

Lecture 8 : Heap sort

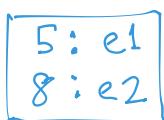
Priority Queue :

Operation

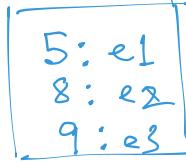
Identify or remove an entry whose key (5:21) is the lowest. \rightarrow (H)(1)

* Insert any key at any time (Flexibility)

Eq Event queue



→ Insert (9: e3)



removeMin()

5: e1
8: e2
9: e3

(8: e₂)

min()

8: e2
9: e3

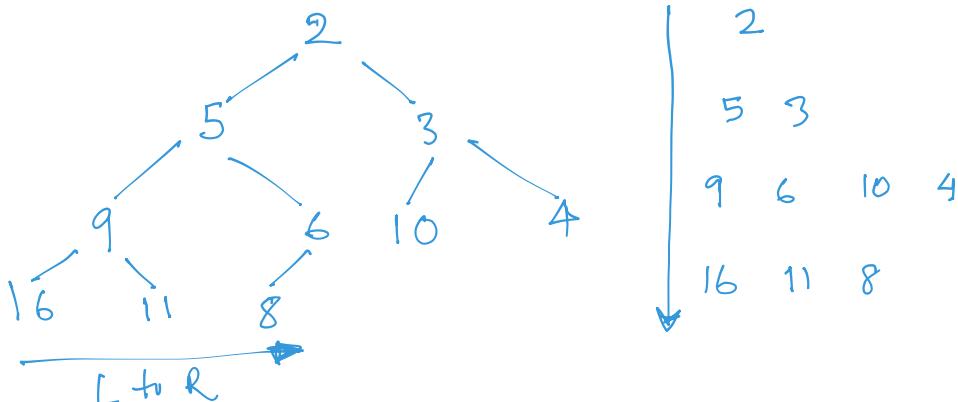
How to implement this efficiently?

⇒ Binary Heap : An implementation of a priority queue.

Binary Heap : Complete Binary Tree .

- * Every level is FULL, except possibly the bottom level, which is filled up from left to right.

Eg



* Entries in a binary heap satisfy the

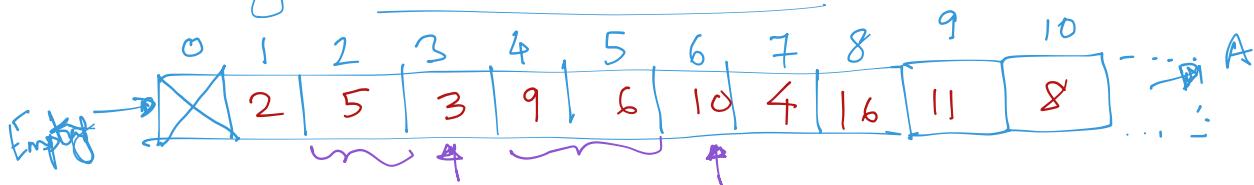
HEAP - ORDER PROPERTY

⇒ No child has a key less than its

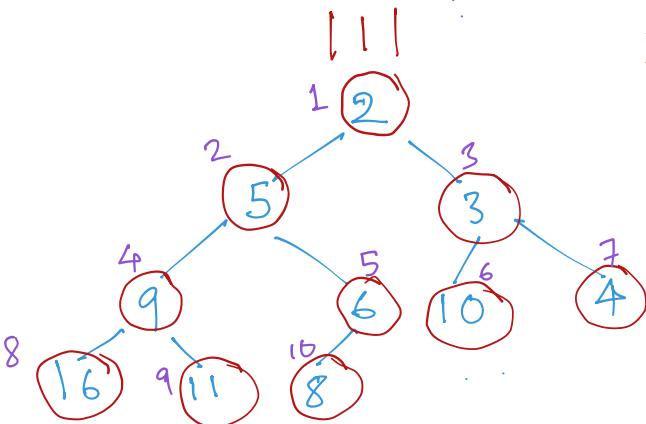
parent's key

* Often stored as ARRAYS of entries.

by level-order traversal.



Insert ()
Min ()
RemoveMin ()
Remove ()

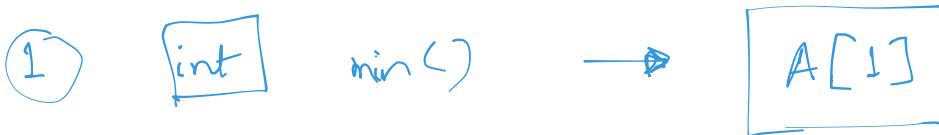


Node i 's children:

$2i$ and $2i + 1$

Node i 's parent:

$\left\lfloor \frac{i}{2} \right\rfloor$



② $\text{insert}(k, v)$

* Let n be the new entry (k, v) .

