

du = − 1

1 + u
− log(1 + u)

Here the first integral is fundamental; the second integral is a simply polynomial integration
and the third integral is accomplished by a second substitution (let v = (1+u)2). Combining
we obtain:

∫ ∞

1

1

βu(1 + u)2
du =

1

β

(
2

1 + u
− 1

1 + u
+ log(u)− log(1 + u)

)∣∣∣∣
∞

1

=

1

β

(
1

1 + u
+ log

(
u

1 + u

))∣∣∣∣
∞

1

=
1

β

(
−1

2
− log

(
1

2

))
=

1

β

(
−1

2
+ log(2)

)

By symmetry:
∫ ∞

0

|S(x; β)− 1|2 dx =
1

β

(
−1

2
+ log(2)

)

8



as well. Thus:∫ ∞

−∞
|S(x; β)−H(x)|2dx =

2

β

(
−1

2
+ log(2)

)

Thus we can see that:

lim
β→∞

∫ ∞

−∞
|S(x; β)−H(x)|2dx = lim

β→∞

2

β

(
−1

2
+ log(2)

)
= 0

Consequently, for all ε there exists an β satisfying Inequality 1.11 and we have shown that
S(x; β) converges to H(x) in the L2 norm. This completes the proof. �

Exercise 1.3. Fill in the missing steps in the proof by showing the three integral com-
ponents are computed correctly. Also, compute the positive half of the integral directly
without using a symmetry argument.

Remark 1.24 (Pricing Out a Constraint). In optimization, a constraint can be moved
to the objective function by supplying a function that is large (assuming a minimization
problem) when the constraint is not satisfied. This process is called pricing out the constraint.

Consider the linear classifier constraints (Inequalities 1.7). Another way to write these
constraints is:

(1.13)

{
H(wTxi) = 0 ∀i ∈ C0

H(wTxi) = 1 ∀i ∈ C1

Where H is the step-function with half-maximum convention. Given an equality constraint:
h(x) = r, the standard way to price out the constraint1 by using the function (h(x) − r)2.
Thus we can price out the linear classifier constraints as:

(1.14) JLC(w; x) =
N∑

i=1

1

2

(
yi −H(wTxi)

)2

In a perfect world, the data separate so that none of them lie on the hyperplane wTx =
0. Using the step-function with half-maximum convention added benefit that it penalizes
data lying on the hyperplane. We can now re-write the linear classifier problem as the
unconstrained optimization problem:

(1.15)





min JLC(w; x) =
N∑

i=1

1

2

(
yi −H(wTxi)

)2

s.t. w ∈ Rn

Notice the vector of parameters w contain our decision variables. This can present a dan-
gerous mental bias because in most optimization problems x is the decision vector; here it
plays the role of parameters.

Remark 1.25. A major problem with using JLC in the objective is that it is non-
differentiable. Certainly, one could use a derivative-free optimization method (see [Gri12b],

1Recall, pricing out a constraint means turning it into a part of the objective function by using a penalty
function method.
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Chapter 8). However, this gives us no insight into the Perceptron. An alternate approach is
to study the relaxed problem:

(1.16)





min JLC(w; x, β) =
N∑

j=1

1

2

(
yj − S(wTxj; β)

)2

s.t. w ∈ Rn

The resulting objective function is differentiable and can be analyzed in the limiting case
when β →∞ to obtain results on the Perceptron. Before proceeding, we remark that:

(1.17) S ′(x; β) =
βe−βx

(1 + e−βx)2
= βS(x; β) (1− S(x; β))

Theorem 1.26. Let ε be a fixed step-size in Gradient descent. Then the gradient descent
update for the unconstrained optimization problem 1.16 is:

(1.18) wk+1 := wk + ε ·
N∑

j=1

[
yj − S

(
wT
k xj; β

)]
· S ′
(
wT
k xj; β

)
· xj

Proof. Note wTxj = w1xj1 + w2xj2 + · · ·+ wnxjn . Thus:

∂wTxj
∂wi

= xji

For simplicity, let:

J jLC =
1

2

(
yj − S(wTxj; β)

)2

Then by the chain rule:

∂J jLC
∂wi

=
∂J jLC
∂S

·
(
− ∂S

∂wTxj

)
· ∂wTxj

∂wi

We have:

∂J jLC
∂S

=
(
yj − S(wTxj; β)

)

∂S

∂wTxj
= S ′(wTxj; β) =

βe−βw
Txj

1 + e−βwTxj

Thus the gradient of J jLC with respect to w is a vector of n elements with ith element:

−
(
yj − S(wTxj; β)

)
S ′(wTxj; β)xji

Summing over the J jLC we obtain:

(1.19) ∇wJLC(w; x, β) = −
N∑

j=1

(
yj − S(wTxj; β)

)
(

βe−βw
Txj

(
1 + e−βwTxj

)2

)
xj

Assuming a step-length of ε we replace w with:

w← w − ε · ∇wJLC(w; x, β)

in gradient descent. The gradient descent update rule follows immediately. �

10



Remark 1.27. Notice that:

lim
β→∞

S ′(x; β) = δ(x) =

{
+∞ if x = 0

0 otherwise

Thus, except when wTx = 0, S ′(wTx; β) approaches 0 as S(wTx; β) approaches H(wTx).
This means, that gradient descent cannot function properly using the step function. However,
if we approximate ε · δ(x) with α, the learning rate and α is small, then the approximate
gradient descent is:

(1.20) wk+1 := wk +
N∑

j=1

α ·
[
yj −H

(
wT
k xj; β

)]
· xj

This is the batch update Perceptron rule.

Remark 1.28 (Streaming Data). If data streams in a piece at a time and we wish to
update w each time, then at j (for each piece of data) we can update w by taking a gradient
descent step using ∇wJ

j
LC . This removes the summation from the update step and yields:

(1.21) wk+1 := wk + α ·
[
yj −H

(
wT
k xj; β

)]
· xj,

which is exactly the Perceptron update rule, when the step function fP is replaced by the
Heaviside step function with half-maximum convention.

6. Convergence of the Perceptron Algorithm

Lemma 1.29. Suppose x,y ∈ Rn, then:

‖x + y‖2 = ‖x‖2 + 2xTy + ‖y‖2

�

Lemma 1.30. Let x,y ∈ Rn and let θ be the angle between x and y, then

(1.22) x · y = xTy = ‖x‖ ‖y‖ cos θ

�

Remark 1.31. The preceding lemma can be proved using the law of cosines from
trigonometry. The following small lemma follows and is is proved as Theorem 1 of [MT03]:

Exercise 1.4. Prove Lemma 1.29. [Hint: Use the fact that ‖z‖2 =
∣∣zTz

∣∣. Set z = x+y.
Matrix (vector) multiplication distributes. ]

Theorem 1.32. Let X = {xi}Ni=1 ⊂ Rn be a set of (n-dimensional) vectors (features)
with an associated binary classification yi ∈ {0, 1} (i = 1, . . . , N). We make the following
assumptions:

(1) The vectors are bounded in norm so that ‖xj‖ ≤ R for all j = 1, . . . , N where R is
a real number with R > 0.

(2) The data (X,y) are linearly separable.
(3) There is some w̃ so that w̃Txj > γ for all xj ∈ C1 and w̃Txj < −γ for all xj ∈ C0

Then the Perceptron algorithm converges to a w that generates a separating hyperplane
wTx = 0.

11



Remark 1.33. We will execute the proof using two lemmas. In the first, we show that
the dot product between the current guess for wk+j (in Algorithm 1) and w̃ is increasing.
We then show that the size of wk+j is bounded. We conclude that it is the angle between w̃
and wk+j that is decreasing and thus making this dot product grow. Thus, wk+j becomes
parallel to w̃

Lemma 1.34. Given the assumptions of Theorem 1.32, w̃Twk monotonically increases
on each iteration of the algorithm.

Proof. For simplicity, assume we have a single counter k so that:

wk := wk−1 + α (yk − z) xk

rather than doubly indexing the counter as we did in Algorithm 1. Here, as before:

z := fP (wT
k−1xj)

Then:

w̃Twk = w̃Twk−1 + α (yk − z) w̃Txk

If yk 6= z, then:

(1) If yk = 1 and z = 0, then:

w̃Twk − w̃Twk−1 = αw̃Txk > αγ

(2) If yk = 0 and z = 1, then:

w̃Twk − w̃Twk−1 = α(−1)w̃Txk < −αγ
Dividing the second inequality through by −1 implies (again):

w̃Twk − w̃Twk−1 > αγ

If w0 = 0 (as we assumed in Algorithm 1), then after k iterations, we have:

w̃Twk > kαγ

Consequently, the dot product of wk and w̃ monotonically increases on each iteration. �

Lemma 1.35. Given the assumptions of Theorem 1.32, ||wk||2 is bounded.

Proof. Consider the square-norm of wk:

‖wk‖2 = ‖wk−1 + α (yk − z) xk‖2 = ‖wk−1‖2+2α (yk − z) wT
k−1xk+α

2(yk−z)2 ‖xk‖2

by Lemma 1.29. If yk 6= z, then:

(1) If yk = 1 and z = 0, then (yk − z) > 0 and wT
k−1xk < 0 and consequently:

‖wk−1‖2 + 2α (yk − z) wT
k−1α

2(yk − z)2xk + ‖xk‖2 < ‖wk−1‖2 + α2(yk − z)2 ‖xk‖2 .
(2) If yk = 0 and z = 1, then (yk − z) < 0 and wT

k−1xk > 0 and the previous inequality
still holds.

12



We assumed ‖xk‖2 < R2 and thus:

‖wk‖2 < ‖wk−1‖2 + α2R2

because (yk − z)2 ≤ 1. If w0 = 0, then after k iterations we have:

‖wk‖2 < k(αR)2

�

Proof of Theorem 1.32. From Lemma 1.30 we have:

cos θwk,w̃ =
w̃Twk

‖w̃‖ ‖wk‖
,

where θwk,w̃ is the angle between wk and w̃. From the proof of Lemma 1.34, we have:

w̃Twk

‖w̃‖ ‖wk‖
≥ kαγ

‖w̃‖ ‖wk‖
From the proof of Lemma 1.35, we have ‖wk‖ < αR

√
k and thus:

kαγ

‖w̃‖ ‖wk‖
>

kαγ

αR
√
k ‖w̃‖

We conclude that:
kαγ

αR
√
k ‖w̃‖

< cos θwk,w̃

Thus cosine function is bounded above by 1 and will achieve this value when wk is parallel
to w̃; i.e., θwk,w̃ = 0. The left-hand-side is increasing and thus the angle θwk,w̃ must decrease
on each iteration. Furthermore, the bound on cosine implies that:

kαγ

αR
√
k ‖w̃‖

≤ 1 =⇒ k ≤
(
R ‖w̃‖
γ

)2

Thus, the algorithm must converge after a finite number of iterations. This completes the
proof. �

Remark 1.36. Another way to prove convergence under the given assumptions is to
find a β � 0 so that S(x; β) is a good approximation of H(x) assuming that |w̃Tx| > γ;
i.e., the margin of separation is greater than γ. In this case, convergence is ensured by the
convergence of gradient descent to a fixed point. This proof is more complex, but yields
more insight into the fact that elementary machine learning is simply an application of
optimization.
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CHAPTER 2

Support Vector Machines and Advanced Linear Classifiers

Remark 2.1. In this chapter we discuss a special kind of linear classifiers called Support
Vector Machines (SVM). SVM solve many of the problems we observed with the Perceptron,
in particular the fact that Perceptron algorithm could return any separating hyperplane,
rather than a specific one.

1. Some Preliminaries

Lemma 2.2. Let:

H+ =
{
x ∈ Rn : wTx− b = k

}

H− =
{
x ∈ Rn : wTx− b = −k

}

for some vector w ∈ Rn, and scalars b, k ∈ R, k > 0. Then the Euclidean distance from H+

to H− is 2k/ ‖w‖.
Proof. From Exercise A.2 (see Appendix A) the vector w/ ‖w‖ is a unit vector normal

to both H+ and H−. If k 6= 0, clearly these hyperplanes are parallel and therefore if x0 ∈ H+,
then the line x0 + αw/ ‖w‖ will intersect H− for some value of α and the distance between
H+ and H− will be exactly |α| (because w/ ‖w‖ is a unit vector). We can compute α. The
fact that x0 ∈ H+ implies that:

wTx0 − b = k =⇒ wTx0 = b+ k

If x0 + αw/ ‖w‖ ∈ H−, then:

wT (x0 + αw/ ‖w‖)− b = −k =⇒

wTx0 + α
‖w‖2
‖w‖ − b+ k = 0 =⇒

b+ k + α ‖w‖ − b+ k = 0 =⇒

α =
−2k

‖w‖
Thus, computing:

∥∥∥∥α
w

‖w‖

∥∥∥∥ = |α|
∥∥∥∥

w

‖w‖

∥∥∥∥ = |α| = 2k

‖w‖
This is the distance from H+ to H−. This completes the proof. �

Remark 2.3. This fact is used in most SVM documentation for when k = 1.
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Proposition 2.4. Suppose that x0,w ∈ Rn and b ∈ R. The distance from x0 to the
hyperplane defined by the equation wTx0 − b = 0 is:

(2.1)

∣∣b−wTx0

∣∣
‖w‖

Exercise 2.1. Prove Proposition 2.4. [Hint: Find |α| so that x0 + αw/ ‖w‖ lies on the
hyperplane, just as we did in the proof of Lemma 2.2.]

Lemma 2.5. Let X = {xi}Ni=1 ⊂ Rn be a set of (n-dimensional) vectors (features) with
an associated binary classification yi ∈ {0, 1} (i = 1, . . . , N). Suppose (X,y) is linearly
separable. Then there is a vector w ∈ Rn and a scalar b ∈ R such that wTxi−b > 0 if yi = 1
and wTxi − b < 0 if yi = 0.

Proof. The fact that there is a vector w ∈ Rn so that wTxi − b > 0 if yi = 1 is clear
from the definition of linear separability (Definition 1.8). It follows at least that wTxi−b ≤ 0
for all i such that yi = 0.

If the inequality is strict for X, then we are done. Suppose there is some i with yi = 0 so
that wTxi − b = 0. Let H be the hyperplane defined by the equation wTxi − b = 0 and let
xj be the data point with yj = 1 so that the distance from xj to H is as small as possible.
In particular, this distance is:

ε =

∣∣wTxj − b
∣∣

‖w‖
by Proposition 2.4. (Note we have reversed the sign in the numerator’s absolute value for
simplicity.) The fact that wTxk > b for all k so that yk = 1 implies that xj is simply the
data point that makes wTxj as close to b as possible. That is, wTxk ≥ wTxj > b for all k
so that yk = 1.

Define the new hyperplane:

(2.2) H ′ =

{
z ∈ Rn : z = x +

1

2

wTxj − b
‖w‖

w

‖w‖ , x ∈ H
}

This new hyperplane moves each point in H toward xj (see Exercise 2.2). This new hyper-
plane is defined by the equation:

(2.3) wTz−
(

wTxj + b

2

)
= 0

To see this, let z ∈ H ′ and note that:

wTz = wT

(
x +

1

2

wTxj − b
‖w‖

w

‖w‖

)

for some x ∈ H. Expanding we obtain:

wTz = wTx +
1

2

wTxj − b
‖w‖

‖w‖2
‖w‖ = b+

1

2
wTxj −

1

2
b =

(
wTxj + b

2

)
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This establishes Equation 2.3. We can now show that this is a separating hyperplane with
the desired properties. Consider xk with yk = 1. Then:

wTxk −
(

wTxj + b

2

)
> wTxj −

(
wTxj + b

2

)
=

1

2

(
wTxj − b

)
> 0

On the other hand, consider any xk so that yk = 0. Then:

wTxk −
(

wTxj + b

2

)
≤ b−

(
wTxj + b

2

)
< b− 2b

2
= 0

because wTxj > b by assumption. This completes the proof. �

Exercise 2.2. Let w,x0 ∈ Rn be vectors and suppose b ∈ R is a scalar. Let H be the
hyperplane defined by the equation wTx − b = 0. Show that moving each point in H by
adding the (vector) quantity:

wTx0 − b
‖w‖

w

‖w‖
yields a new hyperplane H ′ containing x0.

2. Hard Margin Support Vector Machines

Remark 2.6. As in Remark 1.13, we will assume that we are given a set of vectors
X = {xi}Ni=1 ⊂ Rn with an associated binary classification yi ∈ {0, 1} (i = 1, . . . , N), and
that:

C0 = {i ∈ {1, . . . , N} : yi = 0}
C1 = {i ∈ {1, . . . , N} : yi = 1}

In Chapter 1, we absorbed the constant b from the expression wTx−b = 0 into the coefficient
vector because it too is an unknown quantity. In this chapter, we will not do this, but instead
will re-write b as w0, to emphasize that it too is an unknown quantity.

Remark 2.7. It is worth noting that mosts texts on the subject explicitly replace the
Class 0 by the Class −1. We will not do that to maintain consistency with the previous
chapter. However, we will note when −1 is used in place of 0 explicitly.

Definition 2.8 (Margin Distance). Let X = {xi}Ni=1 ⊂ Rn be a set of (n-dimensional)
vectors. Let H be the hyperplane defined by the equation wTx − w0 = 0. The margin
distance from H to X is:

(2.4) d(X, H) = min
i∈{1,...,N}

min
x∈H
‖x− xi‖

That is, it is the smallest distance between any point in X and a point on the hyperplane
H.

Definition 2.9 (Maximum-Margin Separating Hyperplane). Let X = {xi}Ni=1 ⊂ Rn be
a set of (n-dimensional) vectors (features) with an associated binary classification yi ∈ {0, 1}
(i = 1, . . . , N) and suppose the data (x,y) are linearly separable. Let:

X0 = {xi}i∈C0

X1 = {xi}i∈C1
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Margin distance

Figure 2.1. An illustration of the margin distance. The “illustrated distance line”
from the point to the hyperplane (line) is perpendicular to the hyperplane.

The maximum-margin separating hyperplane is any hyperplane H defined by equation wTx−
w0 = 0 such that d(X0, H) = d(X1, H) and this distance is maximized.

