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The geometric mean?

Richard M. Vogel

Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA

ABSTRACT
The sample geometric mean (SGM) introduced by Cauchy in 1821, is
a measure of central tendency with many applications in the natural
and social sciences including environmental monitoring, scientomet-
rics, nuclear medicine, infometrics, economics, finance, ecology, sur-
face and groundwater hydrology, geoscience, geomechanics,
machine learning, chemical engineering, poverty and human devel-
opment, to name a few. Remarkably, it was not until 2013 that a
theoretical definition of the population geometric mean (GM) was
introduced. Analytic expressions for the GM are derived for many
common probability distributions, including: lognormal, Gamma,
exponential, uniform, Chi-square, F, Beta, Weibull, Power law, Pareto,
generalized Pareto and Rayleigh. Many previous applications of SGM
assumed lognormal data, though investigators were unaware that
for that case, the GM is the median and SGM is a maximum likeli-
hood estimator of the median. Unlike other measures of central ten-
dency such as the mean, median, and mode, the GM lacks a clear
physical interpretation and its estimator SGM exhibits considerable
bias and mean square error, which depends significantly on sample
size, pd, and skewness. A review of the literature reveals that there
is little justification for use of the GM in many applications.
Recommendations for future research and application of the GM
are provided.
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1. Introduction

For nearly two centuries we have known that the sample geometric mean,

SGM ¼ n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2:::xn

p ¼ exp
Xn
i¼1

ln ðxiÞ
n

 !
for x > 0 (1)

is a measure of the central tendency of a positive random variable which is always less
than its sample arithmetic mean (Cauchy 1821). In an elegant half page paper, Burk
(1985) proves the following order of sample means: harmonic mean< geometric mean-
< arithmetic mean< root mean square (see appendix for definition of these sam-
ple means).
The SGM is now used in a very broad range of natural and social science disciplines

such as: to express acceptable levels of fecal coliform counts and other contaminant
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levels in federal and state water quality criteria or standards (Landwehr 1978; Parkhurst
1998), for summarizing immunologic data (Olivier, Johnson, and Marshall 2008), for
summarizing citation counts in scientometrics and infometrics (Thelwall 2016), for
computing cumulative compounding rates in economics and finance (Spizman and
Weinstein 2008), for maximization of investment portfolio returns (Elton and Gruber
1974), for correcting for tissue attenuation in gastric emptying studies in nuclear medi-
cine (Ford, Kennedy, and Vogel 1992), for summarizing the suitability of ecological
habitats (Hirzel and Arlettaz 2003), for summarizing ecological population growth rates
(Yoshimura et al. 2009), for summarizing groundwater samples (Currens 1999), in
machine learning algorithms in pattern classification and data visualization (Tao et al.
2009), for computing reaction rates in chemical engineering (Garland and Bayes 1990),
for summarizing samples in pharmacokinetics (Martinez and Bartholomew 2017), for
summarizing return periods or recurrence intervals (Gumbel 1961), for summarizing
mammalian allometry data (Smith 1993), in seismic reliability analyses (Abyani,
Asgarian, and Zarrin 2019) and for computing the Human Development Index (Human
Development Report 2010). In some fields the application of the SGM is pervasive, such
as for characterizing the effective permeability of heterogeneous porous media in a
broad range of geoscience and geomechanics applications (Parkin and Robinson 1993;
Jensen 1991; Selvadurai and Selvadurai 2014), including applications to groundwater
modeling, nuclear waste characterization, earthquake hazards, geothermal energy extrac-
tion and disposal of carbon dioxide as a means of mitigating the impacts of climate
change (see Selvadurai and Selvadurai 2014, for citations). In spite of numerous cogent
arguments against the use of SGM in environmental monitoring (Thomas 1955;
Parkhurst 1998), the SGM also has widespread use for summarizing environmental con-
centrations and in the implementation of water quality standards in the U.S. (U.S.E.P.A
2010). The above list is neither exhaustive, nor comprehensive, and only gives a glimpse
of the broad range of applications of the SGM in practice.
The nearly ubiquitous application of the SGM in natural and social science disciplines

is remarkable given that it was only recently that a theoretical definition of the geomet-
ric mean (GM) was introduced in this journal (Feng, Wang, and Tu 2013)

