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Abstract

Political scientists have conventionally assumed that achieving democracy is a one-way
ratchet. Only very recently has the question of ‘democratic backsliding’ attracted any research
attention. We argue that democratic instability is best understood with tools from complexity
science. The explanatory power of complexity science arises from several features of complex
systems. Their relevance in the context of democracy is discussed. Several policy recommen-
dations are offered to help (re)stabilize current systems of representative democracy.

Introduction
The Economist recently identified 80 countries whose democracy score declined during the last
decade, including the U.S. and some consolidated European democracies (The Economist Intelli-
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Problem Definition
• Given a bipartite graph with people as one set 

of vertices and events as the other set, measure
tie strength between each pair of individuals

• Assumption
• Attendance at mutual events 

implies an implicit weighted 
social network between people 



Motivation
• Most real-world networks are bipartite and are converted to 

unipartite (e.g., via AAT)
• Explicitly declared friendship links can suffer from a low 

signal-to-noise ratio (e.g., Facebook friends)
• Challenge: Detect which of links in the unipartite graph are 

important
• Goal: Infer the implicit weighted social network from people’s 

participation in mutual events



Tie Strength

• A measure of tie strength induces 
• a ranking on all the edges, and
• a ranking on the set of neighbors for every person

• Example of a simple tie-strength measure
• Common neighbor measures the total number of 

common events to a pair of individuals



Macbeth 

We shall prove this by constructing such a function. We
shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·

P
a2�(u)

P
b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P |
+ (1� ✏)

TS(u, v)P
w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏
1

|Pt|
+ (1� ✏) TS(u,v,t�1)P

w2Pt
TS(u,w,t�1) otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.



Decisions, Decisions
There are many different measures of tie-strength

1. Common neighbor
2. Jaccard index
3. Max
4. Linear
5. Delta
6. Adamic and Adar
7. Preferential attachment
8. Katz measure
9. Random walk with restarts
10. Simrank
11. Proportional
12. … 

Which one 
should you 

choose?



Roadmap

• An axiomatic approach to the problem of inferring implicit 
social networks by measuring tie strength

• A characterization of functions that satisfy all our axioms 

• Classification of prior measures according to the axioms that 
they satisfy 

• Experiments

• Summary



Running Example

infer

a

b

c

d

e

P

Q

R

high

low(a,c), (a,d), (a,e), (b,e)

(b,c), (b,d), (c,e), (d,e)

(a,b) (c,d)

Input
People × Event Bipartite Graph

Output
Partial Order of Tie Strength among People



Axioms
• Axiom 1: Isomorphism
• Axiom 2: Baseline
• Axiom 3: Frequency

• Axiom 4: Intimacy
• Axiom 5: Popularity
• Axiom 6: Conditional Independence of People
• Axiom 7: Conditional Independence of Events
• Axiom 8: Submodularity



Axiom 1: Isomorphism
• Tie strength between u and v is independent of the labels of u 

and v
b

c Q

d

e

R

c

e

R

b

d

Q

a

b

c

d

e

P

Q

R



Axiom 2: Baseline
• If there are no events, then tie strength between each pair u 

and v is 0
TSÆ(u, v) = 0

• If there are only two people u and v and a single event P that 
they attend, then their tie strength is at most 1

TSP(u, v) ≤ 1
• Defines an upper-bound for how much tie strength can 

be generated from a single event between two people



Axiom 3: Frequency & Axiom 4: Intimacy

• Axiom 3 (Frequency)
• More events create stronger ties

• All other things being equal, the more 
events common to u and v, the stronger 
their tie-strength

• Axiom 4 (Intimacy)
• Smaller events create stronger ties

• All other things being equal, the fewer invitees there are to any 
particular event  attended by u and v, the stronger their tie-strength

a

b

c

d

e

P

Q

R



Axiom 5: Popularity
• Larger events create more ties

• Consider two events P and Q

• If |Q| > |P|, then the total tie 
strength created by Q is more 
than that created by P

a

b

c

d

e

P

Q

R



Axioms 6 & 7: Conditional Independence of 
People and of Events 
• Axiom 6: Conditional Independence of People
• A node u’s tie strength to other people does not depend on events 

that u does not attend

• Axiom 7: Conditional Independence of Events
• The increase in tie strength between u and v due to an event P does 

not depend on other events, just on the existing tie strength between u 
and v

• TS(G+P)(u, v) = g(TSG(u, v), TSP(u, v))

• where g is some monotonically increasing function



Axiom 8: Submodularity

• The marginal increase in tie strength of u and v due to an event 
Q is at most the tie strength between u and v if Q was their only 
event

