

Binary Search Trees (BST)

Binary tree: Every child is either a left or a right child.

Every node has at most 2 children.

General ADT: Ordered Dictionary ↴ ↴
key
value

Dictionary in which the key has a total ORDER.

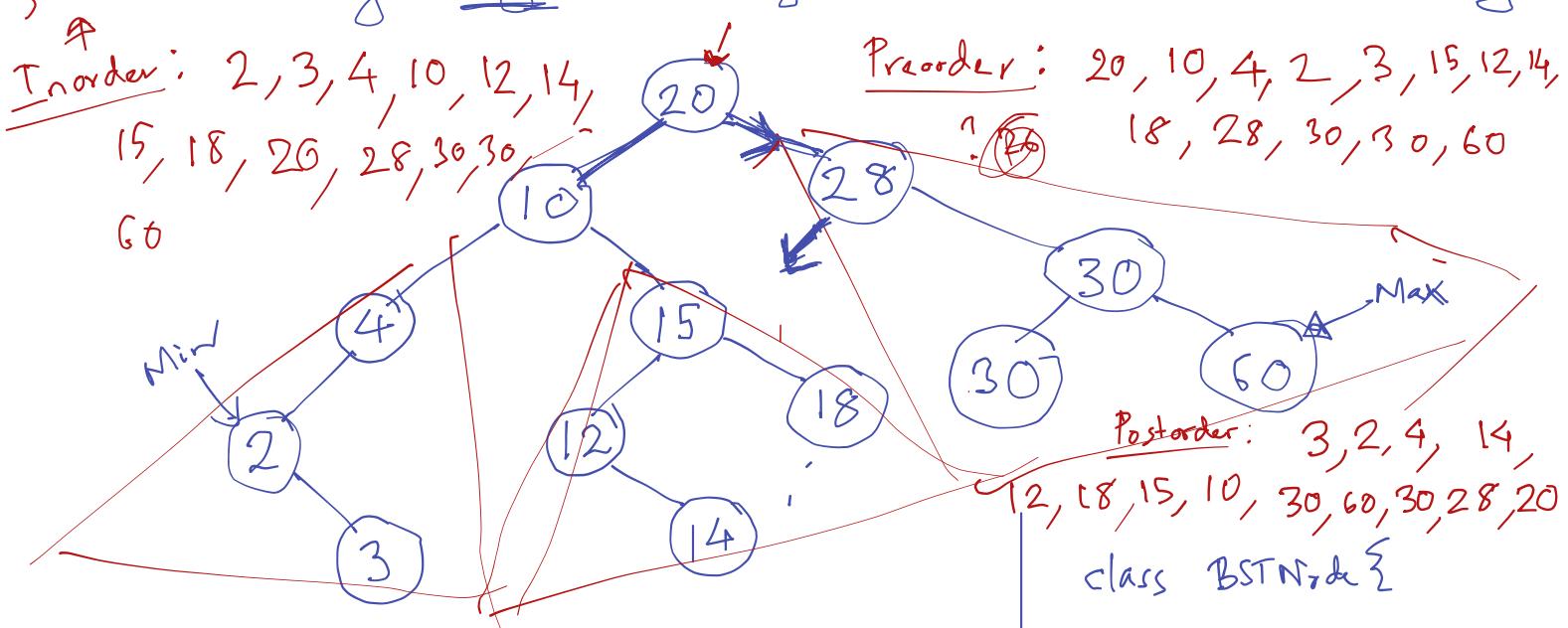
Main operations: Insert, Remove, Find

Goal: Quickly find an entry. ③

BST * Easy to well locate the Node with MIN as MAX key.

* Inexact match.

BST Invariant: For any node n , every key in the left subtree of n is \leq n 's key.
Every key in the right " " " n is \geq n 's key.



BST traversals:

Preorder: <root> - L - R

Key k;
Value v;

BSTNode* left;

BSTNode :: preorder() {

 visit();

 if (left != nullptr)

 left \rightarrow preorder();

 if (right != nullptr)

 right \rightarrow preorder();

}

BSTNode * right;

}

L - R - <Root>

Postorder :

BSTNode :: postorder() {

 if (left != nullptr)

 left \rightarrow postorder();

 if (right != nullptr)

 right \rightarrow postorder();

 visit();

}

Inorder : L - <Root> - R

BSTNode :: inorder() {

 if (left != nullptr)

 left \rightarrow inorder();

 visit();

 if (right != nullptr)

 right \rightarrow inorder();

}

Inorder traversal of
a BT visits nodes
in SORTED ORDER.

①

Node* find (key k)

Exact
Insert

Find, Insert, Remove

Return NULL
when not
found

Follow the BST invariant.