Theorem 2.10. Let X = {xi}Ni=1 ⊂ Rn be a set of (n-dimensional) vectors (features)
with an associated binary classification yi ∈ {0, 1} (i = 1, . . . , N) and suppose the data (x,y)
are linearly separable. If (w∗0,w

∗) solves the problem:

(2.5) Hard− SVM





min
1

2
‖w‖2

s.t. wTxi − w0 ≥ 1 ∀i ∈ C1

wTxi − w0 ≤ −1 ∀i ∈ C0

then:

(1) The hyperplane H defined by the equation w∗Tx−w∗0 is a separating hyperplane for
the data and

(2) This hyperplane is the maximum-margin separating hyperplane.

Proof. First, we show the Problem 2.5 has a feasible solution. By Lemma 2.5, there
is some v ∈ Rn and v0 ∈ R so that vTxi − v0 > 0 if yi = 1 and vTxi − v0 < 0 if yi = 0¿
Let α ∈ R so that vTxi − v0 ≥ α if yi = 1 and vTxi − v0 ≤ α if yi = 0. Such an α must
exist. Then setting w = v/α and w0 = v0/α establishes the existence of a feasible solution
to Problem 2.5. The objective function of Problem 2.5 is bounded below by 0 and therefore,
the problem must have at least one globally optimal solution. It is clear any such solution
must yield a separating hyperplane.

We now show this optimal solution is the maximum margin separating hyperplane. Any
minimizer of the function z = 1

2
‖w‖2 must also minimize ‖w‖ because ‖w‖ ≥ 0 and therefore

must maximize 1/ ‖w‖. Thus, minimizing ‖w‖2 is equivalent to maximizing 1/ ‖w‖. We
will call this the alternate objective function.

Let H+ be the hyperplane defined by the equation w∗Txi − w∗0 = 1 and H− be the
hyperplane defined by the equation w∗Txi−w0 = −1. By Lemma 2.2 the distance from H is
2/ ‖w∗‖ and therefore the distance from eitherH+ orH− toH is 1/ ‖w∗‖. Therefore we know
that d(X0, H), d(X1, H) ≥ 1/ ‖w∗‖. Consequently the margin distance is maximized, since
the optimal alternate objective function value (that we are maximizing) is a lower bound on
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the margin distance. The fact that this is the maximum margin distance follows from the
that fact necessarily some of the constraints in Problem 2.5 must be binding (otherwise we
could find alternate hyperplanes H+ or H− closer to one of the sets and thus a better H).
Thus d(X0, H), d(X1, H) = 1/ ‖w∗‖. This completes the proof. �

Remark 2.11. It is worth noting that Problem 2.5 is nothing more than a special kind
of quadratic programming problem where:

‖w‖2 = wT Inw

with In the n×n identity matrix. Since In is positive definite, it is in fact a convex quadratic
programming problem and thus is amenable to several methods of solution.

Exercise 2.3. Given the data (X,y) find matrices Q and A and vectors c and b and
write Problem 2.5 as a classical quadratic programming problem with form:

(2.6)
min

1

2
wTQw + cTw

s.t. Aw ≤ b

Conclude that the problem is convex.

Example 2.12. Consider the data set from Example 1.18.

X =




−2 −2
−1 −1
1 1
2 2




and suppose that y = 〈0, 0, 1, 1〉. The data is illustrated in Figure 4(a). In this example,
N = 4 (there are 4 data points) and n = 2, each data point has two features ; i.e., xi ∈ R2

for i = 1, . . . , 4. The vector w = 〈w1, w2〉 and we seek to solve the following quadratic
programming problem:

(2.7)





min 1
2
w2

1 + 1
2
w2

2 Dual Var.
s.t. 2w1 + 2w2 − w0 ≥ 1 (λ1)

w1 + w2 − w0 ≥ 1 (λ2)
−w1 − w2 − w0 ≤ −1 (λ3)
−2w1 − 2w2 − w0 ≤ −1 (λ4)

This problem can be solved numerically using any number of solvers, but it is instructive to
analyze the Karush-Kuhn-Tucker conditions for the problem (see Section 5 of Appendix C).
Assuming gradients are computed with the decision variable vector 〈w0, w1, w2〉 we obtain
the following Kuhn-Tucker Dual Feasibility condition:

(2.8)




0
w1

w2


+ λ1




1
−2
−2


+ λ2




1
−1
−1


+ λ3



−1
−1
−1


+ λ4



−1
−2
−2


 =




0
0
0



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The complementary slackness conditions are:

λ1 (2w1 + 2w2 − w0 − 1) = 0

λ2 (w1 + w2 − w0 − 1) = 0

λ3 (−w1 +−w2 − w0 + 1) = 0

λ4 (−2w1 − 2w2 − w0 + 1) = 0

We require λi ≥ 0 for all i to ensure dual feasibility. If we assume that λ1 = λ4 = 0 and
λ2 = λ3 6= 0, then we must solve the system of equations:

λ2 − λ3 = 0

w1 − λ2 − λ3 = 0

w2 − λ2 − λ3 = 0

w1 + w2 − w0 = 1

−w1 − w2 − w0 = −1

The first three equations arise from the Kuhn-Tucker equality and our assumptions on λ1
and λ4. The second two equations arise from primal feasibility and complementary slackness.
Clearly, the second two equations have only one solution: w0 = 0 and w1 = w2 = 1

2
.

Furthermore, λ2 = λ3 and clearly λ2 = λ3 = 1
4

solves the complete system. Thus, w0 =

λ1 = λ4 = 0 and w1 = w2 = 1
2

and λ2 = λ3 = 1
4

satisfies the Karush-Kuhn-Tucker conditions

and thus must be an optimal solution. Therefore, w = 〈1
2
, 1
2
〉 defines a maximum margin

separating hyperplane for the data. The resulting maximum-margin hyperplane is illustrated
in Figure 2(a) while the KKT conditions assuming w0 = 0 are illustrated in Figure 2(b).

Exercise 2.4. Suppose (w∗, w∗0) is the optimal solution to Problem 2.5 and let λ1, . . . , λN
be the Lagrange multipliers (dual variables). Let:

(2.9) ỹi =

{
1 if yi = 1

−1 if yi = 0

Show that:

(2.10) w∗ =
N∑

i=1

ỹiλixi

and

(2.11)
N∑

i=1

λiỹi = 0

and if λi 6= 0, then:

(2.12) w0 = ỹi −w∗Txi

[Hint: This is tricky: Start by writing the inequality constraints in Problem 2.5 as ỹi
(
wTxi − w0

)
≥

1. When written in less-than-or-equal to form you obtain:gi(w, w0) = −ỹi
(
wTxi − w0

)
+1 ≤
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Maximum Margin Separating Hyperplane

(a) Support Vector Classifier

Negative Gradient (not to scale)
direction of fastest decrease

Feasible region

Optimal solution

Objective function countour

(b) SVM KKT Conditions

Figure 2.2. (a) An illustration of a simple support vector machine with the margin
illustrated. (b) The KKT conditions for the simple support vector machine.

0. Assume the decision variables are ordered (in the vector) 〈w0,w〉. Then compute the gra-
dient of gi and you get: 〈−ỹi,−ỹixi〉. If z(w) = 1

2
‖w‖2, then ∇z = 〈0,w〉. Write the

Kuhn-Tucker equality (dual constraint) and solve for w and you obtain Equation 2.10. Look
at the first elements to obtain Equation 2.11. Now reason about Equation 2.12 using com-
plementary slackness.]

3. Soft Margin Support Vector Machines

Remark 2.13. It is still possible to use SVM methods even if the underlying assumption
of linear separability of the data is not satisfied. The simplest approach is to price out the
constraints and solve the resulting unconstrained optimization problem.
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Definition 2.14 (Soft Margin Support Vector Machine). The soft margin support vector
machine is the linear classifier that results from solving the unconstrained optimization
problem:

(2.13) minα ‖w‖2 +
∑

i∈C0

(
max

{
0,wTxi − w0 + 1

})2
+
∑

i∈C1

(
max

{
0, 1−wTxi + w0

})2

Remark 2.15. There are a few things worth noting about Expression 2.13. The first is
that most texts set the soft margin objective function as:

(2.14) minα ‖w‖2 +
1

N

∑

i∈C0

max
{

0,wTxi − w0 + 1
}

+
1

N

∑

i∈C1

max
{

0, 1−wTxi + w0

}

The two differences are:

(1) The priced-out constraints all have a coefficient of 1
N

. This is largely irrelevant as
it can be absorbed into the weighting constant α as needed.

(2) The second difference is the use of (max{0, ·}) rather than (max{0, ·})2. While both
are convex functions, meaning the objective functions in either case are convex,
the form given in Expression 2.13 has the benefit that (max{0, ·})2 is differentiable,
meaning gradient descent based techniques can be applied directly. This is illus-
trated in Figure 2.3.

�������

-4 -2 0 2 4

0

2

4

6

8

10

max(0, x)
max(0, x)2

Figure 2.3. The function max{0, ·}2 is differentiable everywhere, while max{0, ·} is not.

Exercise 2.5. Show that if:

g(w) =
(
max

{
0,wTxi − w0 + 1

})2

then:

∂g

∂wj
=

{
2
(
wTxi − w0 + 1

)
xij if wTxi − w0 + 1 ≥ 0

0 otherwise

∂g

∂w0

=

{
−2
(
wTxi − w0 + 1

)
if wTxi − w0 + 1 ≥ 0

0 otherwise

Exercise 2.6. Analyze Problem 1.16 with S(x; β) when β = 0. Relate Problem 1.16 to
the Soft Margin SVM.
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Remark 2.16. The following proposition, which we state but do not prove asserts that
if the data set (X,y) is linearly separable, then for small values of α, the resulting solution
to Problem 2.13 is a maximum-margin separating hyperplane. To see this, note that when
α = 0, then any separating hyperplane is an optimal solution to Problem 2.13. As α is
increased away from 0, the hard margin constraints still dominate the objective function,
but the importance of the margin distance grows. At some point, the pieces of the objective
function balance and the result is an maximum margin separating hyperplane. Formalizing
this argument is tricky, which is why we do not prove the result formally.

Proposition 2.17. If (X,y) is linearly separable, then there is some α > 0 so that:

(w∗, w∗0) = arg minα ‖w‖2 +
∑

i∈C0

(
max

{
0,wTxi − w0 + 1

})2
+

∑

i∈C1

(
max

{
0, 1−wTxi + w0

})2

defines a maximum margin separating hyperplane. �

Example 2.18. We illustrate the difference between soft and hard SVM’s using a ran-
domly generated data set of 100 points. The resulting hard and soft computed maximum-
margin linear separators are shown in Figure 2.4. It is worth noting in Figure 2.4 that we

Constraint Boundaries (Soft SVM)
(Green & Magenta)

Soft Separating Hyperplane 
(Gray)

Hard Separating Hyperplane
(Black)

Constraint Boundaries (Hard SVM)
(Red & Blue)

Figure 2.4. A comparison of hard and soft SVM. Notice the similarity between the
two separating hyperplanes even though the margin hyperplanes are quite different.
Note α = 0.1.

set α = 0.1 and not all data points are shown to facilitate visual comparison between the
separating hyperplanes.
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4. Alternate Formulation

Remark 2.19. Recall from Remark 2.15 that an alternate formulation of the objective
function in the Soft Margin SVM Expression 2.14:

minα ‖w‖2 +
1

N

∑

i∈C0

max
{

0,wTxi − w0 + 1
}

+
1

N

∑

i∈C1

max
{

0, 1−wTxi + w0

}

This objective function, which is not differentiable can be replaced by a second constrained
optimization problem, yielding an equivalent and useful formulation. To do this, we will use
the formulation from Exercise 2.4.

Definition 2.20 (Alternate Soft-Margin SVM). Suppose ỹ is defined by Equation 2.9.
Then the constrained form of the soft margin SVM problem is1:

(2.15)





min z(w, ζ) =
1

2
‖w‖2 + C

N∑

i=1

ζi

s.t. ỹi(w
Txi − w0) ≥ 1− ζi ∀i ∈ {1, . . . , N}

ζi ≥ 0 ∀i ∈ {1, . . . , N}

Remark 2.21. There are other forms of the problem, in particular where 1
2

is replaced

by a parameter (e.g., α) and C is replaced by 1
N

. However, formulations that use this tend
to be sloppy in their handling of the parameters.

Remark 2.22. If (X,y) is linearly separable, then an optimal solution has ζ∗i = 0 and
the problem is equivalent to Problem 2.5. This problem is convex, differentiable and has
linear constraints. Furthermore, if needed the N variables ζi can be replaced by a single
common variable ζ ≥ 0. In either case, convexity implies that the problem is amenable to
analysis by Lagrangian dual (see Section 6 of Appendix C).

Theorem 2.23. Suppose that λ1, . . . , λN are the Lagrange multipliers of constraints of
the form ỹi(w

Txi−w0) ≥ 1−ζi and ρ1, . . . , ρN are the Lagrange multipliers for the constraints
ζi ≥ 0. Then:

(2.16)





max
λ
L(λ) =

∑

i

λi −
1

2

∑

i

∑

j

λiλj ỹiỹjx
T
j xi

s.t.
∑

i

λiỹi = 0

0 ≤ λi ≤ C ∀i ∈ {1, . . . , N}
is the Lagrangian (Wolfe) Dual for Problem 2.15.

Proof. Putting the constraints in standard form, we have:

gi(w, w0, ζ) = 1− ζi − ỹi
(
wTxi − w0

)
≤ 0 ∀i ∈ {1, . . . , N}

hi(w, w0, ζ) = −ζi ≤ 0 ∀i ∈ {1, . . . , N}
1This form is taken from Andrew Ng’s lecture notes from Stanford’s Machine learning class, http:

//cs229.stanford.edu/notes/cs229-notes3.pdf, which are an excellent alternative source.
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Assuming the decision variables are ordered according to the vector 〈w0,w, ζ〉. The relevant
gradients are:

∇z =




0
w
C


 = ∇gi =




ỹi
−ỹixi
−ei


 ∇hi =




0
0
−ei


 ,

where 0 ∈ Rn is the n-dimensional zero vector, ei is a standard basis vector in Rn and
C ∈ Rn is a vector consisting entirely of the constant C. The Kuhn-Tucker equality is:

∇z +
N∑

i=1

λi∇gi +
N∑

i=1

ρi∇hi = 0

From the first row of the Kuhn-Tucker equality, we can deduce that:

(2.17)
∑

i

λiỹi = 0

Consider the equations derived from row 2 to N + 1 This yields the expression:

w =
∑

i

λiỹixi

just as in Equation 2.10. Finally, if we consider the equations derived from rows N + 2 to
2N + 1, we see:

(2.18) C − λi − ρi = 0 =⇒ C = λi + ρi

We can now construct the Lagrangian Dual. Note, that since Problem 2.15 is convex and
differentiable as we observed in Remark 2.22, we have the dual optimization problem:





max
w,w0,ζ,λ,ρ

z(w, ζ) +
∑

i

λigi(w, w0, ζ) +
∑

i

ρihi(w, w0, ζ)

s.t. ∇z +
N∑

i=1

λi∇gi +
N∑

i=1

ρi∇hi = 0

λ,ρ ≥ 0

We’ll use Equation 2.10 to re-write λigi(w, w0, ζ) in the objective function:

∑

i

λigi(w, w0, ζ) =
∑

i

λi

(
1− ζi − ỹi

(∑

j

λj ỹjx
T
j

)
xi − w0

)
=

∑

i

λi −
∑

i

λiζi −
∑

i

∑

j

λiλj ỹiỹjx
T
j xi + w0

∑

i

λiỹi

Applying Equation 2.17 we can simplify this expression:

(2.19)
∑

i

λigi(w, w0, ζ) =
∑

i

λi −
∑

i

∑

j

λiλj ỹiỹjx
T
j xi −

∑

i

λiζi
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We can also use Equations 2.10 and 2.18 to rewrite z(w, ζ):

(2.20)

z(w, ζ) =
1

2
‖w‖2+C

∑

i

ζi =
1

2
wTw)+C

∑

i

ζi =
1

2

(∑

j

λj ỹjx
T
j

)(∑

i

λiỹixi

)
=

1

2

∑

i

∑

j

λiλj ỹiỹjx
T
j xi +

∑

i

Cζi =
1

2

∑

i

∑

j

λiλj ỹiỹjx
T
j xi +

∑

i

(λi + ρi)ζi

Finally, note that:

(2.21)
∑

i

ρihi(w, w0, ζ) =
∑

i

ρi(−ζi) = −
∑

i

ρiζi

Combing all these elements, the objective function of the Lagrangian dual problem becomes:

1

2

∑

i

∑

j

λiλj ỹiỹjx
T
j xi +

∑

i

(λi + ρi)ζi+

∑

i

λi−
∑

i

∑

j

λiλj ỹiỹjx
T
j xi−

∑

i

λiζi −
∑

i

ρiζi

Combining like terms (shown in colors), this simplifies to:

(2.22) L(λ) =
∑

i

λi −
1

2

∑

i

∑

j

λiλj ỹiỹjx
T
j xi

Using Equations 2.10 and 2.17 we have ensured the Kuhn-Tucker equality is satisfied. Thus
the Lagrangian (Wolfe) Dual is:





max
λ
L(λ) =

∑

i

λi −
1

2

∑

i

∑

j

λiλj ỹiỹjx
T
j xi

s.t.
∑

i

λiỹi = 0

0 ≤ λ ≤ C

Where λi ≤ C for all i because λi = C − ρi and ρi ≥ 0 necessarily. This completes the
proof. �

Remark 2.24. Notice that xTj xi is nothing more than the dot-product of the sample
vector xi and the sample vector xj. Thus, the dual objective function is sometimes written:

(2.23) L(λ) =
∑

i

λi −
1

2

∑

i

∑

j

λiλj ỹiỹj(xi · xj) =
∑

i

λi
1

2

∑

i

∑

j

λiλj ỹiỹj〈xi,xj〉

For the final section of this chapter, it helps to think of this operation as a dot product.
Notice that the dot product xi · xj is nothing more than a scaled measure of the angle
between the vector xi and xj. In particular, the more xj points in the direction of xi, the
larger dot product is. Thus, xi · xj is (in some sense) a similarity measurement between the
two vectors.
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Remark 2.25. It is worth noting that Problem 2.16 can be solved in any number of
ways since it is a quadratic programming problem with simple constraints. In particular,
the SMO Algorithm [] and sub-gradient methods [] have been very successful. We discuss
the SMO algorithm in a subsequent section.

