The effects of feedback in psychophysical tasks

Previous results of the reinforcement effects of feedback in
psychophysical tasks have been interpreted as changes in the S’s
response bias in the uncertain sensory state. The present study
varied the percentage of feedback in a two-alternative loud-soft
recognition task. The values of the probability of correct
feedback were 1, .8, .6, .4, .2, and 0. The results indicated that Ss
learned to respond to agree with the experimental feedback
rather than with the actual cue presented on a trial. The
probability of a response on Trial n+ 1 was highly dependent
upon the response and feedback of Trial n only when the two
trials were the same. It was concluded that feedback must
influence the response probability vector associated with a given
detection state.

In a two-alternative psychophysical task, Ss identify which of
two stimuli was presented on a given trial. Two responses, A,
and A,, identifying Stimuli T, and T,, respectively, are available
to the S. Two feedback events, E; and E,, indicate to the Ss
whether T, or T, was presented.

The effects of information feedback in this paradigm have been
investigated (Atkinson & Kinchla, 1965; Friedman, Carterette,
Nakatoni, & Ahumada, 1968). The results have indicated that the
probability of an A, response, P(A,), is positively related to
P(E;). The analysis of this bias in the learning models of
Atkinson and Kinchla (1965) and those discussed by Friedman et
al (1968) has assumed that feedback can change the response
probability vector associated with the uncertain sensory state, S .
Furthermore, letting States S, and S, be the detection of T, and
T,, respectively, it was sufficient to assume that P(A; |S;)=1
and P(A; | S;) = 0. That is, given Detection States S, or S,, the
S’s response is determined with Probability 1.

As suggested by Atkinson and Kinchla (1965), it may be that
feedback also influences the response vectors associated with the
Detection States S; and S,. For example, the results of a
discriminative probability learning study (Massaro & Moore,
1968) indicated that the response probabilities to identified cues
were highly dependent on the response and feedback of the
previous trial. The S’s task in that study was to indicate whether a
loud or soft tone was presented and then predict which of two
events, E; or E; would appear on that trial. Under reinforcement
schedules of m; =P(E; |T;)=.8 and n, =P(E, | T;)=.2, Ss
learned to respond appropriately to the identified cues. When the
Ss were reinforced for responding appropriately (i.e., predicting
the most frequent event given the cue), they would be more
likely to predict the most frequent event given the identified cue
on the following trial. More specifically, when Trials n+ 1 and n
were identified as the same, P(A; | A{E,) > P(A; | A E;) >
P(A, | AL E,) > P(A, | A,E;). When Trials n+ 1 and n were
identified as different, the rank-ordering of the conditional
response probabilities was exactly the opposite of that given
when the trials were identified as the same. Hence, it seems likely
that Ss could learn also to behave appropriately to identified cues
in a psychophysical detection task. In the framework of the
learning models, feedback should also affect the response
probability vectors associated with the detection states, S, and
S,.

Carterette, Friedman, and Wyman (1966) studied the effects of
information feedback in a two-alternative, temporal forced-choice
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auditory-signal-detection task. The authors concluded that
feedback reinforces the S to change his criterion following
incorrect responses and, hence, depress the sensitivity measure of
d’ of signal-detectability theory.

It is possible that feedback does not lead to changes in the S’s
criterion, which is usually some monotonic function of the
likelihood of a “signal trial” required for the response appropriate
for the “signal trial.” As mentioned earlier, feedback may, in fact,
determine the appropriate response after the S has concluded
whether or not the present trial is a “signal trial.” Therefore, in
the Carterette et al study, if feedback was simply determining the
probability of an appropriate response given the detection state,
the reinforcement effects could lead to increases or decreases of
d’ while not affecting marginal response Probabi]ities.

To explain the overall decrease of d' with random feedback,
Carterette et al concluded that random feedback distorts the S’s
memory for the signal. This need not be the case. Random
feedback could reinforce nonoptimal strategies of responding
given a detection state. These strategies, adopted to agree with
the experimental feedback rather than the actual cue presented
on a particular trial, would lower values of d' considerably.

