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SESSION I
PRESIDENTIAL ADDRESS

The computer as a metaphor for
psychological inquiry:

Considerations and recommendations

DOMINIC W. MASSARO
University of California, Santa Cruz, California

My concern is with the computer as a metaphor for explaining perception and action. A represen­
tative sample of arguments for and against the paradigm are presented and evaluated. The con­
clusion is that the idea of computation is productive for achieving a functionalist description of
how we perceive and act. This level of description can contribute to our understanding indepen­
dently of description achieved at the levels of neurophysiology and phenomenology. Some of the
perceived limitations in the computational method rest on the assumption that the symbolic level
must be discrete and abstract. In fact, worthwhile explanations within the information process­
ing framework utilize continuous, modality-specific processes and representations as explana­
tory devices. One suggestion for a movement from the discrete to the continuous mode is advised
to bring computational theories in line with the psychological phenomena they describe. Vari­
ous alternatives to the computational framework are considered and found to be inadequate sub­
stitutes. An example of research is used to demonstrate the value of the continuous mode and
the computational level of explanation.
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My view of scientific development is represented by
Stephen Toulmin's (1972) model of continuous and
gradual accumulation and by Thomas Kuhn's (1962) idea
of a paradigm shift. Scientists stand on the shoulders of
their ancestors and colleagues; presidential addresses
should be no different. Last year, Geoffrey Loftus (1985)
began his Presidential Address to members of this Soci­
ety by acknowledging the value of computers in scien­
tific endeavors, as illustrated by the excellent summary
provided by Russell Church (1983) in his Presidential Ad­
dress two years earlier. The important caveat was that
computer simulation models might distract us from the
more important goal of finding simple laws. Loftus illus­
trated his message very nicely by imbuing Johannes
Kepler with current simulation capabilities. In this fan­
tasy, Kepler could simply have chosen to add a few more
free epicycles (free parameters) in an incorrect Coperni­
can model, rather than laboriously working out his sim­
ple laws of planetary motion. I believe that Loftus touched
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on worthwhile considerations that go far beyond computer
simulation. A remarkable number of issues have become
apparent, such as the nature of theory and explanation,
the target phenomena for theory, and the appropriate
levels of explanation in psychological inquiry. My goal
is to touch upon these issues while addressing the ques­
tion of the value of the computer as a metaphor for psy­
chological inquiry. In this manner, I am able to provide
continuity with previous addresses while simultaneously
being faithful to the organization's concern with com­
puters in psychology,

MIND-BODY PROBLEM

Psychology has its roots in philosophy and physiology;
at a fundamental level, the computer metaphor represents
a solution to the mind-body problem. Psychology inves­
tigates empirically not only the behavioral and mental
worlds, but the relation between the two. If the science
succeeds, one outcome will be a solution to the mind-body
problem. Until it does, however, we can dabble in
metaphysics and speculate on how the script will be writ­
ten. In fairness to our philosophically minded ancestors,
and as a background for current endeavor, Figure 1 shows
graphic representations of six solutions to the mind-body
problem, or, as illustrated, the ghost-machine problem.
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A BRIEF HISTORY OF COMPUTATION

Figure 2. Rene Descartes, 1596-1650.

Figure 3. A bird organ which produced a simulation of a bird's
song.

Figure 1. Graphic representations of six solutions to the mind-body
problem.

Materialism

Mechanical computers antedated computers as we know
them (Williams, 1978a, 1978b). Figure 3 shows a bird
organ, a mechanical device that produced a very close
simulation of a bird's song. A couple of centuries ago,
no parlor would have been without one, if its expensive
price tag were within the family's means. The best-known
automaton is Jacques de Vaucanson's mechanical duck,
shown in Figure 4. This creature, built in the middle of
the 18th century, is best summarized by the following
account:

After a light touch on a point on the base, the duck in the
most natural way in the world begins to look around him,

Descartes (Figure 2) accepted the dichotomy of mind
and body bequeathed by Plato, but linked the operations
of the two in a form of interactionism. Two different
things, mind and body, communicate to produce a
phenomenal impression of the "I" interacting with the
body. Being contrary, perhaps, Leibniz proposed
parallelism or an independence of mind and body. Any
apparent coincidence reflects only the harmony established
by God. Epiphenomenalism claims that mental processes
are nothing more than the by-product of the physical body.
These processes have no consequences of their own.
Materialism, the foundation of behaviorism, denies the
existence of mental processes altogether. Tit for tat, ideal­
ism denies body rather than mind. Monism, my favorite
solution and the one most consistent with the computer
metaphor, posits that the physical properties of humans
(and other animals) embody the attributes of mental
processes. Like a computer, a purely physical system ex­
hibits "intelligent" functioning between input and out­
put. Although mental processes are tied to physical sys­
tems, one cannot be completely reduced to the other.
Mental processes exist and influence observable behavior;
any complete explanation of behavior will include a level
of description encompassing these processes.