5. The Kernel Trick: Non-linearly Separable Data

Theorem 2.26 (Cover’s Theorem). Let X = {xi}Ni=1 ⊂ Rn be a data set with a classifi-
cation y ∈ {0, 1}N that is not linearly separable. Then there is a (non-linear) transformation
ϕ : X→ Rm where m ≥ n so that ϕ(X) is linearly separable (in Rm).

Proof. The simplex ∆N contains N vertices and every partition of the vertices (extreme
points) of the simplex into two groups can be separated by a hyperplane. Thus, let ϕ assign
each point in X to some extreme point of the simpled ∆N . �

Remark 2.27. Cover’s rather trivial theorem argues that data is easier to separate using
linear classifiers in higher dimensional space than it is in lower dimensional space. This fact
forms the basis for deep neural networks, as we’ll see later.

It stands to reason that given a set of data X that is not linearly separable, it would
be nice to find a mapping so that ϕ(X) is linearly separable after an appropriate non-linear
transform.

Example 2.28. Consider Figure 2.5(a), which was generated by creating 100 random
points and then defining the classification:

yj =

{
1 if xi1 + x2i2 > 0

0 otherwise

Clearly this data set if not linearly separable. However, applying the non-linear transforma-
tion ϕ : (xi1 , xi2) 7→ (xi1 , x

2
i2

) yields a linearly separable data set as shown in Figure 2.5(b).
A classifier for this data set, could then work by first applying ϕ and then the linear classifier
on the transformed data. Unfortunately, we rarely are given a nice linear transform that will
work.

Remark 2.29. The remainder of this chapter uses the Lagrangian dual formulation.
Notice that the objective function of the Lagrangian dual in the transformed space is:

(2.24) L(λ) =
∑

i

λi −
1

2

∑

i

∑

j

λiλj ỹiỹj(ϕ(xi) · ϕ(xj))

So it would seem that if we need to compute ϕ(xi) · ϕ(xj) for all pairs of data vectors
(xi,xj). The kernel trick, ideally, allows us to avoid this and do something computationally
more efficient.

Definition 2.30 (Kernel Trick). Suppose there is a continuous functionK : Rn×Rn → R
so that:

(2.25) K(xi,xj) = ϕ(xi) · ϕ(xj
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(a) Not Linearly Separable

(b) Linearly Separable

Figure 2.5. (a) Data that is not linearly separable. (b) A non-linear transform of
the non-separable data leads to a new linearly separable data.

called Kernel function. Then, the kernel trick is to substitute K(xi,xj) (which is assumed
to be easier to compute) into Equation 2.24 to obtain:

(2.26) L(λ) =
∑

i

λi −
1

2

∑

i

∑

j

λiλj ỹiỹjK(xi,xj)

Moreover, for a finite number of samples, we can create a matrix K ∈ RN×N so that:

(2.27) Kij = K(xi,xj)

is called the Kernel matrix or Gram matrix .

Proposition 2.31. Assume there is a Kernel function K for the (non-linear) transform
ϕ. Then K is symmetric and the Kernel matrix K is positive semi-definite.

Proof. If K is a kernel function, then:

(2.28) K(xi,xj) = ϕ(xi) · ϕ(xj) = ϕ(xj) · ϕ(xi) = K(xj,xi)
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by the symmetry of the dot product. Consequently, K is necessarily symmetric. Let z be
an arbitrary vector in RN . Then:

zTKz =
∑

i

∑

j

Kijzizj =
∑

i

∑

j

ϕ(xi) · ϕ(xj)zizj =

∑

i

∑

j

(ziϕ(xi)) · (zjϕ(xj)) =
∑

i

ziϕ(xi) ·
(∑

j

zjϕ(xj)

)

Let r =
∑

i ziϕ(xi) =
∑

j ziϕ(xi) be a vector in Rm. Then:

(2.29) zTKz =
∑

i

ziϕ(xi) · r = r ·
(∑

i

ziϕ(xi)

)
= ‖r‖2 ≥ 0

by the symmetry of the dot product. Thus, K is symmetric and positive semi-definite. �

Remark 2.32. Whenever K is symmetric and positive semi-definite (or more exactly,
the kernel function K generates a symmetric positive semi-definite kernel matrix), then the
kernel is said to be valid.

Remark 2.33. Note that the identity map ϕ(xi) = xi leads to a kernel function that
simply returns the dot product in n dimensional space. This leads to a valid kernel and thus:

−1

2

∑

i

∑

j

λiλj ỹiỹj〈xi,xj〉,

which appears in the objective function of the Lagrangian dual takes its maximum at 0
because the derived kernel matrix Kij = xTi xj is symmetric positive-definite. (Negating it
implies that this quantity is at most zero.) Thus the maximization is well defined.

Remark 2.34. When given an arbitrary data set (X,y), it is rarely obvious which kernel
function to use; i.e., the situation is rarely as nice as Example 2.28. Therefore, a number of
standard kernels are usually attempted:

• Polynomial: K(xi,xj) = (xi · xj)r, where r is a parameter to be chosen. There is
also the inhomogenous polynomial transform (1 + xi · xj)r.
• Gaussian (Radial Basis Function): K(xi,xj) = exp

(
−γ ‖xi − xj‖2

)
for γ > 0.

• Hyperbolic Tangent: K(xi,xj) = tanh ((βxi · xj + c) for β > 0 and c < 0.

Notice, even though Kernel methods are called non-parametric, this is a complete misnomer.
The parameters of the kernel function must be specified, even if this is done by a second
level of optimization to select the parameters.

Remark 2.35. The kernel function we have discussed in this chapter is used to obtain
several deep results in statistical learning theory through Mercer’s theorem and reproducing
kernel Hilbert spaces, which we will not discuss at this point. However, understanding the
basics of kernel functions, is a foundational element of this subject.

Remark 2.36 (Multi-Class Classifiers). Applying linear classifiers to multi-class data
(i.e., where y can take on more than values 0 and 1) is well studied , but consensus on the
best approach has not been reached. Here are two approaches:
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• If there are l classes, define l linear classifiers where each class is compared against
all other classes (i.e., make y′ ∈ {0, 1}N where 0 indicates that the sample is not in
the class in question and 1 indicates the sample is in the class in question). Ties
can be broken by using a data points distance from the separating hyperplane.
• Another approach is to solve for l(l − 1)/2 classifiers one for each combination of

classes and then use voting to decide a winning class [].

Exercise 2.7. Find an expression that will allow you to derive w0 from the solution of
Problem 2.16.
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CHAPTER 3

Regression and Logistic Regression

1. Linear Regression

Remark 3.1. In this section, for the first time, we assume that the values in the vector
y may take on values outside {0, 1}.

Definition 3.2 (Data Model). Suppose that X = {xi}Ni=1 ⊂ Rn is a set of feature vectors
with corresponding response values y = 〈y1, . . . , yN〉 ∈ RN . A data model is any function
f : Rn → R that maps xj to ŷj, the model-approximated response corresponding to yj.

Remark 3.3. If we model the response y with the function f : Rn → R, then we write
y ∼ f(X) or yi ∼ f(xi) to indicate that f is a model with (presumably) non-zero residuals.

Definition 3.4 (Residual). Given a data model f : Rn → R, the jth residual of the
model given data set (X,y) is εj = yj − f(xj).

Definition 3.5 (Linear Model). Suppose that X = {xi}Ni=1 ⊂ Rn is a set of feature
vectors with corresponding response values y = 〈y1, . . . , yN〉 ∈ RN . A linear model of the
data set (X,y) is a function:

(3.1) f(x1, . . . , xn) = w0 + w1x1 + · · ·+ wnxn

Remark 3.6. If we assume that each feature vector xj is prepended with 1, then Equation
3.1 can be rewritten as:

f(x; w) = wTx = xTw

where x = 〈1, x1, . . . , xn〉. We will assume this convention throughout the remainder of this
chapter.

Definition 3.7 (Sum of Square Error). Suppose that X = {xi}Ni=1 ⊂ Rn is a set of
feature vectors with corresponding response values y = 〈y1, . . . , yN〉 ∈ RN . The square error
of a model f : Rn → R is given by the formula:

(3.2) E(f ; X,y) =
N∑

j=1

(yj − ŷj)2 =
N∑

j=1

(yj − f(xj))
2

Remark 3.8. It is convenient to think of the set of feature vectors X as a matrix (rather
than a set) so that row i corresponds to vector xTi . Thus:

X =




xT1
xT2
...

xTN




Thus X ∈ RN×n.
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Example 3.9. Suppose we are given the data {〈−2,−2〉, 〈−1,−1〉, 〈1, 1〉, 〈2, 2〉}. Then
adding a 1 to these vectors and writing as a matrix, we would obtain:

X =




1 −2 −2
1 −1 −1
1 1 1
1 2 2


 ,

as we did in Example 1.18.

Proposition 3.10. Let w ∈ Rn. Then the square-error of a linear model with coefficient
vector w is given by:

(3.3) E(w; X,y) =
(
yT −wTXT

)
(y −Xw) = wTXTXw − 2wTXy + yTy

Proof. Row j of X is xTj . Consequently, the jth element of Xw is xTj w, the model-
approximated response corresponding to yj. Thus the vector of residuals is given by:

ε = y −Xw =




y1 − xT1 w
y2 − xT2 w

...
yN − xTNw




Note the sum of square error is simply εTε = ‖ε‖2. Thus:

E(w; X,y) =
(
yT −wTXT

)
(y −Xw)

Expanding the right-hand-side, we obtain:

E(w; X,y) = wTXTXw − yTXw −wTXTy + yTy

The terms wTXTy and yTXw are both scalars and transposes of each other, thus:

wTXTy = yTXw

Thus, we may write:

E(w; X,y) = wTXTXw − 2wTXy + yTy

This completes the proof. �

Theorem 3.11. Let (X,y) be a data set and suppose XTX is non-singular. Then:

w∗ =
(
XTX

)−1
XTy

minimizes E(w; X,y).

Proof. Minimizing sum of square error is equivalent to solving the unconstrained qua-
dratic programming problem:

min E(w; X,y) = wTXTXw − 2wTXy + yTy

The KKT conditions are simply:

∇wE(w; X,y) = 0
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where ∇w indicates we are differentiating with respect to the variables in w only. Taking
the (partial) derivative and setting equal to zero, we obtain:

∇wE(w; X,y) = 2XTXw − 2XTy = 0

Solving for w we obtain:

w =
(
XTX

)−1
XTy

as required assuming
(
XTX

)
is non-singular. �

Exercise 3.1. Suppose we do not prepend a 1 to the data so that we seek w and w0 to
minimize the sum of squares error of f(x; w) = w0 + wTx. Show that:

(3.4) E(w0,w; X,y) = yTy − 2 ·wTXy − 2 · w01
Ty + 2 · 1TXw + 1T1w2

0 + wTXTXw

Here 1 = 〈1, 1, . . . , 1〉 is a vector of 1’s of length n and each row of X is a feature vector but
without the 1’s. Take the derivative of this expression with respect to w0, set it equal to 0
and show that:

(3.5) w∗0 =
1

N
1T (y −Xw) =

1

N

N∑

j=1

(
yj −wTxj

)

Consequently, show that if each data vector xj is re-centered to x̃j = xj − 1w0, then the

resulting w∗ =
(
X̃T X̃

)−1
X̃Ty, where each row xTj in X is replaced with x̃j to obtain X̃.

[Hint: 1T1 = N and if z = 〈z1, . . . , zn〉 is a vector, then 1Tz = z1 + z2 + · · ·+ zn.]

Remark 3.12. Suppose the values in y fall into a discrete set of ranges that correspond
to categories C = {C1, . . . , Ck}. This could mean that the values only take

Given such an optimal w, a sample x not present in the given data X would would be
classified to

arg min
y∈C

(y −wTx)2.(3.6)

As such, linear regression is a called a descriminative approach to classification.

Example 3.13. Consider the extremely simple data set:



1 −2
1 −1
1 1
1 2




with corresponding values y = 〈−1, 0, 2, 3〉. Find a best fit line for this data.

2. Logistic Regression - Regression Formulation

Remark 3.14. We now return to our classification problem. For the remainder of this
section, let (X,y) be a set of N feature vectors with classification yi ∈ {0, 1}. Without loss
of generality, assume X is modified so there is a 1 at the front of each feature vector as we
did in the previous section.
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Remark 3.15 (Proportion Data). In the simplest formulation, logistic regression does
not work on classes {0, 1} but rather probabilities that a feature vector xi will map to Class
1. Thus, the data set we consider has form (X,p), where pi ∈ [0, 1].

Remark 3.16. Transforming class data in the form (X,y) to proportion data (X,p) can
be accomplished using multiple samples (e.g., collect more than one sample with the same
feature vector). It can also be accomplished by binning the data. For example if we are
collecting information about people and we are given only 1 sample for each individual from
ages 18 - 65, breaking the groups into age ranges 18-24, 24-30 will bin the data and generate
multiple samples. Notice, however, in this case, the feature vector changes.

Remark 3.17. Recall the sigmoid function or logistic function (with β = 1) is the
function:

(3.7) S(z) =
1

1 + e−z

This is an “S” shaped curve that approaches 1 as x → ∞ and 0 as x → −∞. (See Figure
1.5.)

Definition 3.18 (Logistic Model). The logistic model assumes that pi (the probability
that yi = 1), given feature vector xi is given by:

(3.8) Pr(yi = 1|xi) = pi ∼ S(wTxi) =
1

1 + exp(−wTxi)

The parameter vector w ∈ Rn must be fitted, as in regression.

Definition 3.19 (Logistic Classification). Given an unknown sample xN+1, the logistic
classifier is defined as:

(3.9) yN+1 =

{
1 1

1+exp(−wTxN+1)
> 1

2

0 otherwise

Remark 3.20. Note, when pi is defined as in Equation 3.8, then pi >
1
2

exactly when
wTxi > 0. Thus, logistic classifiers are a special form of linear classifiers.

Theorem 3.21. Assume pi ∈ (0, 1). There is a non-linear transform ϕ(pi) so that:

ϕ(pi) ∼ wTx

just in case Equation 3.8 holds.

Proof. Assume:

pi ∼
1

1 + exp(−wTxi)
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Then:
1

pi
∼ 1 + exp(−wTxi) =⇒

1

pi
− 1 ∼ exp(−wTxi) =⇒

log

(
1− pi
pi

)
∼ −wTxi =⇒

log

(
pi

1− pi

)
∼ wTxi

The last transformation follows from the fact that − log(x) = log(1/x). Let:

ϕ(pi) = log

(
pi

1− pi

)

This completes the proof. �

Definition 3.22. The transform ϕ is called the logit transform.

Example 3.23. This example comes from data [McD85]1. In [McD85], McDonald
measured the allele (gene) frequencies at a certain point in the crustacean Megalorchestia
californiana (see Figure 3.1). The (simplified) data are shown in the Table 1. We can apply

Figure 3.1. A picture of Megalorchestia californiana taken from http://www.

biostathandbook.com/simplelogistic.html.

Latitude Allele Proportion
48.1 0.748
45.2 0.577
44 0.521

43.7 0.483
43.5 0.628
37.8 0.259
36.6 0.304
34.3 0

Table 1. The allele proportion for Megalorchestia californiana at various latitudes
for use in a logistic regression.

the logit transform to the data to obtain a new data set, on which we can use ordinary linear
regression. This is shown in Table 2. The linear regression is shown in Figure 3.2. The fit is

1See http://www.biostathandbook.com/simplelogistic.html, from which this example is derived.
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Latitude Logit Transform (Allele Proportion)
48.1 1.08797389
45.2 0.310470087
44 0.084049444

43.7 -0.068026221
43.5 0.523646312
37.8 -1.051172564
36.6 -0.828321959
34.3 –

Table 2. The logit transform of the allele proportion. Notice when when the pro-
portion is zero, we do not have a logit transform.

reasonable and provides good explanatory power for the distribution of alleles as a function
of the latitude.
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Figure 3.2. The linear regression of the logit transform of the allele data vs. the
latitude is shown.

3. Logistic Regression - Likelihood Formulation

Remark 3.24. A critical problem with executing a logistic regression by turning it into
a linear regression is we cannot handle situations easily where pi = 0 or pi = 1. To mitigate
this, we can instead approach the problem by maximizing a likelihood function. To construct
the likelihood function, we again use ỹi ∈ {−1, 1} with ỹi = 1 if yi = 1 and ỹi = −1 if yi = 0.

Definition 3.25 (Likelihood). Let p(xi; w) denote the probability that yi = ỹi = 1.
Then the likelihood function for the classifiers is:

(3.10) L(xi, ỹi; w) =

{
p(xi; w) if ỹi = 1

1− p(xi; w) otherwise

Lemma 3.26. If:

p(xi; w) =
1

1 + exp(−wTxi)

36



then:

1− p(xi; w) =
1

1 + exp(wTxi)

Thus:

L(xi, ỹi; w) =
1

1 + exp(−ỹiwTxi)

Exercise 3.2. Prove Lemma 3.26.

Definition 3.27 (Conditional Dataset Likelihood Function). Given a data set (X, ỹ)
the logistic likelihood function is:

L(X, ỹ; w) =
N∏

i=1

L(xi, ỹi; w) =
N∏

i=1

1

1 + exp(−ỹiwTxi)

Remark 3.28. The following lemma follows at once from the laws of logarithms.

Lemma 3.29. The log-likelihood function is:

`(X, ỹ; w) = logL(X, ỹ; w) = −
N∑

i=1

log
(
1 + exp(−ỹiwTxi)

)

�

Corollary 3.30. The log-likelihood function `(X, ỹ; w) is concave. Thus the uncon-
strained optimization problem:

(3.11) max
w∈Rn

`(X, ỹ; w)

has at least one global solution.

