Solving Traveling Salesman Problems by D-Wave Hybrid

Richard H. Warren Lockheed Martin Corporation (Retired) King of Prussia, PA 19406, USA rhw3@psu.edu ORCID 0000-0002-8275-1486

Abstract—We report outstanding results for solving four asymmetric 10-city traveling salesman problems by the D-Wave quantum/classical software Kerberos. The problems are too large to embed on the D-Wave quantum computer. Our test made four executions for each problem. Each of the Kerberos solutions is an optimal tour. This means 100% of the 16 solutions are shortest length loops through all cities.

Keywords—traveling salesman problem, D-Wave hybrid, quantum/classical solver, Kerberos, optimal tour

1. Introduction

This paper is a continuation of the study [1-3] of solving small traveling salesman problems (TSPs) on a D-Wave quantum computer. Small TSPs are those on the border for embedding in the current D-Wave hardware. For the current quantum processor DW_2000Q_5 that has 2030 qubits, our experience is that 6-city TSPs can be embedded and 10-city TSPs cannot be embedded. Embedding problem variables to qubits can be very difficult due to lack of connections between qubits.

Given n cities and the distance between city i and city j, the symmetric TSP asks for a shortest route through the n cities visiting each city once and returning to the originating city. When the distance from city i to city j is allowed to be different than the distance from city j to city i, it is called an asymmetric TSP (ATSP). The adaption of the TSP to a quantum annealer in [4, 5] is for the ATSP. This is natural and prevents subloops through proper subsets of the ncities. Therefore, we advocate ATSPs in this paper. A tour for the salesman is one loop through all the cities, i.e., a cyclic permutation of the cities. The length of a tour is the distance traveled through the loop. An optimal tour is a shortest tour.

2. Related Work

In [1] we show the expected quantum output for 5,000 ATSPs on 6, 8 and 10-cities whose distances between cities are random integers in the interval [1, 21]. The results were obtained classically. In [2] we study three software programs that approximately solve small, symmetric TSPs. Paper [3] is a model for

the current paper, since it examines four, 6-city ATSPs by making four quantum executions of each. The results in the current paper were obtained in a hybrid manner using both classical and quantum means.

Quantum annealing is a new method of computing that has the potential to solve optimization problems faster than classical means. The theory for quantum annealing implies that the qubits will achieve an optimal state of low energy when super cooled. This is represented by (1) where an initial Hamiltonian H_o evolves to its low energy state in a final Hamiltonian H_n according to

$$H(t) = \left(1 - s\left(\frac{t}{T}\right)\right) H_o + s\left(\frac{t}{T}\right) H_p \text{ for } 0 \le t \le T \quad (1)$$

as $s(\tau)$ increases from s(0) = 0 to s(1) = 1 and if H_o and H_p do not commute. In theory, T is the time imposed by the Schrödinger equation for the initial Hamiltonian to evolve to its low energy state. On a D-Wave computer, time T is in microseconds. The Hamiltonian H_o is established by D-Wave for all problems. The Hamiltonian H_p represents the combinatorial problem to be solved and is an input. Besides H_p , other inputs include the number of samples of the problem, the time T within a given range, and scaling factors. Essentially, a result H(t) is a sample from a Boltzmann distribution. A physical implementation of (1) does not strictly meet the conditions for quantum annealing. In addition, values loaded by the user may differ slightly from the machine interpretation of the numbers. These difficulties are partially overcome by taking multiple samples and choosing a valid solution that has minimum energy.

3. Results for Four TSPs

Kerberos is a hybrid, asynchronous sampler [6] that decomposes problems that are too large to embed on a D-Wave processor. Kerberos finds best samples by running in parallel tabu search, simulated annealing, and D-Wave quantum subproblem sampling on problem variables that have high-energy impact. After generating a QUBO Q for the TSP

according to [4, 5], we implemented Kerberos with the commands: import hybrid sampler = hybrid.KerberosSampler() result = sampler.sample_qubo(Q) print(result.first.sample)

The output from Kerberos is one sample that has lowest energy. The output from D-Wave is all samples, their energy, and their chain break fraction. We used the default settings for all Kerberos parameters. The tunable parameter gamma for controlling constraints was set to 500 for all executions.

Table 1 lists characteristics of the four TSPs that we originated, studied and solved. Table 2 shows optimal tours for all results.