Figure 4. A depiction of de Vaucanson's mechanical duck (see text
for a description).

Figure 5. An etching of an exhibition of automata held in Lon­
don in 1836.

eyeing the audience with an intelligent air. His lord and
master, however, apparently interprets this differently, for
soon he goes off to look for something for the bird to eat.
No sooner has he filled a dish with oatmeal porridge than
our famished friend plunges his beak deep into it, show­
ing his satisfaction by some characteristic movements of
his tail. The way in which he takes the porridge and swal­
lows it greedily is extraordinarily true to life. In next to
no time the basin has been half emptied, although on several
occasions the bird, as if alarmed by some unfamiliar noises,
has raised his head and glanced curiously around him.

After this, satisfied with his frugal meal, he stands up and
begins to flap his wings and to stretch himself while ex­
pressing his gratitude by several contented quacks. But most
astonishing of all are the contractions of the bird's body
clearly showing that his stomach is a little upset by this rapid
meal and the effects of a painful digestion become obvious.
However, the brave bird holds out, and after a few moments
we are convinced in the most concrete manner that he has
overcome his internal difficulties. The truth is that the smell
which now spreads through the room becomes almost un-
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bearable. We wish to express to the artist inventor the plea­
sure which his demonstration gave to us. (Chapuis & Droz,
1958, quoted in Williams, 1978a, pp. 56-57)

Vaucanson's automaton had the necessary property of syn­
chronous control of multiple functions, a behavioral
property that psychologists have yet to illuminate.

Automata were the rage in the 19th century, as can be
seen in Figure 5, which shows an etching of an exhibi­
tion held in London in 1836. This gathering seems to bear
some similarity to our computer trade fairs, or even pos­
sibly to our Computers in Psychology meetings.

Surprisingly, it is difficult to find some record of au­
tomatous speaking machines' being available before the
beginning of the 20th century. Figure 6 shows a drawing
of Joseph Faber's speech organ and the human operator.
The performance held in London in 1846 consisted of or­
dinary and whispered speech and the singing of airs, end­
ing with "God Save the Queen" (Victoria). Maybe speech
was believed to be special even in those times. Other
remarkable mechanical devices existed. On the writing
side, the Maillardet automaton constructed 200 years ago
(see Figure 7) could both write and draw. An example
of its writing with a ballpoint pen is shown in Figure 8.

Calculation and storage of numbers is fundamental to
the concept of computation. The representation of num­
bers is important for what computation is feasible. Roman
numerals and Chinese notation do not permit a manage­
able method of multiplication. Arabic numerals make mul­
tiplication reasonable but tedious and involved. The Scots­
man John Napier invented logarithms to simplify
multiplication and division. Logarithms might be consi­
dered a machine language. The inputs of interest are trans­
lated (transformed) before computation and translated
back again into the standard notation after computation
is complete. The instantiation of logarithms by lengths
on a scale or ruler was, of course, the slide rule which

Figure 6. Joseph Faber's speech organ (see text for description)
From "The speaking machine of Wolfgang von Kempelen" by H.
Dudlev and T. H. Tarnoczv, 1950, Journal of the Acoustical Soci­
ety a/America, 22. Repri~ted by permission of publisher.
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Figure 7. The Maillardet automaton that could both write and
draw.

hung by the sides of science and engineering students.
These were replaced by small hand calculators only a de­
cade or so' ago.

Blaise Pascal (Figure 9) designed a mechanical calcu­
lator to help his father, a tax collector, carry out his bur­
densome financial calculations. The calculator was simi­
lar in many respects to a speedometer on a car, with
interlocking cogs and wheels on rotating axles (Trask,
1971). Gottfried Wilhelm Leibniz (Figure 10) made mul­
tiplication and division much easier by separating the teeth
on the multiplying wheel by different lengths. Wang cal­
culators, found in every psychology statistics laboratory
until just a few decades ago, were basically of a Pascaline
design, with Leibniz's modification, but were powered
by electricity rather than by hand.

