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A Three State Markov Model for Discrimination Learning1 
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Previous treatments of discrimination learning have been ineffective in predicting 
both marginal responding and reinforcement effects in two-stimulus probability 
learning. A three state Markov model is proposed which is designed to account for 

these results. The basic assumption of the theory is that the subject is reinforced 
for behaving appropriately to a distinctive cue rather than for making a specific motor 

response. Empirical results that include variations of m, 8, and cue similarity are 
accounted for by the model. 

In the present paper an attempt is made to quantify the view that discrimination 
learning is a form of nonspatial selective learning in which the subject learns to behave 
in relation to some particular set of stimuli. The basic assumption of this theory is 
that the subject is reinforced for behaving appropriately to a distinctive cue rather 
than for making a specific motor response. For simplicity, the discussion will be 
limited to two-stimulus, two-response problems, but the formulation can be extended 
readily to multi-stimulus response situations. 

The present paper deals with a specific experimental paradigm. An experiment 
consists of a series of trials each of which commences with the onset of one of two 
stimuli, 2”i or T, . The probability of Tl is /3, and the probability of Tz is 1 - /?. 
Two responses, A, and A, , predicting events .7& and E, , respectively, are available 
to the subject. On a Tl trial, an A, response is correct with probability r1 , and an A, 
response is correct with probability 1 - rri . On a Tz trial, an A, response is correct 
with probability rra , and an A, response is correct with probability 1 - ~a . 

Previous treatments of discrimination learning within statistical learning theory 
formulations have assumed common stimulus elements between trial types (Atkinson, 
1958; Burke and Estes, 1957). Both these common element models and a conditioning 
parameter model by Lee (1966) predict asymptotes of P(A, 1 Tl) and P(A, ) T,) that 
cannot exceed z~i and 1 - rr2 , respectively. However, overshooting has been found 

r This research was carried out during the author’s tenure as a National Aeronautics and Space 
Administration predoctoral fellow at the University of Massachusetts under grant NSG(T)-137. 
The author would like to thank John W. Moore and Jerry L. Myers for their helpful comments 
during all phases of the present research. 
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in recent experiments in different laboratories (Massaro, Halpern, and Moore, 1968; 
Myers and Cruse, 1968). For example, when or = .85, P(A, 1 Tr) exceeded matching 
if rs = 35 or .15. However, when rra = -5, P(A, / Tr) < rI . These results confirmed 
the findings of Popper and Atkinson (1958) that, for a fixed value of rrr , P(A, / Tr) 
first decreased and then increased as ms went from rrr to 1 - r1 . These findings 
oppose the predictions of the Burke and Estes (1957) and Lee (1966) models which 
hold that the response probability on one trial type is a linear function of the event 
probabilities on the other trial type. The results seem to indicate that a discriminative 
stimulus with little or no cue value (i.e., one reinforced on a 50-50 basis) has a depres- 
sion effect on P(A, 1 TI) compared to a stimulus with cue value (i.e., one reinforced 
on a 85-15 basis). 

The above models also predict that the reinforcement of a response tends to make 
that particz&r response more likely on succeeding trials, not only for trials when the 
same stimulus is presented, but for both trial types. Therefore, both the Burke-Estes 
and Atkinson models predict 

WL,, I 4,J-L) 2 w,,n+, I 4&J 3 W,,,,l I 4n-%,n), if j. 

Massaro et al. (1968) and Myers and Cruse (1968) have also found first order con- 
ditional probabilitities that do not hold to the above rank-ordering. More specifically, 
under symmetrical reinforcement schedules (e.g., nI = .8, ~a = .2), the rank-ordering 
found when the stimulus presented was the same as that presented on the previous 
trial (Ti,lz+l = Ti,,) did agree with the predicted rank-ordering. However, the rank- 
ordering found when Ti,n+l f Ti,n was exactly opposite that found when Ti,n+l = Ti,n. 
This finding seems to indicate that subjects are reinforced, not for making a specific 
motor response, but for making an appropriate response in the sense of having the 
highest likelihood of being correct on that particular stimulus trial. For example, 
if the right-hand light is the most frequent event given the trial type and the subject 
is reinforced for making a right-hand prediction, he is also reinforced for making an 
appropriate response and therefore he will be more likely to make the same response 
on the next trial provided it is of the same type. But if the next trial is different, the 
subject will still be more likely to make the appropriate response which means a 
response that is physically opposite from the response on the previous trial. Therefore, 
the Markov model presented in this paper views the subject as being reinforced not 
for a particular (right or left) event prediction, but for an appropriate (most frequently 
correct) or inappropriate response. 