Inexact match :

Find the smallest key $\geq k$ }
 OR " " largest key $\leq k$.

$$k_1 \leq k \leq k_2$$

When searching in the tree for a key k that is NOT in the tree, we encounter BOTH

(i) the smallest key $\geq k$ AND
 (ii) the largest key $\leq k$. Last time the search went to the left

Last time the search went to the right

(Before giving up on the search)

② Node* Min() \rightarrow Min key \rightarrow Repeatedly go to the left child until hitting the nullptr

Node* Max() \rightarrow Max key.

\rightarrow Right most node before hitting the nullptr.

③ Node* insert (Key k, Value v) \rightarrow Exact match

Follow the same path through the tree as find() follows.

When the search reaches NULL, replace NULL with the pointer to the new node constructed with (k, v) .

(Duplicate) Put the new node in the left-subtree of the old node (with the same key)

④ Node* remove (Key k)

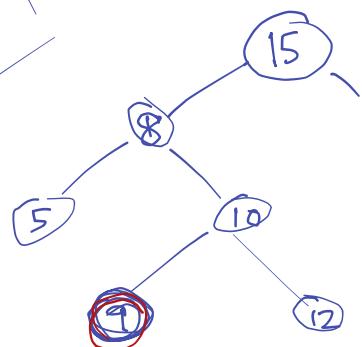
Find a node n with key k .

Return NULL if k is not in the tree.

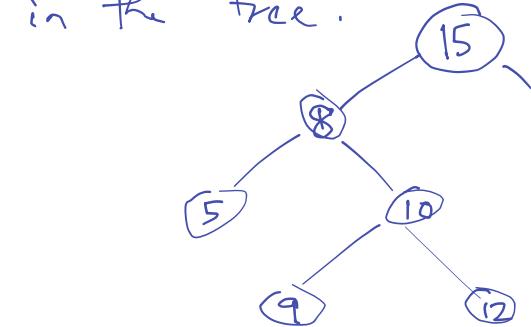
Cases:

(i) n has NO children,

Detach it from the parent.

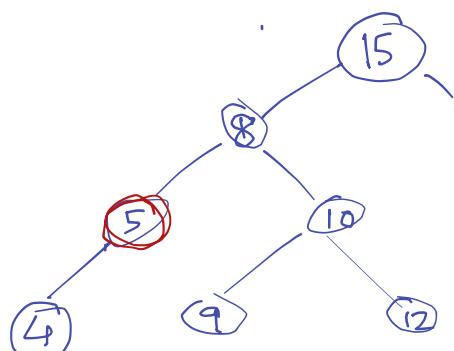


remove (9)

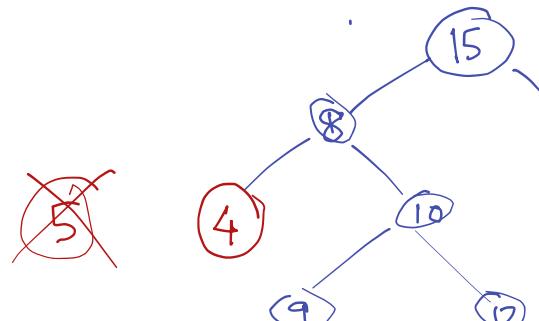


(ii) n has ONLY 1 child:

Move n 's child up to take n 's place.



remove (5)

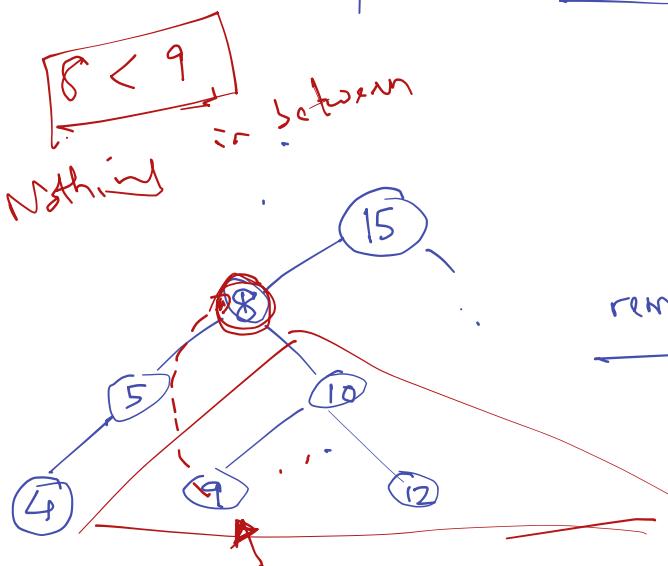


(iii) n has 2 children.

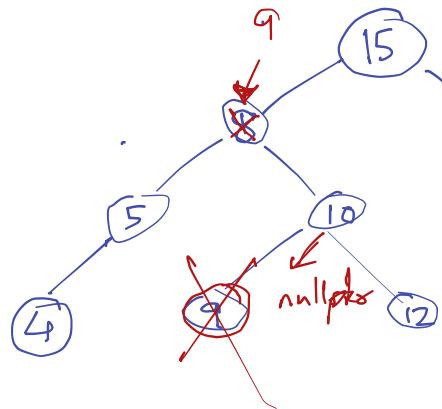
* Let n_2 be a node in n 's right subtree with the smallest key.