The present study is an attempt to elucidate the role of
feedback in psychophysical tasks by investigating marginal and
sequential response probabilities under different levels of
probability of correct feedback in a loud-soft recognition task. In
the present study, T, and T, refer to the loud and soft tones,
respectively. Two responses, A; and A,, identifying Tones T,
and T, are available to the Ss. Two feedback events, F; and E,
indicate to the Ss whether Ty or T, was presented. On both T,
and T, trials, Ss are given correct feedback with Probability 7 and
incorrect feedback with Probability 1 7 The values of 7 were
1,.8,.6, .4,.2,and 0.

It was predicted that Ss would learn to behave appropriately to
the information feedback rather than to the subjective loudness
of the tones presented. Therefore, feedback should affect the
response probability given a detection state. For example, if Ss
will learn to respond in order to agree with the experimental
feedback rather than with the actual cue presented on the trial,
they must first identify the tone before they know the
appropriate response given that trial type.

METHOD
Subjects
The Ss were 66 University of Massachusetts undergraduates
and they were assigned randomly to the experimental treatments.

Apparatus

Up to four Ss were run at a time, each seated at a tabletop
enclosure containing a Masonite panel consisting of a white center
warning light and two red feedback lights each positioned above a
spring-loaded lever switch and labeled “loud” or “soft.” Tones
were generated by Hewlett-Packard Model 200 audio oscillator
and were presented over matched headphones with a continuous
white masking noise. Experimental events were controlled by
Lehigh Valley 1620 Probability Randomizers, Hunter Interval
Timers, and relays. Stimuli, feedback and responses were
recorded on an Esterline-Angus event recorder.
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Procedure

The onset of a tone started a trial. The tone lasted .5 sec. The
warning light followed and lasted 1.5 sec during which Ss were
required to make a loud or soft identification response by
pressing the respective switch. The feedback light was illuminated
for .5 sec immediately following the end of the warning light.
Hence, each trial lasted 2.5 sec. The intertrial interval was 2.5 sec.
Each S received 600 trials in which all stimuli and feedback were
presented by an appropriate setting on the probability
randomizers. The trial types (loud and soft) were programmed to
occur equally often. The intensity pairings of the 800-Hz tones
were 73 and 75 dB SPL for the soft and loud tones, respectively.
Ss were given the following instructions:

“You will be receiving two tones differing slightly in
loudness over the headphones. On each trial, your task will
be to indicate which of the tones was presented. When the
white light at the center of the panel comes on, you will
press one of the two switches. You will press the left (right)
switch for the louder tone and the right (left) switch for the
softer tone. Notice the switches are labeled loud and soft.
You are expected to guess if you are not sure of your
decision. You will have 1% sec to make your choice.

“After 1% sec, one of the two red lights will come on
indicating whether the loud or soft tone was presented on
that trial. Are there any questions?”

Design

Six feedback schedules were employed in the present study.
The probabilities of correct feedback, n, were 1, .8, .6, .4, .2, and
0. Thus, there were 11 Ss in each cell of a factorial design for a
total of 66 Ss. The analysis of variance of P(A,), the probability
of a loud response, included the between variable of feedback
condition and the two within variables, cue (loud or soft tone)
and trial block (three blocks of 200 trials).

RESULTS

Marginal Statistics

Table 1 presents vatues of P(A;) as a function of =, cue, and
trial blocks. Table 1 shows that P(A; | T;) — P(A; |Ty)
decreased as the probability of correct feedback () decreased,
F(5,60)=22.46, p<.00l. Both the Cue by Trial Block,
F(2,120)=17.55, p<.001, and the m by Cue by Trial Block,
F(10,120)=4.00, p <.005, interactions indicate that Ss
increased or decreased correct identifications over training in
order to agree with the feedback in the situation. That is, with
only correct feedback, Ss improved over training in identification
responding. On the other hand, with sufficient incorrect
feedback, Ss learned to respond so that their identifications

Table 1

Marginal Probabilities of Identification Responding as a Function of Cue,
Trial Block and Percentage of Correct Feedback ()