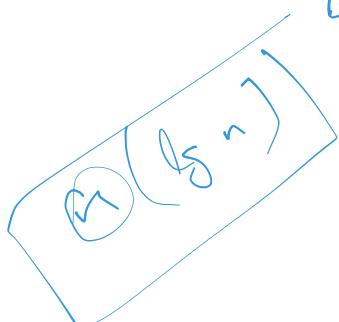
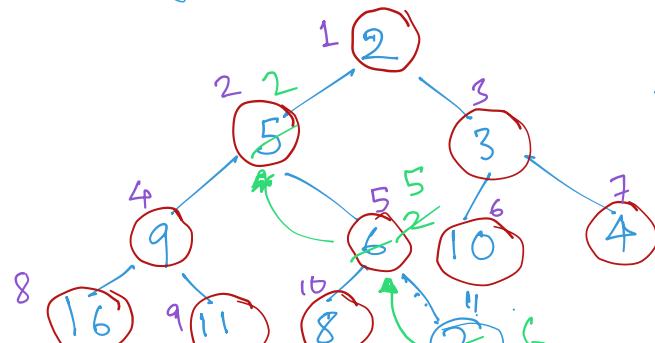
Place n in the bottom level of the tree.

at the first open slot from the left.

OR start a new level with the leftmost entry.

⇒ First free location in the ARRAY.

↳ May violate the heap-order property.



Bubble up the entry until the heap order property is satisfied.

Repeat

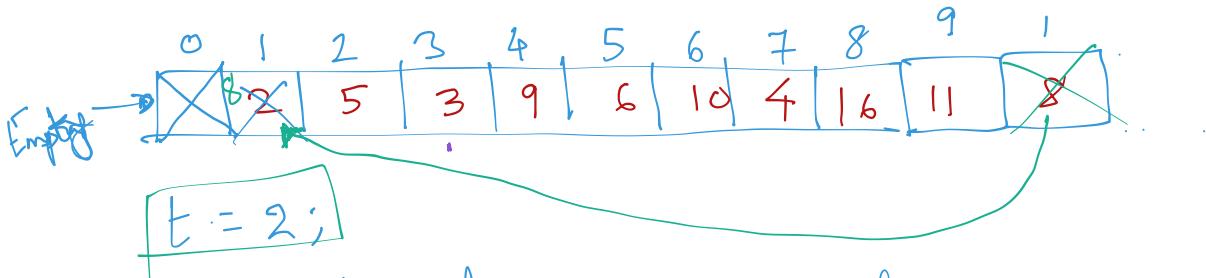
Compare n 's key with its parent's key.

If n 's key is less, then exchange.

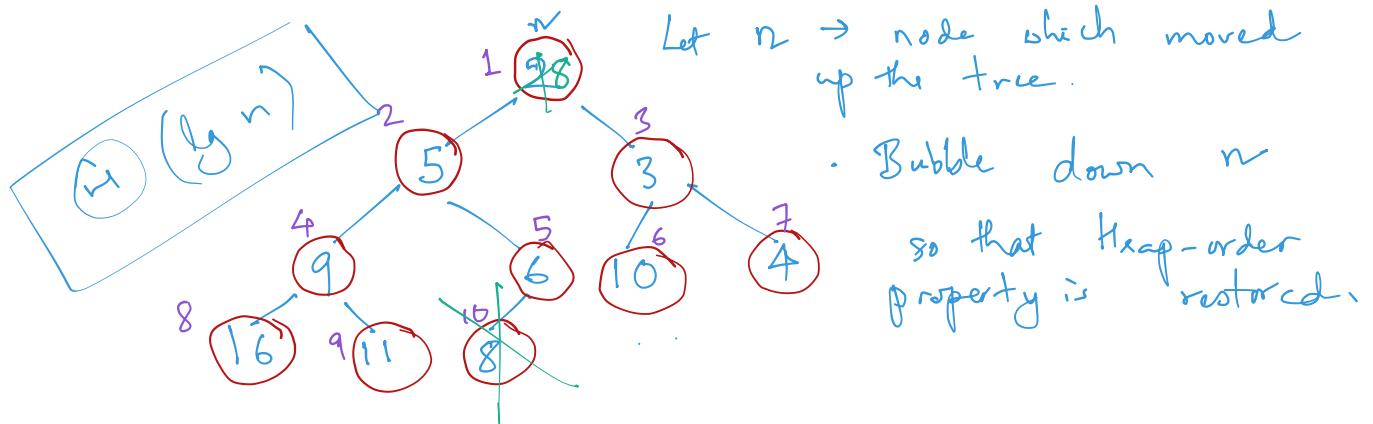
③ int remove Min()

• Remove the entry at the root.

