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Abstract

The idea that democracy is under threat, after being largely dormant for at least
40 years, is looming increasingly large in public discourse. Complex systems
theory offers a range of powerful new tools to analyse the stability of social
institutions in general, and democracy in particular. What makes a democracy
stable? And which processes potentially lead to instability of a democratic
system? This paper offers a complex systems perspective on this question,
informed by areas of the mathematical, natural, and social sciences. We
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Abstract

Political scientists have conventionally assumed that achieving democracy is a one-way
ratchet. Only very recently has the question of ‘democratic backsliding’ attracted any research
attention. We argue that democratic instability is best understood with tools from complexity
science. The explanatory power of complexity science arises from several features of complex
systems. Their relevance in the context of democracy is discussed. Several policy recommen-
dations are offered to help (re)stabilize current systems of representative democracy.

Introduction

The Economist recently identified 80 countries whose democracy score declined during the last
decade, including the U.S. and some consolidated European democracies (The Economist Intelli-
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ABSTRACT

Given a set of people and a set of events attended by them,
we address the problem of measuring connectedness or tie
strength between each pair of persons. The underlying as-
sumption is that attendance at mutual events gives an implicit
social network between people. We take an axiomatic ap-
proach to this problem. Starting from a list of axioms, which
a measure of tie strength must satisfy, we characterize func-
tions that satisfy all the axioms. We then show that there is
arange of tie-strength measures that satisfy this characteriza-
tion.

A measure of tie strength induces a ranking on the edges of
the social network (and on the set of neighbors for every per-
son). We show that for applications where the ranking, and
not the absolute value of the tie strength, is the important
thing about the measure, the axioms are equivalent to a nat-
ural partial order. To settle on a particular measure, we must
make a non-obvious decision about extending this partial or-
der to a total order. This decision is best left to particular
applications. We also classify existing tie-strength measures
according to the axioms that they satisfy; and observe that
none of the “self-referential” tie-strength measures satisfy the
axioms. In our experiments, we demonstrate the efficacy of
our approach; show the completeness and soundness of our
axioms, and present Kendall Tau Rank Correlation between
various tie-strength measures.
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INTRODUCTION

Explicitly declared friendship links suffer from a low signal
to noise ratio (e.g. Facebook friends or LinkedIn contacts).
Links are added for a variety of reasons like reciprocation,
peer-pressure, etc. Detecting which of these links are impor-
tant is a challenge.

Social structures are implied by various interactions between
users of a network. We look at event information, where users
participate in mutual events. Our goal is to infer the strength
of ties between various users given this event information —
i.e. the implicit social networks.

There has been a surge of interest in implicit social net-
works. We can see anecdotal evidence for this in startups
like COLOR (http://www.color.com) and new features in
products like Gmail. COLOR builds an implicit social net-
work based on people’s proximity information while taking
photos.! Gmail’s don’t forget bob feature uses an implicit so-
cial network to suggest new people to add to an email given a
existing list [16].

Consider people attending different events with each other.
We define an event by the set of people that attend it. An
event can represent the set of people who took a photo at the
same place and time, like COLOR, or a set of people who
are on an email, like in Gmail. Given the set of events, we
would like to infer how connected two people are — i.e. we
would like to measure the strength of the tie between people.
All that is known about each event is the list of people who
attended it. People attend events based on an implicit social
network (with ties between pairs of people). We want to solve
the inference problem of finding the weighted social network
that gives rise to the set of observed events.

Given a bipartite (a.k.a. two-mode) graph, with people as one
set of vertices and events as the other set, we want to infer the
tie-strength between the set of people. Hence, in our prob-
lem, we do not even have access to any directly declared (i.e.,
explicit) social network between people. We want to infer the
implicit social network based on the set of people who inter-
act together at different events.