GM ¼ exp ½E ln ðXÞ½ �� ¼ exp
ð1
0

ln ðXÞf ðXÞdX

2
64

3
75 for X > 0 only (2)

where f ðXÞ denotes the probability distribution (pd) of X. Feng et al. (2017) introduce a
more general definition of GM which includes the possibility that observations might
equal zero, in which case GM¼ 0. Others have introduced equivalent expressions for
GM in (2) with little discussion (for example, see Equation (1) in Jensen 1991; and
equation (6) in Limbrunner, Vogel, and Brown 2000). Jensen (1998) introduces GM as

a special case of the power mean lp ¼ ½EðXpÞ�1 p=
when p ¼ 0, in which case the power

mean reduces to GM in (2).
One might wonder why it took centuries for a theoretical definition of GM to appear;

perhaps it is because mathematicians are reluctant to introduce a theoretical statistic
which does not exist under certain conditions, as is the case in (2). Naturally, all other
commonly used measures of central tendency such as the median, mode and arithmetic
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mean can be computed without constraints on the variable of interest and have had
well developed theoretical definitions for a very long time.
It is very difficult to find other examples of a sample estimator of a statistic which

has no associated theoretical definition. Imagine if we did not know that the sample
median is an estimate of the value of the variable with equal exceedance and nonexcee-
dance probabilities. Imagine if we did not know that the arithmetic mean of X is an
estimate of E[X]. Without such knowledge casinos, insurance companies, and lotteries
could not earn reliable profits.
Without a theoretical definition of a statistic, it is not possible to define the bias or

root mean square error (RMSE) associated with a particular sample estimator of that
statistic. Until the definition of GM was advanced in (2), it was not possible to deter-
mine whether or not SGM provides a good approximation of the GM, or not. Without
a theoretical definition for GM it was only possible to derive the expectation and vari-
ance of the SGM, as was done by Landwehr (1978) and others. Without the theoretical
definition of GM in (2), it was not possible to define the bias or RMSE associated with
SGM, for comparison with other estimators of GM. It is ONLY through such studies of
the sampling properties of an estimator, that one can conclude which estimator is best
under certain conditions.
Given the widespread usage of SGM combined with the lack of information concern-

ing the theoretical properties of GM and the sampling properties of SGM, the goals of
this paper are (1) to provide comparisons of the theoretical properties of GM with other
common measures of central tendency including the arithmetic mean and the median
for a very wide range of commonly used probability distributions (pds) (2) to summar-
ize the sampling properties of SGM for a range of pdfs, and (3) to discuss various con-
cerns relevant to the use of GM in applications.

2. Derivation of the geometric mean, GM, for a wide class of probability
distributions

In this section, the theoretical definition of GM in (2) is used to derive relationships
between GM and the parameters of various common pds. The random variable X is
assumed to be positive. Theorem 5 in Feng et al. (2017) proves that the expression in
(2) is equivalent to

GM ¼ lim
n!1

" ð1
0

x1=nf ðxÞdx
!n#

(3)

which is often much easier to evaluate than (2) and thus was used to derive most of the
formulas for GM reported in Table 1 and illustrated in Figure 1. The GM can also be
expressed in terms of the quantile function of x, denoted xðpÞ so that,

GM ¼ exp
� ð1

0
ln ðxðpÞÞdp

�
(4)

where xðpÞ ¼ F�1½p� and p denotes nonexceedance probability given by the cumulative
distribution function p ¼ FðxÞ: Equation (4) was used to derive GM for the generalized
Pareto distribution (Hosking and Wallis 1987). Arnold (2008) describes five different
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Pareto distributions. Here we consider four of those distributions including the three
Pareto models which form the basis of the generalized Pareto distribution (Pickands
1975) as well as the classical Pareto model.

Figure 1. The ratios GM/Median and GM/Mean, for the Gamma, lognormal, Weibull, generalized
Pareto, Power Function, Pareto, Rayleigh, and Exponential probability distributions.