Variations of cue similarity in discrimination learning when 7r1 > .5 and rrs < .5 
have been investigated only recently (Massaro et al., 1968, Moore and Halpern, 1965). 
The Burke-Estes model (1957) predicts decreased dependence of P(A, I Tl) on rr2 
with decreases in cue similarity so that P(A, ) Tl) q e ua 1s ,~r with sufficient cue distinc- 
tiveness. On the other hand, Atkinson’s (1958) o b serving response model predicts no 
difference in asymptotic responding as a function of cue similarity when zrr = 1 
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and ~a = 0. Moore and Halpern did find that asymptotic responding was related to 

cue similarity, when 7~~ = 1, ~a = 0, such that P(A, 1 7’i) approached P(E,) with 

increases in cue similarity. This result agrees with the Burke-Estes model but not 
the Atkinson model. However, Massaro et al., employing values of ~~ = .8 and 

rrs = .8, .5, or .2, found that P(A, / Tr) did not become independent of 7ra with 

decreases in cue similarity. The P(A, 1 TJ was a linear function of rs when the trial 

types were highly confusable, independent of ~a and equal to n1 at an intermediate 
level of cue similarity, and a U-shaped function of ~a when the cues were highly 
discriminable. Thus it is plain that P(A, 1 Tr) d oes not become independent of ~a 
with sufficient cue distinctiveness as predicted by the Burke-Estes model. Therefore, 
a test of the present theory will include its description of the dependence of P(A, j Tr) 

on ~a at different levels of cue similarity. 

THEORY 

The theory assumes that a subject has three strategies available in discriminative 
probability learning. The reinforcement contingencies determine what stategy is 
learned. That is, a subject is reinforced for performing according to one of the strate- 

gies, not for making a specific motor response. The strategies can be represented by 
three states of a homogeneous Markov chain. 

CONDITIONING-STATE AXIOM: 

On each trial the subject is in one of three possible states: appropriate (A), unconditioned 
(U), inappropriate (I). It is assumed every subject starts the experiment in state U with 
probability one. 

RESPONSE AXIOM: 

The response probability is dependent upon the state the subject is in. In state A, the 
subject will make the appropriate response, which is the response most likely to be correct 
given the trial type, with probability one. In state I, the subject will make the inappropriate 
response (response most likely to be incorrect given the trial type) with probability one. In 
state U, the subject will make an A, response withprobabilityp, regardless of the trial type. 

Notice that the subject in state U does not respond differentially on T1 and T, 
trials. 

The response probabilityp associated with state U can be assumed to grow according 
to a linear model and approach P(E,). Evidence for this assumption is available from 
studies of simple probability learning. However, there is nothing in the present theory 
which requires that p be equal to I’(&). For example, in certain cases, a subject in 
state U may overshoot P(&). Hence, p can simply be estimated as a parameter of 
the model. 
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CONDITIONING AXIOMS: 
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c 1' If the subject is in state U and makes an appropriate response and 

(a) is correct, then with probability cl , he goes into state A and with probability 1 - c, , 
he remains in state U; 

(b) is incorrect, then with probability c2, he goes into state I and with probability 

1 - c2 , he remains in state U. 

C 2’ If the subject is in state U and makes an inappropriate response and 

(a) is correct, then with probability cl , he goes into state I and with probability 1 - ci , 
he remains in state U; 

(b) is incorrect, then with probability c2 , he goes into state A and with probability 
1 - c2 , he remains in state U. 

c 3' If the subject is in state A and is incorrect, then with probability c, he goes into 
state U and with probability 1 - c, he remains in state A. 

C 4' If the subject is in state I and is incorrect, then with probability c, he goes into 
state U and with probability 1 - c, he remains in state I. 

For the present development, it is assumed that z=~ > .5 and ~a < .5. Therefore, 
appropriate responses are A, on Tl trials and A, on T, trials. If rra > .5, an A, would 
be appropriate on T, trials. When ~a = .5 no response can be identified as appropriate 
on T, trials. However, the experimenter can arbitrarily define A, (appropriate response 
on Tl trials) as appropriate on T, trials and tests can be made of the model. By 
employing n1 > .5 and ~a < .5, we are developing the model for the traditional 
discrimination learning paradigm in which the subject learns to behave appropriately 
by responding differently on different trial types. 

