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Different types of links: social relationships, 
modes of transportation, loci of similarity…

Hypothesis: explained by common community 
structure…

…even if the layers seem very different

Don’t ask whether two layers are correlated:   
ask whether knowing one helps predict the other

Multilayer networks



Multilayer networks

assortative
homophilic

disassortative
heterophilic

aggregated



A (↵)ij ⇠ Poisson with mean M (↵)
ij

M (↵)
ij =

KX
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A (↵)ij = # of links from i to j in layer ↵

membership of vertex i in group k 

membership of vertex j in group l 

density of edges of type α
from group k to group l

Mixed-membership
Allows inhomogeneous degrees

Different roles for incoming and outgoing links
Arbitrary structure in each layer: assortative, core-periphery, etc.

Modeling the adjacency tensor

# of groups



Aside: tensor factorization
Aij = u i vjrank-one matrix:

rank-K matrix: Aij =
KX

`=1

u (`)i v (`)j

to compute matrix rank, just use linear algebra
can approximate (minimize L2) using singular values

rank-one tensor: Aijk = u i vj wk

Aijk =
KX

`=1

u (`)i v (`)j w (`)
krank-K tensor:

tensor rank is NP-complete! 
rank of matrix multiplication tensor is unknown
even minimizing L2 requires an iterative algorithm



Expectation Maximization (EM)

maximizing the likelihood gives update equations:
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ρijkl(α) is our estimate of the probability that an edge 
i→j in layer α is due to their being in groups k and l 

vj` =

P
i ,↵A (↵)ij

P
k ⇢

(↵)
ijk`

P
k

ÄP
i u ik

ä⇣P
↵w (↵)

k`

⌘

iterate until fixed point = local maximum of the likelihood

(gives a point estimate: there are also Bayesian versions)



Cross-validation and link prediction
Can the model fill in missing data?

Hide 20% of the links, use 80% as training data 

Generative models assign probabilities to missing 
links: use AUC to measure accuracy

Avoid overfitting, and select # of communities

But! “Best” model depends on what kind of data 
is hidden, and what we are trying to predict: 
application-dependent (as it should be)



Using link prediction to measure 
interdependence between layers

Does knowing one layer help predict links in 
another one?

“Similar” (not correlated!) layers have common 
community structure, and help predict each other



Experiments on social networks

Two Indian villages

~400 nodes, ~7000 edges

One village consists of  
two separate hamlets 

12 layers: looking for work, 
babysitting, borrowing, 
discussing important issues



A common community structure
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FIG. 1. Tenpat.t.i Village community partition. On the left we show the division by caste membership. To the right we show the
membership in each of the 4 communities for each node (each figure represents one community), with color ranging from white
if the normalized out-going membership uik = 0 to black if uik = 1. Values in between denote overlapping membership (grey).
The fact that caste membership partially overlaps with the communities identified by our algorithm suggests a relationship
between topological structure and caste, a topic that will be investigated in a future paper.
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FIG. 2. Layer interdependence in the Indian social support
networks. On the x-axis are the layers’ labels used in the test
dataset, and the y-axis shows the AUC obtained through the
cross-validation schemes for measuring layer interdependence.
Bold lines are for Tenpat.t.i Village, dashed for Alakāpuram
Village. L = 1 refers to single-layer AUC, where the algo-
rithm is only given access to that layer. L = 2, 3, 12 show
the increase in the AUC for that layer when the algorithm is
given access to L layers; for L = 2 and L = 3 we choose the
best set of L� 1 additional layers using the greedy procedure
described in the previous section.

First, we analyze social support networks from two vil-
lages in the Indian state of Tamil Nadu, which we call by
the pseudonyms [43] “Tenpat.t.i” and “Alakāpuram” [44,
45]. As part of a survey questionnaire, village residents
were asked to name those individuals who provided them
with 12 di↵erent types of support, ranging from lending
them household items to helping them navigate govern-
ment bureaucracy. The resulting directed networks have
N = 362 and N = 420 nodes, respectively. Each type of
support corresponds to a layer in these networks, giving
each of them L = 12 layers, with average degrees ranging
from 2.0 to 4.4.
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FIG. 3. Layer interdependence in the malaria network. Each
of the 9 layers corresponds to a so-called “highly variable re-
gion” (HVR) of the malaria parasite genes, indicated on the
x-axis, and the y-axis shows the AUC obtained through the
cross-validation schemes for measuring layer interdependence.
L = 1 refers to single-layer AUC, where the algorithm is only
given access to that layer. L = 2, 3, 9 show the increase in the
AUC for that layer when the algorithm is given access to L
layers; for L = 2 and L = 3 we choose the best set of L � 1
additional layers using the greedy procedure described in the
previous section. Points and error bars are the average and
standard deviation over the 5 folds of cross-validation. Unlike
the social support networks, we see that the accuracy of pre-
dicting one layer actually decreases when we include others
in the training set, indicating that the di↵erent layers have
independent structure.