We start with a set of axioms and find a characterization of
functions that could serve as a measure of tie strength, just
given the event information. We do not end up with a sin-
gle function that works best under all circumstances. In fact,
we show that there are non-obvious decisions that need to be
made to settle down on a single measure of tie strength.

lht:t:p ://mashable.com/2011/03/24/color/
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Problem Definition

« Given a bipartite graph with people as one set
of vertices and events as the other set, measure
tie strength between each pair of individuals

* Assumption

» Attendance at mutual events
iImplies an implicit weighted
social network between people




Motivation

* Most real-world networks are bipartite and are converted to
unipartite (e.g., via AA")

 Explicitly declared friendship links can suffer from a low
sighal-to-noise ratio (e.g., Facebook friends)

« Challenge: Detect which of links in the unipartite graph are
Important

« Goal: Infer the implicit weighted social network from people’s
participation in mutual events



Tie Strength

* A measure of tie strength induces
* a ranking on all the edges, and

 a ranking on the set of neighbors for every person

« Example of a simple tie-strength measure

« Common neighbor measures the total number of
common events to a pair of individuals






Decisions, Decisions

There are many different measures of tie-strength
1. Common neighbor

Jaccard index

Max Which one

Linear

Delta should you
Adamic and Adar

Preferential attachment ChOOSE?
Katz measure

Random walk with restarts

10. Simrank

11. Proportional

12. ...
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Roadmap

* An axiomatic approach to the problem of inferring implicit
social networks by measuring tie strength

A characterization of functions that satisfy all our axioms

* Classification of prior measures according to the axioms that
they satisfy

* Experiments

e Summary



Running Example

Input
People X Event Bipartite Graph

Partial Order of Tie Strength among People

infer >

O

Output

(a,b) (c,d)

(b,c), (b,d), (c,e), (d,e)

(a,c), (a,d), (a,e), (b,e)
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AXxioms

 AXiom 1: Isomorphism

« Axiom 2: Baseline

« Axiom 3: Frequency

« Axiom 4: Intimacy

« Axiom 5: Popularity

» Axiom 6: Conditional Independence of People
« Axiom 7: Conditional Independence of Events

« Axiom 8: Submodularity



Axiom 1: Isomorphism

* Tie strength between u and v is independent of the labels of u

and v
@ Q
) P © Q

e A
S o

R
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Axiom 2: Baseline

* |If there are no events, then tie strength between each pair u
and vis 0O

TSxu, v)=0

* |[f there are only two people u and v and a single event P that
they attend, then their tie strength is at most 1

TSpu, v) <1

» Defines an upper-bound for how much tie strength can
be generated from a single event between two people



Axiom 3: Frequency & Axiom 4: Intimacy

» Axiom 3 (Frequency)

* More events create stronger ties

. . Q

« All other things being equal, the more cv
events common to u and v, the stronger @A R
their tie-strength

* Axiom 4 (Intimacy) ©

« Smaller events create stronger ties

 All other things being equal, the fewer invitees there are to any
particular event attended by u and v, the stronger their tie-strength



Axiom 5: Popularity

 Larger events create more ties

« Consider two events P and Q

« If |Q| > |P|, then the total tie
strength created by Q is more
than that created by P




Axioms 6 & 7: Conditional Independence of
People and of Events

« Axiom 6: Conditional Independence of People

* A node u’s tie strength to other people does not depend on events
that u does not attend

 Axiom 7: Conditional Independence of Events

* The increase In tie strength between u and v due to an event P does
not depend on other events, just on the existing tie strength between u
and v

° TS(G+P)(U5 V) — g (TSG(Ui V), TSP(U, V))

* where g is some monotonically increasing function



Axiom 8: Submodularity

* The marginal increase In tie strength of u and v due to an event
Q is at most the tie strength between u and v if Q was their only
event

 If G is a graph and Q is a single event, then
IS, V)-TSglu, v) < TSq(U, V)



Example — Mapping to Axioms

Input

People X Event Bipartite Graph

infer >

Output

Partial order of Tie Strength

(a,b) (c,d)

(b,c), (b,d), (c,e), (d,e)

(a,c), (a,d), (a,e), (b,e)

high Axiom 4 (Intimacy)
& Axiom 3 (Freq)

Axiom 1
(Isomorphism)

Axiom 2 (Baseline) &
low Axiom 6 (Cond. Indep.
of Vertices) & Axiom 7
(Cond. Indep. of Events)



Observations on the Axioms

* Our axioms are fairly intuitive

Al: Isomorphism A2: Baseline A3: Frequency A4: Intimacy
A5: Popularity A6: Cond. Indep. of | A7: Cond. indep. of | A8: Submodularity
people events

* But, several previous measures in the literature break some of these
axioms

 Satisfying all the axioms is not sufficient to uniquely identify a measure of
tie strength

* One reason: inherent tension between Axiom 3 (Frequency) and Axiom 4 (Intimacy)



Inherent Tension Between Frequency &
Intimacy

« Scenario #1 (intimate)

* Mary and Susan go to 2 parties, where they are
the only people there.