Proof. The exponential function is convex and the composition of a linear function
−ỹiwTxi with a convex function is convex. Therefore, exp(−ỹiwTxi) is convex and by
extension 1 + exp(−ỹiwTxi) is convex. The logarithm function is non-decreasing on its
domain (in fact, it’s monotonically increasing). The composition of a non-decreasing function
with a convex function is convex. Therefore log

(
1 + exp(−ỹiwTxi)

)
is convex for each i.

The sum of convex function is convex, therefore:

N∑

i=1

log
(
1 + exp(−ỹiwTxi)

)

is convex. It follows at once that its negative is concave and therefore ` is concave. �

Remark 3.31. There is no closed form solution to the Problem 3.11. However, since `
is concave, gradient ascent can be used to find an optimal solution, as we illustrate in the
next example.
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Example 3.32. Consider the data set:

X =




1 −2 −2
1 −1 −1
1 1 1
1 2 2


 ỹ =




−1
−1
1
1




Then w = 〈w0, w1, w2〉 and the log-likelihood function is:

`(X, ỹ; w) = − log (1 + exp(w0 − 2w1 − 2w2))− log (1 + exp(w0 − w1 − w2))−
log (1 + exp(−w0 − w1 − w2))− log (1 + exp(−w0 − 2w1 − 2w2))

Using a numerical solver to maximize `(X, ỹ; w), the resulting separating hyperplane (which
is really used in the Logistic function) is shown in Figure 3.3. Notice, it is different than

-2 -1 1 2

-2

-1

1

2

Figure 3.3. The linear separator that results from maximizing the log-likelihood
function of the logistic regression.

what would be expected from a support vector machine. This difference, however, is due to
the fact that ` is unbounded and concave, but ∇w` → 0 as w1, w2 → ∞. Thus, numerical
optimization terminates when tolerance is reached.

4. Performing Regression and Logistic Regression with Matlab
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CHAPTER 4

Introduction to Neural Networks

1. Fundamental Definitions

Definition 4.1 (Directed Graph). A directed graph G = (V,E) is composed of a set of
vertices V and a set of edges E ⊆ V × V .

Example 4.2. Directed graphs are usually visualized by making the vertices circles or
dots and the edges arrows between the vertices. For example, consider the graph V =
{v1, v2, v3, v4, v5} with edges E = {(v1, v3), (v2, v3), (v3, v4), (v4, v5)}. The visual representa-
tion of this directed graph is shown in Figure 4.1.

v1

v2

v3 v4 v5

Figure 4.1. A directed graph consisting of five vertices and the edges connecting
them visualized as arrows.

Definition 4.3 (Self-Loop). An edge (v1, v2) in a directed graph G = (V,E) is a self-loop
if v1 = v2.

Definition 4.4 (Simple Graph). A directed graph is simple if its edge set contains no
self-loops.

Example 4.5. The graph in Figure 4.1 is simple.

Definition 4.6 (Walk/Path). A walk on a directed graph G = (V,E) is a sequence
w = (v1, e1, v2, . . . , vn−1, en−1, vn) with vi ∈ V for i = 1, . . . , n, ei ∈ E and and ei = (vi, vi+1)
for i = 1, . . . , n− 1.

Definition 4.7 (Path / Cycle). Let G = (V,E) be a directed graph. A walk w =
(v1, e1, v2, . . . , vn−1, en−1, vn) is a path if for each i = 1, . . . , n, vi occurs only once in the
sequence w. A walk is a cycle if the walk w′ = (v1, e1, v2, . . . , vn−1) is a path and v1 = vn.

Definition 4.8 (Acyclic). A directed graph G = (V,E) is acyclic if there is no walk on
G that is a cycle.

Definition 4.9 (Walk Length). The length of a walk w in a directed graph G is the
number of edges it contains.
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Example 4.10. A directed graph with a cycle is shown in Figure 4.2. On the other hand,
the graph in Figure 4.1 is acyclic.

Figure 4.2. A directed graph with cycle.

Definition 4.11 (In/Out Degree). Let G = (V,E) be a directed graph. The in-degree
of a vertex v ∈ V , denoted degi(v), is the the number of edges e ∈ E such that e = (u, v)
for some u ∈ V . The out-degree of v ∈ V , denoted dego(v), is the number of edges in e ∈ E
such that e = (v, u) for some u ∈ V .

Example 4.12. In Figure 4.1, the in-degrees in order are {0, 0, 2, 1, 1} while the out-
degrees are {1, 1, 1, 0}.

Definition 4.13 (k-Partite Graph). A graph G = (V,E) is k-partite if:

V = V1 ∪ V2 ∪ · · · ∪ Vk
where Vi ∩ Vj = ∅ for i 6= j and if e = (u, v), then there are i and j in {1, . . . , k} such that
u ∈ Vi and v ∈ Vj and i 6= j.

Remark 4.14. In a k-partite graph, edges only connect vertices in different partitions
of the vertex set. They cannot connect to elements in the same partition. A 2-partite graph
is usually called bipartite, while a 3-partite graph is called tripartite.

Example 4.15. A tripartite graph is shown in Figure 4.3.

Remark 4.16. It should be clear if G = (V,E) is simple and |V | = n, then G is an
n-partite graph. However, when discussing k-partite graphs, the smallest possible k is used
that makes the definition true. Thus, we would not say that the graph in Figure 4.3 is
5-partite.

2. Neural Networks

Definition 4.17. For k ≥ 1, let Ck(Rn) denote the set of all function with k deriva-
tives where each derivative is continuous. A function that is C0(Rn) is continuous, but not
necessarily differentiable everywhere.
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V1

V2

V3

Figure 4.3. A tripartite graph whose vertex set is partitioned into 3 subsets.

Two Hidden LayersInput Layer Output Layer

Figure 4.4. A neural network with two hidden layers and an input and output layer.

Definition 4.18. A neural network is a tuple N = (G,F, I, O), where:

(1) G = (V,E) is a directed graph whose vertices are called artificial neurons.
(2) The sets I, O ⊂ V are the input and output neurons respectively and I ∩O = ∅.
(3) For each v ∈ V \ (I ∪ O), F : v 7→ fv ∈ C1(Rdegi(v)). That is, to each neuron that

is neither an input nor an output, we assign a differentiable function fv that takes
degi(v) inputs and returns an output.

Remark 4.19. In general, the graph of a neural network is considered to be k-partite
and each partition V1, . . . , Vk is called a layer. As we’ll see, when we discuss computation,
neural networks always contain at least 3 layers:

(1) The first layer is called the input layer. Data from outside the network is fed into
this layer.

(2) The last layer is called the output layer. Computed data from inside the neural
network is returned at in these vertices.

(3) Other layers are called hidden layers because a user, when given a neural network,
cannot see these layers.

Figure 4.4 illustrates a neural network with two hidden layers. As a rule, the size of the
neural network is given by the number of hidden layers, rather than the number of total
layers.
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3. Computing with a Neural Network

Definition 4.20 (Undefined). A quantity that is undefined is denoted by the symbol ↑.
Remark 4.21. Some texts use the !, which we avoid to prevent confusion with factorial.

Definition 4.22 (Neural Network Computation and State). Given a neural network
N = (G,F, I, O) and a vector of data x ∈ R|I| the state function Q : V × Z+ → R of
the neural network (describing the computation) is defined recursively with the following
algorithm:

(1) Set t = 0. For all v ∈ V :

Q(v, 0) =

{
xj if I = {i1, . . . , i|I|} and v = ij
↑ otherwise

(2) Set A = I, this is the set of computing neurons. Set B = ∅.
(3) For each v ∈ A and u ∈ V such that (v, u) ∈ E, set Q(u, t + 1) = fu(Q(v, t)). Set

B = B ∪ {u}.
(4) For all v ∈ V \B: Q(u, t+ 1) = Q(u, t).
(5) Set A = B. Set t = t+ 1. Goto 3.

Remark 4.23. The algorithm defines computation by a neural network. If there is some
t∗ so that Q(v, t) = Q(v, t∗) for all t ≥ t∗, then the neural network computation terminates
with this state. More generally, if there is some Q∗ : V → R∗ so that:

lim
t→∞

Q(v, t)→ Q∗(v)

Then the neural network converges to this state and the outputs converge to Q∗(o) for each
o ∈ O.

Definition 4.24 (Neural Network Function). Let N = (G,F, I, O) be a neural network
with O = {o1, . . . , o|O|} and let x ∈ R|I| be an input data vector. The function computed by

N is fN : R|I| × Z+ → R|O| where if fN (x, t) = y, then yi = Q(oi, t).

Remark 4.25. In this way, a recurrent neural network is a discrete time dynamical
system that has an equilibrium point just in case Q∗ exists for some input.

Definition 4.26 (Feed Forward Neural Network). A neural network N = (G,F, I, O)
is feed forward if G is acyclic.

Theorem 4.27. If N = (G,F, I, O) is a feed forward neural network, then fN exists and
can be computed in finite time.

Proof. Since there are no cycles in G, once Q(v, t) is defined by the algorithm in Def-
inition 4.22, it will never change. Furthermore, there is some h∗ so that the length of any
walk from a vertex in I to a vertex in O is at most H. Therefore, Q(v, t) is defined for all
t ≥ h∗. Therefore Q∗ exists. �

Theorem 4.28 (Approximation by a Neural Network). Let f : [a, b] ⊂ R → R be any
continuous function with compact support; i.e., [a, b] is a compact set in R. Then for all ε
there is feed forward neural network N with the property that:

(4.1)

∫ b

a

|f(x)− fN (x)|2 dx < ε
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Proof. Let x1 = a and xn = b and let ∆x = (b− a)/n. Define:

(4.2) f̂(x) =
n−1∑

i=1

f

(
xi + xi+1

2

)
(H(x− xi)−H(x− xi+1))

where H is the Heaviside step function, which we know from Theorem 1.22 can be arbitrarily
closely approximated by the differentiable function S(x; β). For x ∈ [xi, xi+1], we have

f̂(x) = f

(
xi + xi+1

2

)

Let:

(4.3) Ai = max
x∈[xi,xi+1]

∣∣∣f(x)− f̂(x)
∣∣∣
2

This value must exist by Weierstraß theorem. Thus:

(4.4)

∫ xi+1

xi

∣∣∣f(x)− f̂(x)
∣∣∣
2

dx ≤ Ai(xi+1 − xi)

As n → ∞, Ai → 0 by the continuity of f . Thus, choose n so that xi+1 − xi <
√
ε/n and

Ai <
√
ε/n for all i = 1, . . . , n. Then:

(4.5)

∫ b

a

∣∣∣f(x)− f̂(x)
∣∣∣
2

dx < n
( ε
n

)
= ε.

From Equation 4.2, let ρi be the coefficient of H(x− xi), which is:

(4.6) ρi =





f
(xi+xi+1

2

)
if i = 1

−f
(xi−1+xi

2

)
if i = n

f
(xi+xi+1

2

)
− f

(xi−1+xi
2

)
otherwise

Define a neural network as follows: Let I = {v0} and O = {vn+2} be singleton input and
output neurons. Let vi be assigned the function H(x − xi) (or its differentiable variation
S(x; β)). To vn+1 assign the function

∑n
i=1 ρiyi, where yi are the inputs. Assume the graph

structure is the edge set containts all edges of the form (v0, vi), (vi, vn+1) for i = 1, . . . , n
and (vn+1, vn+2. The resulting neural network is illustrated in Figure 4.5. This neural

network computes the function f̂(x), which we have already shown can be defined to be
arbitrarily close to the function f(x). Thus we have identified a neural network whose about
is arbitrarily close to the given function f(x). This completes the proof. �

Remark 4.29. The previous universal approximation theorem can be generalized to
arbitrary, but bounded functions with compact support on Rn. Thus, neural networks are
universal approximators. It is worth noting that a feed forward neural network was sufficient.

4. Fitting a Neural Network from Data

Remark 4.30. In the previous section, we showed that it was sufficient to assign exactly
two kinds of differentiable functions to a neuron:

(1) The linear function l : Rn → R with:

l(x) = w0 + w1x1 + · · ·+ wnxn = wTx + w0
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...

x f̂(x)

H(x� x1)

H(x� x2)

H(x� xn)

X
⇢iyi

y1

y2

yn

Figure 4.5. A simple feed forward neural network can approximate an arbitrary
function.

(2) The sigmoid function of a linear functionation:

S(x) =
1

1 + exp (− (wTx + w0))

The function S is called an activation function. It can be some other function like tanh(wTx+
w0) or it can be more exotic like a Gaussian function, which is common in convolutional neural
networks. Thus fitting data to a neural network involves finding values for the parameters
w and w0 for each neuron in which they occur.

Remark 4.31. To see how to fit a neural network, we first show that we have already
seen at least two simple neural networks.

Proposition 4.32. Perceptron is a neural network.

Proof. The proof is by picture. Consider the neural network shown in Figure 4.6.
Clearly, if we replace S with H (the Heaviside step function) or introduce a very high β

...

x1

x2

xN

wT x + w0

S(wT x + w0)

y 2 {0, 1}

Figure 4.6. This simple neural network computes the perceptron.

multiplier as in S(x, β), this neural network computes the perceptron function. �
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Corollary 4.33. The logistic regression is also computed by a neural network. �

Remark 4.34. Training a neural network is like performing non-linear regression. In
particular, the neural network function computes fN (xi; w) ∈ Rm when given input xi ∈ Rn

from data set X = {xi}Ni=1. Here w is the set of all unknown parameters in the functions
computed by the artificial neurons. Assuming there is a preferred output yi ∈ Rm. The
objective is then to solve:

(4.7) min
w
E(fN ,X,Y) =

1

2

N∑

i=1

‖yi − fN (xi; w)‖2

This minimizes the square error on the output. Alternative error functions are also possible.

Remark 4.35. Assume each neuron is assigned the function S(wTx), where for simplic-
ity, we assume that x has a 1 prepended so that w0 does not need to be added. This can be
accomplished by defining a set of neurons with constant output of 1. This is illustrated in
Figure 4.7.

1

...

wij

vi

vj

Constant Function

S(wT
·jx)

wi0

Figure 4.7. A neural network can be analyzed more efficiently by assigning the
weights to the edges and assuming a subset of the neurons produce a constant
function 1 that is multiplied by a wi0 term to produce the constant offset.

Theorem 4.36. The gradient descent update minimizing E(fN ,X,Y) can be computed
backwards from the output neurons, assuming a constant learning rate α.

Proof. Let N be a feed forward neural network and let fN be the function is computes.
Gradient descent applied to the error function E(fN ,X,Y) yields an update to wij of:

(4.8) w
(t+1)
ij = w

(t)
ij − α

∂E(fN ,X,Y)

∂wij

The function E(fN ,X,Y) is layered, consequently the chain rule is required. Let xj =
S(w·jx) be the output from vj (see Figure 4.7). Then:

∂E(fN ,X,Y)

∂wij
=
∂E(fN ,X,Y)

∂xj

∂xj
∂(wT

·jx)

∂wT
·jx

∂wij
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Computing from right to left:

(4.9)
∂wT
·jx

∂wij
= xi

the output of neuron vi.

(4.10)
∂xj

∂(wT
·jx)

= S ′(wT
j x) = S(wT

j x)
(
1− S(wT

j x)
)

= xj(1− xj)

We showed this in Equation 1.17. The last derivative must be computed recursively and
backwards from the output neurons toward the input neurons. If vj is an output neuron
with output ŷj, then:

(4.11)
∂E(fN ,X,Y)

∂xj
= (ŷj − yj),

because we are essentially just taking the derivative of 1
2
(ŷj − yj)2 with respect to xj = ŷj.

On the other hand, if vj is a hidden layer before the output, then let Nj = No(vj) be the
index set of neurons (vertices) that receive output from vj. These are the out-neighbors of
vj. Then:

(4.12)
∂E(fN ,X,Y)

∂xj
=
∑

k∈Nj

∂E
∂xk

∂xk
∂xj

=
∑

k∈Nj

∂E
∂xk

∂xk
∂wT
·kx

∂wT
·kx

∂xj
=
∑

k∈Nj

∂E
∂xk

∂xk
∂wT
·kx

wjk

Thus, we have shown the derivatives of the error function for variables in Layer l must be
computed with derivates from Layer l + 1. Thus, if we denote:

(4.13)
∂E
∂wij

= δjxi

with:

(4.14) δj =
∂E
∂xj

∂xj
∂(wT

·jx)
=

{
(xj − yj)xj(1− xj) if vj ∈ O(∑

k∈Nj
δkwjk

)
xj(1− xj)

Thus Equation 4.8 can be rewritten as:

(4.15) ∆w
(t)
ij = w

(t+1)
ij − w(t)

ij = −α ∂E
∂wij

=

{
−α(xj − yj)xj(1− xj)xi if vj ∈ O
−α
(∑

k∈Nj
δkwjk

)
xj(1− xj)xi

This completes the proof. �

Remark 4.37. This update rule is called back propagation. It is a generalization of the
perceptron update rule. In fact, this update rule is exactly the perceptron update rule when
restricted to the perceptron neural network.

46



APPENDIX A

Review of Matrix Properties

1. Fields and Matrices

Definition A.1 (Group). A group is a pair (S, ◦) where S is a set and ◦ : S × S → S
is a binary operation so that:

(1) The binary operation ◦ is associative; that is, if s1, s2 and s3 are in S, then (s1 ◦
s2) ◦ s3 = s1 ◦ (s2 ◦ s3).

(2) There is a unique identity element e ∈ S so that for all s ∈ S, e ◦ s = s ◦ e = s.
(3) For every element s ∈ S there is an inverse element s−1 ∈ S so that s ◦ s−1 =

s−1 ◦ s = e.

If ◦ is commutative, that is for all s1, s2 ∈ S we have s1 ◦ s2 = s2 ◦ s1, then (S, ◦) is called a
commutative group (or abelian group).

Example A.2. This course is not about group theory. If you’re interested in groups in
the more abstract sense, it’s worth considering taking Math 435, which is all about abstract
algebra. One of the simplest examples of a group is the set of integers Z under the binary
operation of addition.