Second, we analyze the patterns of shared genetic
substrings among a set of malaria parasite virulence
genes [40]. Each of the N = 307 nodes represents a
single gene, and an edge connects two genes if they share
a substring of significant length. Due to the fact that the
same set of genes was analyzed at nine di↵erent genetic
loci (i.e., locations on the genes themselves) which are

Correlated with caste, gender, and geography



Knowing more layers helps
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FIG. 1. Tenpat.t.i Village community partition. On the left we show the division by caste membership. To the right we show the
membership in each of the 4 communities for each node (each figure represents one community), with color ranging from white
if the normalized out-going membership uik = 0 to black if uik = 1. Values in between denote overlapping membership (grey).
The fact that caste membership partially overlaps with the communities identified by our algorithm suggests a relationship
between topological structure and caste, a topic that will be investigated in a future paper.
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FIG. 2. Layer interdependence in the Indian social support
networks. On the x-axis are the layers’ labels used in the test
dataset, and the y-axis shows the AUC obtained through the
cross-validation schemes for measuring layer interdependence.
Bold lines are for Tenpat.t.i Village, dashed for Alakāpuram
Village. L = 1 refers to single-layer AUC, where the algo-
rithm is only given access to that layer. L = 2, 3, 12 show
the increase in the AUC for that layer when the algorithm is
given access to L layers; for L = 2 and L = 3 we choose the
best set of L� 1 additional layers using the greedy procedure
described in the previous section.

First, we analyze social support networks from two vil-
lages in the Indian state of Tamil Nadu, which we call by
the pseudonyms [43] “Tenpat.t.i” and “Alakāpuram” [44,
45]. As part of a survey questionnaire, village residents
were asked to name those individuals who provided them
with 12 di↵erent types of support, ranging from lending
them household items to helping them navigate govern-
ment bureaucracy. The resulting directed networks have
N = 362 and N = 420 nodes, respectively. Each type of
support corresponds to a layer in these networks, giving
each of them L = 12 layers, with average degrees ranging
from 2.0 to 4.4.
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FIG. 3. Layer interdependence in the malaria network. Each
of the 9 layers corresponds to a so-called “highly variable re-
gion” (HVR) of the malaria parasite genes, indicated on the
x-axis, and the y-axis shows the AUC obtained through the
cross-validation schemes for measuring layer interdependence.
L = 1 refers to single-layer AUC, where the algorithm is only
given access to that layer. L = 2, 3, 9 show the increase in the
AUC for that layer when the algorithm is given access to L
layers; for L = 2 and L = 3 we choose the best set of L � 1
additional layers using the greedy procedure described in the
previous section. Points and error bars are the average and
standard deviation over the 5 folds of cross-validation. Unlike
the social support networks, we see that the accuracy of pre-
dicting one layer actually decreases when we include others
in the training set, indicating that the di↵erent layers have
independent structure.

Second, we analyze the patterns of shared genetic
substrings among a set of malaria parasite virulence
genes [40]. Each of the N = 307 nodes represents a
single gene, and an edge connects two genes if they share
a substring of significant length. Due to the fact that the
same set of genes was analyzed at nine di↵erent genetic
loci (i.e., locations on the genes themselves) which are



Interdependence and similarity
“Who do you discuss important issues with?” helps 
predict many layers; looking for work, babysitting less so

Can also cluster layers by affinity matrices w(α): 9
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FIG. 4. Clusters of the a�nity matrices in the layers of
the Indian village networks, for Tenpat.t.i on the left and
Alakāpuram on the right. Cluster labels were obtained us-
ing the k-means algorithm, treating each w(↵) as a K2-
dimensional vector, and we use PCA to visualize them in two
dimensions.

called “highly variable regions” (HVRs), this undirected
network has L = 9 layers, with average degrees ranging
from 5.1 to 76.4.

The scientifically interesting questions for both net-
works revolve around the mechanisms driving edge for-
mation. Hypothesized factors include kinship and caste
in the Indian social support networks, and upstream pro-
motor sequence or parasite origin in the malaria genetic
networks. However, addressing these questions is beyond
the scope of this paper, where we instead wish to evaluate
the e↵ectiveness of our algorithm.

One option would be to use our algorithm to cluster the
nodes, and compare the resulting group assignments with
metadata such as gender, caste, or geographical location.
Indeed, in Figure 1 we show the community assignment
for Tenpat.t.i predicted by our model, and compare it with
the division of individuals into castes. Although the fig-
ure suggests that the partition might be correlated with
caste membership, we do not expect this to be the only
type of metadata correlated with the community struc-
ture, and we do not consider this correlation to be a good
measure of accuracy. Here we focus instead on link pre-
diction, and in particular on the extent to which knowl-
edge of some layers helps us predict links in others, as
described in the previous section.