• If G is a graph and Q is a single event, then
TS(G+Q)(u, v)−TSG(u, v) ≤ TSQ(u, v)



Example – Mapping to Axioms

Axiom 2 (Baseline) & 
Axiom 6 (Cond. Indep. 
of Vertices) & Axiom 7 

(Cond. Indep. of Events)

Axiom 1 
(Isomorphism)

Axiom 4 (Intimacy) 
& Axiom 3 (Freq)

infer

a

b

c

d

e

P

Q

R

high

low(a,c), (a,d), (a,e), (b,e)

(b,c), (b,d), (c,e), (d,e)

(a,b) (c,d)

Input
People × Event Bipartite Graph

Output
Partial order of Tie Strength



Observations on the Axioms
• Our axioms are fairly intuitive

• But, several previous measures in the literature break some of these 
axioms

• Satisfying all the axioms is not sufficient to uniquely identify a measure of 
tie strength 

• One reason: inherent tension between Axiom 3 (Frequency) and Axiom 4 (Intimacy)

A1: Isomorphism A2: Baseline A3: Frequency A4: Intimacy

A5: Popularity A6: Cond. Indep. of 
people

A7: Cond. indep. of 
events

A8: Submodularity



Inherent Tension Between Frequency & 
Intimacy
• Scenario #1 (intimate)

• Mary and Susan go to 2 parties, where they are 
the only people there.

• Scenario #2 (frequent)

• Mary, Susan, and Jane go to 3 parties, where they are the 
only people there.

• In which scenario is Mary’s tie to Susan stronger?



Observations on the Axioms (cont.)

• Axioms are equivalent to a natural partial order on the strength 
of ties
• Pertinent to ranking application

• Choosing a particular tie-strength function is equivalent to 
choosing a particular linear extension of this partial order
• Non-obvious decision
• Details in paper: http://eliassi.org/papers/gupte-websci12.pdf

A1: Isomorphism A2: Baseline A3: Frequency A4: Intimacy

A5: Popularity A6: Cond. Indep. of 
people

A7: Cond. indep. of 
events

A8: Submodularity

http://eliassi.org/papers/gupte-websci12.pdf


Preamble to the Characterization Theorem
• Let f(n) = total tie strength generated in a single event with n people

• If there is a single party with n people, the tie strength of each tie is !(#)!
"

• Based on Axiom 1 (Isomorphism)

• The total tie strength created at an event P with n people is a monotone 
function f(n) that is bounded by 1 ≤ 𝑓(𝑛) ≤ #

%

• Based on Axiom 2 (Baseline) and Axiom 4 (Intimacy) and Axiom 5 
(Popularity)



Characterizing Tie Strength

Theorem.(Given&a&graph&G"="(L"∪"R,"E)"and"two"vertices"u"and"v,&
if& the& tie0strength& function& TS& follows& Axioms& (108),& then& the&
function&has&to&be&of&the&form"

TSG(u,"v)"="g(h(|P1|),"h(|P2|),&…,"h(|Pk|))"
• {Pi}1≤i≤k"are&the&events&common&to&both"u"and"v"
• ℎ &is& a& monotonically& decreasing& function& bounded& by&
1 ≥ ℎ(!) ≥ !

!
!
,&!&≥&2;&ℎ 1 = 1;&ℎ 0 = 0.&

• !&is&a&monotonically&increasing&submodular&function&
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Many Measures 
of Tie Strength
1. Common neighbor
2. Jaccard index
3. Max
4. Linear
5. Delta
6. Adamic and Adar
7. Preferential attachment
8. Katz measure
9. Random walk with restarts
10. Simrank
11. Proportional

We shall prove this by constructing such a function. We
shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·

P
a2�(u)

P
b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P |
+ (1� ✏)

TS(u, v)P
w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏
1

|Pt|
+ (1� ✏) TS(u,v,t�1)P

w2Pt
TS(u,w,t�1) otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
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allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
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under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
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real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·

P
a2�(u)

P
b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P |
+ (1� ✏)

TS(u, v)P
w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏
1

|Pt|
+ (1� ✏) TS(u,v,t�1)P

w2Pt
TS(u,w,t�1) otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·

P
a2�(u)

P
b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P |
+ (1� ✏)

TS(u, v)P
w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏
1

|Pt|
+ (1� ✏) TS(u,v,t�1)P

w2Pt
TS(u,w,t�1) otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·

P
a2�(u)

P
b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P |
+ (1� ✏)

TS(u, v)P
w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏
1

|Pt|
+ (1� ✏) TS(u,v,t�1)P

w2Pt
TS(u,w,t�1) otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.