• Save the value for return.

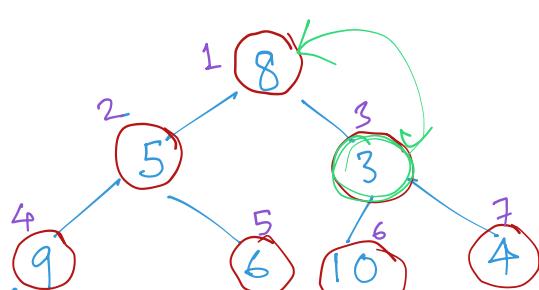
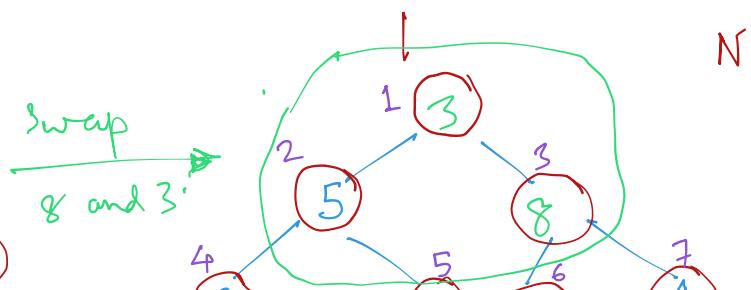


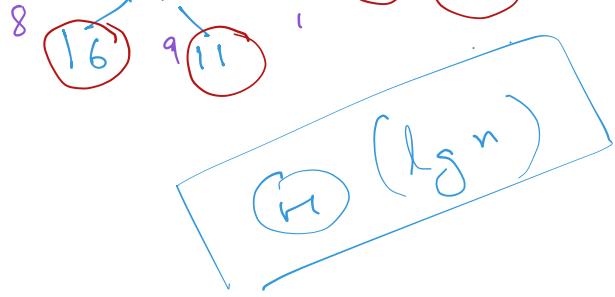
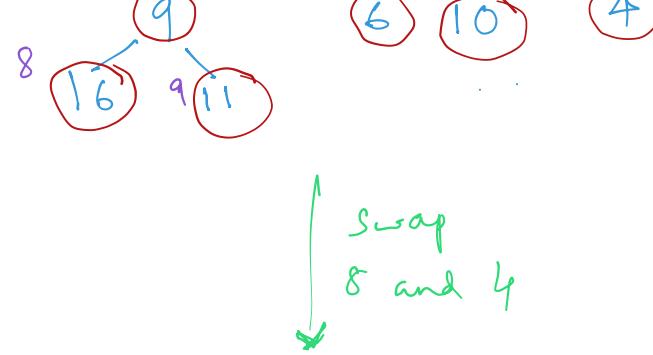
• Fill the hole with the last entry in the tree.



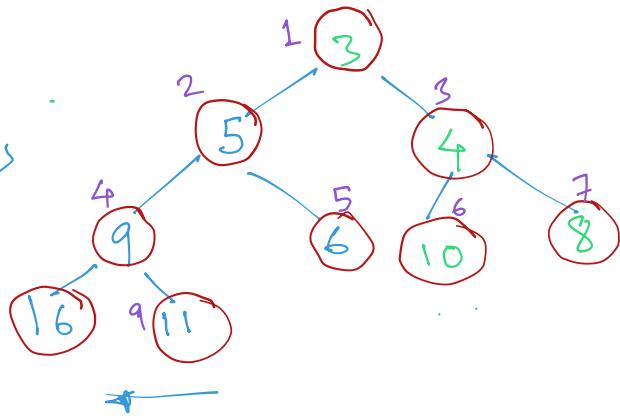
Repeat

If $n >$ one or both of its children, swap n with the MIN child.





Min-heap
 \Rightarrow Min-key at the root.
 \Rightarrow Max-key at the root.
 Max-heap at the root.



