

Sorting

/
stable

{ Time
Inplace \rightarrow No additional
memory necessary for
storing the output of
sorting

$(k_1, v_1), (k_2, v_2), (k_3, v_3) \dots (k_n, v_n)$

—
Key

$(k_1, v_1), (k_3, v_3), (k_2, v_2) \dots (k_n, v_n)$

BST, Splay Tree

①

Insertion sort

$S \rightarrow$ Sorted portion
 $I \rightarrow$ Input

Start with an empty list S and unsorted list I
of n -items.

② (n) \rightarrow for (each item x in I) {

Insert x into S in sorted order.

}

(n)

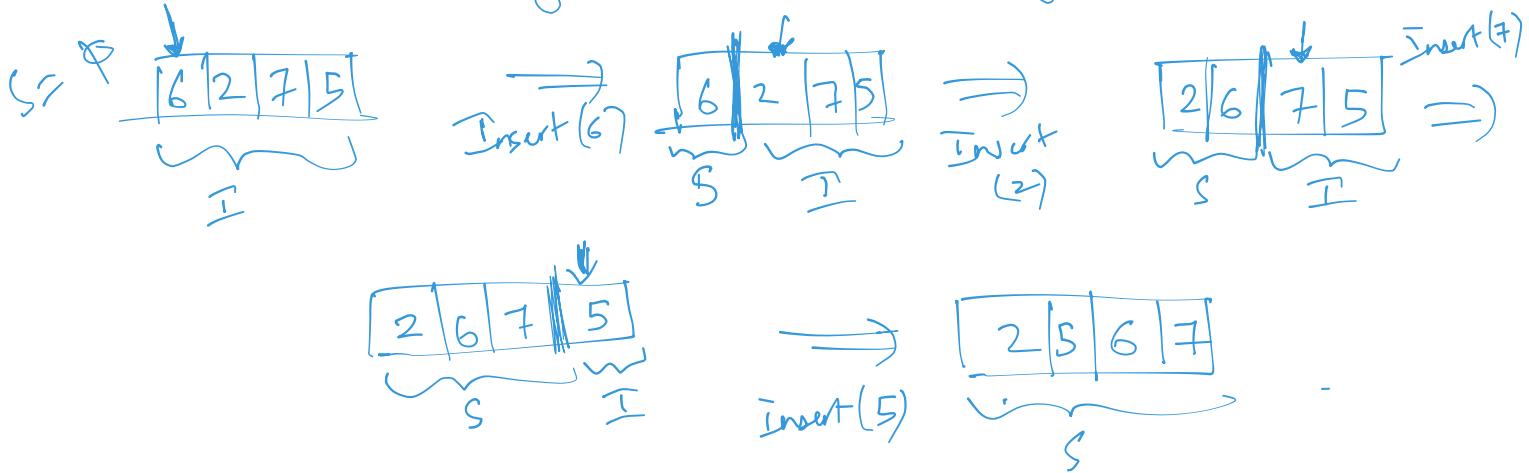
If S is a linked list, ② (n) time to
find the right position.

If S is an array, ② (n) time to shift
the higher items over.

Insertion sort : ② (n²)

Inplace sort if S is an array.

↳ Take all the items and sort without any additional memory.



* Already almost sorted \Rightarrow Run much faster.
 \Rightarrow proportional to the number of swaps.

* Finding the right compromise between linked list and arrays \Rightarrow

If S is a balanced BST, running time is $\Theta(n \lg n)$

② Selection Sort : $\Theta(n^2)$ always.

↳ Worse than Insertion sort

Start with an empty list S and unsorted list I of n items.

for ($i=0$; $i < n$; $i++$) {

$x \rightarrow$ item in I with the smallest key.

Remove x from I $\xrightarrow{\text{Selection}}$
Append x to the end of S .

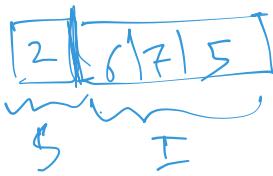
Whether \mathcal{S} is an array or a linked list,

Searching for min item in an unsorted list takes $\Theta(n)$ time.

$\therefore \Theta(n^2)$ even in the best case. (almost sorted input)

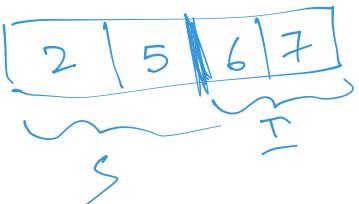
Ex -

Search for
 \Rightarrow
min in
 I

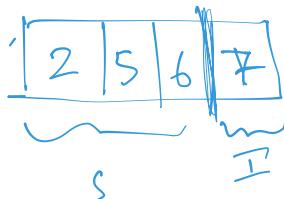


Search for
 \Rightarrow
min in I

Inplace
Alg



Search for
 \Rightarrow
min in
 I



\Rightarrow



* Replace I with a heap \Rightarrow Heap Sort

(3) Heap Sort : Selection sort where I is a binary heap.

Start with an empty list S and unsorted list I of n items.

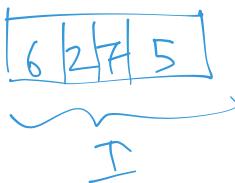
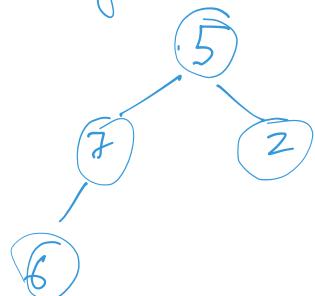
Throw all items in I into a heap h
(ignoring the heap-order property)

$h.\text{bottomUpHeap}();$ // $\Theta(n)$ time.

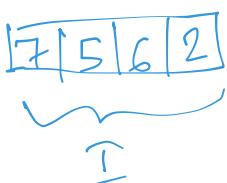
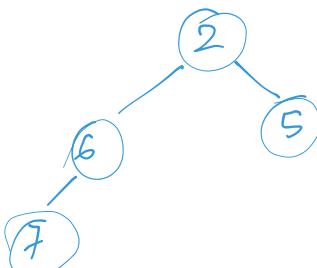
$\Theta(n)$ \rightarrow for ($i = 0$; $i < n$; $i++$) {
 $x = h.\text{removeMin}();$ // $\Theta(\lg n)$
 Append x to the end of S

Heap sort : $O(n \lg n)$

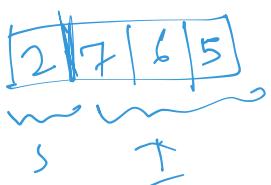
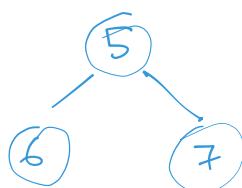
Inplace sort at the end of the array, backward



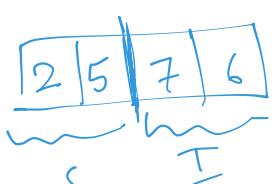
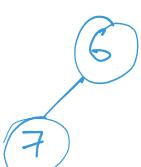
bottomUp
Heap



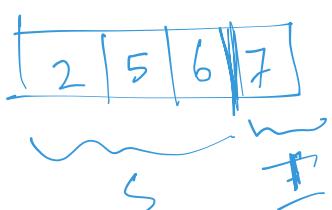
remove Min()



remove Min()



remove Min()



Heap sort : In-place sort

* Excellent for sorting Arrays.
but clumsy for linked list.