Figures II and 12 present portraits of two of the best­
known figures in the history of computation. Charles Bab­
bage's second-generation calculator, the analytical engine,
is acknowledged as the first programmable computer. It
had input and output devices, a processor and a memory
store, and a control unit. The input was modelled after
an invention of Joseph Jacquard, used for the weaving
of cloth. A stiff card with a series of holes would guide
the appropriate threads into the loom, controlling exactly
the pattern of the weave. Ada Augusta, Countess of
Lovelace and daughter of Lord Byron, contributed to the
project by documenting the enterprise and evaluating it
positively at a mathematical level. She also anticipated
the issue of whether or not the computer can do more than
it was programmed to do. She answered negatively
(Evans, 1979).

George Boole (Figure 13), the progenitor of informa­
tion theory, provided the theory of logic to breathe life
into the machines of Pascal, Leibniz, and Babbage. Alan
Turing proved mathematically what Babbage had be­
lieved: that a single machine could compute any set of
mathematical operations, and hence the general-purpose
computer was mathematically feasible. It is interesting that
the developments of Boole and Turing with respect to
logic, design, and function were independent of hardware
implementation. The latter had its own chain of progress
and the two parallel developments support the qualitative
distinction between software (algorithm) and hardware
(instantiation) levels of implementation and understanding.

Konrad Zuse (Figure 14) claimed that he had no
knowledge of Babbage's analytical engine when he con­
ceptualized extending the principles of a special-purpose
calculator to one that could perform any mathematical task
(Evans, 1979). The implementation, he believed, should
be in binary rather than decimal calculation units, and he
proceeded to build a working model using Erector-set
parts and cheap off-the-shelf components. In the succes­
sive generations of models, the hardware, but not the de­
sign, changed again, illustrating again the relative in­
dependence of these two levels.

The Americans, led by Mauchly and Eckert, proposed
and built a general-purpose ENIAC (Electronic Numeri­
cal Integrator and Calculator) (McCorduck, 1979).
Although the machine was programmable in principle, one
had to rewire part of the machine to switch from one kind
of programming task to another. It was the mathemati­
cian John von Neumann (Figure 15) who suggested the
design advance that programs should be stored in the
machine in the same manner as the information to be cal­
culated. This insight, and the progressive miniaturization
brought about by developments in microelectronics, has
generated, after just three decades, supercomputers ex­
ecuting billions of operations per second with memories
of 1010 bits, and computers in a briefcase for just a few
million lira. Perhaps part of the attraction of the computer

Figure 8. An example of the writing produced by tbe Maillardet
automaton.



Figure 9. Gabriel (Blaise) Pascal, 1623-1662.

Figure 10. Gottfried Wilhelm Leibniz, 1646-1716.
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Figure 11. Charles Babbage, 1791-1871.

Figure 12. Ada Augusta, Countess of Lovelace, 1815-1851.
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Figure 13. George Boole, 1815-1864. Figure 15. John von Neumann, 1903-1957.
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Figure 14. Konrad Zuse, 1910.
Figure 16. An information-processing model of timing (after

Church, 1983).



as a metaphor for psychology is that some of this progress
might be contagious.

THE COMPUTATIONAL MODEL

Church's (1983) exposition on the value of computers
began with its serving as a model of intelligent behavior.
None of us found this very surprising, since the computer
metaphor has been around long enough that most of you
were weaned on it. This analogy between man and
machine has extended well beyond the boundaries of psy­
chology and cognitive science, and the computer age has
important implications for social sciences. I will have
nothing to say about this, but I recommend the emerging
literature exploring the implications for modern in­
dividual, social, and political consciousness (Edwards,
1984; Evans, 1979; Pohl & Shaw, 1981, Chap. 10). To
tweak your interest, there are intriguing questions such
as (1) the contribution of cybernetics to military technol­
ogy and our attitudes to power and war, (2) the sociali­
zation of individuals who now have the option of replac­
ing many common social interactions with computer
interactions, and (3) whether an intelligent electronic gar­
bage compactor with decision-making and speaking skills
should have inalienable rights.

Figure 16 gives the information-processing model of
timing used by Church to illustrate the computer-like
properties of the model. All of us are familiar with the
components of switches, accumulators, memories, and
comparators by way of both our computers and our
models. It wasn't always this way. It was only about four
decades ago that our primitive concept of scientific ex­
planation changed from energy to information. Wiener's
Cybernetics (1948) and Shannon's (1948) papers (see
Figures 17 and 18) can be considered landmarks for
replacing the Newtonian concept of energy with the con­
cept of information. The concepts of information theory,
including coding, storage, number of alternatives, and
noise, appeared to provide more meaningful explanations
of both electronic machines and human behavior. George

Figure 17. Norbert Wiener.
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Figure 18. Claude Shannon. Photograph printed with permission
of CW Communications, Boston, MA.