Every subtree of a binary heap is a binary heap.

\Rightarrow Min-heap

$N \rightarrow$ # of entries in the heap.

$\Rightarrow \Theta(n \lg n)$ worst case time

(Bubble-up / down ops are involved)

Complete
Binary
tree.

Bottom-up heap construction

Given a set of entries, make a heap out of them.

④ `bottomUpHeap()` : Insert the entries one by one $\rightarrow \Theta(n \lg n)$

Heap-order property.

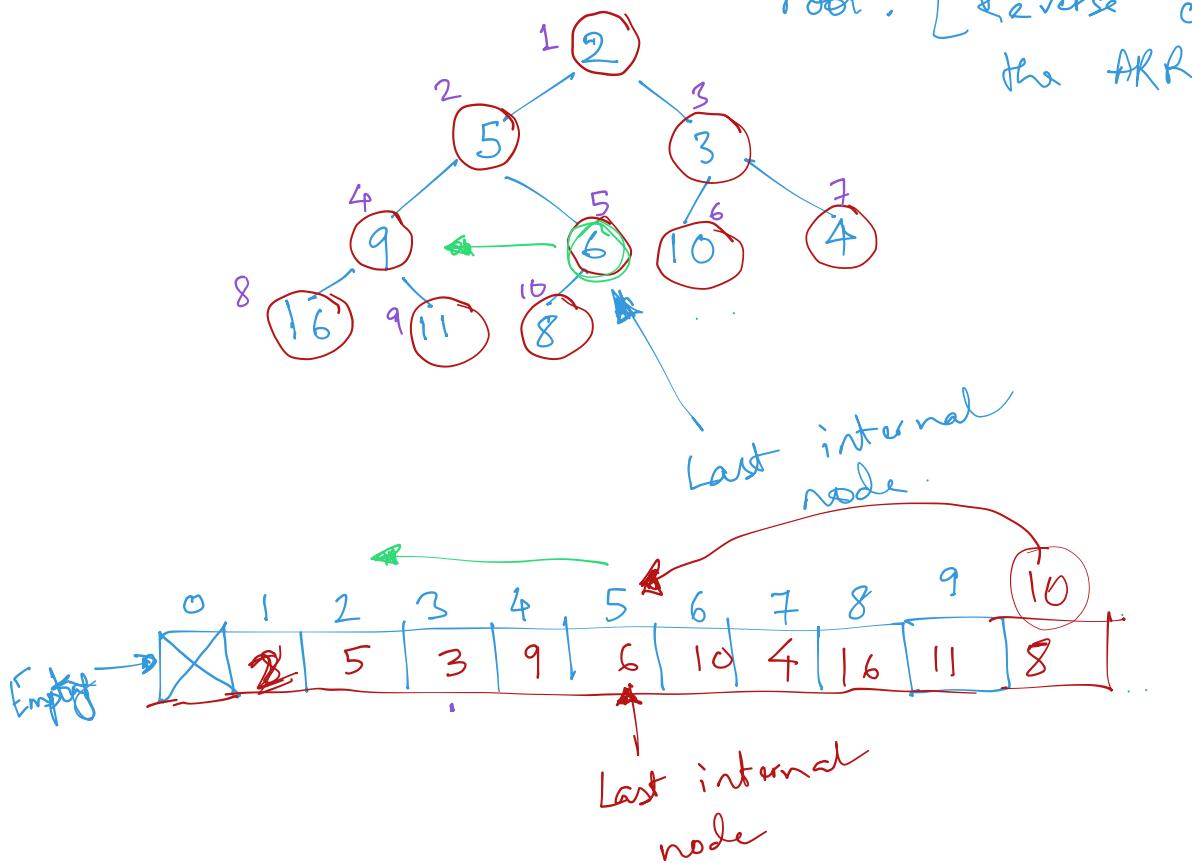
Alternative -

- Make a complete tree out of the entries in any order.