Definition A.3 (Sub-Group). Let (S, ◦) be a group. A subgroup of (S, ◦) is a group
(T, ◦) so that T ⊆ S. The subgroup (T, ◦) shares the identify of the group (S, ◦).

Example A.4. Consider the group (Z,+). If 2Z is the set of even integers, then (2Z,+)
is a subgroup of (Z,+) because that even integers are closed under addition.

Definition A.5 (Number Field). A field (or number field) is a tuple (S,+, ·, 0, 1) where:

(1) (S,+) is a commutative group with unit 0,
(2) (S \ {0}, ·) is a commutative group with unit 1
(3) The operation · distributes over the operation + so that if a1, a2, and a3 are elements

of F , then a1 · (a2 + a3) = a1 · a2 + a1 · a3.

Example A.6. The archetypal example of a field is the field of real numbers R with
addition and multiplication playing the expected roles. Another common field is the field of
complex numbers C (numbers of the form a + bi with i =

√
−1 the imaginary unit) with

their addition and multiplication rules defined as expected.

Definition A.7 (Matrix). An m × n matrix is a rectangular array of values (scalars),
drawn from a field. If F is the field, we write Fm×n to denote the set of m×n matrices with
entries drawn from F .

Remark A.8. For the remainder of this appendix, we will use the field R.
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2. Basic Matrix Operations

Definition A.9 (Matrix Addition). If A and B are both in Rm×n, then C = A + B is
the matrix sum of A and B and

(A.1) Cij = Aij + Bij for i = 1, . . . ,m and j = 1, . . . , n

Example A.10.

(A.2)

[
1 2
3 4

]
+

[
5 6
7 8

]
=

[
1 + 5 2 + 6
3 + 7 4 + 8

]
=

[
6 8
10 12

]

Definition A.11 (Row/Column Vector). A 1 × n matrix is called a row vector, and a
m × 1 matrix is called a column vector. For the remainder of these notes, every vector will
be thought of column vector unless otherwise noted. A column vector x in Rn×1 (or Rn)
is: x = 〈x1, . . . , xn〉.

It should be clear that any row of matrix A could be considered a row vector in Rn and
any column of A could be considered a column vector in Rm.

Definition A.12 (Standard Euclidean Norm). Let x ∈ Rn be a vector. The standard
Euclidean norm is:

(A.3) ‖x‖ =
√
x21 + · · ·+ x2n

Definition A.13 (Unit Vector). A vector x is a unit vector if ‖x‖ = 1, where 1 is the
unit in the field.

Definition A.14 (Dot Product). Recall that if x,y ∈ Rn are two n-dimensional vectors,
then the dot product (scalar product) is:

(A.4) x · y =
n∑

i=1

xiyi

where xi is the ith component of the vector x. Clearly if x,y ∈ Rn×1, then

(A.5) x · y = xTy

where xT ∈ R1×n is the transpose of x when treated as a matrix.

Exercise A.1. Show that ‖x‖2 = xTx = xT Inx for x ∈ Rn.

Lemma A.15. Let x,y ∈ Rn and let θ be the angle between x and y, then

(A.6) x · y = ||x||||y|| cos θ

�

Remark A.16. The preceding lemma can be proved using the law of cosines from
trigonometry. The following small lemma follows and is is proved as Theorem 1 of [MT03]:

Lemma A.17. Let x,y ∈ Rn. Then the following hold:

(1) The angle between x and y is less than π/2 (i.e., acute) iff x · y > 0.
(2) The angle between x and y is exactly π/2 (i.e., the vectors are orthogonal) iff x ·y =

0.
(3) The angle between x and y is greater than π/2 (i.e., obtuse) iff x · y < 0.
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Definition A.18. Two vectors x and y are orthogonal if x · y = 0. (Here 0 is the zero
in the field over which the vectors are defined.)

Definition A.19 (Orthonormal Vectors). If two vectors x and y are orthogonal and both
vectors have norm equal to 1 (the unit in the field), then they are said to be orthonormal.

Exercise A.2. Show that if x ∈ Rn, then x/ ‖x‖ is a unit vector.

Lemma A.20 (Schwartz Inequality). Let x,y ∈ Rn. Then:

(A.7) (xTy)2 ≤ (xTx) · (yTy)

This is equivalent to:

(A.8) (xTy)2 ≤ ||x||2||y||2

Definition A.21 (Matrix Multiplication). If A ∈ Rm×n and B ∈ Rn×p, then C = AB
is the matrix product of A and B and

(A.9) Cij = Ai· ·B·j
Note, Ai· ∈ R1×n (an n-dimensional vector) and B·j ∈ Rn×1 (another n-dimensional vector),
thus making the dot product meaningful.

Example A.22.

(A.10)

[
1 2
3 4

] [
5 6
7 8

]
=

[
1(5) + 2(7) 1(6) + 2(8)
3(5) + 4(7) 3(6) + 4(8)

]
=

[
19 22
43 50

]

Definition A.23 (Matrix Transpose). If A ∈ Rm×n is a m×n matrix, then the transpose
of A dented AT is an m× n matrix defined as:

(A.11) AT
ij = Aji

Example A.24.

(A.12)

[
1 2
3 4

]T
=

[
1 3
2 4

]

The matrix transpose is a particularly useful operation and makes it easy to transform
column vectors into row vectors, which enables multiplication. For example, suppose x is
an n× 1 column vector (i.e., x is a vector in Rn) and suppose y is an n× 1 column vector.
Then:

(A.13) x · y = xTy

Exercise A.3. Let A,B ∈ Rm×n. Use the definitions of matrix addition and transpose
to prove that:

(A.14) (A + B)T = AT + BT

[Hint: If C = A + B, then Cij = Aij + Bij, the element in the (i, j) position of matrix C.
This element moves to the (j, i) position in the transpose. The (j, i) position of AT + BT is
AT
ji + BT

ji, but AT
ji = Aij. Reason from this point.]
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Exercise A.4. Let A,B ∈ Rm×n. Prove by example that AB 6= BA; that is, matrix
multiplication is not commutative. [Hint: Almost any pair of matrices you pick (that can be
multiplied) will not commute.]

Exercise A.5. Let A ∈ Rm×n and let, B ∈ Rn×p. Use the definitions of matrix multi-
plication and transpose to prove that:

(A.15) (AB)T = BTAT

[Hint: Use similar reasoning to the hint in Exercise A.3. But this time, note that Cij =
Ai· ·B·j, which moves to the (j, i) position. Now figure out what is in the (j, i) position of
BTAT .]

Let A and B be two matrices with the same number of rows (so A ∈ Rm×n and B ∈
Rm×p). Then the augmented matrix [A|B] is:

(A.16)




a11 a12 . . . a1n b11 b12 . . . b1p
a21 a22 . . . a2n b21 b22 . . . b2p
...

. . .
...

...
. . .

...
am1 am2 . . . amn bm1 bm2 . . . bmp




Thus, [A|B] is a matrix in Rm×(n+p).

Example A.25. Consider the following matrices:

A =

[
1 2
3 4

]
, b =

[
7
8

]

Then [A|B] is:

[A|B] =

[
1 2 7
3 4 8

]

Exercise A.6. By analogy define the augmented matrix
[
A
B

]
. Note, this is not a fraction.

In your definition, identify the appropriate requirements on the relationship between the
number of rows and columns that the matrices must have. [Hint: Unlike [A|B], the number
of rows don’t have to be the same, since your concatenating on the rows, not columns. There
should be a relation between the numbers of columns though.]

3. Special Matrices and Vectors

Definition A.26 (Identify Matrix). The n× n identify matrix is:

(A.17) In =




1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 0 . . . 1




When it is clear from context, we may simply write I and omit the subscript n.

Exercise A.7. Let A ∈ Rn×n. Show that AIn = InA = A. Hence, I is an identify for
the matrix multiplication operation on square matrices. [Hint: Do the multiplication out
long hand.]
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Definition A.27 (Standard Basis Vector). The standard basis vector ei ∈ Rn is:

ei =

〈
0, 0, . . .︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

〉

Note, this definition is only valid for n ≥ i. Further the standard basis vector ei is also the
ith row or column of In.

Definition A.28 (Unit and Zero Vectors). The vector 1 ∈ Rn is the one vector 1 =
〈1, 1, . . . , 1〉. Similarly, the zero vector 0 = 〈0, 0, . . . , 0〉 ∈ Rn. We assume that the length of
e and 0 will be determined from context.

Definition A.29 (Symmetric Matrix). Let M ∈ Rn×n be a matrix. The matrix M is
symmetric if M = MT .

Definition A.30 (Invertible Matrix). Let A ∈ Rn×n be a square matrix. If there is a
matrix A−1 such that

(A.18) AA−1 = A−1A = In

then matrix A is said to be invertible (or nonsingular) and A−1 is called its inverse. If A is
not invertible, it is called a singular matrix.

Definition A.31 (Diagonal Matrix). A diagonal matrix is a (square) matrix with the
property that Dij = 0 for i 6= j and Dii may take any value in the field on which D is
defined.

Remark A.32. Thus, a diagonal matrix has (usually) non-zero entries only on its main
diagonal. These matrices will play a critical roll in our analysis.

4. Matrix Definiteness

Definition A.33 (Definiteness). (1) A matrix M ∈ Rn×n is positive semi-definite
if for all x ∈ Rn with x 6= 0, xTMx ≥ 0.

(2) The matrix M is positive definite if for all x ∈ Rn with x 6= 0, xTMx > 0.
(3) The matrix M is negative definite if −M is positive definite. That is, if xTMx < 0

for all x ∈ Rn.
(4) The matrix M negative semi-definite if −M is positive semi-definite.

If M satisfies none of these properties, then M is indefinite.

Remark A.34. We note that this is not the most general definition of matrix definiteness.
In general, matrix definiteness can be defined for complex matrices and has specialization to
Hermitian matrices.

Remark A.35. Positive semi-definiteness is also called non-negative definiteness and
negative semi-definiteness is also called non-positive definiteness.

Example A.36. Consider the matrix:

M =

[
α, 0
0, β

]

51



where α, β > 0. This matrix is positive definite. To see this, choose any vector x = 〈x1, x2〉
and compute:

xTMx = αx21 + βx22

This quantity is always positive, thus M must be positive definite.

Lemma A.37. A matrix M ∈ Rn×n is positive definite if and only if for every vector
x ∈ Rn, there is an α ∈ R+ (that is α > 0) such that xTMx > αxTx.

Exercise A.8. Prove Lemma A.37.

5. Permutations1

Definition A.38 (Permutation / Permutation Group). A permutation on a set V =
{1, . . . , n} of n elements is a bijective mapping f from V to itself. A permutation group on
a set V is a set of permutations with the binary operation of functional composition.

Example A.39. Consider the set V = {1, 2, 3, 4}. A permutation on this set that maps
1 to 2 and 2 to 3 and 3 to 1 can be written as: (1, 2, 3)(4) indicating the cyclic behavior
that 1 → 2 → 3 → 1 and 4 is fixed. In general, we write (1, 2, 3) instead of (1, 2, 3)(4) and
suppress any elements that do not move under the permutation.

For the permutation taking 1 to 3 and 3 to 1 and 2 to 4 and 4 to 2 we write (1, 3)(2, 4)
and say that this is the product of (1, 3) and (2, 4). When determining the impact of a
permutation on a number, we read the permutation from right to left. Thus, if we want to
determine the impact on 2, we read from right to left and see that 2 goes to 4. By contrast,
if we had the permutation: (1, 3)(1, 2) then this permutation would take 2 to 1 first and then
1 to 3 thus 2 would be mapped to 3. The number 1 would be first mapped to 2 and then
stop. The number 3 would be mapped to 1. Thus we can see that (1, 3)(1, 2) has the same
action as the permutation (1, 2, 3).

Definition A.40 (Symmetric Group). Consider a set V with n elements in it. The
permutation group Sn contains every possible permutation of the set with n elements.

Example A.41. Consider the set V = {1, 2, 3}. The symmetric group on V is the set
S3 and it contains the permutations:

(1) The identity: (1)(2)(3)
(2) (12)(3)
(3) (13)(2)
(4) (23)(1)
(5) (123)
(6) (132)

Proposition A.42. For each n, |Sn| = n!.

Exercise A.9. Prove Proposition A.42

Definition A.43 (Transposition). A permutation of the form (a1, a2) is called a trans-
position.

1This section is used purely to understand the general definition of the determinant of a matrix.
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Theorem A.44. Every permutation can be expressed as the product of transpositions.

Proof. Consider the permutation (a1, a2, . . . , an). We may write:

(A.19) (a1, a2, . . . , an) = (a1, an)(a1, an−1) · · · (a1, a2)
Observe the effect of these two permutations on ai. For i 6= 1 and i 6= n, then reading
from right to left (as the permutation is applied) we see that ai maps to a1, which reading
further right to left is mapped to ai+1 as we expect. If i = 1, then a1 maps to a2 and there
is no further mapping. Finally, if i = n, then we read left to right to the only transposition
containing an and see that an maps to a1. Thus Equation A.19 holds. This completes the
proof. �

Remark A.45. The following theorem is useful for our work on matrices in the second
part of this chapter, but its proof is outside the scope of these notes. The interested reader
can see Chapter 2.2 of [Fra99].

Theorem A.46. No permutation can be expressed as both a product of an even and an
odd number of transpositions. �

Definition A.47 (Even/Odd Permutation). Let σ ∈ Sn be a permutation. If σ can
be expressed as an even number of transpositions, then it is even, otherwise σ is odd. The
signature of the permutation is:

(A.20) sgn(σ) =

{
−1 σ is odd

1 σ is even

6. Eigenvalues and Eigenvectors

Definition A.48 (Determinant). Let M ∈ Rn×n. The determinant of M is:

(A.21) det(A) =
∑

σ∈Sn

sgn(σ)
n∏

i=1

Aiσ(i)

Here σ ∈ Sn represents a permutation over the set {1, . . . , n} and σ(i) represents the value
to which i is mapped under σ.

Example A.49. Consider an arbitrary 2× 2 matrix:

M =

[
a b
c d

]

There are only two permutations in the set S2: the identity permutation (which is even) and
the transposition (1, 2) which is odd. Thus, we have:

det(M) =

∣∣∣∣
a b
c d

∣∣∣∣ = M11M22 −M12M21 = ad− bc

This is the formula that one would expect from a course in matrices (like Math 220).

Definition A.50 (Eigenvalue and (Right) Eigenvector). Let M ∈ Rn×n. An eigenvalue,
eigenvector pair (λ,x) is a scalar and n× 1 vector such that:

(A.22) Mx = λx
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Remark A.51. A left eigenvector is defined analogously with xTM = λxT , when x is
considered a column vector. We will deal exclusively with right eigenvectors and hence when
we say “eigenvector” we mean a right eigenvector.

Definition A.52 (Characteristic Polynomial). If M ∈ Rn×n then its characteristic poly-
nomial is:

(A.23) det (λIn −M)

Remark A.53. The following theorem is useful for computing eigenvalues of small ma-
trices and defines the characteristic polynomial for a matrix. Its proof is outside the scope
of these notes, but would occur in a Math 436 class. (See Chapter 8.2 of [Lan87].)

Theorem A.54. A value λ is an eigenvalue for M ∈ Rn×n if and only if it satisfies the
characteristic equation:

det (λIn −M) = 0

Furthermore, M and MT share eigenvalues. �

Example A.55. Consider the matrix:

M =

[
1 0
0 2

]

The characteristic polynomial is computed as:

det (λIn −M) =

∣∣∣∣
λ− 1 0

0 λ− 2

∣∣∣∣ = (λ− 1)(λ− 2)− 0 = 0

Thus the characteristic polynomial for this matrix is:

(A.24) λ2 − 3λ+ 2

The roots of this polynomial are λ1 = 1 and λ2 = 2. Using these eigenvalues, we can compute
eigenvectors:

x1 =

[
1
0

]
(A.25)

x2 =

[
0
1

]
(A.26)

and observe that:

(A.27) Mx1 =

[
1 0
0 2

] [
1
0

]
= 1

[
1
0

]
= λ1x1

and

(A.28) Mx2 =

[
1 0
0 2

] [
0
1

]
= 2

[
0
1

]
λ2x2

as required. Computation of eigenvalues and eigenvectors is usually accomplished by com-
puter and several algorithms have been developed. Those interested readers should consult
(e.g.) [Dat95].

Remark A.56. You can use your calculator to return the eigenvalues and eigenvectors
of a matrix, as well as several software packages, like Matlab and Mathematica.
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Remark A.57. It is important to remember that eigenvectors are unique up to scale.
That is, if M is a square matrix and (λ,x) is an eigenvalue eigenvector pair for M, then so
is (λ, αx) for α 6= 0. This is because:

(A.29) Mx = λx =⇒ M(αx) = λ(αx)

Definition A.58 (Degenerate Eigenvalue). An eigenvalue is degenerate if it is a multiple
root of the characteristic polynomial. The multiplicity of the root is the multiplicity of the
eigenvalue.

Example A.59. Consider the identify matrix I2. It has characteristic polynomial (λ−1)2,
which has one multiple root 1. Thus λ = 1 is a degenerate eigenvalue for this matrix.
However, this matrix does have two eigenvectors [1 0]T and [0 1]T .

7. Linear Combinations, Span, Linear Independence

Definition A.60. Let x1, . . . ,xm be vectors in ∈ Rn and let α1, . . . , αm ∈ R be scalars.
Then

(A.30) α1x1 + · · ·+ αmxm

is a linear combination of the vectors x1, . . . ,xm.

Clearly, any linear combination of vectors in Rn is also a vector in Rn.

Definition A.61 (Span). Let X = {x1, . . . ,xm} be a set of vectors in ∈ Rn, then the
span of X is the set:

(A.31) span(X ) = {y ∈ Rn|y is a linear combination of vectors in X}
Definition A.62 (Linear Independence). Let x1, . . . ,xm be vectors in ∈ Rn. The vectors

x1, . . . ,xm are linearly dependent if there exists α1, . . . , αm ∈ R, not all zero, such that

(A.32) α1x1 + · · ·+ αmxm = 0

If the set of vectors x1, . . . ,xm is not linearly dependent, then they are linearly independent
and Equation A.32 holds just in case αi = 0 for all i = 1, . . . , n.