« Scenario #2 (frequent)

« Mary, Susan, and Jane go to 3 parties, where they are the
only people there.

* In which scenario is Mary’s tie to Susan stronger?



Observations on the Axioms (cont.)

Al: Isomorphism A2: Baseline A3: Frequency A4: Intimacy
A5: Popularity A6: Cond. Indep. of | A7: Cond. indep. of | A8: Submodularity
people events

 Axioms are equivalent to a natural partial order on the strength
of ties

* Pertinent to ranking application

* Choosing a particular tie-strength function is equivalent to
choosing a particular linear extension of this partial order

* Non-obvious decision

 Details in paper: http://eliassi.org/papers/gupte-websci12.pdf
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Preamble to the Characterization Theorem

 Let f(n) = total tie strength generated in a single event with n people

fm
(2)

* |f there is a single party with n people, the tie strength of each tie is

« Based on Axiom 1 (Isomorphism)

* The total tie strength created at an event P with n people is a monotone
function f(n) that is bounded by 1 < f(n) < (})

« Based on Axiom 2 (Baseline) and Axiom 4 (Intimacy) and Axiom 5
(Popularity)



Characterizing Tie Strength

Theorem. Given a graph G = (L U R, E) and two vertices u and v,
if the tie-strength function TS follows Axioms (1-8), then the
function has to be of the form

TSg(u, v) = g(h(|P.|), h(|P;|), ..., h(| Pc]))
e {P} .« are the events common to both uand v

* his a monotonically decreasing function bounded by
1>h(n) =+ (n) n=2;h(1) =1; h(0) = 0.

* g is a monotonically increasing submodular function



Characterizing Tie Strength

Theorem. Given a graph G = (L U R, E) and two vertices u and v,
if the tie-strength function TS follows Axioms (1-8), then the
function has to be of the form

T56(u, v) = g(h(|P1]), h(IP>]), ..., (1 Pc|))

e {P} .« are the events common to both uand v

* his a monotonically decreasing function bounded by
1>h(n) =+ (n) n=2;h(1) =1; h(0) = 0.

* g is a monotonically increasing submodular function



Characterizing Tie Strength

Theorem. Given a graph G = (L U R, E) and two vertices u and v,
if the tie-strength function TS follows Axioms (1-8), then the
function has to be of the form

TS6(u, v) = g(h(|P.]), h(|P21), ..., h(|Pi[))

e {P} .« are the events common to both uand v

* his a monotonically decreasing function bounded by
1>h(n) =+ (n) n=2;h(1) =1; h(0) = 0.

* g is a monotonically increasing submodular function



Characterizing Tie Strength

Theorem. Given a graph G =

(L U R, E) and two vertices u and v,

if the tie-strength function TS follows Axioms (1-8), then the
function has to be of the form

TSs(u, v) =

g(h(|P.), h(|P21), ...,

h(1Pel))

e {P} .« are the events common to both uand v

* his a monotonically decreasing function bounded by

1=h(n) 2= (n)

n=2;h(1) =1; h(0) =0.

* g is a monotonically increasing submodular function



Many Measures
of Tie Strength

Preferential attachment
Katz measure

9. Random walk with restarts
10. Simrank

11. Proportional

1. Common neighbor
2. Jaccard index

3. Max

4. Linear

5. Delta

6. Adamic and Adar
/.

8.