Figure 1 illustrates the transitions among conditioning states that are possible 
under the Conditioning and Response Axioms. For example, suppose that subject 
is in state U. A Tl trial will occur with probability /3. By the Response Axiom, the 
subject will make an A, response with probability p which will be reinforced by an 
appropriate event with probability nrl . Therefore, with probability c1 , the subject 
goes into state A and with probability 1 - ci , he remains in state U. These transitions 
among conditioning states lead to the following transition matrix P and response 
probability vectors for appropriate responses, P(A, 1 TJ and P(Aa 1 T,): 

A U I W, I Td W, I T,) 

l-c(l--,J c(l-r,) 0 
E 1-E-F F 

0 Tr,C I 1 - 7rr,c 



66 MASSARO 

where 

ma = BTl + (1 - P)(l - n,), 

and 
E.= P~Pc, + (1 -~hl + (1 - BF - GP, + (1 -PM, 

F = B(l - GPC, + (1 - 1’)4 + (1 - rS) ~,[PCI + U - PM 
Asymptotic Statistics. For the present derivations, the states will be numbered 

as follows: 1 = A, 2 = U, and 3 = I. To derive the asymptotic probability of 
a particular conditioning state, let pij be the Markov chain represented by the matrix P 

A2 

8 
A < ‘\ 

8 
T2 -A2 

El 

< 

T I  - A2 
8 

E2 ~ 1 
I 

'\ 
& 

T2 - At 

FIG. 1. Branching process, starting from each state on trial n, for the model when r1 > .5 
and m2 < S. 

of Eq. 1, and define ply’ as the probability of being in state j on trial r + 71, given that 
at trial Y the subject was in state i. The quantity is defined recursively: 

p!?) = p.. 23 83 ’ 

p!n+l’ = cp,vp$‘. a* 

Moreover, if the limit exists and is independent of i, we set 

uj = lim p$). n-K0 (4) 

The limiting quantities of uj do exist for this finite-state Markov chain since it is 
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irreducible and aperiodic. There are three states and at asymptote the probability 
of being in state i on trial n + 1 is equal to the probability of being in state i on trial 
71 (P,+~ = p,). Let pij (i, j = 1,2, 3) be the 3 x 3 transition matrix. We seek the 
values u such that uj = XV u,p,$ and Zuj = 1. The ui’s may be computed by the 
application of Cramer’s rule: 

Dj 

where D, = Err,, D, = cna(l - no), and D, = F( 1 - vJ. 
At asymptote, the probability of an A, response is a simple function of the uj’s. 

Redefining the states as A = 1, U = 2, and I = 3: 

ET, + PC%41 - xa) 
= Err, + m,( 1 - rr,) + F( 1 - m.,) ’ 

and 

p$ Q%,, I T,*,) = 1 - [A + (1 -P> Ul 
Erra + (1 - P) cnar,(l - ~4 

=’ -Err,+mJl -m,)+F(l -~a)’ (7) 

To simplify notation, the trial subscripts will be omitted when asymptotic expressions 
are referred to. 

In some discrimination problems (e.g., concept identification) it has been shown 
that subjects abandon a strategy or hypothesis only if it leads to an incorrect response 
(Bower and Trabasso, 1964). If the present theory assumes that subjects change 
strategies only on error trials, the parameter cr will equal zero. Evidence for the 
validity of this assumption in the present learning task will be presented later. Also, 
to simplify the following derivations, it is assumed that r1 = 1 - 7r2 = n, and 
/3 = 1 - /J. It follows from the Response Axiom that p = P(E,) = 5 Therefore 
Eq. 6 and Eq. 7 reduce to: 

WI I Tl) = 
.577,2 + .57r,( 1 - r,)C 

.J 7ra2 + 77,( 1 - n,)#J + S(1 - n,)s ’ (8) 

VI I T2) = 1 - WI I T,), (9) 

where4 = g. 
2 

The ratio 4 can be taken as an index of differential responding on Tl and T, trials. 
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That is, when 4 becomes large, P(A, 1 Ti) - P(A, 1 T,) approaches zero. Whence 
by Eq. 8 and Eq. 9, respectively, 

p% P(A, / TJ = s, 

t-2 P(A, I T,) = s. 

On the other hand, when (f becomes small, subjects will spend less time in state U 
relative to states A and I and respond differentially on Tl and T, trials. It follows 
from Eqs. 8 and 9, respectively, that 

2 

lii P(A, 1 T,) = 1 - 
rr,2 +‘;; - ?7$ * (13) 

Equations 10-13 show that discrimination learning increases with decreases in +. 

Sequential Statistics. Th e d erivation of the first order conditional statistics is also 
straightforward. For example, given an A, on a Tl trial, the subject was either in 
state A or U. If the subject was in state A, he remained there since an El occurred; 
he therefore will make an A, on the present trial with probability one. If the subject 
was in state U (he made an A, with probability p), he can transit into state A with 
probability cr , in which case he will make an A, on the present trial with probability 
one. If he remains in U, he will make an A, with probability p. The sum of these 
possible transition probabilities are divided by the sum of probabilities of being in 
the respective states. Thus, dropping the trial subscripts 

WL+, I T l.?Lfl 1.a 1.n 1.n - T  A E ) - W4 I T,TJ,E,) 

= A +Pu[cl + (1 - CM 
A+PU ’ (14) 

The 16 independent first order conditionals are presented in the Appendix. 