Non Self-Referential Tie Strength Measures

• Common neighbor
• The total # of common events that both u and v attended

• Jaccard Index
• Similar to common neighbor
• Normalizes for how “social” u and v are

• Adamic and Adar [2003], Delta, and Linear
• Tie strength increases with the number of events
• Tie strength is 1 over a simple function of event size

• Max
• Tie strength does not increase with the number of events
• Tie strength is the maximum tie strength from all common events



Self-Referential Tie-Strength Measures

• Katz measure [Katz,1953]
• Tie strength is the number of paths between u and v, where each path is discounted 

exponentially by the length of the path 
• Random walk with restarts

• A non-symmetric measure of tie strength
• Tie strength is the stationary probability of a Markov chain process
• With probability α, jump to a node u; and with probability 1-α, jump to a neighbor of 

a current node.
• Simrank [Jeh & Widom, 2002]

• Tie strength is captured by recursively computing the tie strength of neighbors
• Proportional

• Tie strength increases with # of events
• People spend time proportional to their tie-strength at a party



Measures of Tie-Strength that
Satisfy All the Axioms

A1 A2 A3 A4 A5 A6 A7 A8
g(a1, …, ak)          
h(|Pi|) = ai

Common 
Neighbors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai

h(n) = 1

Delta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai

h(n) = 2(n(n-1))-1

Adamic & 
Adar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai

h(n) = (log(n))-1

Linear ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai

h(n) = n-1

Max ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =max{ai}
h(n) = n-1

A1: Isomorphism A2: Baseline A3: Frequency A4: Intimacy

A5: Popularity A6: Cond. indep. of P A7: Cond. indep. of E A8: Submodularity



Measures of Tie-Strength that 
Do Not Satisfy All the Axioms

A1 A2 A3 A4 A5 A6 A7 A8
g(a1, …, ak)          
h(|Pi|) = ai

Jaccard Index ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
Katz Measure ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗
Preferential 
Attachment ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

RWR ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
Simrank ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Proportional ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

A1: Isomorphism A2: Baseline A3: Frequency A4: Intimacy

A5: Popularity A6: Cond. indep. of P A7: Cond. indep. of E A8: Submodularity



Data Sets

Graphs # of People # of Events

Southern Women 18 14

The Tempest 19 34

A Comedy of Errors 19 40

Macbeth 38 67

Reality Mining Bluetooth 104 326,248

Enron Emails 32,471 371,321



Completeness of Axioms 1-8
(Number of Ties Not Resolved by the Partial Order)

• % of tie-pairs where different tie-strength functions can differ
• Smaller is better
• Generally, percentages are small
• Large real-world networks have more unresolved ties

Dataset Tie Pairs Incomparable Pairs (%)
Southern Women 11,628 683 (5.87)

The Tempest 14,535 275 (1.89)
A Comedy of Errors 14,535 726 (4.99)

Macbeth 246,753 584 (0.23)
Reality Mining 13,794,378 1,764,546 (12.79)



Take-away Point #1
•% of tie pairs on which different tie strength functions 

can differ is small.*

* Disclaimer: For ranking applications and tie-strength functions that satisfy 
the axioms



Two Tie-Strength Functions that Do Not 
Satisfy the Axioms
• Jaccard Index

• Normalizes for how “social” u and v are

• Temporal Proportional
• Increases with number of events
• People spend time proportional to their tie-strength in a party
• Events are ordered by time

For the converse, we are given an total ordering L = (N⇤
,L

) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !

R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We
shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 2 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [Karzanov and Khachiyan, 1991]. We leave
the analysis of the analytical properties and its viability as
a strength function in real world applications as an open
research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of tie-strength measures discussed
in previous literature. We review the most popular of them
here and classify them according to the axioms they satisfy.
In this section, for an event P , we denote by |P | the number
of people in the event P . The size of P ’s neighborhood is
represented by |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index, which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta. Tie strength increases with the number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [Adamic
and Adar, 2003].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Katz, 1953]. It
counts the number of paths between u and v, where
each path is discounted exponentially by the length of
path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·

P
a2�(u)

P
b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce three new measures of tie strength.
In a sense, g =

P
is at one extreme of the range of functions

allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
TS is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P |
+ (1� ✏)

TS(u, v)P
w2�(u) TS(u,w)

Temporal Proportional. This is similar to Proportional,
but with a temporal aspect. TS is not a fixed point,
but starts with a default value and is changed accord-
ing to the following equation, where the events are
ordered by time.

TS(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏
1

|Pt|
+ (1� ✏) TS(u,v,t�1)P

w2Pt
TS(u,w,t�1) otherwise

For the converse, we are given an total ordering L = (N⇤
,L

) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !

R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We
shall define a function f : N⇤

! Q and define TSG(u, v) =
f(a1, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
n�1 and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
2�1 = 1. This

shows that TS satisfies Axiom 2 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmin

e
{TS(e) is defined and a N e}. Since,

at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2 (TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [Karzanov and Khachiyan, 1991]. We leave
the analysis of the analytical properties and its viability as
a strength function in real world applications as an open
research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of tie-strength measures discussed
in previous literature. We review the most popular of them
here and classify them according to the axioms they satisfy.
In this section, for an event P , we denote by |P | the number
of people in the event P . The size of P ’s neighborhood is
represented by |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index, which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta. Tie strength increases with the number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
�
|P |

2

�

Adamic and Adar. This measure was introduced in [Adamic
and Adar, 2003].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Katz, 1953]. It
counts the number of paths between u and v, where
each path is discounted exponentially by the length of
path.

TS(u, v) =
X

q2 path between u,v

�
�|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·

P
a2�(u)

P
b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce three new measures of tie strength.
In a sense, g =

P
is at one extreme of the range of functions

allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
TS is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P |
+ (1� ✏)

TS(u, v)P
w2�(u) TS(u,w)

Temporal Proportional. This is similar to Proportional,
but with a temporal aspect. TS is not a fixed point,
but starts with a default value and is changed accord-
ing to the following equation, where the events are
ordered by time.

TS(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏
1

|Pt|
+ (1� ✏) TS(u,v,t�1)P

w2Pt
TS(u,w,t�1) otherwise



Soundness of Axioms 1-8
(Number of Conflicts Between the Partial Order and Tie-Strength 
Functions Not Satisfying the Axioms)

• % of tie-pairs in conflict with the partial order 
• Smaller is better
• Generally, percentages are small 
• They decrease as the dataset increases

Dataset Tie Pairs Jaccard (%) Temporal (%)
Southern Women 11,628 1,441 (12.39) 665 (5.72)

The Tempest 14,535 488 (3.35) 261 (1.79)
A Comedy of Errors 14,535 1,114 (7.76) 381 (2.62)

Macbeth 246,753 2,638 (1.06) 978 (0.39)
Reality Mining 13,794,378 290,934 (0.02) 112,546 (0.01)



More on Soundness
• Question 1:

Are the number of conflicts, between the partial order and tie-strength 
functions not satisfying the axioms, small because most of the tie-strengths 
are zeros (sparsity of real graph)?

• Answer:
• This is partially true.
• For some pairs, the tie-strength being set to zero is caused by the axioms. 
• It may or may not be true that all these pairs have tie-strength zero in the 

actual function used. 
• For example, this won’t be true for some self-referential functions like 

Simrank, Random Walk with Restart, etc. 



Even More on Soundness
• Question 2: How do the conflict numbers change if we only looked at tie pairs 

that have nonzero tie-strengths?
• Answer: The percentages go up but not by much.

Dataset Tie Pairs Tie Pairs 
(excluding TS=0) Jaccard Temporal

Southern Women 11,628 11,537 1,441 665

The Tempest 14,535 10,257 488 261

A Comedy of Errors 14,535 11,685 1,114 381

Macbeth 246,753 74,175 2,638 978

Reality Mining 13,794,378 12,819,272 290,934 112,546



Even More on Soundness
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Take-away Point #2
• % of conflicts between our axioms and tie-strength functions that do 

not satisfying our axioms is small.*

* Disclaimer: For ranking applications



Put Take-away Points #1 & #2 Together

1. % of tie pairs on which 
different tie-strength 
functions can differ is small

2. % of conflicts between our 
axioms and tie-strength 
functions not satisfying our 
axioms is small

If your application is ranking, just pick the most 
computationally efficient tie-strength measure 
(e.g. common neighbor).

Disclaimer: For ranking applications



Related Work
• Strength of ties
• Spread of information in social networks [Granovetter, 1973]
• Use external information to learn strength of tie
• [Gilbert & Karahalios, 2009], [Kahanda & Neville, 2009]

• Link prediction
• No axiomatic work that I know of
• See a theoretical justification of popular link prediction heuristics 

[Sarkar, Chakrabarti, Moore, 2010]



Summary
• Presented an axiomatic approach to the problem of 

inferring implicit social networks by measuring tie strength
• There are relatively few axiomatic work on graph measures

1. Central positions in social networks [Brandes, 2020]

2. Axioms for centrality [Boldi & Vigna, 2014]

3. An axiomatic approach to trust-based recommendation systems 
[Andersen et al, 2008] 

4. PageRank axiomatization [Altman & Tennenholtz, 2005]

5. Information theoretic measure of similarity [Lin, 1998]




