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What can networks teach us about medicine?
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What Is Network Medicine? 

The study of cellular, disease, and social networks which aims to 
quantify the complex interlinked factors contributing to individual 
diseases. (Adapted from Barabasi, NEJM 2007; 357:404)

Key components of Network Medicine:

--Holistic rather than reductionist approach

--Emergent properties from entire network

--Employs systems biology methods

--Construction of molecular networks



Falling Costs of Sequencing Data

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Sanger Sequencing

Roche/454
Illumina

ABI Solid
Helicos

Next-Generation Sequencing

HiSeq X Ten Sequencer

The “$1000 Genome”

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data


The Human Genetic Code

ACGTTTAACAGTAACGAAT

ACGTTTAACAGTACCGAAT

ACGTTTAACAGTAACGAAT

ACGTATAACAGTAACGAAT

ACGTTTAACAGTAACGAAT

all humans share
~99.9% of their DNA



all cells in your body
have identical DNA!

ACGTTTAACAGTAACGAAT

ACGTTTAACAGTAACGAAT
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ACGTTTAACAGTAACGAAT

The Human Genetic Code

Where do the differences come from?



https://cnx.org/contents/9TxHOD3O@4/The-Nucleus-and-DNA-Replicatio

The Physical Structure of DNA



Biological Function is Encoded in Genes

• Human DNA contains approximately 25000 (protein-coding) genes.
• Some genes contain the information for how to make a particular type of 

protein, called a transcription factor.
• Right before a gene is a special region of DNA, called a promoter, that 

enables transcription factors to control (regulate) the behavior of a gene.

“start” of gene

gene

“end” of gene

promoter

TF



Why Study Gene Regulation?

Gene Regulatory Network
• Nodes are genes.
• Edges are relationships between genes.
• Edges are directed to indicate causality.

• Biological processes are driven by 
multiple connections linking together 
genes, proteins, and other molecules.

• One way to model these processes is 
through gene regulatory networks.

• By comparing regulatory networks we 
can gain insights into alterations in 
biological processes that may underlie 
differences in various diseases and/or 
phenotypic states.



Modeling Gene Regulatory Networks

It’s protein
interactions

It’s chromatin
structure

It’s gene
expression

It’s TF
regulation

It’s CG
methylation

It’s genetic
variants

http://expertcytometry.com/the-story-of-the-blind-men-and-the-elephant-or-why-its-better-to-see-your-cells/

Omics Data

Network Inference

Regulatory Network



Transcription Factors

RNAP
RNAP

Gene

Protein-protein
interactions

Protein-DNA
interactions

Gene Expression

Basic Mechanics of Gene Regulation



Gene

Protein-protein
interactions

Protein-DNA
interactions

Gene Expression

different information all representing 
the same underlying process

Basic Mechanics of Gene Regulation



Message-Passing Networks: PANDA
(Passing Attributes between Networks for Data Assimilation)

Protein-protein 
interactions

Protein-DNA 
interactions

Genomic
Data

Gene Expression

Network 
Representation

Cooperation 
between TFs

Potential 
Regulatory Events

genes

ge
n

es

Potential Co-
Regulatory Events
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Glass et. al. “Passing Messages Between Biological Networks to Refine Predicted Interactions.”  PLoS One. 2013 May 31;8(5):e64832.
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High “co-regulation”

Gene j may be regulated by 
TF i if it is co-regulated with 

the other targets of TF i.

Passing message from the co-regulation 
to the regulatory network

ji

Integrating expression data with regulation data lets us estimate the availability.

Estimating Availability by comparing gene

expression data and regulatory information



Genes j and k may be co-
regulated if they are both 
targeted by the same TFs.
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Integrating expression data with regulation data lets us estimate the availability.

Estimating Availability by comparing gene

expression data and regulatory information



TFs genes

Protein-protein
interaction network

Protein-Protein 
interaction data

Protein-DNA 
interaction data

TF-gene 
“regulatory”

network

Passing message from the PPI to the 
regulatory network

Estimating Responsibility by comparing

PPI data and regulatory information

TF
TF i may regulate gene j if TF i

interacts with many of the 
TFs targeting gene j.

?i j

Protein 
interaction

Integrating PPI data with regulation data lets us estimate the responsibility.



TFs genes

Protein-Protein 
interaction data

Protein-DNA 
interaction data
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Passing message from the regulatory to 
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TFs i and m may interact if 
they both target many of 

the same genes
Protein-protein

interaction network

Integrating PPI data with regulation data lets us estimate the responsibility.

Estimating Responsibility by comparing

PPI data and regulatory information



PPI0 Co-regulation0

Network1

Responsibility Availability

Network0

TF-Motif Scan

Co-regulation1PPI1

Passing Messages Between Networks

),( .. jiij CWTA =),( .. jiij WPTR =

),( .. miim WWTP = ),( .. kjjk WWTC =

𝑇( Ԧ𝑥, Ԧ𝑦) =
Ԧ𝑥 ⋅ Ԧ𝑦

Ԧ𝑥 2 + Ԧ𝑦 2 − Ԧ𝑥 ⋅ Ԧ𝑦

Glass et. al. “Passing Messages Between Biological Networks to Refine Predicted Interactions.”  PLoS One. 2013 May 31;8(5):e64832.
Code and related material: https://sites.google.com/a/channing.harvard.edu/kimberlyglass/tools/panda



Conceptual Framework of PANDA

PANDA considers:
Two types of nodes
Three types of edges

In practice we have used PANDA to 
construct regulatory networks.
In principle it can be used to integrate any 
network data that follows this framework.