TESTS OF THE MODEL 

In the estimation of the parameters, cr was found to be equal to or close to zero. 
Therefore, it seemed reasonable to assume that a subject could leave state U only if 
he was incorrect (i.e., cr = 0). This fact is appealing since the states represent different 
strategies and it seems likely that subjects will only change strategies when they are 
incorrect. In addition, p was assumed to be equal to P(E,) = /lrl + (1 - /+a . The 



MODEL FOR DISCRIMINATION LEARNING 69 

two parameters, c and c2, were estimated using a minimum x2 criterion between 
predicted and observed values for the 16 independent first order conditional proba- 
bilities. The data were pooled over all trials to increase the total number of observa- 
tions. The predicted values were obtained by letting the probability vector at the 
start of trial 1 be 

WI = [O 1 O] 

and repeatedly computing the vector w, for every trial TZ by the equation 

where P is the transition matrix defined by Eq. 1. Then the entries of the average 
probability vector were taken as the values for the corresponding probabilities of 
the three states in the expressions for the conditionals presented in the Appendix. 

Variations of 7rl 

Three values of *I were chosen while holding rr2 constant. Equation 1 shows that 
for given values of c, c2, and rr2, the probability of being in state A is positively 
related to 7rl . Therefore, increases in n1 should increase the probability of an 
appropriate response. 

METHOD 

The subjects were 60 University of Massachusetts undergraduates assigned randomly to the 

experimental treatments. Up to four subjects were run at a time, each seated at a table top 
enclosure containing an Estes-Straughan conditioning board consisting of two white center 

cue lights labeled “loud” and “soft” and two red event lights positioned above each of two 
spring loaded lever switches. Tones were generated by a Hewlett-Packard model 200 audio 

oscillator and were presented over matched headphones with a continuous white masking noise 
of 70 db SPL. Experimental events were controlled by Lehigh Valley 1652 probability randomiz- 
em, Hunter interval timers, and relays. Events and responses were recorded on an Esterline- 

Angus event recorder. 
The simultaneous onset of a tone and cue light started a trial. The two 800 Hz tones were 

73 and 79 db SPL for the soft and loud tone, respectively. 

The subjects were told that the cue light indicated whether the tone was a loud or soft tone 
and they were to predict which of the two red event lights would come on. The subjects had 

2 sec. to make their prediction. At the offset of the tone, one of the event lights was illuminated 
indicating the correct prediction on that trial. 

The intertrial interval was 7 sec. and each subject received 300 trials. The three groups 
differed by the schedules placed on the probability randomizers. The settings were fl = .5, 

82 = . 2, and rrr = .95, .8, and .65 for Groups 1, 2, and 3, respectively. The exact stimulus 
and event schedules were not found to be significantly different from the a priori schedules. 
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RESULTS 

Tables 1, 2, and 3 present the observed and predicted frequencies and 
proportions for Groups 1,2, and 3, respectively. The significant x2’s are to be expected 
from the large number of observations (Grant, 1962). For this reason and because of 
the fact that the frequencies contributing to each conditional differed widely, a better 
index of the description of the model was taken to be a weighted mean deviation 
(w.m.d.) between predicted and observed values. This statistic was computed for 
each group by multiplying the absolute deviation between predicted and observed 

values of each conditional by its joint frequency and averaging the 16 deviations. 
Tables I, 2, and 3 show that the present model does very well in predicting the correct 

TABLE 1 

OBSERVED (0~s.) AND PREDICTED (PRED.) VALUES OF P(A1,,+l 1 T,~,+,Tj,,Ak,,E~,,) AND 

f’(&n+~ / Ti,n+d FOR GRoup 1” 

Ti.n+l %I A *,n Et.?& 

1 1 1 1 

1 1 1 2 

1 1 2 1 

1 1 2 2 

1 2 1 1 

1 2 1 2 
1 2 2 1 
1 2 2 2 

2 1 1 1 
2 1 1 2 

2 1 2 1 
2 1 2 2 

2 2 1 1 
2 2 1 2 
2 2 2 1 

2 2 2 2 

1 
2 

Frequency Proportion 

1092 1065.9 .923 .901 
57 54.2 .792 ,753 

104 87.5 .732 ,616 

8 5.1 .800 ,505 

43 30.5 .729 ,516 

165 127.5 .809 .625 
220 195.3 .866 ,769 

897 880.7 .935 .918 

181 156.2 .146 ,126 

16 25.6 .188 ,301 

49 61.8 .374 .472 

5 10.9 .278 .603 

29 40.4 .427 .595 

69 92.8 .345 ,464 
60 69.5 .244 .283 

113 111.7 ,105 .103 

Pred. Obs. Pred. 