Exercise A.10. Consider the vectors x1 = 〈0, 0〉 and x2 = 〈1, 0〉. Are these vectors
linearly independent? Explain why or why not.

Example A.63. In R3, consider the vectors:

x1 =




1
1
0


 , x2 =




1
0
1


 , x3 =




0
1
1




We can show these vectors are linearly independent: Suppose there are values α1, α2, α3 ∈ R
such that

α1x1 + α2x2 + α3x3 = 0

Then: 

α1

α1

0


+



α2

0
α2






0
α3

α3


 =



α1 + α2

α1 + α3

α2 + α3


 =




0
0
0




55



Thus we have the system of linear equations:

α1 +α2 = 0

α1 + α3 = 0

α2 + α3 = 0

which can be written as the matrix expression:


1 1 0
1 0 1
0 1 1





α1

α2

α3


 =




0
0
0




This is just a simple matrix equation, but note that the three vectors we are focused on:
x1, x2, and x3, have become the columns of the matrix on the left-hand-side. We can use
Gauss-Jordan elimination to solve this matrix equation yielding: α1 = α2 = α3 = 0. Thus
these vectors are linearly independent.

Remark A.64. It is worthwhile to note that the zero vector 0 makes any set of vectors
a linearly dependent set.

Exercise A.11. Prove the remark above.

Exercise A.12. Show that the vectors

x1 =




1
2
3


 , x2 =




4
5
6


 , x3 =




7
8
9




are not linearly independent. [Hint: Following the example, create a matrix whose columns
are the vectors in question and solve a matrix equation with right-hand-side equal to zero.
Using Gauss-Jordan elimination, show that a zero row results and thus find the infinite set
of values solving the system.]

Remark A.65. So far we have only given examples and exercises in which the number
of vectors was equal to the dimension of the space they occupied. Clearly, we could have,
for example, 3 linearly independent vectors in 4 dimensional space. We illustrate this case
in the following example.

Example A.66. Consider the vectors:

x1 =




1
2
3


 , x2 =




4
5
6




Determining linear independence requires us to solve the matrix equation:


1 4
2 5
3 6



[
α1

α2

]
=




0
0
0




The augmented matrix:


1 4 0
2 5 0
4 6 0



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represents the matrix equation. Using Gauss-Jordan elimination yields:



1 4 0
0 1 0
0 0 0




This implies that the following system of equations:

α1 + 4α2 = 0

α2 = 0

0α1 + 0α2 = 0

The last equation is tautological (true regardless of the values of α1 and α2). The second
equation implies α2 = 0. Using this value in first equation implies that α1 = 0. This is the
unique solution to the problem and thus the vectors are linearly independent.

The following theorem is related to the example above. It’s proof is outside the scope
of the course. It should be taught in a Linear Algebra course (Math 436). Proofs can be
found in most Linear Algebra textbooks. Again, see [Lan87] (Theorem 3.1) for a proof using
vector spaces.

Theorem A.67. Let x1, . . . ,xm ∈ Rn. If m > n, then the vectors are linearly dependent.

8. Basis

Definition A.68 (Basis). Let X = {x1, . . . ,xm} be a set of vectors in Rn. The set X
is called a basis of Rn if X is a linearly independent set of vectors and every vector in Rn is
in the span of X . That is, for any vector w ∈ Rn we can find scalar values α1, . . . , αm such
that

(A.33) w =
m∑

i=1

αixi

Example A.69. We can show that the vectors:

x1 =




1
1
0


 , x2 =




1
0
1


 , x3 =




0
1
1




form a basis of R3. We already know that the vectors are linearly independent. To show
that R3 is in their span, chose an arbitrary vector in Rm: 〈a, b, c〉. Then we hope to find
coefficients α1, α2 and α3 so that:

α1x1 + α2x2 + α3x3 =



a
b
c




Expanding this, we must find α1, α2 and α3 so that:


α1

α1

0


+



α2

0
α2


+




0
α3

α3


 =



a
b
c



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Just as in Example A.63, this can be written as an augmented matrix representing a set of
linear equations:

(A.34)




1 1 0 a
1 0 1 b
0 1 1 c




Applying Gauss-Jordan elimination to the augmented matrix yields:

(A.35)




1 0 0 1/2 a+ 1/2 b− 1/2 c

0 1 0 −1/2 b+ 1/2 a+ 1/2 c

0 0 1 1/2 c+ 1/2 b− 1/2 a




which clearly has a solution for all a, b, and c. Another way of seeing this is to note that the
matrix:

(A.36) A =




1 1 0
1 0 1
0 1 1




is invertible.

The following theorem on the size of a basis in Rn is outside the scope of this course. A
proof can be found in [Lan87].

Theorem A.70. If X is a basis of Rn, then X contains precisely n vectors.

Exercise A.13. Show that the vectors

x1 =




1
2
3


 , x2 =




4
5
6


 , x3 =




7
8
9




are not a basis for R3.

9. Diagonalization and Jordan’s Decomposition Theorem

Definition A.71 (Diagonalization). Let A be an n×n matrix (with entries drawn from
any field2, but for the time being we will assume R). The matrix A can be diagonalized if
there exists an n× n diagonal matrix D and another n× n matrix P so that:

(A.37) P−1AP = D

In this case, P−1AP is the diagonalization of A.

Remark A.72. Clearly if A is diagonalizable, then:

(A.38) A = PDP−1

The following theorem is proven in [].

2A field is a mathematical structure that generalizes the basic notions of arithmetic we are familiar with
over R. We will not cover them in detail in this course, but they should have been discussed a little in Linear
Algebra (Math 220).
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Theorem A.73. If A ∈ Rn×n is diagonalizable, then the entries of D are the eigenvalues
of A while the columns of P are the eigenvectors of A. Moreover, A is diagonalizable if and
only if the eigenvectors span an n-dimensional linear space (i.e., P is inverible).

Example A.74. Consider the following matrix:

(A.39) A =

[
0 −1
1 0

]

To diagonalize A, we compute its eigenvalues and eigenvectors yielding:

λ1 = i

λ2 = −i
for the eigenvalues and:

v1 =

[
i
1

]
v2 =

[
−i
1

]

where i =
√
−1 is the imaginary number. We can now compute P and D as:

D =

[
−i 0
0 i

]
P =

[
−i i
1 1

]

It is helpful to note that:

P−1 =

[
i
2

1
2−i

2
1
2

]

Arithmetic manipulation shows us that:

PD =

[
−1 −1
−i i

]

Thus:

PDP−1 =

[
−1 −1
−i i

] [
i
2

1
2−i

2
1
2

]
=

[
0 −1
1 0

]
= A

as required. (Remember that i2 = −1.)

Definition A.75 (Nilpotent Matrix). A matrix N is nilpotent if there is some integer
k > 0 so that Nk = 0

Remark A.76. We generalize the notion of diagonalization in a concept called the Jordan
Normal Form. Jordan Normal Form is well outside the scope of the class, but it can be
summarized in the following theorem.

Theorem A.77. Let A be a square matrix with complex entries (i.e., A ∈ Cn×n). Then
there exists matrices P, Λ and N so that: (1) Λ is a diagonal matrix with the eigenvalues
of M appearing on the diagonal. (2) N is a nilpotent matrix and (3) P is a matrix whose
columns are composed of pseudo-eigenvectors and (4):

(A.40) A = P(Λ + N)P−1,

When A is diagonalizable, then N = 0 and P is a matrix whose columns are composed of
eigenvectors.
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APPENDIX B

Calculus and Analytical Geometry

Remark B.1. This appendix is about the Calculus and Analytical Geometry that is
used in Optimization, which is necessary for machine learning. The appendix, ideally, is self-
contained. Basic definitions like continuity and differentiability are assumed. The following
notation is worth mentioning: a function f that is differentiable k times and all those
derivatives are continuous is said to be Ck and we may write f ∈ Ck.

1. Some Geometry for Optimization

Remark B.2. We’ll denote vectors in Rn in boldface. So x ∈ Rn is an n-dimensional
vector and we have x = 〈x1, . . . , xn〉. We’ll always associate an n-dimensional vectors with
a n × 1 matrix (column vector) unless otherwise noted. Thus, when we write x ∈ Rn we
also mean x ∈ Rn×1 (the set of n× 1 matrices with entries from R). See Appendix A for a
complete review of vector operations, like dot products.

Definition B.3 (Graph). Let z : D ⊆ Rn → R be function, then the graph of z is the
set of n+ 1 tuples:

(B.1) {(x, z(x)) ∈ Rn+1|x ∈ D}

Remark B.4. When z : D ⊆ R→ R, the graph is precisely what you’d expect. It’s the
set of pairs (x, y) ∈ R2 so that y = z(x). This is the graph that you learned about back in
Algebra 1.

Definition B.5 (Level Set). Let z : Rn → R be a function and let c ∈ R. Then the
level set of value c for function z is the set:

(B.2) {x = (x1, . . . , xn) ∈ Rn|z(x) = c} ⊆ Rn

Example B.6. Consider the function z = x2 + y2. The level set of z at 4 is the set of
points (x, y) ∈ R2 such that:

(B.3) x2 + y2 = 4

You will recognize this as the equation for a circle with radius 4. We illustrate this in the
following two figures. Figure B.1 shows the level sets of z as they sit on the 3D plot of the
function, while Figure B.2 shows the level sets of z in R2. The plot in Figure B.2 is called a
contour plot.

Definition B.7. (Line) Let x0,h ∈ Rn. Then the line defined by vectors x0 and h is
the function l(t) = x0 + th. Clearly l : R → Rn. The vector h is called the direction of the
line.
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Level Set

Figure B.1. Plot with Level Sets Projected on the Graph of z. The level sets
existing in R2 while the graph of z existing R3. The level sets have been projected
onto their appropriate heights on the graph.

Level Set

Figure B.2. Contour Plot of z = x2 + y2. The circles in R2 are the level sets of
the function. The lighter the circle hue, the higher the value of c that defines the
level set.

Example B.8. Let x0 = (2, 1) and let h = (2, 2). Then the line defined by x0 and h
is shown in Figure B.3. The set of points on this line is the set L = {(x, y) ∈ R2 : x =
2 + 2t, y = 1 + 2t, t ∈ R}.

Figure B.3. A Line Function: The points in the graph shown in this figure are in
the set produced using the expression x0 + ht where x0 = (2, 1) and let h = (2, 2).
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Definition B.9 (Directional Derivative). Let z : Rn → R and let h ∈ Rn be a vector
(direction) in n-dimensional space. Then the directional derivative of z at point x0 ∈ Rn in
the direction of h is

(B.4)
d

dt
z(x0 + th)

∣∣∣∣
t=0

when this derivative exists.

Definition B.10 (Gradient). Let z : Rn → R be function and let x0 ∈ Rn. Then the
gradient of z at x0 is the vector in Rn given by:

(B.5) ∇z(x0) =

(
∂z

∂x1
(x0), . . . ,

∂z

∂xn
(x0)

)

Theorem B.11. If z : Rn → R is differentiable, then all directional derivatives exist.
Furthermore, the directional derivative of z at x0 in the direction of h is given by:

(B.6) ∇z(x0) · h
where · denotes the dot product of two vectors.

Proof. Let l(t) = x0 +ht. Then l(t) = (l1(t), . . . , ln(t)); that is, l(t) is a vector function
whose ith component is given by li(t) = x0i + hit.

Apply the chain rule:

(B.7)
dz(l(t))

dt
=
∂z

∂l1

dl1
dt

+ · · ·+ ∂z

∂ln

dln
dt

Thus:

(B.8)
d

dt
z(l(t)) = ∇z · dl

dt
Clearly dl/dt = h. We have l(0) = x0. Thus:

(B.9)
d

dt
z(x0 + th)

∣∣∣∣
t=0

= ∇z(x0) · h

�

Theorem B.12. Let z : Rn → R be differentiable, x0 ∈ Rn. If ∇z(x0) 6= 0, then ∇z(x0)
points in the direction in which z is increasing fastest.

Proof. Recall ∇z(x0) · h is the directional derivative of z in direction h at x0. Assume
that h is a unit vector. We know that:

(B.10) ∇z(x0) · h = ||∇z(x0)|| cos θ

(because we assumed h was a unit vector) where θ is the angle between the vectors ∇z(x0)
and h. The function cos θ is largest when θ = 0, that is when h and ∇z(x0) are parallel
vectors. (If ∇z(x0) = 0, then the directional derivative is zero in all directions.) �

Theorem B.13. Let z : Rn → R be differentiable and let x0 lie in the level set S defined
by z(x) = k for fixed k ∈ R. Then ∇z(x0) is normal to the set S in the sense that if h
is a tangent vector at t = 0 of a path c(t) contained entirely in S with c(0) = x0, then
∇z(x0) · h = 0.
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Remark B.14. Before giving the proof, we illustrate this theorem in Figure B.4. The
function is z(x, y) = x4 +y2 +2xy and x0 = (1, 1). At this point ∇z(x0) = (6, 4). We include
the tangent line to the level set at the point (1,1) to illustrate the normality of the gradient
to the level curve at the point.

Figure B.4. A Level Curve Plot with Gradient Vector: We’ve scaled the gradient
vector in this case to make the picture understandable. Note that the gradient
is perpendicular to the level set curve at the point (1, 1), where the gradient was
evaluated. You can also note that the gradient is pointing in the direction of steepest
ascent of z(x, y).

Proof. As stated, let c(t) be a curve in S. Then c : R → Rn and z(c(t)) = k for all
t ∈ R. Let h be the tangent vector to c at t = 0; that is:

(B.11)
dc(t)

dt

∣∣∣∣
t=0

= h

Differentiating z(c(t)) with respect to t using the chain rule and evaluating at t = 0 yields:

(B.12)
d

dt
z(c(t))

∣∣∣∣
t=0

= ∇z(c(0)) · h = ∇z(x0) · h = 0

Thus ∇z(x0) is perpendicular to h and thus normal to the set S as required. �

2. Concave/Convex Functions and Convex Sets

Definition B.15 (Convex Set). Let X ⊆ Rn. Then the set X is convex if and only if
for all pairs x1,x2 ∈ X we have λx1 + (1− λ)x2 ∈ X for all λ ∈ [0, 1].

Theorem B.16. The intersection of a finite number of convex sets in Rn is convex.

Proof. Let C1, . . . , Cn ⊆ Rn be a finite collection of convex sets. Let

(B.13) C =
n⋂

i=1

Ci

64



be the set formed from the intersection of these sets. Choose x1,x2 ∈ C and λ ∈ [0, 1].
Consider x = λx1 + (1 − λ)x2. We know that x1,x2 ∈ C1, . . . , Cn by definition of C. By
convexity, we know that x ∈ C1, . . . , Cn by convexity of each set. Therefore, x ∈ C. Thus
C is a convex set. �

Definition B.17 (Convex Function). A function f : Rn → R is a convex function if it
satisfies:

(B.14) f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

for all x1,x2 ∈ Rn and for all λ ∈ [0, 1]. When the inequality is strict, for λ ∈ (0, 1), the
function is a strictly convex function.

Example B.18. This definition is illustrated in Figure B.5. When f is a univariate

f(λx1 + (1− λ)x2)

f(x1) + (1− λ)f(x2)

Figure B.5. A convex function: A convex function satisfies the expression f(λx1+
(1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for all x1 and x2 and λ ∈ [0, 1].

function, this definition can be shown to be equivalent to the definition you learned in
Calculus I (Math 140) using first and second derivatives.

Definition B.19 (Concave Function). A function f : Rn → R is a concave function if
it satisfies:

(B.15) f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2)

for all x1,x2 ∈ Rn and for all λ ∈ [0, 1]. When the inequality is strict, for λ ∈ (0, 1), the
function is a strictly concave function.

To visualize this definition, simply flip Figure B.5 upside down. The following theorem
is a powerful tool that can be used to show sets are convex. It’s proof is outside the scope
of the class, but relatively easy.

Theorem B.20. Let f : Rn → R be a convex function. Then the set C = {x ∈ Rn :
f(x) ≤ c}, where c ∈ R, is a convex set. �

Exercise B.1. Prove the Theorem B.20.

Definition B.21 (Linear Function). A function z : Rn → R is linear if there are
constants c1, . . . , cn ∈ R so that:

(B.16) z(x1, . . . , xn) = c1x1 + · · ·+ cnxn
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Definition B.22 (Affine Function). A function z : Rn → R is affine if z(x) = l(x) + b
where l : Rn → R is a linear function and b ∈ R.

Exercise B.2. Prove that every affine function is both convex and concave.

Theorem B.23. Suppose that g1, . . . , gm : Rn → R are convex functions and h1, . . . , hl :
Rn → R are affine functions. Then the set:

(B.17) Ω = {x ∈ Rn : gi(x) ≤ 0, (i = 1, . . . ,m) and hj(x) = 0, (j = 1, . . . , l)}
is convex.

Exercise B.3. Prove Theorem B.23

3. Concave Functions and Differentiability

Remark B.24. The following theorem is interesting, but its proof is outside the scope of
the course. There is a proof for the one-dimensional case in Rudin [Rud76]. The proof for
the general case can be derived from this. The general proof can also be found in Appendix
B of [Ber99].

Theorem B.25. Every concave (convex) function is continuous on the interior of its
domain. �

Remark B.26. The proofs of the next two theorems are variations on those found in
[Ber99], with some details added for clarity.

Theorem B.27. A function f : Rn → R is concave if and only if for all x0,x ∈ Rn

(B.18) f(x) ≤ f(x0) +∇f(x0)
T (x− x0)

Proof. (⇐) Suppose Inequality B.18 holds. Let x1,x2 ∈ Rn and let λ ∈ (0, 1) and let
x0 = λx1 + (1− λ)x2. We may write:

f(x1) ≤ f(x0) +∇f(x0)
T (x1 − x0)

f(x2) ≤ f(x0) +∇f(x0)
T (x2 − x0)

Multiplying the first equation by λ and the second by 1− λ and adding yields:

λf(x1) + (1− λ)f(x2) ≤
λf(x0) + (1− λ)f(x0) + λ∇f(x0)

T (x1 − x0) + (1− λ)∇f(x0)
T (x2 − x0)

Simplifying the inequality, we have:

λf(x1) + (1− λ)f(x2) ≤ f(x0) +∇f(x0)
T (λ(x1 − x0) + (1− λ)(x2 − x0))

Which simplifies further to:

λf(x1) + (1− λ)f(x2) ≤ f(x0) +∇f(x0)
T (λx1 + (1− λ)x2 − λx0 − (1− λ)x0)

Or:

λf(x1) + (1− λ)f(x2) ≤ f(x0) +∇f(x0)
T (λx1 + (1− λ)x2 − x0) = f(x0)

because we assumed that:x0 = λx1 + (1− λ)x2.