As for the synthetic networks, our MULTITENSOR al-
gorithm, the Diagonal/PARAFAC algorithm, and the
BPTF algorithm each provide a framework for link pre-
diction. Table IV reports the AUC over each entire net-
work and for each algorithm. The algorithms’ perfor-
mance are roughly similar, although our algorithm has
slightly higher performance. This suggests that these
networks are primarily assortative; this is certainly true
of the malaria network, since it is defined in terms of
similarity.

To measure layer interdependence we implemented the
method described in the previous section, where we at-
tempt to predict the adjacency matrix of a given layer
with 20% of its entries held out, and give the algorithm
access to a subset of other layers as part of its training
dataset. Interestingly, we obtain opposite results in these

two cases.
For the social networks, we find that increasing the

number of layers in the training dataset does indeed im-
prove link prediction, with a performance that increases
monotonically with the number of additional layers. In
Figure 2 we show that the AUC for each layer as a func-
tion of the number of layers the algorithm is given access
to. We found that the best number of groups for link
prediction was K = 4 for the first village and K = 6 for
the second one.
Many layers viewed on their own (L = 1) are di�cult

to predict, with AUCs just above 0.5, i.e., only slightly
better than chance. By giving the algorithm access to one
more layer (L = 2) the AUC typically improves by only
about 0.05. However, if we give it access to two additional
layers (L = 3) the AUC improves significantly for almost
all of the layers, and this is even more true when we give
it access to the entire dataset. (For L = 2, 3 we use the
greedy procedure to choose which L� 1 layers to add to
the training dataset.)
Thus in these social networks, the MULTITENSOR al-

gorithm is able to usefully apply knowledge from some
layers to others. Interestingly, we also see consistency
between the two villages with regard to which layers are
the hardest to predict, and which layers are the most
helpful to include in the training dataset. In particular,
the ImpIss layer (“Who do you discuss important mat-
ters with?”) is helpful in predicting many layers, while
Position, Work, Loan, and Babysit are much less so, and
in some cases even decrease the AUC.
We can compare this with the clustering of the L a�n-

ity matrices we obtained using standard clustering algo-
rithms, in a spirit similar to [18]. In Figure 4 we use Prin-
cipal Component Analysis [46] to visualize the L matri-
ces w(↵), projecting them along two principal directions
in K2-dimensional space, and we give them cluster la-
bels using the k-means algorithm [47]. Indeed we see
that Position, Work, Loan, and Babysit are farther from
the others, suggesting that these layers are structurally
quite di↵erent from the others; note also in Figure 2 that
these layers are among the hardest to predict. In con-
trast, ImpIss is closer to the other layers, at least for
the second village, consistent with the fact that it often
helps predict other layers. We also find for L = 2, that
the Borrow layer is the most helpful when predicting the
Talk layer in both villages, which is consistent with the
fact that these two layers are clustered close together.

In contrast, for the malaria network we find that
the best performance is obtained when no other layer
is added to the dataset, meaning that prediction actu-
ally worsens monotonically as we increase the number of
added layers, as shown in Figure 3. This seems to corrob-
orate past findings [40] in an important way. Specifically,
the standing hypothesis about these genes is that they
are maximally diverse in order to most e↵ectively evade
the immune system. If there were correlations between
loci, which we would see here as the ability of one layer
to help in the link prediction of another layer, then this
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FIG. 4. Clusters of the a�nity matrices in the layers of
the Indian village networks, for Tenpat.t.i on the left and
Alakāpuram on the right. Cluster labels were obtained us-
ing the k-means algorithm, treating each w(↵) as a K2-
dimensional vector, and we use PCA to visualize them in two
dimensions.

called “highly variable regions” (HVRs), this undirected
network has L = 9 layers, with average degrees ranging
from 5.1 to 76.4.

The scientifically interesting questions for both net-
works revolve around the mechanisms driving edge for-
mation. Hypothesized factors include kinship and caste
in the Indian social support networks, and upstream pro-
motor sequence or parasite origin in the malaria genetic
networks. However, addressing these questions is beyond
the scope of this paper, where we instead wish to evaluate
the e↵ectiveness of our algorithm.

One option would be to use our algorithm to cluster the
nodes, and compare the resulting group assignments with
metadata such as gender, caste, or geographical location.
Indeed, in Figure 1 we show the community assignment
for Tenpat.t.i predicted by our model, and compare it with
the division of individuals into castes. Although the fig-
ure suggests that the partition might be correlated with
caste membership, we do not expect this to be the only
type of metadata correlated with the community struc-
ture, and we do not consider this correlation to be a good
measure of accuracy. Here we focus instead on link pre-
diction, and in particular on the extent to which knowl-
edge of some layers helps us predict links in others, as
described in the previous section.