Figure 19. George A. Miller. Photographed printed with permis­
sion of George A. Miller.

Miller (1953) (see Figure 19) informed the psychologi­
cal community about these developments; he had found
them highly valuable in describing language and commu­
nication (Miller, 1951). [Three decades later, Miller's
orientation to language appears to be dominated by bio­
logical rather than informational explanations (see Miller,
1981).] Gentner and Grudin (1985) documented what we
already knew by finding a progression of more systematic,
explicit metaphors during psychology's century of history.
The convergence on systems metaphors must be attributed
to (or blamed on) the information revolution.

The computational or information-processing approach
ascribes internal states and processes to explain and un­
derstand much of behavior. The states are information-
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bearing states (see Dretske, 1981), and the processes
transform information (Neisser, 1967). Dretske (1985)
provides a recent example of utilizing the information­
processing level to explain behavior. Consider a rat in
a Skinner box, trained to press the lever for a food re­
ward only during the appearance of a triangle. The past
experience of the rat establishes a meaning relationship
between the triangle and the outcome of pressing the lever.
Some internal representation can be considered to be
causally involved in the paw movement of the rat required
to depress the lever. Thus the environment is linked to
observable behavior by information processing. The pat­
tern recognition of the triangle, the retrieval of its sig­
nificance, and the programming of the appropriate action
describe the observable behavior. The claim is that neither
the physiological nor the intentional level will capture the
knowledge gleaned from the information-processing level.
As Churchland (1984) describes it, the aim is to provide
"the functional organization of the human nervous sys­
tem" (p. 92), and I would simply add "interacting with
the environment."

An Example of a Computational Model
We might make some headway into an answer to the

need for a computational level of explanation if we con­
sider more fully what to expect from a model theory of
some phenomenon. A model should represent the
phenomenon of interest in an informative manner. It
should not be identical to the phenomenon; if it were, then
it would no longer be a model but would be the phenome­
non. We want a model or simulation, not the actual
phenomenon or a duplication. Let's consider a model the­
ory of speech production first proposed in 1848 by the
German physiologist Johannes Muller (Dudley & Tar­
noczy, 1950; Flanagan, 1972). Speech production is con­
ceptualized in terms of a sound source's being activated
and passed through a filter. Additional components can
be added to simulate other features of speech production.
Figure 20 illustrates a mechanical model of speech
production that anticipated the formal source-filter the­
ory. For the articulation of a vowel, the source is the
vibration of the vocal folds, and the filter is the vocal tract.

:~~L~Y 5 WHISTlE .S LEVER REED CUTOfF

Figure 20. Mechanical model of speech production anticipating
the source-filter theory of speech production. From "The speaking
machine of Wolfgang von Kempelen" by H. Dudley and T. H.
Tarnoczy, 1950, Journal of the Acoustical Society of America, 22.
Reprinted by permission of the publisher.

The vibrating vocal folds can be simulated by a vibrating
body producing a source spectrum. The vocal tract is
simulated by a filter corresponding to a series of open
tubes connected to one another and varying in diameter
and length. This model theory has been used many times
to create both hardware and software speech synthesizers
(Cohen & Massaro, 1976; Klatt, 1980). In this sense, the
model theory has proven successful and might be consi­
dered adequate and even necessary for understanding
speech production. this theory might be considered to
be computational, since it is neither physiological nor
phenomenological.

The source-filter theory certainly is not simulating the
microstructure of the speech production system, nor is
it representing the phenomenal level of speech produc­
tion. It seems to be capturing an intermediate computa­
tional level. Although no one has proposed this theory
as a psychological model of speech production, the model
might be fantasized as a mental model to illustrate what
the computation level might contribute to understanding,
over and beyond the physiological and phenomenologi­
cal levels. In controlling speech production, we might con­
sider motor programs that would specify parameters
separately for the source and filter functions. To convey
various affective states, the source parameters could be
varied without modifying the filter parameters. Hence,
the speaker might appear excited or depressed on the ba­
sis of his or her tone of voice, independently of the mes­
sage content. Analogously, the parameters specifying
vocal-tract shape might be modified slightly to convey a
regional dialect, when appropriate, without modifying
those parameters specifying the sound source. This com­
putationallevel appears to add to our understanding and
explanation over and beyond what could be given at either
the micro or macro levels. Analogously, the claim is that
the computer metaphor is valuable for understanding per­
ception and action, an understanding not completely
achieved at the other two levels.