,897 ,849 

.I71 .I86 

“2, = .23; c^ = .35; v1 = .95; x2 = 49.25; and w.m.d. = .040. 
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TABLE 2 

OBSERVED (0~s.) AND PREDICTED (PRED.) VALUER OF P(AI,,+I 1 Tt,,+ITj,,,An.nE~.n) AND 

&%.n+~ 1 TL,+I) FOR ~~oup 2” 

Frequency Proportion 

A k,n EC.lt Obs. Pred. Obs. Pred. 

871 880.3 .891 .901 
161 153.5 .745 .711 

95 88.9 .625 .585 

31 19.8 .608 .388 

28 18.4 .583 .383 

134 102.0 .761 .580 

194 165.1 .829 .706 

925 882.4 .939 .896 

91 92.4 .092 .093 

48 66.6 .200 .276 

36 58.4 .245 .397 

30 31.7 .556 .587 

19 34.9 .322 .592 

40 68.9 .234 .403 

55 76.0 .204 .281 

133 114.6 ,114 .098 

1 .859 .814 

2 .146 .175 

a,fz = .39; c^ = .37; ml = .8; xa = 71.34; and w.m.d. = ,046. 

rank-orderings of the conditionals. In comparison, the reinforcement models, such 
as the Burke-Estes and Atkinson models, cannot predict the rank-ordering when 

Ti,n+l f Ti.n ’ Across the three groups, only three inversions are observed for the 
present Markov model while 23 inversions exist for the predictions of reinforcement 
models. 

Even though the present model provides a good description of the data, the param- 
eter values should also be consistent with the assumptions underlying the psycho- 
logical processes. As shown in the tables, the parameter c is fairly invariant (.35 to .39) 
as is ca with the exception of Group 1. The invariance of the parameters in these 
three groups is, of course, predicted by the assumptions of the model. 
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Variations of /3 

In studies where r1 = 1 - ~a , variations of p only affect the absolute event prob- 
abilities. Since p = P(E,) is a positive function of the probability of Z’i trials, the 
response probability p associated with state U increases with increases in p. Thus 
more overshooting on Ti trials is predicted for increases in /3 for given values of c 
and c2 . 

METHOD 

The method has been reported elsewhere (Myers and Cruse, 1968). Three groups of 20 subjects 

each were given 500 trials. The vr was .85, rrz was .15, and the /? values were either .75, .50, 
or .25 for the three groups. For the subsequent analysis, Z’t trials for the ,¶ = .75 condition 

TABLE 3 

OBSERVED (0~s.) AND PREDICTED (PRED.) VALUES OF P(A,,,+, 1 T,,,+,T,,,A,,,E~,,) AND 

W I,~+I 1 TM,+,) FOR ~~o~p 3” 

Tim Tj,n 4, Ee,, 

1 1 1 1 

1 1 1 2 
1 1 2 1 

1 1 2 2 

Frequency Proportion 

Obs. Pred. Obs. Pred. 

560 593.5 .818 .867 

245 249.0 .637 .649 
159 145.1 .589 .537 

63 55.3 .358 .314 

1 2 1 1 17 10.2 .472 .284 
1 2 1 2 133 118.0 .564 .500 
1 2 2 1 124 106.2 .709 .607 
1 2 2 2 828 844.0 .803 ,819 

2 1 1 1 63 62.0 .090 .088 
2 1 1 2 59 92.1 .168 .263 
2 1 2 1 79 90.5 .305 .349 
2 1 2 2 55 84.4 .342 .524 

2 2 1 1 18 27.4 .375 .571 
2 2 1 2 46 70.1 .256 .390 
2 2 2 1 54 59.6 .273 ,301 
2 2 2 2 122 128.5 .114 ,120 

1 .711 ,709 
2 .167 ,207 

‘c^, = .40; c^ = .39; x1 = .65; x 2 = 50.09; and w.m.d. = .039. 
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TABLE 4 

OBSERVED (0~s.) AND PREDICTED (PRED.) VALUES OF P(A1,,+1 I Ti,,+ITi,,,Ae.,E~,,) AND 

WA I.~+I 1 Ti,n+d FOR fi = .75” 

Ti,m+l T5.n 4.n &,n 

1 1 1 1 
1 1 1 2 

1 1 2 1 

1 1 2 2 

Frequency Proportion 

Obs. Pred. Obs. Pred. 