TS — =
(u,) Perr(%?r}w(r(v) | P|

TS(u,v) = Z %

PeT'(u)N'(v) | ‘

1

TS(u,v) = Z

PeT'(u)nI'(v) (|I;|)

1
TS(u,v) = Z og | P

PeTl(u)NI'(v)

T'S(u,v) = [P(u)] - [T'(v)]

TS(u,v) = Z A1l
g€ path between u,v
TS(u,v) 1 ifu=v
u,v) = a, '
v Zaer(T%(%f)ﬂ.ﬁ?(&,))rS( 2 otherwise
€ TS (u,v)
TS(u,v) = — + (1 —¢) ’
Z |P| ZwEF(u) TS(“’? w)

Pel(u)nI'(v)



Non Self-Referential Tie Strength Measures

Common neighbor
 The total # of common events that both u and v attended

Jaccard Index
« Similar to common neighbor

* Normalizes for how “social” u and v are
Adamic and Adar [2003], Delta, and Linear
 Tie strength increases with the number of events
» Tie strength is 1 over a simple function of event size

« Max
» Tie strength does not increase with the number of events

 Tie strength is the maximum tie strength from all common events



Self-Referential Tie-Strength Measures

Katz measure [Katz,1953]

» Tie strength is the number of paths between u and v, where each path is discounted
exponentially by the length of the path

Random walk with restarts
* A non-symmetric measure of tie strength
» Tie strength is the stationary probability of a Markov chain process

« With probability a, jump to a node u; and with probability 1-a, jump to a neighbor of
a current node.

Simrank [Jeh & Widom, 2002]
» Tie strength is captured by recursively computing the tie strength of neighbors

Proportional
 Tie strength increases with # of events
* People spend time proportional to their tie-strength at a party



Measures of Tie-Strength that
Satisfy All the Axioms

Al: Isomorphism

A2: Baseline

A3: Frequency

A4: Intimacy

A5: Popularity

A6: Cond. indep. of P

A7: Cond. indep. of E

A8: Submodularity

glay, ..., ax)
Al | A2 | A3 | A4 | AS | A6 | A7 | A8

h(|P;]) = a;
Common glay, ..., a;) =Za;
Neighbors VIV Y Y Y Y Y h(n)=1

glay, ..., ai) =2a;
Delta VIVI IV IV IV VS h(n) = 2(n(n-1))"
Adamic & glay ..., ai) =2a;
Adar VIV Y Y Y Y h(n) = (log(n))
Linear clvlvlvlvlvl vy 9ayad=2a

h(n) = n1
Max clvlivlvlvlvlv]| v |99y ad=maa}

h(n) =n1




Measures of Tie-Strength that
Do Not Satisfy All the Axioms

Al: Isomorphism

A2: Baseline

A3: Frequency

A4: Intimacy

A5: Popularity

A6: Cond. indep. of P

A7: Cond. indep. of E

A8: Submodularity

A2

A3

A6 | A7 | A8

h

|Pi|) = a;

Jaccard Index

Katz Measure

Preferential
Attachment

RWR

Simrank

Proportional

N N BN L NO BN N

X|IX|X| N [ XX

X [X|x<| X [N]XN

SNIXIX] N NS

SIS EN BN EN BN

N EIEN EENNEN b
XIX|IX|] X [X[X
XIX|IX]| X [X[X

X|IX|IX| X [X]|X




Data Sets

Graphs # of People # of Events
Southern Women 18 14
The Tempest 19 34
A Comedy of Errors 19 40
Macbeth 38 67
Reality Mining Bluetooth 104 326,248
Enron Emails 32,471 371,321




Completeness of Axioms 1-8
(Number of Ties Not Resolved by the Partial Order)

Dataset Tie Pairs Incomparable Pairs (%)
Southern Women 11,628 683 (5.87)
The Tempest 14,535 275 (1.89)
A Comedy of Errors 14,535 726 (4.99)
Macbeth 246,753 584 (0.23)
Reality Mining 13,794,378 1,764,546 (12.79)

* % of tie-pairs where different tie-strength functions can differ
« Smaller is better
* Generally, percentages are small
 Large real-world networks have more unresolved ties

# of tie pairs = ((g))




Take-away Point #1

* % of tie pairs on which different tie strength functions
can differ is small.”