6 R. M. VOGEL



Table 1 reports the probability density function f(x), and its associated mean, median,
GM and coefficient of skewness for the pds: lognormal, Gamma, exponential, uniform,
Chi-square, F, Beta, Weibull, Power law, Pareto, generalized Pareto, and Rayleigh.
Figure 1 illustrates the ratios GM/Mean and GM/Median for the lognormal, gamma,
exponential, Weibull, power law, Pareto, generalized Pareto and Rayleigh distributions.
Figure 1 illustrates that among all the pds considered, GM is always less than the

arithmetic mean and with the exception of the Pareto and lognormal pds, GM is always
less than the median. The relationship between GM, mean and median is highly
dependent upon both the pd and its coefficient of variation or skewness. Importantly,
among all the distributions considered, it is only for the lognormal case that GM is
equivalent to the median, yet for data from other positively skewed distributions, with
the exception of the Pareto pd, GM is generally not very close to the median.
To my knowledge, Table 1 and Figure 1 are the first examples which compare the

theoretical properties of GM for a variety of pds. Such comparisons are necessary for a
complete understanding of the behavior of one measure of central tendency versus
another and are commonplace for other measures of central tendency and for a wide
class of other statistics such for moment ratios and L-moment ratios (Vogel and
Fennessey 1993). If GM is to find further use in scientific investigations and applica-
tions, further developments and comparisons analogous to Figure 1 are needed.

3. Geometric mean applications and the lognormal distribution

Many previous applications of the SGM assume the variable of interest follows a lognor-
mal distribution. For example, a lognormal pd was assumed in their analysis of the
properties of SGM for: environmental concentration data (Parkhurst 1998; also see Ott
1990), immunologic data (Olivier, Johnson, and Marshall 2008), citation data (Thelwall
2016), mammalian allometry data (Smith 1993), investment and portfolio return data
(Elton and Gruber 1974), ecological population growth data (Yoshimura et al. 2009),
and for permeability data in geoscience and geomechanics applications (Selvadurai and
Selvadurai 2014). For example, within the context of the widespread use of SGM for
characterizing the effective permeability of heterogeneous subsurface materials, Jensen
(1991) concluded on the basis of numerous previous studies that “Their results indicate
that the geometric mean applies when permeabilities are log-normally distributed”.
Similarly, within the context of developing water quality regulatory guidelines for the
EPA, Stephen et al. (1985) suggest that “Geometric means, rather than arithmetic
means, are used here because the distributions of sensitivities of individual organisms in
toxicity tests on most materials and the distributions of sensitivities of species within a
genus are more likely to be lognormal than normal. Similarly, geometric means are
used for acute-chronic ratios and bioconcentration factors because quotients are likely
to be closer to lognormal than normal distributions.”
Surely the choice of a suitable summary statistic of central tendency of a random

variable should consider first, the application, interpretation and meaning of that statis-
tic instead of its probability distribution. For example, if one’s wish were to identify the
most typical value of a random variable, one might choose a median or mode, regard-
less of the pd of the observations. Similarly, a casino, insurance company or lottery

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 7



should focus on estimation of the expectation of their revenues if they are hoping to
realize a profit, over the long term, regardless of the pd of those revenues, thus they
may wish to compute an arithmetic mean because it would be an estimate of the long
term expectation of those revenues, and other measures of central tendency would not
be appropriate for that application, regardless of the pd of the revenues.

4. Sampling properties of sample geometric mean, SGM

Galton (1879) and McAlister (1879) were the first to investigate the sampling distribu-
tion of the SGM, which later led to both a large sample theory (Aitchison and Brown
1957) and sampling distributions of SGM for small samples from particular parent dis-
tributions (Camp 1938). Feng, Wang, and Tu (2013) document that although SGM is
generally biased regardless of its pd, that bias disappears as n increases. Some investiga-
tors have developed general relationships between the moments of various parent distri-
butions and the moments of the SGM including Norris (1940), Landwehr (1978), and
Wilson and Martin (2006). For example, Landwehr (1978) derived the expectation and
variance of SGM for lognormal, Gamma, Weibull and uniform samples.
Landwehr (1978) and others have shown that the expectation of SGM is a function of