9642 9386.7 .973 .947 
1526 1428.7 .842 .788 

695 612.9 .743 .656 

96 78.0 ,561 .456 

1 2 1 1 52 38.9 .732 ,548 

1 2 1 2 340 294.8 .852 .739 
1 2 2 1 326 316.6 .858 .833 

1 2 2 2 2147 2235.5 ,934 .972 

2 1 1 1 288 277.0 ,115 .I11 
2 1 1 2 75 130.0 .198 .343 
2 1 2 1 55 106.7 .254 .492 

2 1 2 2 24 39.8 ,471 .781 

2 2 1 1 11 12.5 .647 .736 

2 2 1 2 42 39.6 .438 .413 

2 2 2 1 25 39.3 .188 .296 

2 2 2 2 50 34.0 .086 .058 

1 .927 .900 
2 .143 .171 

“2, = .55; c^ = .36; xa = 112.01; and w.m.d. = .038. 

were pooled with T, trials for B = .25 to increase the low number of observations on the in- 
frequent trial types. Therefore, 40 subjects are in the p = .75 group while 20 subjects are in 

the ,9 = .5 group. 

RESULTS 

Tables 4 and 5 show that the model accurately describes manipulations of /3. The 
model predicts a larger spread in each set of four conditionals than that observed in 
the data. Nevertheless, the model does predict the overshooting found on TI trials 
when j3 = .75 which cannot be predicted by reinforcement models. The fact that c2 
of the p = .75 condition is about three times c2 of the /3 = .5 condition indicates 
that subjects are more likely to leave state U when there is a predominance of one 
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trial type. Since c did not differ under the two conditions, the larger value of ca and hence 
the lower value of 4 can account for the better discrimination, P(A, 1 T1) - P(A, 1 T,), 
under the /3 = .75 condition. 

Cue Similarity 

In the previous analyses, the T1 and T2 trials were highly discriminable. The present 
theory predicts that confusable Tl and T2 trials will make it difficult for a subject 
to test the strategies reliably. A subject must identify the trial type before he can 
perform according to an appropriate or inappropriate strategy. Therefore, if a subject 
does not observe the trial type, he will not respond differentially on the different trial 
types. When the subject does not observe the trial type, he is in state U and will 

TABLE 5 

OBSERVED (0~s.) AND PREDICTED (PRED.) VALUES OF P(A,.,+, ~ Tj,,+,Tj~,&,E~,,) AND 

P(A ~.n+l 1 T,.,,,) FOR b = .5” 

Ti.n+, 

1 
1 
1 

1 

1 
1 

1 
1 

2 
2 

2 
2 

2 
2 

2 
2 

1 

2 

1 1 
1 1 
1 2 
1 2 

2 1 
2 1 
2 2 
2 2 

1 1 
1 1 
1 2 
1 2 

2 1 
2 1 
2 2 
2 2 

Frequency Proportion 

Pred. &,?I Obs. 

1 1329 
2 180 

I 217 
2 24 

1 50 

2 288 
1 256 
2 1546 

1 258 

2 102 
1 165 

2 40 

1 42 
2 220 
1 80 

2 212 

Pred. Obs. 

1361.0 .843 ,863 
173.9 ,738 ,713 
238.3 .643 ,553 

25.8 .429 ,461 

36.4 .633 .461 
257.7 .618 .553 
220.9 .826 .713 

1538.7 ,867 .863 

238.2 ,148 .I37 
114.9 .255 .287 
192.2 .384 .447 

48.5 .444 .539 

40.4 .560 .539 
237.4 .414 .447 

84.8 .271 .287 
209.5 .139 .I37 

.799 .779 

.220 .229 

“c^, = .17; ? = .35; x2 = 31.75; and w.m.d. = .025. 
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simply match P(E,). It follows that the parameters c and c2 should increase and 
decrease respectively with increases in cue similarity. A test of this prediction was 
carried out at three levels of cue similarity with an independent observation of the 
confusability of the stimuli from half the subjects. 

METHOD 

The method has been reported elsewhere (Massaro, et al., 1968). Three levels of cue similarity 
(tones differing by 1.5, 3, and 6 db) were employed at a n1 = .8 and rrz = .2 reinforcement 

condition. Half the subjects were also required to indicate which of the two tones (loud or soft) 
was being presented. These subjects were given no information regarding their identification 

response. The mean percentage of correct identifications for the 1.5, 3, and 6 db conditions 
were 63, 79, and 93 O/‘, respectively. Since the identification response had no significant effect 

on event predictions, these data were pooled at each level of cue similarity. Therefore, each 

group had 24 subjects with 300 observations per subject. 