66



(⇒) Now let x,x0 ∈ Rn and let λ ∈ (0, 1). Define h = x− x0. Let:

(B.19) g(λ) =
f(x0 + λh)− f(x0)

λ
Clearly, as λ approaches 0 from the right, g(α) approaches the directional derivative of f(x)
at x0 in the direction h.

Claim 1. The function g(λ) is monotonically decreasing.

Proof. Consider λ1, λ2 ∈ (0, 1) with λ1 < λ2 and let α = λ1/λ2. Define z = x0 + λ2h.
Note:

αz + (1−α)x0 = x0 +α(z−x0) = x0 +
λ1
λ2

(x0 + λ2(z− x0)− x0) = x0 +λ1(z−x0)

Thus:

(B.20) f(x0 + α(z− x0)) ≥ αf(z) + (1− α)f(x0) = f(x0) + αf(z)− αf(x0)

Simplifying, we obtain:

(B.21)
f(x0 + α(z− x0))− f(x0)

α
≥ f(z)− f(x0)

Since z = x0 + λ2h, we have:

(B.22)
f(x0 + α(z− x0))− f(x0)

α
≥ f(z)− f(x0)

Recall z = x0 + λ2h, thus z− x0 = λ2h. Thus the left hand side simplifies to:

(B.23)
f(x0 + (λ1/λ2)(λ2h))− f(x0)

α
=
f(x0 + λ1h)− f(x0)

λ1/λ2
≥ f(x0 + λ2h)− f(x0)

Lastly, dividing both sides by λ2 yields:

(B.24)
f(x0 + λ1h)− f(x0)

λ1
≥ f(x0 + λ2h)− f(x0)

λ2
Thus g(λ) is monotonically decreasing. This completes the proof of the claim. �

Since g(λ) is monotonically decreasing, we must have:

(B.25) lim
λ→0+

g(λ) ≥ g(1)

But this implies that:

(B.26) lim
λ→0+

f(x0 + λh)− f(x0)

λ
≥ f(x0+h)−f(x0) = f(x0+x−x0)−f(x0) = f(x)−f(x0)

since h = x− x0. Applying Theorem B.11, the inequality becomes:

(B.27) ∇f(x0)
Th ≥ f(x)− f(x0)

which can be rewritten as:

(B.28) f(x) ≤ f(x0) +∇f(x0)
Th = f(x0) +∇f(x0)

T (x− x0)

This completes the proof. �

Exercise B.4. Argue that for strictly concave functions, Inequality B.18 is strict and
the theorem still holds.
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Exercise B.5. State and prove a similar theorem for convex functions.

4. Hessian Matrices and Jacobian Operators

Definition B.28 (Hessian Matrix). Let f : Rn → R and assume f is twice differentiable.
The Hessian matrix is given by:

(B.29) H(x) = ∇2f(x) =




∂2f
∂x21

(x) ∂2f
∂x1∂x2

(x) · · · ∂2f
∂x1∂xn

(x)
∂2f

∂x2∂x1
(x) ∂2f

∂x22
(x) · · · ∂2f

∂x2∂xn
(x)

...
...

. . .
...

∂2f
∂xn∂x1

(x) ∂2f
∂xn∂x2

(x) · · · ∂2f
∂x2n

(x)




Exercise B.6. Prove that the Hessian matrix of a twice differentiable function f : Rn →
R is always symmetric.

Example B.29. The Hessian matrices of quadratic functions are particularly nice. Con-
sider the (convex) function f(x1, x2) = x2 + y2. It’s second-order partial derivatives are:

∂2f

∂x2
= 2

∂2f

∂x∂y
= 0

∂2f

∂y∂x
= 0

∂2f

∂y2
= 2

Therefore, the Hessian matrix is constant:

H(x) = ∇2f(x) =

[
2 0
0 2

]

Definition B.30 (Jacobian Operator). Let f : Rn → Rn be differentiable; i.e., f is a
vector-valued function that takes vectors in Rn. Let f(x) = 〈f1(x), . . . , fn(x)〉. The Jacobian
Operator D applied to the function f at x yields the matrix:

(B.30) Df(x) =




∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn




5. Mean Value and Taylor’s Theorem(s)

Lemma B.31 (Mean Value Theorem). Suppose that f : Rn → R is continuously differ-
entiable. (That is f ∈ C1.) Let x0,h ∈ Rn. Then there is a t ∈ (0, 1) such that:

(B.31) f(x0 + h)− f(x0) = ∇f(x0 + th)Th �

Remark B.32. This is the natural generalization of the one-variable mean value theorem
from calculus (Math 140 at Penn State). The expression x0 + th is simply the line segment
connecting x0 and x0 + h. If we imagine this being the “x-axis” and the corresponding slice
of f(·), then we can see that we’re just applying the single variable mean value theorem to
this slice.
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Figure B.6. An illustration of the mean value theorem in one variable. The multi-
variable mean value theorem is simply an application of the single variable mean
value theorem applied to a slice of a function.

Lemma B.33 (Second Order Mean Value Theorem). Suppose that f : Rn → R is twice
continuously differentiable. (That is f ∈ C2.) Let x0,h ∈ Rn. Then there is a t ∈ (0, 1)
such that:

(B.32) f(x0 + h)− f(x0) = ∇f(x0)
Th +

1

2
hT∇2f(x0 + th)h �

Lemma B.34 (Mean Value Theorem – Vector Valued Function). Let f : Rn → Rn be a
differentiable function and let x0,h ∈ Rn. Then:

(B.33) f(x0 + h)− f(x0) =

∫ 1

0

Df(x0 + th)hdt

where D is the Jacobian operator. �

Remark B.35. It should be noted that there is no exact analog of the mean value
theorem for vector valued functions. The previous lemma is the closes thing to such an
analog and it is generally referred to as such.

Corollary B.36. Let f : Rn → R with f ∈ C2 and let x0,h ∈ Rn. Then:

(B.34) ∇f(x0 + h)−∇f(x0) =

∫ 1

0

∇2f(x0 + th)hdt �

Remark B.37. The proof of this lemma rests on the single variable mean value theorem
and the mean value theorem for integrals in single variable calculus.

Lemma B.38 (Taylor’s Theorem – Second Order). Let f : Rn → R with f ∈ C2 and let
x0,h ∈ Rn. Then:

(B.35) f(x0 + h) = f(x0) +∇f(x0)
Th +R2(x0,h)
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where:

(B.36) R2(x0,h) =
1

2
hT∇2f(x0 + th)h

for some t ∈ (0, 1) or:

(B.37) R2(x0,h) =

∫ 1

0

(1− t)∇2f(x0 + th)hdt �

Remark B.39. Taylor’s Theorem in the general case considers functions in Ck. One can
convert between the two forms of the remainder using the mean value theorem, though this
is not immediately obvious without some concentration. Most of the proofs of the remainder
term use the mean value theorems. There is a very nice proof, very readable proof of Taylor’s
theorem in [MT03] (Chapter 3.2).

Remark B.40. From Taylor’s theorem, we obtain first and second order approximations
for functions. That is, the first order approximation for f(x0 + h) is:

(B.38) f(x0 + h) ∼ f(x0) +∇f(x0)
Th

while the second order approximation is:

(B.39) f(x0 + h) ∼ f(x0) +∇f(x0)
Th +

1

2
hT∇2f(x0)h

6. Hessian Definiteness and Concavity

Theorem B.41. Let f : Rn → R be a twice differentiable function. If f is concave, then
∇2f(x) is negative semidefinite.

Proof. Suppose that there is a point x0 ∈ Rn and h ∈ Rn such that hT∇2f(x)h > 0.
We may chose an h with a small norm so that for every t ∈ [0, 1], hT∇2f(x + th)h > 0 as
well. By Lemma B.38 for any x = x0 + h we have some t ∈ (0, 1) so that:

(B.40) f(x) = f(x0) +∇f(x0)
Th +

1

2
hT∇2f(x0 + th)h

But since hT∇2f(x + th)h > 0, we know that

(B.41) f(x) > f(x0) +∇f(x0)
Th

and thus by Theorem B.18, f(x) cannot be concave, a contradiction. This completes the
proof. �

Theorem B.42. Let f : Rn → R be a twice differentiable function. If ∇2f(x) is negative
semidefinite, then f(x) is concave.

Proof. From Lemma B.38, we know that for every x,x0 ∈ Rn there is a t ∈ (0, 1) such
that when h = x− x0:

(B.42) f(x) = f(x0) +∇f(x0)
Th +

1

2
hT∇2f(x0 + th)h

Since ∇2f(x) is negative semidefinite, it follows that: 1
2
hT∇2f(x0 + th)h ≤ 0 and thus:

(B.43) f(x) ≤ f(x0) +∇f(x0)
T (x− x0)
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Thus by Theorem B.18, f(x) is concave. �

Exercise B.7. Suppose that f : Rn → R with f(x) = xTHx, where x ∈ Rn and
H ∈ Rn×n. Show that f(x) is convex if and only if H is positive semidefinite.
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APPENDIX C

Optimization

1. Optimization Problems

Definition C.1. Let z : D ⊆ Rn → R. The point x∗ is a global maximum for z if for all
x ∈ D, z(x∗) ≥ z(x). A point x∗ ∈ D is a local maximum for z if there is a neighborhood
S ⊆ D of x∗ (i.e., x∗ ∈ S) so that for all x ∈ S, z(x∗) ≥ z(x). When the foregoing
inequalities are strict, x∗ is called a strict global or local maximum.

Remark C.2. Clearly Definition C.1 is valid only for domains and functions where the
concept of a neighborhood is defined and understood. In general, S must be a topologically
connected set (as it is in a neighborhood in Rn) in order for this definition to be used or at
least we must be able to define the concept of neighborhood on the set.

Definition C.3 (Maximization Problem). Let z : D ⊆ Rn → R; for i = 1, . . . ,m,
gi : D ⊆ Rn → R; and for j = 1, . . . , l hj : D ⊆ Rn → R be functions. Then the gen-
eral maximization problem with objective function z(x1, . . . , xn) and inequality constraints
gi(x1, . . . , xn) ≤ bi (i = 1, . . . ,m) and equality constraints hj(x1, . . . , xn) = rj is written as:

(C.1)





max z(x1, . . . , xn)

s.t. g1(x1, . . . , xn) ≤ 0

...

gm(x1, . . . , xn) ≤ 0

h1(x1, . . . , xn) = 0

...

hl(x1, . . . , xn) = 0

Remark C.4. Expression C.1 is also called a mathematical programming problem. Nat-
urally when constraints are involved we define the global and local maxima for the objective
function z(x1, . . . , xn) in terms of the feasible region instead of the entire domain of z, since
we are only concerned with values of x1, . . . , xn that satisfy our constraints.

Remark C.5. When there are no constraints (or the only constraint is that (x1, . . . , xn) ∈
Rn), the problem is called an unconstrained maximization problem.

Example C.6. Let’s recall a simple optimization problem from differential calculus:
Suppose I wish to build a pen to keep some goats. I have 100 meters of fencing and I wish to
build the pen in a rectangle with the largest possible area. How long should the sides of the
rectangle be? In this case, making the pen better means making it have the largest possible
area.
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We can write this problem as:

(C.2)





max A(x, y) = xy

s.t. 2x+ 2y − 100 = 0

x ≥ 0

y ≥ 0

2. Unconstrained Optimization

Remark C.7. If there are no constraints in an optimization problem, then the problem
is called an unconstrained optimization problem. The following theorems relate optimal
solutions to unconstrained problems and convex/concave functions.

2.1. Concavity and Optimization.

Theorem C.8. Suppose that f : Rn → R is concave and that x∗ is a local maximizer of
f . Then x∗ is a global maximizer of f .

Proof. Suppose x+ ∈ Rn has the property that f(x+) > f(x∗). For any λ ∈ (0, 1) we
know that:

f(λx∗ + (1− λ)x+) ≥ λf(x∗) + (1− λ)f(x+)

Since x∗ is a local maximum there is an ε > 0 so that for all x ∈ Bε(x
∗), f(x∗) ≥ f(x). Choose

λ so that λx∗ + (1− λ)x+ is in Bε(x
∗) and let x = λx∗ + (1− λ)x+. Let r = f(x+)− f(x∗).

By assumption r > 0. Then we have:

f(x) ≥ λf(x∗) + (1− λ)(f(x∗) + r)

But this implies that:

f(x) ≥ f(x∗) + (1− λ)r

But x ∈ Bε(x
∗) by choice of λ, which contradicts our assumption that x∗ is a local maximum.

Thus, x∗ must be a global maximum. �

Theorem C.9. Suppose that f : Rn → R is strictly concave and that x∗ is a global
maximizer of f . Then x∗ is the unique global maximizer of f .

Exercise C.1. Prove Theorem C.9. [Hint: Proceed by contradiction as in the proof of
Theorem C.8.]

2.2. Necessary and Sufficient Conditions for Optimality.

Theorem C.10. Suppose that f : D ⊆ Rn → R is differentiable in an open neighborhood
of a local maximizer x∗ ∈ D, then ∇f(x∗) = 0.

Proof. By way of contradiction, suppose that ∇f(x∗) 6= 0. The differentiability of f
implies that ∇f(x) is continuous in the open neighborhood of x∗. Thus, for all ε, there is a
δ so that if ||x∗−x|| < δ, then ||∇f(x∗)−∇f(x)|| < ε. Let h = ∇f(x∗). Trivially, hTh > 0
and (by continuity), for some t ∈ (0, 1) (perhaps very small), we know that:

(C.3) hT∇f(x∗ + th) > 0
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Let p = th. From the mean value theorem, we know there is an s ∈ (0, 1) such that:

f(x0 + p)− f(x0) = ∇f(x0 + sp)Tp > 0

by our previous argument. Thus, x∗ is not a (local) maximum. �

Exercise C.2. In the last step of the previous proof, we assert the existence of a t ∈ (0, 1)
so that Equation C.3 holds. Explicitly prove such a t must exist. [Hint: Use a component
by component argument with the continuity of ∇f .]

Exercise C.3. Construct an analagous proof for the statement: Suppose that f : D ⊆
Rn → R is differentiable in an open neighborhood of a local minimizer x∗ ∈ D, then ∇f(x∗) =
0.

Exercise C.4. Construct an alternate proof of Theorem C.10 by studying the single-
variable function g(t) = f(x + th). You may use the fact from Math 140 that g′(t∗) = 0 is
a necessary condition for a local maxima in the one dimensional case. (Extra credit if you
prove that fact as well.)

Theorem C.11. Suppose that f : D ⊆ Rn → R is twice differentiable in an open
neighborhood of a local maximizer x∗ ∈ D, then ∇f(x∗) = 0 and H(x∗) = ∇2f(x∗) is
negative-semidefinite.

Proof. From Theorem C.10 ∇f(x∗) = 0. Our assumption that f is twice differentiable
implies that H(x) is continuous and therefore for all ε there exists a δ so that ||x∗ − x|| < δ
then |Hij(x

∗) − Hij(x)| < ε for all i = 1, . . . , n and j = 1, . . . n. We are just asserting
pointwise continuity for the elements of the matrix H(x).

Suppose we may choose a vector h so that hTH(x∗)h > 0 and thus H(x∗) is not negative
semidefinite. Then by our continuity argument, we can choose an h with norm small enough,
so we can assure that hTH(x∗ + h)h > 0. From Lemma B.38 we have for some t ∈ (0, 1):

(C.4) f(x∗ + h)− f(x∗) =
1

2
hTH(x∗ + th)h

since ∇f(x∗) = 0. Then it follows that f(x0 + h) − f(x0) > 0 and thus we have found a
direction in which the value of f increases and x∗ cannot be a local maximum. �

Theorem C.12. Suppose that f : D ⊂ Rn → R is twice differentiable. If ∇f(x∗) = 0
and H(x∗) = ∇2f(x∗) is negative definite, then x∗ is a local maximum.

Proof. Applying Lemma B.38, we know for any h ∈ Rn, there is a t ∈ (0, 1) so that:

(C.5) f(x∗ + h) = f(x∗) +
1

2
hT∇2f(x∗ + th)h

By the same argument as in the proof of Theorem C.11, we know that there is an ε > 0 so
that if |h| < ε then for all t ∈ (0, 1), ∇2f(x∗ + th) is negative definite if ∇2f(x∗) is negative
definite. Let Bε(x

∗) the open ball centered at x∗ with radius ε.
Thus we can see that for all x ∈ Bε(x

∗):

1

2
hT∇2f(x)h < 0

where x = x∗ + th for some appropriately chosen h and t ∈ (0, 1). Equation C.5 combined
with the previous observation shows that for all x ∈ Bε(x

∗), f(x) < f(x∗) and thus x∗ is a
local maximum. This completes the proof. �
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Exercise C.5. Theorem C.12 provides sufficient conditions for x∗ to be a strict local
minimum. Give an example showing that the conditions are not necessary.

3. Gradient Ascent and Descent

Remark C.13. In Theorem B.12, we proved that the gradient points in the direction
of fastest increase for a function f : Rn → R. If we are trying to identify a point x∗ ∈ Rn

that is a local or global maximum for f , then a reasonable approach is to walk along some
direction p so that ∇f(x)Tp > 0.

Definition C.14. Let f : Rn → R be a continuous and differentiable function and let
p ∈ Rn. If ∇f(x)Tp > 0, then p is called an ascent direction.