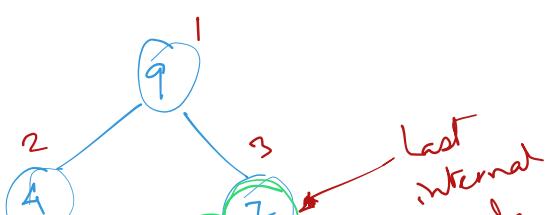
binary

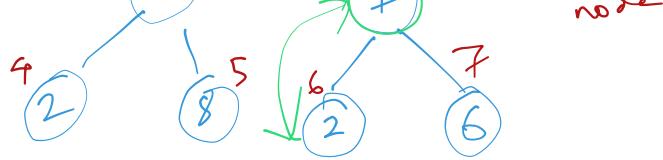
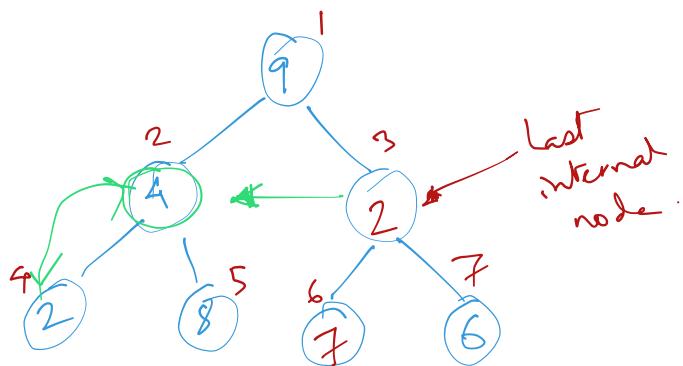
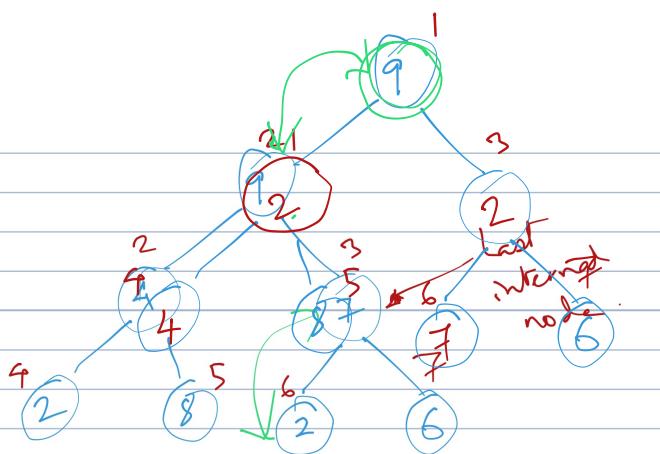
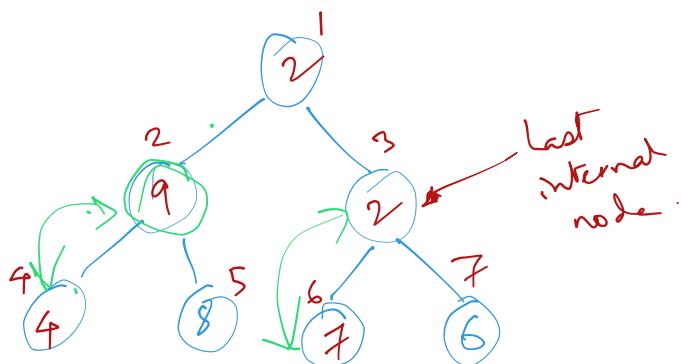
⇒ Broken heap.

- Walk backward through the array from the last internal node (Not a leaf) to the root. [Reverse order in the ARRAY]

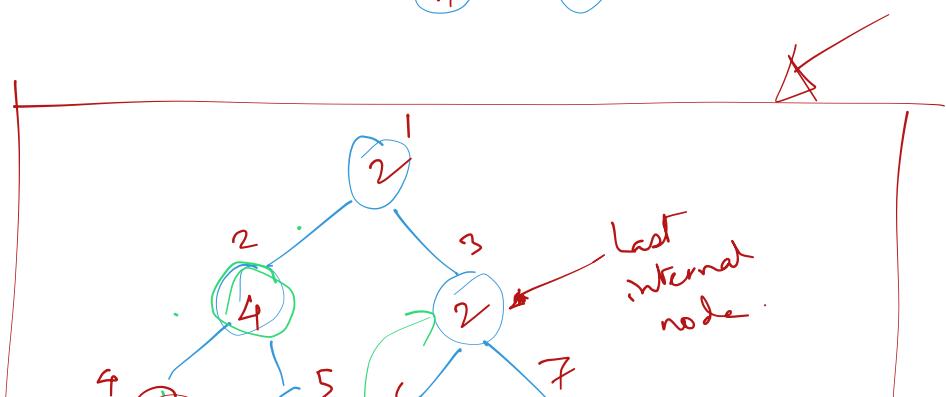


- * When we visit a node, Suble it down as in remove Min(),





Min-Heap



9

8

7

6