TSP Reference	Number	Length	Length of	Number of	Distance	Distance Matrix	Optimal
in myScripts	01 Ontimal	01 Ontimal	Shortest	Shortest	from City		Tour(s)
	Optimal	Optimal	Non- Ontimal	Non-	A to City		
	Tours	Tour	Tour	Tours	Б		
One10City Ev1	24	225	280	10015	5 or 60	60 60 60 60 5 60 60 60 60	(1610874
One10City Ex1	24	525	380	400	5 01 00		(1010874)
One focity EXTI						60 = 60 = 60 = 60 = 60 = 60 = 60 = 60 =	5295)
						60 5 60 60 60 60 60 60 60	
						60 60 60 60 60 60 60 60 60 60	
						60 60 60 60 5 60 60 60 60	
						60 60 60 60 60 60 60 60 60 60 60	
One10City Ex2	6	270	325	108	5 or 60	60 60 60 60 60 60 60 60 60 60	(1643295
One10City Ex2	0	270	525	108	5 01 00		(1043293)
OlieToCity Ex22						60 5 60 60 60 60 60 60 60 60	7810)
						60 60 5 60 60 60 60 60 60 60	
						60 60 5 60 60 60 60 60 60	
						60 60 60 60 60 5 00 00 00	
						60 60 60 60 60 60 60 60 60 60	
						60 60 60 60 5 60 60 60 60	
						60 60 60 60 60 60 60 60 60 60	
One10City Ex4	2	160	215	14	5 or 60	60 60 60 60 60 60 60 60 60 60	The optimal
One10City Ex44	-	100	215		5 61 66	60 60 60 60 60 60 60 5 60	tours are (1.6
Onerocity Extra						60 5 60 60 60 60 60 60 60 60	4329578
						60 60 5 60 60 60 60 60 60 60	10) and (1.4)
						60 60 60 60 60 5 60 60 60	6329578
						60 60 5 60 60 60 60 60 60	10)
						60 60 60 60 60 60 5 60 60	
						60 60 60 60 60 60 60 60 5	
						60 60 60 60 5 60 60 60 60	
						5 60 60 60 60 60 60 60 60	
One10City Ex3	1	105	215	36	5 or 60	60 60 60 60 5 60 60 60 60	The optimal
One10City Ex33			-			60 60 60 60 60 60 60 5 60	tour is (1 6 4
,						60 5 60 60 60 60 60 60 60 60	329578
						60 60 5 60 60 60 60 60 60 60	10)
						60 60 60 60 60 5 60 60 60	<i>,</i>
						60 60 60 60 60 60 60 60 60	
						60 60 60 60 60 60 5 60 60	
						60 60 60 60 60 60 60 60 5	
						60 60 60 60 5 60 60 60 60	
						5 60 60 60 60 60 60 60 60	

TABLE 1. FOUR ASYMMETRIC 10-CITY TSPs

TSP Reference in myScripts	Number of Executions	Number of Optimal Tours Found	Number of Distinct Tours Found	Percent of Output that is Optimal
One10City Ex1	4	4 (1 per execution)	4	100
One10City Ex11				
One10City Ex2	4	4 (1 per execution)	2	100
One10City Ex22				
One10City Ex4	4	4 (1 per execution)	2	100
One10City Ex44		-		
One10City Ex3	4	4 (1 per execution)	1	100
One10City Ex33				

TABLE 2. KERBEROS RESULTS

4. Conclusion

The solution quality recorded in this work contributes evidence that the D-Wave hybrid heuristic Kerberos is a valid approach to accurately solve some computational problems on the border for embedding on the D-Wave quantum processor DW_2000Q_5.

5. Next Steps

We recommend that the 14-city TSP Burma and the 16-city TSP Ulysses in the TSP library [7] be solved with Kerberos using the commands and settings in Section 3. They are the smallest, symmetric TSPs in the TSP Library and have been studied extensively. Also, asymmetric TSPs [8] from the TSP Library should be included.

Ten asymmetric TSPs that are reported in [9, Table 2] will be a challenge for the next generation D-Wave processor and hybrid solvers.

Acknowledgements

David Johnson of D-Wave is thanked for many technical insights for applying Kerberos. The Lord Jesus is thanked for creating me, giving me skills, and sustaining me.

Declarations

No funding supported this research. There are no conflicts of interest or competing interests.

References

 R. H. Warren, Small traveling salesman problems, *Journal of Advances in Applied Mathematics*, 2 (2017), 101-107. https://dx.doi.org/10.22606/jaam.2017.22003

- [2] R. H. Warren, Solving the traveling salesman problem on a quantum annealer, SN Applied Sciences, 2:75 (2020). <u>https://doi.org/10.1007/s42452-019-1829-x</u>
- [3] R. H. Warren, Quantum solutions of 6-city traveling salesman problems, chapter 4 in "A Closer Look at the Travelling Salesman Problem", e-book by Nova Science Publishers (June 2020). <u>https://novapublishers.com/shop/a-closer-look-at-thetravelling-salesman-problem/</u> accessed May 30, 2020
- [4] R. H. Warren, Adapting the traveling salesman problem to an adiabatic quantum computer, *Quantum Information Processing*, **12** (2013), 1781-1785. DOI: 10.1007/s11128-012-0490-8
- [5] A. Lucas, Ising formulation of many NP problems, Frontiers in Physics 2 (2014) article 5. DOI:10.3389/fphy.2014.00005
- [6] D-Wave Hybrid, Release 0.5.1, Jul 24, 2020. <u>https://docs.ocean.dwavesys.com/ /downloads/hybrid/en/latest</u> /pdf/ accessed Aug. 4, 2020
- [7] TSPLIB (2014) a library of sample instances for the TSP (and related problems) from various sources and of various types. <u>http://comopt.ifi.uniheidelberg.de/software/TSPLIB95/tsp95.pdf</u> accessed Aug. 3, 2020
- [8] T. Öncan, I. K. Altinel, and G. Laporte, A comparative analysis of several asymmetric traveling salesman problem formulations, *Computers & Operations Research*, **36** (2009), 637–654.
- [9] R. Roberti and P. Toth, Models and algorithms for the asymmetric traveling salesman problem: an experimental comparison, *EURO Journal on Transportation and Logistics* 1 (2012) 113–133. DOI: 10.1007/s13676-012-0010-0