TABLE 6 

OBSERVED (0~s.) AND PREDICTED (PIKED.) VALUES OF P(L!~,,+~ I T,,,+,T,,,&.&.,) AND 

PM I,n+l 1 Ti,,+l) FOR HIGHLY SIMILAR CUES (1.5 db differential)” 

Ti,n+z TOi 

Frequency Proportion 

A K,ll &.ll Obs. Pred. Obs. Pred. 

1 
1 

1 
1 

1 

1 
1 

1 

2 

2 
2 
2 

2 

2 
2 
2 

1 
2 

1 

1 
1 

1 

2 
2 

2 
2 

1 
1 

1 
1 

2 
2 

2 
2 

1 
1 

2 

2 

1 
1 

2 
2 

1 
1 
2 

2 

1 

1 
2 

2 

1 

2 
1 

2 

1 
2 

1 
2 

1 
2 
1 

2 

1 

2 
I 

2 

534 539.0 .642 .648 
92 100.7 .482 .527 

288 218.2 .699 .530 

77 75.5 .497 .487 

105 86.2 .593 .487 

307 313.5 .519 .530 

174 134.4 .682 .527 

582 580.5 .650 .648 

300 315.5 .335 .352 

79 114.4 .326 .473 

298 242.8 .578 ,471 

69 72.8 ,486 .513 

61 63.6 .492 .513 

240 211.2 .534 .471 

71 77.6 .433 .473 

312 296.9 .370 .352 

.615 .583 

.424 .413 

1 ”  

acp = .07; c = .65; x z = 68.94; and w.m.d. = .045. 
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RESULTS 

Tables 6, 7, and 8 indicate that the present model does as well with similar cues 
as in the previously described experiments with distinctive cues. The fact that cs 
increased (from .07 to .19 to .27) and c decreased (from .65 to .53 to .45) with increases 
in cue distinctiveness indicates that the parameters of the model change as predicted 
from the psychological assumptions. It is interesting that given a high level of cue 
similarity (cf. Table 6), the spread of each set of four conditionals is not as large as 
it was for the distinctive cue groups. This decrease in spread is predicted nicely by 
the Markov model, even though the observed rank-orderings are not as orderly as 
those observed with distinctive cues. On the other hand, the reinforcement models 
would predict an even larger spread among conditionals when the cues are more 
similar when Ti,,.+l f Tis,, . The Markov model also gives a better description of 
the reinforcement effects at different levels of cue similarity. 

TABLE 7 

OBSERVED (0~s.) AND PREDICTED (PRED.) VALUFS OF P(A1,,+l 1 Ti,,+IT,Jr,,E~,,) AND 

mLn+1 I Ti.n+J FOR AN INTERMEDIATE LEVEL OF CUE SIMILARITY 

(3.0 db DIFFEFIENTIAL)~ 

T /.a+1 T 5.92 A k,?z 

1 
1 

1 
1 

1 

1 
1 

1 

2 

2 
2 
2 

2 
2 

2 
2 

1 
2 

1 1 
1 1 

1 2 
1 2 

2 1 
2 1 
2 2 

2 2 

1 1 
1 1 
1 2 
1 2 

2 1 
2 1 
2 2 
2 2 

Ed.TZ 

1 

2 
1 

2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 
1 

2 

Frequency Proportion 

Obs. Pred. Obs. Pred. 

886 820.8 
172 158.2 
203 171.6 

40 32.6 

94 58.3 
260 225.5 
236 180.3 
888 858.7 

238 
59 

124 
28 

43 
132 

69 

226 

245.0 

118.5 
145.5 

48.1 

40.6 

144.3 
85.1 

221.2 

,854 .791 
.649 .597 

.672 .568 

.563 .459 

,740 .459 
.655 ,568 
.781 ,597 

,818 ,791 

.203 .209 
,201 ,403 

,368 ,432 
,315 ,541 

.573 .541 

.395 .432 

.327 ,403 

.214 .209 

,775 .698 
.258 .294 

“c^, = .19; c^ = .53; x2 = 105.16; and w.m.d. = ,058. 
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TABLE 8 

OBSERVED (0~s.) AND PREDICTED (PRJXD.) VALUFS OF P(A,,,+, I T,,,+,T,,,A,.,J3~,,) AND 

P(AI,,+I 1 Ti,,+,) FOR HIGHLY DISTINCTIVE CUES (6.0 db DIFFERENTIAL) 

An &.n 

Frequency 

Obs. Pred. 

Proportion 

Obs. Pred. 