sample size and is very sensitive to the skewness and the shape of the probability distri-
bution (pd) from which the samples arise. It is difficult to find other estimators of cen-
tral tendency which exhibit bias that depends on both the pd and sample size. For
example, common estimators of central tendency such as the arithmetic mean and
median, have expectations which typically do not depend on sample size. Bias associated
with SGM can be particularly relevant when considering its use in evaluation of compli-
ance with environmental regulations as is now commonplace (Stephen et al. 1985). One
environmental monitoring location may be considered compliant, whereas another is
not, simply due to differences in sample size, rather than differences in environmen-
tal pollution.
Norris (1940) derived the variance of the sample geometric mean of a random vari-

able x

r2SGM ¼ GM �
r2ln ðxÞ
n

" #
(5)

where r2SGM and r2SGM are the variance of SGM and ln(x), respectively.

4.1. Lognormal sampling

In consideration of the sampling properties of SGM, a unique and important case
involves lognormal data, because as described below, most previous applications of
SGM have assumed the variable of interest is well approximated by a lognormal pd. For
the lognormal case, GM is equivalent to the median (see Table 1), in which case the
SGM is a maximum likelihood estimator (MLE) of both GM and the median. Gilbert
(1987) provides analytic expressions for comparing the sampling properties of SGM
under lognormal sampling. For lognormal samples, Aitchison and Brown (1957) and
Landwehr (1978) derived the mean and variance of SGM as

8 R. M. VOGEL



E½SGM� ¼ exp aþ b2

2n

� �
¼ GM � exp b2

2n

� �
(6a)

Var½SGM� ¼ exp ð2aÞ exp
2b2

n

� �
� exp

b2

n

� �� �
(6b)

where a and b are the mean and standard deviation of the logarithms of x (see Table
1). Stedinger (1983, Equation (4)) derives exact confidence intervals for quantiles of a
lognormal variable, based on the noncentral t-distribution, which can be used to con-
struct an exact confidence interval for both GM and the median, because GM and the
median are both the 50th percentile of a lognormal variate.
In contrast with estimators of the mean of a lognormal variate, relatively little atten-

tion has been given to a comparison of the sampling properties (bias and MSE) of alter-
native estimators of GM. Shih and Binkowitz (1987) and Parkin and Robinson (1993)
compared the sampling properties (bias and mean square error) of SGM with the widely
used nonparametric rank based estimator of the median, M. As expected, for lognormal
samples, the SGM was preferred to the sample median M, for nearly all lognormal sam-
ples considered, however importantly, in a robustness evaluation considering contami-
nated lognormal samples, Shih and Binkowitz (1987) found the nonparametric rank-
based estimator of the median M, to have much lower MSE than SGM. The bias associ-
ated with SGM described in (6a), is always positive and can be quite considerable for
small samples which led Finney (1941) and Bradu and Mundlak (1970) to derive min-
imum variance unbiased estimators of SGM (see summary in section 13.3.2 in Gilbert
1987). Zellner (1971) used a Bayesian approach to derive a minimum MSE (biased) esti-
mator of GM and showed that it is much more efficient than Finney’s (1941) minimum
variance unbiased estimator of GM, especially for large values of the coefficient of vari-
ation of the observations. Given the wealth of parametric, nonparametric, biased and
unbiased estimators available for estimation of the median and GM for the lognormal
case, a need exists for more rigorous Monte-Carlo experiments which compare and con-
trast their sampling properties, with special attention given to their robustness. Such
experiments may also consider improvements in estimation of GM under lognormal
sampling resulting from fitting a three parameter lognormal pd using the attractive
lower bound estimator given in equation (20) of Stedinger (1980) which has found
widespread use within the field of hydrology.