* Remove n_2 (n_2 has no left child & therefore easy to remove)

* Replace n 's key with n_2 's key.

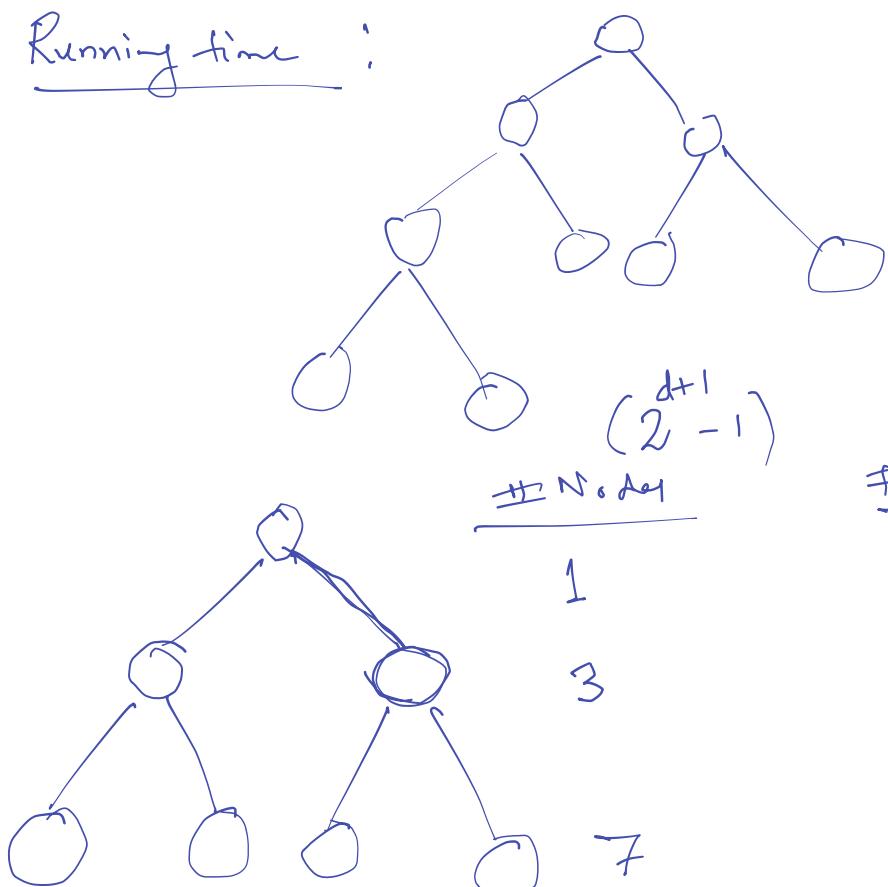


remove (8)



Running time :

Perfectly
Balanced BST



#depth (d)

0

1

2

#nodes = $(2^{d+1} - 1)$ for a perfectly balanced BST

No node has depth $> (\log_2 n)$

Running time :

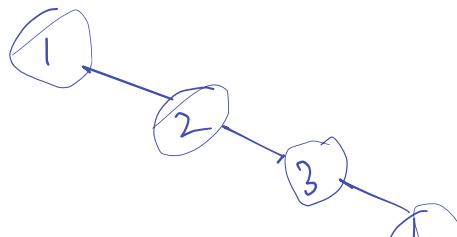
Insert, find, remove, min, max

Proportional to the depth of the deepest node visited.

$$\boxed{\Theta(\log_2 n)}$$

Perfectly balanced BST.

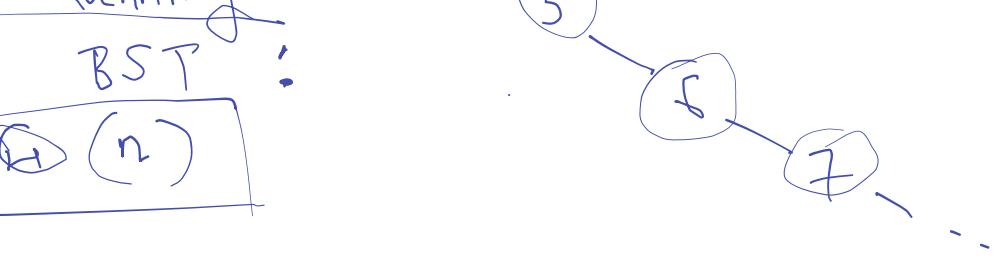
1, 2, 3, 4, 5, 6, 7, ...



Degenerated case:
Linked list.

Worst Case Running time for BST:

$$\boxed{\Theta(n)}$$



BST: AVL trees, Red-black tree,
Splay trees.

Splay tree

Add 1 h/w

✗ Late Token

↳ 1 day.

Best 6 or 7

Max: 2 days

Wet

12pm EDT

→ HW, Lab