1 

1 
1 
1 

1 
1 

1 

1 

2 

2 

2 
2 

2 

2 
2 

2 

1 

2 

1 
1 

1 
1 

2 
2 

2 
2 

1 
1 

1 

1 

2 

2 
2 
2 

1 

1 
2 
2 

1 
1 

2 
2 

1 
1 

2 

2 

1 

1 
2 
2 

1 
2 

1 
2 

1 
2 
1 

2 

1 
2 

1 
2 

1 

2 
1 
2 

924 898.3 .873 .849 
179 171.3 .681 .651 
186 164.7 .657 .582 

30 34.8 .375 .436 

68 47.5 .624 .436 
247 211.9 .679 .582 
222 211.0 .685 .651 
983 951.0 .878 .849 

196 179.9 .164 .151 
78 106.0 .257 .349 

122 130.8 .390 .418 

36 47.4 .429 .565 

40 32.7 .690 .565 

133 144.6 .384 .418 
83 79.5 .364 .349 

177 157.3 .170 .151 

.788 .747 

.243 .246 

at, = .27; 2 = .45; x2 = 38.20; and w.m.d. = .036. 

LIMITATIONS OF THE MODEL 

To some extent, the deviations of the present model from the data can be discounted 

as arising from unreliable variations in the data. However, the larger spread in the 
predicted conditionals than the observed may be due to the definition of states in 
the present model. That is, it was postulated that the change of states from one trial 
to the next is Markovian. However, several investigators (e.g., Jones and Myers, 1966) 
have shown that subjects do respond to run lengths in probability learning. Therefore, 
transitions between states may depend upon more than the previous trial and this 
variance will not be accounted for by the present model. 

The present model, like most Markov models, has assumed that the transition 
probabilities between states are invariant. This assumption of homogeneity, although 
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a mathematically tractable property, probably only approximates the learning process. 
That is, early in training, transitions out of state U should not necessarily be as likely 

as later in the learning process. 

A FOUR STATE MODEL 

In discriminative probability learning a subject may not observe the trial type and, 
therefore, not respond differentially on different trial types. However, even if the 
subject observes the trial type, he will not necessarily be conditioned to predict the 
more or less frequent event given the trial type. In the present model the two above 
conditions are grouped into state U. An extension of the model would treat each of 

these as different states. 
The four state model would have a state where the subject does not observe the 

trial type, 0. When the subject observes the trial type, he is in one of the states of 

the three state model. The probability of observing would be expected to increase over 
training reaching an asymptote positively related to cue distinctiveness and ra . The 
response vectors for 0 and U could now differ. In state U, the subject may match 
the event probability given the trial type since he has observed the trial type. Whereas 
in state 6, the subject can either match P(E,) or respond at a .5 chance level. 

CONCLUSION 

The Markov model presented in this paper has shown to predict, at least quali- 

tatively, observed data from discrimination learning studies. The psychological 
assumption that discrimination learning is a form of stimulus learning rather than 
response learning has been able to account for overshooting results and reinforcements 
effects that previous models have been unable to describe. The cue similarity studies 
also support the model since the parameter values change as would be predicted 
from the psychological assumptions. Another attraction of the present model is the 
parsimony of the mathematical development. That is, the present model is mathe- 
matically simpler than both the Burke-Estes and the Atkinson models. 

The suggested modifications of the present model or other theoretical approaches 
may improve the description of two-stimulus probability learning. Nevertheless, it 
is clear that the proposed three state model provides the best description presently 
available. 

APPENDIX 

Presented below are the expressions for the conditional statistics of the form 
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WI I ~l~AJ%) = WP + (1 - 41 + UC1 - cz)pz 
A+pU , 

WI I ~,~&~I) = ICP + (1 -P> WC2 + (1 - 4~1 
1 + (1 -.P)U ’ 

P(A, I T,T,A,E,) = (l - p) UC1 - 4p , 
1 +u -PKJ 

fY4 I ~,~A4) = ICP + PW, + (1 - 4Pl 
1+pu ’ 

WI I ~1~2&%) = 
NCP + (1 - 4 + (1 -P) UC1 - 4~ 

A + (1 -p)U 9 

wb I ~l~dw,) = A + (1 -PI WI + (1 - ~1~1 
A+(l-p)U ’ 

P(A, 1 T,T,A,E,) = y;$? , 

w* I ~2*144) = ACP + PW, + (1 - 4Pl 
A+pU ’ 

fY4 I ~!JJ&d = 
ICCP + (1 - 41 + (1 -P> U(1 - c,)P 

I +(l -p)U 
, 

VI I ~JI44) = 1 + (1 -PI WC, + (1 - CAPI 
I+(l-pp)u ’ 

&g, I ~,~,gJ) = I + mc1+ (1 - Cl)Pl 
I+Pu ’ 

WI I ~2~24~2) = 
I[CP + (1 - 41 + UC1 - cz)pZ 

1 +pu 9 

WI I ~2~2&%) = 
ACP + (1 -PI UC, + (1 - czlpl 

A+(1 -p)U ’ 

79 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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