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What can networks teach us about medicine?
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What Is Network Medicine?

The study of cellular, disease, and social networks which aims to
guantify the complex interlinked factors contributing to individual
diseases. (Adapted from Barabasi, NEJM 2007; 357:404)

Key components of Network Medicine:
--Holistic rather than reductionist approach
--Emergent properties from entire network
--Employs systems biology methods
--Construction of molecular networks



Falling Costs of Sequencing Data
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The Human Genetic Code
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The Human Genetic Code
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Where do the differences come from?

all cells in your body
have identical DNA!



The Physical Structure of DNA
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https://cnx.org/contents/9TxHOD30@4/The-Nucleus-and-DNA-Replicatio



Biological Function is Encoded in Genes

 Human DNA contains approximately 25000 (protein-coding) genes.

 Some genes contain the information for how to make a particular type of
protein, called a transcription factor.

* Right before a gene is a special region of DNA, called a promoter, that
enables transcription factors to control (regulate) the behavior of a gene.
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Why Study Gene Regulation?

* Biological processes are driven by
multiple connections linking together
genes, proteins, and other molecules.

* One way to model these processes is
through gene regulatory networks.

* By comparing regulatory networks we
can gain insights into alterations in
biological processes that may underlie
differences in various diseases and/or Gene Requlatory Network
phenotypic states. * Nodes are genes.

* Edges are relationships between genes.
Edges are directed to indicate causality.




Modeling Gene Regulatory Networks

Regulatory Network
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Basic Mechanics of Gene Regulation
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Basic Mechanics of Gene Regulation
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Message-Passing Networks: PANDA

(Passing Attributes between Networks for Data Assimilation)
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Glass et. al. “Passing Messages Between Biological Networks to Refine Predicted Interactions.” PLoS One. 2013 May 31;8(5):e64832.




Estimating Availability by comparing gene
expression data and regulatory information
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Estimating Availability by comparing gene f_ A
expression data and regulatory information =
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Estimating Responsiblility by comparing
PPI data and regulatory information
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Estimating Responsiblility by comparing
PPI data and regulatory information
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Glass et. al. “Passing Messages Between Biological Networks to Refine Predicted Interactions.” PLoS One. 2013 May 31;8(5):e64832.
Code and related material: https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/panda
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PANDA considers:
Two types of nodes
Three types of edges

In practice we have used PANDA to
construct regulatory networks.
In principle it can be used to integrate any

network data that follows this framework.
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PANDA Applications

cigarette smoke through network rewiring
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Understanding Tissue-Specific Gene Regulation

Abhijeet Rajendra Sonawane,’-? John Platig,** Maud Fagny,*“ Cho-Yi Chen,** Joseph Nathaniel Paulson,*

men's Hospital, Boston, MA, USA

ABSTRACT
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Differential connectivity of gene regulatory
networks distinguishes corticosteroid response in
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Regulatory network changes between cell
lines and their tissues of origin

Camila M. Lopes-Ramos'~", Joseph N. Paulson'*', Cho-Yi Chen'~, Marieke L. Kuijjer#, Maud Fagny'~,
John Platig'?, Abhijeet R. Sonawane®, Dawn L. DeMeo®*, John Quackenbush'***" and Kimberly Glass'**"



Reconstructing Tissue-Specific Networks
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Network Analysis

 ldentify tissue-specific edges
» Characterize tissue-specific
regulation of biological processes
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Expression Analysis

 ldentify tissue-specific genes and
transcription factors

* Investigate their regulatory context
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Sonawane et. al. “Understanding Tissue-Specific Gene Regulation” Cell Reports. 2017.



Degree of Tissue-Specific Genes

Network Centralities Ratio of Median Centrality
(TS vs. non-TS genes in Each Tissue-Network)
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* Calculated the degree of genes in each of the 38 PANDA-
predicted network.

 Compared the degree of tissue-specific genes to the degree of
non-tissue-specific genes in each of these networks.

* Tissue-specific genes are depleted for regulatory edges.




Betweenness of Tissue-Specific Genes

Network Centralities Ratio of Median Centrality

()
ey
()]
i

-
[=)]

|
i @
e —

-

Betweenness
I |

0 40 80 120 160

median(TS) / median(non-TS)
.

o
i
3]

TST
BRO
BRC
CLT
BST
WBL
ARG
FIB
HRV
SPL
1T1
ADV
BRB
PRS
SKN
EMC
STM
VGN
OVR
ATT
PNC
CLS
LNG
TNV
MSG
UTR
PIT
EMS
LVR
SMU
HRA
ADS
THY
ATC
GEJ
ATA

e Calculated the betweenness of genes in each of the 38 PANDA-
predicted network.

 Compared the betweenness of tissue-specific genes to non-
tissue-specific genes in each of these networks.

* Tissue-specific genes are enriched for regulatory paths.




Centrality of Tissue-Specific Genes

Network Centralities Distribution of Centrality Values
(Across All Tissue-Networks)

—non-TS
----- TS (in other tissue(s))
1000 [[=—TS (in that tissue)

—r
e n
-
wen
......
.
e

"..
d

400

1

............. 105 :
ye —non-TS
L (7, . TS (in other tissue(s))
$ 10" F|=——TS (in that tissue)
c
c 10°F
]
v 2
g 10°F
)
@ 1
o 107F ]
Betweenness
m 0 1 ' H A1 L
10 0 0.2 04 0.6 0.8 1

0 40 80 120 160

Rank of Gene (Percentile)



Centrality of Tissue-Specific Genes

Network Centralities Distribution of Centrality Values
(Across All Tissue-Networks)
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What does this mean?

* Tissue-specific regulation does not occur in dense portions of the
regulatory network, or by the formation of tissue-specific hubs.
* Tissue-specific genes are central to the regulatory network on an

intermediate scale due to the influence of tissue-specific
regulatory paths.

* Taken together these results suggest that tissue-specific edges
build on an existing regulatory network structure in a way that
allows tissue-specific regulatory access to certain genes.

Sonawane et. al. “Understanding Tissue-Specific Gene Regulation” Cell Reports. 2017.



The Physical Structure of DNA

Chromosome

Epigenetics:
Elements of genetic information
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the DNA sequence
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Impact of DNA Structure on Gene Regulation
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Incorporating Epigenetic Data

To isolate the role of epigenetic data,

the co-expression and protein-
Epigenetic data [
-

interaction information can be
initialized to an identity matrix
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Incorporating Epigenetics with SPIDER

(Seeding PANDA Interactions to Derive Epigenetic Regulation)
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Incorporating Epigenetics with SPIDER

(Seeding PANDA Interactions to Derive Epigenetic Regulation)
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SPIDER predicts accurate networks
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Summary

* Gene regulatory networks provide a framework for modeling and
analyzing biological processes

» Effectively integrating multi-Omics data is important in developing a
holistic model of biological systems

* Analyzing gene regulatory networks can lead to novel insights into how
biological systems function.
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Why Is this important for disease?

* |dentified genes that:
— Have a significant cis-eQTL in a tissue.
— Have a significant cis-eQTL with a GWAS
SNP in a tissue.
* Determined the median rank of those genes

(compared to all other genes) based on their:

- Degree
— Betweenness
* Genes associated with GWAS SNPs, although
depleted for tissue-specific genes, also are
“bottlenecks” (comparatively lower degree,
higher betweenness)
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