PANDA Applications



Reconstructing Tissue-Specific Networks

Regulatory

Sonawane et. al. “Understanding Tissue-Specific Gene Regulation” Cell Reports. 2017.

Multi-tissue transcriptomes

(53 sites, 9590 samples from 550 

individuals)

Data QC, merging & normalization

(38 primary sites, 9435 samples from 

549 individuals)

Preprocessing

• Identify tissue-specific edges

• Characterize tissue-specific 

regulation of biological processes

Network Analysis

• Identify tissue-specific genes and 

transcription factors

• Investigate their regulatory context

Expression Analysis



Degree of Tissue-Specific Genes

• Calculated the degree of genes in each of the 38 PANDA-
predicted network.

• Compared the degree of tissue-specific genes to the degree of 
non-tissue-specific genes in each of these networks.

• Tissue-specific genes are depleted for regulatory edges.



Betweenness of Tissue-Specific Genes

• Calculated the betweenness of genes in each of the 38 PANDA-
predicted network.

• Compared the betweenness of tissue-specific genes to non-
tissue-specific genes in each of these networks.

• Tissue-specific genes are enriched for regulatory paths.



Centrality of Tissue-Specific Genes



Centrality of Tissue-Specific Genes

TS-genes are 
depleted among 
network hubs

Low-degree 
genes are just 
as likely to be 
TS as non-TS
High-betweeny
genes are just 
as likely to be 
TS as non-TS

Non-TS genes are 
more likely to 
have no paths 
(betweenness=0)



What does this mean?

• Tissue-specific regulation does not occur in dense portions of the 
regulatory network, or by the formation of tissue-specific hubs.

• Tissue-specific genes are central to the regulatory network on an 
intermediate scale due to the influence of tissue-specific 
regulatory paths.

• Taken together these results suggest that tissue-specific edges 
build on an existing regulatory network structure in a way that 
allows tissue-specific regulatory access to certain genes.

Sonawane et. al. “Understanding Tissue-Specific Gene Regulation” Cell Reports. 2017.



https://cnx.org/contents/9TxHOD3O@4/The-Nucleus-and-DNA-Replicatio

The Physical Structure of DNA

Epigenetics:
Elements of genetic information
that don’t involve changes to
the DNA sequence



Transcription Factors

Gene

Impact of DNA Structure on Gene Regulation



Transcription Factors

Gene

RNAP

nucleosome

Impact of DNA Structure on Gene Regulation
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To isolate the role of epigenetic data, 
the co-expression and protein-
interaction information can be 
initialized to an identity matrix

Open Chromatin

TF1 → Gene1

TF binding site

Gene1

Gene2

Gene3

Gene4

Incorporating Epigenetic Data



TF-Motif Scan𝑇( Ԧ𝑥, Ԧ𝑦) =
Ԧ𝑥 ⋅ Ԧ𝑦

Ԧ𝑥 2 + Ԧ𝑦 2 − Ԧ𝑥 ⋅ Ԧ𝑦
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),( .. jiij CWTA =),( .. jiij WPTR =

),( .. miim WWTP = ),( .. kjjk WWTC =

Incorporating Epigenetics with SPIDER
(Seeding PANDA Interactions to Derive Epigenetic Regulation)



𝑇( Ԧ𝑥, Ԧ𝑦) =
Ԧ𝑥 ⋅ Ԧ𝑦

Ԧ𝑥 2 + Ԧ𝑦 2 − Ԧ𝑥 ⋅ Ԧ𝑦

PPI0 Co-regulation0

Network1

Responsibility Availability

Network0

Co-regulation1PPI1

),( .. jiij CWTA =),( .. jiij WPTR =

),( .. miim WWTP = ),( .. kjjk WWTC =

Network0

prune edges within 
closed chromatin

TF-Motif Scan

Incorporating Epigenetics with SPIDER
(Seeding PANDA Interactions to Derive Epigenetic Regulation)

Identity0 Identity0     



SPIDER predicts accurate networks

Epigenetic Data

PANDA
regulatory
network

SPIDER
regulatory
network

potential
regulatory events

epigenetic
regulatory events

A
U

C
 V

al
u

e

Lung Cancer Cervical CancerStem Cells 

Blood Cells Blood CancerLiver Cancer



SPIDER recovers “missing links”

Top-weight edges predicted

by SPIDER (Lung Cancer):
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• Gene regulatory networks provide a framework for modeling and 
analyzing biological processes

• Effectively integrating multi-Omics data is important in developing a 
holistic model of biological systems

• Analyzing gene regulatory networks can lead to novel insights into how 
biological systems function.

Summary
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Why is this important for disease?
Degree

Betweenness

• Identified genes that:
→ Have a significant cis-eQTL in a tissue.
→ Have a significant cis-eQTL with a GWAS 

SNP in a tissue. 
• Determined the median rank of those genes 

(compared to all other genes) based on their:
→ Degree
→ Betweenness

• Genes associated with GWAS SNPs, although 
depleted for tissue-specific genes, also are 
“bottlenecks” (comparatively lower degree, 
higher betweenness)

Tissue-specific genes
Non-tissue-specific genes