5. Summary and recommendations

In spite of the widespread application of the SGM estimator across many disciplines
partially summarized here, it is only very recently that a mathematical definition of the
GM has been suggested (Feng, Wang, and Tu 2013; Feng et al. 2017). Using that defin-
ition, theoretical expressions for GM were derived for a wide range of common pds,
including the lognormal, Gamma, exponential, uniform, Chi-square, F, Beta, Weibull,
Power law, Pareto, generalized Pareto and Rayleigh distributions. Table 1 and Figure 1
summarize the behavior of the GM relative to the median and mean for those pds.
Those relationships indicate that the value of the GM is extremely sensitive to both the
pd and its skewness. A summary of the sampling properties of SGM also reveals that,
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unlike most other estimators of central tendency, SGM exhibits considerable bias for
small samples which depends upon the underlying pd as well as sample size, a fact
which should be considered carefully before its widespread application as a measure of
central tendency.
Many previous applications of the GM reviewed here, have assumed the variable of

interest is well approximated by the lognormal distribution, in which case, we now
know that the GM is simply the median of that variable and thus SGM is an MLE of
both GM and the median, for that case. Unlike the GM, the median is a statistic with a
very clear interpretation, with half the observations falling above and below the median.
Thus, in situations in which the variable of interest follows a lognormal distribution, it
may make more sense to refer to the interpretation of the median, when computing
either the GM or the median, than to refer to the term geometric mean, because unlike
the median, the GM lacks a clear and concise physical interpretation. In the case of log-
normal observations, there is also the question of whether or not to employ an unbiased
estimator of GM (and median) such as one of those introduced by Finney (1941) and
Bradu and Mundlak (1970) or perhaps the minimum MSE Bayesian estimator of the
median and GM of a lognormal variable introduced by Zellner (1971). Shih and
Binkowitz (1987) provide evidence that for small departures from lognormal, the non-
parametric rank based median estimator has considerably lower MSE than SGM. A
rigorous Monte-Carlo study is needed to compare the sampling properties and robust-
ness of the various estimators of GM and median for the lognormal case. In the case of
lognormal observations, given the findings of Shih and Binkowitz (1987), it remains an
open question as to which estimator of GM and median is most efficient and robust.
Under lognormal sampling, investigators are encouraged to report both SGM and the
nonparametric rank based median, along with their associated confidence intervals
given by Stedinger (1983) and Helsel and Hirsch (2002, section 3.3).
There are many other situations, apart from lognormal sampling, in which the GM

may be a useful and sensible choice as a summary measure. For example, Fleming and
Wallace (1986) show that the GM is useful and appropriate for summarizing normalized
results, and they show why the arithmetic mean, when used in this context, can lead to
grossly incorrect conclusions. The guidance of Fleming and Wallace (1986) is valuable
because it extends to the summary of a wide range of normalized results including, but
not limited to: relative errors, relative efficiencies, effectiveness, averaging ratios, rate
constants, rates of return, ratio indices, normalized counts, normalized indicators, elas-
ticities, and relative scores. Parkhurst (1998) suggests that “Geometric means may be
useful for representing the average of a series of values that are always multiplied. For
example, the average efficiency for a sequence of five processes involved in transforming
the energy stored in underground oil to electrical energy in the home can be calculated
as the one-fifth root of the product of the five process efficiencies. If that value were
multiplied by itself five times, it would yield the overall efficiency.” Mahajan (2019)
describes numerous practical examples in which the SGM provides useful insights.
Table 1 and Figure 1 are the first example of a comparison of the theoretical proper-

ties of GM for a variety of pds. Such comparisons are necessary for a complete under-
standing of the behavior of one measure of central tendency versus another and are
commonplace for other measures of central tendency and for a wide class of other
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statistics including moment and Lmoment ratios (Vogel and Fennessey 1993). If GM
and SGM are to find further use in scientific investigations, further comparisons analo-
gous to Table 1 and Figure 1 are needed, along with the development and evaluation of
alternative parametric and nonparametric estimators, confidence intervals, and hypoth-
esis tests, all of which do not presently exist for the GM, except to some extent, for the
lognormal case.
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Appendix

Burk (1985) proves the following order of sample means:

harmonic mean< geometric mean< arithmetic mean< root mean square

For a sample of size n, those sample means are defined, in order:
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