* Disclaimer: For ranking applications and tie-strength functions that satisfy
the axioms



Two Tie-Strength Functions that Do Not
Satisfy the Axioms

- Jaccard Index TS(u,v) = 1L O L)]
. L T'(u) UT (v)]
 Normalizes for how “social” u and v are

* Temporal Proportional
* |ncreases with number of events

* People spend time proportional to their tie-strength in a party
« Events are ordered by time

TS (u,v,t)
TS(u,v,t —1) if u and v do not attend P,
— 1 TS(u,v,t—1) .
e+ (1 —¢) Swep, TS(wwi 1) otherwise




Soundness of Axioms 1-8

(Number of Conflicts Between the Partial Order and Tie-Strength
Functions Not Satisfying the Axioms)

Dataset Tie Pairs Jaccard (%) Temporal (%)
Southern Women 11,628 1,441 (12.39) 665 (5.72)
The Tempest 14,535 488 (3.35) 261 (1.79)
A Comedy of Errors 14,535 1,114 (7.76) 381 (2.62)
Macbeth 246,753 2,638 (1.06) 978 (0.39)
Reality Mining 13,794,378 290,934 (0.02) 112,546 (0.01)

« Smaller is better

» Generally, percentages are small

* % of tie-pairs in conflict with the partial order

* They decrease as the dataset increases




More on Soundness

e Question 1:

Are the number of conflicts, between the partial order and tie-strength

functions not satisfying the axioms, small because most of the tie-strengths
are zeros (sparsity of real graph)?

« Answer:

This is partially true.

For some pairs, the tie-strength being set to zero is caused by the axioms.

It may or may not be true that all these pairs have tie-strength zero in the
actual function used.

For example, this won’t be true for some self-referential functions like
Simrank, Random Walk with Restart, etc.



Even More on Soundness

* Question 2: How do the conflict numbers change if we only looked at tie pairs
that have nonzero tie-strengths?

« Answer: The percentages go up but not by much.

Dataset Tie Pairs (exchZil:\Zi:'sS= 0) Jaccard | Temporal
Southern Women 11,628 11,537 1,441 665
The Tempest 14,535 10,257 488 261
A Comedy of Errors| 14,535 11,685 1,114 381
Macbeth 246,753 74,175 2,638 978

Reality Mining 13,794,378 12,819,272 290,934 | 112,546




Even More on Soundness

14%

12%

10%

8%

6%

4%

2%

0%

B % Conflict with Jaccard

B % Conflict with Jaccard
(excluding TS=0)

Southern The A Macbeth Reality
Women Tempest Comedy Mining
of Errors

7%

6%

5%

4%

3%

2%

1%

0%

B % Conflict with Temporal

B % Conflict with Temporal
(excluding TS=0)

Southern  The A
Women Tempest Comedy
of Errors

Macbeth Reality
Mining




Take-away Point #2

* % of conflicts between our axioms and tie-strength functions that do
not satisfying our axioms is small.”

* Disclaimer: For ranking applications



Put Take-away Points #1 & #2 Together

1. % of tie pairs on which 2. % of conflicts between our
different tie-strength axioms and tie-strength
functions can differ is small functions not satisfying our

axioms iIs small

If your application is ranking, just pick the most
computationally efficient tie-strength measure

(e.g. common neighbor).

Disclaimer: For ranking applications



Related Work

« Strength of ties
« Spread of information in social networks [Granovetter, 1973]
» Use external information to learn strength of tie
* [Gilbert & Karahalios, 2009], [Kahanda & Neville, 2009]
 Link prediction
* No axiomatic work that | know of

« See a theoretical justification of popular link prediction heuristics
[Sarkar, Chakrabarti, Moore, 2010]



Summary

* Presented an axiomatic approach to the problem of
inferring implicit social networks by measuring tie strength

* There are relatively few axiomatic work on graph measures

1.
2.
3.

Central positions in social networks [Brandes, 2020]
Axioms for centrality [Boldi & Vigna, 2014]

An axiomatic approach to trust-based recommendation systems
[Andersen et al, 2008]

PageRank axiomatization [Altman & Tennenholtz, 2005]

. Information theoretic measure of similarity [Lin, 1998]

H
QUESTIONS