Remark C.15. Care must be taken, however, since the ∇f(x) represents only the direc-
tion of fastest increase at x. As a result, we only want to take a small step in the direction
of p, then re-evaluate the gradient and continue until a stopping condition is reached.

Basic Ascent Algorithm
Input: f : Rn → R a function to maximize, x0 ∈ Rn, a starting position
Initialize: k = 0

(1) do
(2) Choose pk ∈ Rn×1 and δk ∈ R+ so that ∇f(x)Tpk > 0.
(3) xk+1 := xk + δkpk
(4) while some stopping criteria are not met.

Output: xk+1

Algorithm 2. Basic Ascent Algorithm

Remark C.16. There are some obvious ambiguities with Algorithm 2. We have neither
specified how to choose pk nor δk in Line (2) of Algorithm 2, nor have we defined specific
stopping criteria for the while loop. More importantly, we’d like to prove that there is a way
of choosing pk so that when we use this method at Line (2), the algorithm both converges i.e.,
at some point we exit the loop in Lines (1)-(4) and when we exit, we have identified a local
maximum, or at least a point that satisfies the necessary conditions for a local maximum
(see Theorem C.10).

Remark C.17. For the remainder of these notes, we will assume that:

pk = B−1k ∇f(xk)

where Bk ∈ Rn×n is some appropriately chosen symmetric and non-singular matrix.

Definition C.18 (Gradient Ascent). When Bk = In, for some n, then Algorithm 2 is
called Gradient Ascent. When Bk = −In, then Algorithm 2 is called Gradient Descent (and
is used to find a minimum).

Remark C.19. As we’ve noted, we cannot simply choose δk arbitrarily in Line (2) of
Algorithm 2, since ∇f(x) is only the direction of greatest ascent at x and thus, pk =
B−1k ∇f(xk) is only a ascent direction in a neighborhood about x. If we define:

(C.6) φ(δk) = f(xk + δkpk)
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then our problem is to solve:

(C.7)

{
max φ(δk)

s.t. δk ≥ 0

This is an optimization problem in a single variable, δk and assuming its solution is δ∗k and we
compute xk+1 := xk + δ∗kpk, then we will assuredly have increased (or at least not decreased)
the value of f(xk+1) compared to f(xk). This problem is called line search and is discussed
in [Ber99] and [Gri12a]. It is outside the scope of this course.

Remark C.20. It’s not enough to just increase the value of f(xk) at each iteration k,
we must increase it by a sufficient amount. One of the easiest, though not necessarily the
most computationally efficient, ways to make sure this happens is to ensure that we identify
a solution to the problem in Expression C.7. In the following sections, we discuss several
methods for determining a solution.

4. Convergence of Gradient Ascent

Definition C.21 (Armijo Rule). Given a function f : Rn → R and an ascent direction
pk with constant σ1 ∈ (0, 1), the Armijo rule is satisfied if:

(C.8) f(xk + δkpk)− f(xk) ≥ σ1δk∇f(xk)
Tpk

Remark C.22. Recall, φ(δk) = f(xk + δkpk) consequently, Equation C.8 simply states
that:

(C.9) φ(δk)− φ(0) ≥ σ1δk∇f(xk)
Tpk = σ1δkφ

′(0)

which simply means there is a sufficient increase in the value of the function.

Definition C.23 (Gradient Related). Let f : Rn → R be a continuously differentiable
function. A sequence of ascent directions {pk} is gradient related if for any subsequence
K = {k1, k2, . . . } of {xk} that converges to a non-stationary point of f the corresponding
subsequence {pk}k∈K is bounded and has the property that:

(C.10) lim sup
k→∞,k∈K

∇f(xk)
Tpk > 0

Remark C.24. We state the following theorem without proof. The proof can be found
in [Ber99] or in [Gri12a].

Theorem C.25. Assume that δk is chosen to ensure the Armijo rule holds at each itera-
tion and the ascent directions pk are chosen so they are gradient related. Then if Algorithm
2 converges, it converges to a point x∗ so that ∇f(x∗) = 0 and the stopping criteria:

(C.11) ||∇f(xk)|| < ε

for some small ε > 0 may be used.

Corollary C.26. Assume that δk is chosen by maximizing φ(δk) at each iteration and
the ascent directions pk are chosen so they are gradient related. Then Algorithm 2 converges
to a point x∗ so that ∇f(x∗) = 0.
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Corollary C.27. Suppose that pk = B−1k ∇f(xk) in each iteration of Algorithm 2 and
every matrix Bk is symmetric, positive definite. Then, Algorithm 2 converges to a stationary
point of f .

Example C.28. Consider the function F (x, y) = −2x2 − 10 y2. If we initialize our
gradient ascent at x = 15, y = 5 and set ε = 0.001, then we obtain the following output,
which converges near the optimal point x∗ = 0, y∗ = 0. The zig-zagging motion is typical
of the gradient ascent algorithm in cases where the largest and smallest eigenvalues for the
matrix Q (in a pure quadratic function) are very different (see Figure C.1). In this case:

Q =

[
−2 0
0 −10

]

Here:

F (x, y) =
[
x y

] [−2 0
0 −10

] [
x
y

]

Figure C.1. Gradient ascent is illustrated on the function F (x, y) = −2x2− 10 y2

starting at x = 15, y = 5. The zig-zagging motion is typical of the gradient ascent
algorithm in certain cases.

5. Karush-Kuhn-Tucker Conditions

Remark C.29. We now turn our attention to constrained optimization. It turns out
there is a very powerful theorem that discusses when a point x∗ ∈ Rn will maximize a
function assuming some constraints. The following is the Karush-Kuhn-Tucker theorem,
which we will state, but not prove.

Theorem C.30. Let z : Rn → R be a differentiable objective function, gi : Rn → R
be differentiable constraint functions for i = 1, . . . ,m and hj : Rn → R be differentiable
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constraint functions for j = 1, . . . , l. If x∗ ∈ Rn is an optimal point satisfying an appropriate
regularity condition for the following optimization problem:

P





max z(x1, . . . , xn)

s.t. g1(x1, . . . , xn) ≤ 0

...

gm(x1, . . . , xn) ≤ 0

h1(x1, . . . , xn) = 0

...

hl(x1, . . . , xn) = 0

then there exists λ1, . . . , λm ∈ R and µ1, . . . µl ∈ R so that:

Primal Feasibility :

{
gi(x

∗) ≤ 0 for i = 1, . . . ,m

hj(x
∗) = 0 for j = 1, . . . , l

Dual Feasibility :





∇z(x∗)−
m∑

i=1

λi∇gi(x∗)−
l∑

j=1

µj∇hj(x∗) = 0

λi ≥ 0 for i = 1, . . . ,m

µj ∈ R for j = 1, . . . , l

Complementary Slackness :
{
λigi(x

∗) = 0 for i = 1, . . . ,m

Theorem C.31. Let z : Rn → R be a differentiable concave function, gi : Rn → R be
differentiable convex functions for i = 1, . . . ,m and hj : Rn → R be affine functions for
j = 1, . . . , l. Suppose there are λ1, . . . , λm ∈ R and µ1, . . . µl ∈ R so that:

Primal Feasibility :

{
gi(x

∗) ≤ 0 for i = 1, . . . ,m

hj(x
∗) = 0 for j = 1, . . . , l

Dual Feasibility :





∇z(x∗)−
m∑

i=1

λi∇gi(x∗)−
l∑

j=1

µj∇hj(x∗) = 0

λi ≥ 0 for i = 1, . . . ,m

µj ∈ R for j = 1, . . . , l

Complementary Slackness :
{
λigi(x

∗) = 0 for i = 1, . . . ,m
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then x∗ is a global maximizer for

P





max z(x1, . . . , xn)

s.t. g1(x1, . . . , xn) ≤ 0

...

gm(x1, . . . , xn) ≤ 0

h1(x1, . . . , xn) = 0

...

hl(x1, . . . , xn) = 0

Remark C.32. The values λ1, . . . , λm and µ1, . . . , µl are sometimes called Lagrange mul-
tipliers and sometimes called dual variables. Primal Feasibility, Dual Feasibility and Com-
plementary Slackness are called the Karush-Kuhn-Tucker (KKT) conditions.

Remark C.33. The expression:

∇z(x∗)−
m∑

i=1

λi∇gi(x∗)−
l∑

j=1

µj∇hj(x∗) = 0

is sometimes called the Kuhn-Tucker equality.

Remark C.34. The regularity condition mentioned in Theorem C.30 is sometimes called
a constraint qualification. A common one is that the gradients of the binding constraints are
all linearly independent at x∗. There are many variations of constraint qualifications. We
will not deal with these in these notes. Suffice it to say, all the problems we consider will
automatically satisfy a constraint qualification, meaning the KKT theorem holds.

Remark C.35. This theorem holds as a necessary condition even if z(x) is not concave
or the functions gi(x) (i = 1, . . . ,m) are not convex or the functions hj(x) (j = 1, . . . , l) are
not linear. In this case though, the fact that a triple: (x,λ,µ) ∈ Rn × Rm × Rl does not
ensure that this is an optimal solution for Problem P .

Remark C.36. Looking more closely at the dual feasibility conditions, we see something
interesting. Suppose that there are no equality constraints (i.e., not constraints of the form
hj(x) = 0). Then the statements:

∇z(x∗)−
m∑

i=1

λi∇gi(x∗)−
l∑

j=1

µj∇hj(x∗) = 0

λi ≥ 0 for i = 1, . . . ,m

imply that:

∇z(x∗) =
m∑

i=1

λi∇gi(x∗)

λi ≥ 0 for i = 1, . . . ,m

Specifically, this says that the gradient of z at x∗ is a positive combination of the gradients
of the constraints at x∗. But more importantly, since we also have complementary slackness,
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we know that if gi(x
∗) 6= 0, then λi = 0 because λigi(x

∗) = 0 for i = 1, . . . ,m. Thus, what
dual feasibility is really saying is that gradient of z at x∗ is a positive combination of the
gradients of the binding constraints at x∗. Remember, a constraint is binding if gi(x

∗) = 0,
in which case λi ≥ 0.

Remark C.37. Continuing from the previous remark, in the general case when we have
some equality constraints, then dual feasibility says:

∇z(x∗) =
m∑

i=1

λi∇gi(x∗) +
l∑

j=1

µj∇hj(x∗)

λi ≥ 0 for i = 1, . . . ,m

µj ∈ R for j = 1, . . . , l

Since equality constraints are always binding this says that the gradient of z at x∗ is a linear
combination of the gradients of the binding constraints at x∗.

Example C.38. We’ll finish the example we started with Example C.6. Let’s rephrase
this optimization problem in the form we saw in the theorem: We’ll have:

(C.12)





max A(x, y) = xy

s.t. 2x+ 2y − 100 = 0

− x ≤ 0

− y ≤ 0

Note that the greater-than inequalities x ≥ 0 and y ≥ 0 in Expression C.2 have been changes
to less-than inequalities by multiplying by −1. The constraints 2x + 2y = 100 has simply
been transformed to 2x + 2y − 100 = 0. Thus, if h(x, y) = 2x + 2y − 100, we can see
h(x, y) = 0 is our constraint. We can let g1(x, y) = −x and g2(x, y) = −y. Then we have
g1(x, y) ≤ 0 and g2(x, y) ≤ 0 as our inequality constraints. We already know that x = y = 25
is our optimal solution. Thus we know that there must be Lagrange multipliers µ, λ1 and
λ2 corresponding to the constraints h(x, y) =, g1(x, y) ≤ 0 and g2(x, y) ≤ 0 that satisfy the
KKT conditions.

Let’s investigate the three components of the KKT conditions.

Primal Feasibility: If x = y = 25, then h(x, y) = 2x + 2y − 100 and clearly
h(25, 25) = 0. Further g1(x, y) = −x and g2(x, y) = −y then g1(25, 25) = −25 ≤ 0
and g2(25, 25) = −25 ≤ 0. So primal feasibility is satisfied.

Complementary Slackness: We know that g1(x, y) = g2(x, y) = −25. Since neither
of these functions is 0, we know that λ1 = λ2 = 0. This will force complementary
slackness, namely:

λ1g1(25, 25) = 0

λ2g2(25, 25) = 0

Dual Feasibility: We already know that λ1 = λ2 = 0. That means we need to find
µ ∈ R so that:

∇A(25, 25)− µ∇h(25, 25) = 0
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We know that:

∇A(x, y) = ∇xy =

[
y
x

]

∇h(x, y) = ∇(2x+ 2y − 100) =

[
2
2

]

Evaluating ∇A(25, 25) yields:
[
25
25

]
− µ

[
2
2

]
=

[
0
0

]

Thus setting µ = 25/2 will accomplish our goal.

6. Lagrangian and Wolfe Dual

Remark C.39. For this section only, we will consider the general minimization problem:

(C.13)





min z(x1, . . . , xn)

s.t. g1(x1, . . . , xn) ≤ 0

...

gm(x1, . . . , xn) ≤ 0

h1(x1, . . . , xn) = 0

...

hl(x1, . . . , xn) = 0

In Chapter 2 we require the minimization form, and thus we present results on this. All
results on minimization can be converted to results for a maximization problem by using
negative signs appropriately in the objective.

Definition C.40 (Lagrangian). Given the general minimization problem of Definition
??, the Lagrangian is the function:

(C.14) L(x,λ,µ) = z(x) +
m∑

i=1

λigi(x) +
l∑

j=1

µjhj(x)

Definition C.41 (Lagrangian Dual). Given a Lagrangian, the Lagrangian Dual function
function is:

(C.15) L(λ,µ) = inf
x∈Rn
L(x,λ,µ)

Remark C.42. The Lagrangian function and dual for the general maximization problem
is:

L(x,λ,µ) = z(x)−
m∑

i=1

λigi(x)−
l∑

j=1

µjhj(x)
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while the Lagrangian Dual function is:

L(λ,µ) = sup
x∈Rn

L(x,λ,µ)

Notice the Kuhn-Tucker equality can be derived by taking the gradient of L(x,λ,µ) with
respect to x.

Definition C.43 (Lagrangian Dual Problem). Given a Lagrangian dual function, the
Lagrangian Dual Problem is:

(C.16)





max L(λ,µ)

s.t. λ ≥ 0

µ ∈ Rl

Theorem C.44 (Weak Duality). The objective function of the Lagrangian Dual Problem
at optimality is always a lower bound on the objective function of the original problem at
optimality. �

Remark C.45. When the objective function of the Lagrangian Dual Problem at opti-
mality is lower than the objective function of the original problem at optimality, we have a
duality gap. Otherwise, the two values must be identical.

Remark C.46. Suppose z, g1, . . . , gm are convex and differentiable and there are no
inequality constraints. Then: L(x,λ) is convex and its infimum must occur when

∇xL(x,λ) = 0

by Theorems C.8 and C.10. Thus, the Lagrangian dual problem is equivalent to the con-
strained optimization problem:

(C.17)





max L(x,λ)

s.t. ∇xL(x,λ) = 0

λ ≥ 0

This is called the Wolfe Dual.

Example C.47. Consider the optimization problem:

min
1

2
x2 +

1

2
y2

x+ y ≥ 4

The constraint can be re-written as −x− y + 4 ≤ 0 and the Lagrangian is then:

L(x, y, λ) =
1

2
x2 +

1

2
y2 + λ(−x− y + 4)

The Lagrangian dual function is then:

L(λ) = inf
x,y

1

2
x2 +

1

2
y2 + λ(−x− y + 4)
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The resulting Lagrangian dual problem is:

max inf
x,y

1

2
x2 +

1

2
y2 + λ(−x− y + 4)

s.t. λ ≥ 0

Notice no matter what value of λ we choose, the value L(λ) can always be computed by
simple calculus, i.e. solving for (x, y) when ∇x,yL(x, y, λ) = 0. Or specifically:

x− λ = 0

y − λ = 0

Thus, the Wolfe Dual is:

max
1

2
x2 +

1

2
y2 + λ(−x− y + 4)

s.t. x− λ = 0

y − λ = 0

λ ≥ 0

It is worth noting this problem is not convex as it is stated. However, we can simplify it
further. Substitute x = y = λ into the objective to obtain:

max λ2 + λ(−2λ+ 4) = −λ2 + 4λ

s.t. λ ≥ 0

This optimization problem is convex (the objective function 4− λ2 is concave). Clearly the
only solution to this is λ∗ = x∗ = y∗ = 2, as expected.

7. Quadratic Programs

Definition C.48 (Quadratic Programming Problem). Let

(1) Q ∈ Rn×n,
(2) A ∈ Rm×n,
(3) H ∈ Rl×n,
(4) b ∈ Rm×1,
(5) r ∈ Rl×1 and
(6) c ∈ Rn×1.

Then a quadratic (maximization) programming problem is:

(C.18) QP





max
1

2
xTQx + cTx

s.t. Ax ≤ b

Hx = r
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Example C.49. Example C.6 is an instance of a quadratic programming problem. Recall
we had: 




max A(x, y) = xy

s.t. 2x+ 2y = 100

x ≥ 0

y ≥ 0

We can write this as:



max
1

2

[
x y

] [0 2
2 0

] [
x
y

]

s.t.
[
2 2

] [x
y

]
= 100

[
x
y

]
≥
[
0
0

]

Obviously, we can put this problem in precisely the format given in Expression C.18, if so
desired.

Remark C.50. There are several specialized algorithms for solving quadratic programs
and they emerge naturally in many areas of machine learning (and statistics).

Exercise C.6. Suppose Q is positive-definite. Show that the Wolfe Dual of the quadratic
programming problem:

QP





min
1

2
xTQx

s.t. Ax ≤ b

is itself a quadratic programming problem that can be expressed entirely in the dual variables.
[Hint: Let z(x) = 1

2
xTQx. Then∇z = Qx. The constraints can be written as a vector valued

function g : Rn → Rm and g(x) = Ax− b. Let λ be the vector of dual variables. Then the
Lagrangian function is:

L(x,λ) = 1
2
xTQx + λT (Ax− b)

The gradient of the Laplacian is then: Qx + ATλ – the transpose is taken in order to
make the dimension work in column vectors. Now, just as we did in Example C.47, write:
x = −Q−1ATλ. Substitute this back into the objective of the Lagrangian dual and evaluate.]
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