As for the synthetic networks, our MULTITENSOR al-
gorithm, the Diagonal/PARAFAC algorithm, and the
BPTF algorithm each provide a framework for link pre-
diction. Table IV reports the AUC over each entire net-
work and for each algorithm. The algorithms’ perfor-
mance are roughly similar, although our algorithm has
slightly higher performance. This suggests that these
networks are primarily assortative; this is certainly true
of the malaria network, since it is defined in terms of
similarity.

To measure layer interdependence we implemented the
method described in the previous section, where we at-
tempt to predict the adjacency matrix of a given layer
with 20% of its entries held out, and give the algorithm
access to a subset of other layers as part of its training
dataset. Interestingly, we obtain opposite results in these

two cases.
For the social networks, we find that increasing the

number of layers in the training dataset does indeed im-
prove link prediction, with a performance that increases
monotonically with the number of additional layers. In
Figure 2 we show that the AUC for each layer as a func-
tion of the number of layers the algorithm is given access
to. We found that the best number of groups for link
prediction was K = 4 for the first village and K = 6 for
the second one.
Many layers viewed on their own (L = 1) are di�cult

to predict, with AUCs just above 0.5, i.e., only slightly
better than chance. By giving the algorithm access to one
more layer (L = 2) the AUC typically improves by only
about 0.05. However, if we give it access to two additional
layers (L = 3) the AUC improves significantly for almost
all of the layers, and this is even more true when we give
it access to the entire dataset. (For L = 2, 3 we use the
greedy procedure to choose which L� 1 layers to add to
the training dataset.)
Thus in these social networks, the MULTITENSOR al-

gorithm is able to usefully apply knowledge from some
layers to others. Interestingly, we also see consistency
between the two villages with regard to which layers are
the hardest to predict, and which layers are the most
helpful to include in the training dataset. In particular,
the ImpIss layer (“Who do you discuss important mat-
ters with?”) is helpful in predicting many layers, while
Position, Work, Loan, and Babysit are much less so, and
in some cases even decrease the AUC.
We can compare this with the clustering of the L a�n-

ity matrices we obtained using standard clustering algo-
rithms, in a spirit similar to [18]. In Figure 4 we use Prin-
cipal Component Analysis [46] to visualize the L matri-
ces w(↵), projecting them along two principal directions
in K2-dimensional space, and we give them cluster la-
bels using the k-means algorithm [47]. Indeed we see
that Position, Work, Loan, and Babysit are farther from
the others, suggesting that these layers are structurally
quite di↵erent from the others; note also in Figure 2 that
these layers are among the hardest to predict. In con-
trast, ImpIss is closer to the other layers, at least for
the second village, consistent with the fact that it often
helps predict other layers. We also find for L = 2, that
the Borrow layer is the most helpful when predicting the
Talk layer in both villages, which is consistent with the
fact that these two layers are clustered close together.

In contrast, for the malaria network we find that
the best performance is obtained when no other layer
is added to the dataset, meaning that prediction actu-
ally worsens monotonically as we increase the number of
added layers, as shown in Figure 3. This seems to corrob-
orate past findings [40] in an important way. Specifically,
the standing hypothesis about these genes is that they
are maximally diverse in order to most e↵ectively evade
the immune system. If there were correlations between
loci, which we would see here as the ability of one layer
to help in the link prediction of another layer, then this



In contrast: malaria genetics

~300 variants of a gene  
in the malaria parasite

9 layers, similarity at 
different loci

highly variable to avoid 
immune response

HVR 1
HVR 2

HVR 3
HVR 4

HVR 5
HVR 6

HVR 7
HVR 8

HVR 9
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

AU
C

L=1
L=2
L=3
L=9

more layers, less accurate: no consistent communities
the joy of negative results…



Conclusions and questions
Can use tensor factorization to express models 
of multilayer networks

Instead of correlation, ask whether one layer 
helps predict another: do they reveal similar 
latent structures?

This is model-dependent… what are we missing?

Local rules, e.g. if (a,b) and (b,c) have relation #1, 
then (a,c) have relation #2



Conclusions and questions
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Shameless plug

To put it bluntly: this book rocks! It somehow 
manages to combine the fun of a popular 
book with the intellectual heft of a textbook.


Scott Aaronson, MIT


This is, simply put, the best-written book on 
the theory of computation I have ever read; 
one of the best-written mathematical books I 
have ever read, period. 


Cosma Shalizi, Carnegie Mellonwww.nature-of-computation.org
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