Trial Block

T 1 2 3
10 P(A; I Ty) .82 .84 .85
. P(A]!Ty) .34 .20 .16
8 P(A, Ty 75 .75 73
: P(A; IT,) .32 .27 .33
6 P(A; T 7 1 .66
: P(A;IT,) .28 .28 .39
4 P(A; I TD) .70 62 .58
: P(A,ITy) .41 .40 .43
2 P(A, T .49 .39 .39
: P(A{IT5) .56 62 .60
0 P(ALIT)) .41 .34 .28
P(A;1T,) .66 .76 .80
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Table 2
Observed Values of P(A1, n+1! Tj n+1Tj, nAk, nE€n) for 7 = .6 Pooled
over Trial Blocks

Tj, n+1 Ti,n Ak, n EQ n
1 1 1 1 .782 (763)
1 1 1 2 685 422)
1 1 2 1 602 (284)
1 1 2 2 462 (158)
1 2 1 1 768 (202)
1 2 1 2 747 27D
1 2 2 1 740 (466)
1 2 2 2 .766 897
2 1 1 1 .300 (644)
2 1 1 2 .236 467
2 1 2 1 .264 (231)
2 1 2 2 232 (198)
2 2 1 1 S71 (238)
2 2 1 2 438 (208)
2 2 2 1 .398 (460)
2 2 2 2 259 (622)

Note: }_Entries in parentheses are the number of cases contributing to the
denominators of each conditional probability.

would agree with the experimental feedback rather than the
actual cue presented on that trial.
Sequential Statistics

The marginal response probabilities have indicated that Ss learn
to respond loud or soft with respect to the feedback in the
situation rather than according to the actual loudness of the cue.
The reinforcement effects should indicate whether Ss are
reinforced on a trial-to-trial basis or if, after a number of trials,
they choose a strategy and behave according to the strategy
independent of the events on the previous trial. For example, if
Ss were receiving 80% incorrect feedback they could respond
according to the following strategy: Respond “loud™ to the soft
tone, respond “‘soft” to the loud tone, and respond randomly if
the cue is not identified.

Table 2 presents the first-order conditional probabilities for the
group with 60% correct feedback pooled over trial blocks. The
trends shown in the table also hold for the other groups. As can
be seen in the table, the probability of a response on a given trial
appears to be highly dependent upon the response and feedback
of the previous trial only when the cues presented on the two
trials are the same. A statistical test of this hypothesis was
performed by computing a x*> value between the conditional
probabilities in Table 2 and their appropriate marginal response
probabilities, P(A; | TiTj), i,j=1,2. Summing the x* values
when Tj n+1 = Tj, n gives a X* value on 6 df. The x* value of
166.86, p < .001, indicates that P(A;) was highly dependent on
the response and feedback of the previous trial when the trial
types were the same. More specifically, when the tones presented
on Trialn and Trialn+1 were the same, P(A; | AE,) >
P(Al |A1E2) > P(Al |A2E1) > P(Al |A2E2). These results
agree with the sequential statistics found in two-choice
discriminative probability learning (Massaro, 1969).

On the other hand, when the tones presented on the two trials
are different, there is no particular rank-ordering among these
conditional response probabilities and they do not appear to
differ significantly from one another. The x* value (computed as
above) for the conditional probabilities when T;, n+ # Tj, 5 was
8.39, p> .2. Therefore, it is reasonable to conclude that Ss in the
present study were not influenced by the response and feedback
on Trial n in determining their response on Trial n + 1 when the
two trials were identified as different.

DISCUSSION

The results have indicated that Ss learn to respond
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appropriately as defined by the feedback in the experimental
setting rather than according to the subjective loudness of the
tones. Therefore, with sufficient incorrect feedback, Ss learned to
call a loud tone “soft” and a soft tone “loud.” The assumption of
extant learning models of detection performance that feedback
only changes response probability in the uncertain state does not
seem to be sufficient to predict these results. Also, it is difficult
to see how the fluctuating criterion proposed by Carterette et al
(1966) can account for the results. However, the view that
feedback influences response probability, given a detection state,
handles the results very nicely.
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