Two Levels of Description
The computational approach can be justified because

information-processing theory is informative at a level of
psychological description. The computer metaphor re­
quires a psychological description, in addition to a purely
physiological description. If a scientist comes upon a com­
puter and wants to understand how it works, different
levels of inquiry are possible and necessary. Following
one line of inquiry, an electronics engineer could tear the
computer apart and describe the physical makeup of the
computer. This description provides information about the
physical components, such as whether the memory in the
computer is composed of a magnetic core or semiconduc­
tor chips. Even given a complete physical description of
the hardware, however, a curious person still might not
be satisfied with respect to how the computer works. Very
little would be known about the software. The scientist
would not know what programs the computer uses, how



those programs work, whether the computer learns, for­
gets, or can do two things at the same time. The distinc­
tion between the hardware and software levels of a com­
puter is emphasized by many computer languages that
disguise the hardware of the machine. The same program
can be run on a variety of computers that are fundamen­
tally different in their hardware makeup. The significant
issues addressed at the level of the programs of a com­
puter are very similar to the questions asked about peo­
ple. To study the software of the computer, we would
want to observe the computer in operation. We would
manipulate the environment in certain ways and see how
the computer reacts to those manipulations. This is how
psychological functioning is studied in humans. The en­
vironment is manipulated in an orderly manner, and we
see what consequences it has for the subject. From the
relationships between the changes in the environment and
changes in behavior, we hope to learn something about
the hidden psychological operations involved.

The distinction between physiological and psychologi­
cal levels of description is analogous to a distinction made
in artificial intelligence, a field ofcomputer science aimed
at creating intelligent machines. The designing of
machines to resemble human intelligence might follow one
of two principles. In the first instance, the hardware of
the machine is made to imitate the brain as much as pos­
sible. The binary or on-off logic of a computer might be
viewed as analogous to the all-or-none behavior of brain
cells. An example of this approach is the neural-net ap­
proach of perceptrons (Minsky & Papert, 1968; Rosen­
blatt, 1958). In the second approach, intelligence is
modeled by the manipulation of symbols, as on a digital
computer. In this information-processing view, the com­
puter's ability to process information is viewed as analo­
gous to a human's ability to process information. In this
case, the programs or software of the machine might be
designed to mimic human thought processes (Newell &
Simon, 1956, 1972; Simon, 1969). Until a few years ago,
contemporary thought and research in artificial intelli­
gence appeared to have adopted the information­
processing over the brain-imitation approach (Raphael,
1976; Winston, 1977). One might even say that intrigu­
ing and challenging realizations of artificial intelligence
have materialized within the information-processing
model. More recently, there has been a revival of simulat­
ing brain processes as much as possible (Feldman, 1985;
Hinton & Anderson, 1981), but the distinction between
the two levels of description is still real and valid.

Marr (1982) maintained the two different levels we have
taken for granted within the information-processing
paradigm and added a third, top, level. At the top level
is computational theory: the goal and logic of the com­
putation specified at the information-processing level. J. J.
Gibson (1966, 1979) made us aware of the top level in
terms of the functions that the perceptual system accom­
plishes. This is why he had been a spokesman for artists
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and applied visual scientists long before being accepted
by psychologists. However, Gibson would not ac­
knowledge the need for an information-processing level,
and did not provide a convincing rationale for how infor­
mation could be picked up without information process­
ing (Massaro, in press a). At the middle level within
Marr's framework, we have structure and process. The
structure specifies how the input and output are
represented; the process specifies the nature of the opera­
tions for the transformation between input and output
(Massaro, 1975a). At the bottom level is the physical reali­
zation of the information processing. As reiterated by
Mehler, Morton, and Jusczyk (1984), the middle and bot­
tom levels are only loosely related, and an adequate un­
derstanding at one of these levels does not ensure an un­
derstanding at the other level. Even if we were able to
locate the neurophysiological mechanism, it is unlikely
to constrain the algorithms and representations being used
at the information-processing level.

Mapping Between Levels
What is important about maintaining different levels of

description is that a one-to-one mapping between levels
is unlikely. Contrary to the increasing trend in the field,
the neurophysiological level of description cannot be taken
as a direct index of the psychological level (or the reverse).
For this reason, the psychological level of description is
informative even if the description at the neurophysiolog­
icallevel is complete. We do not understand some psy­
chological process, such as pattern recognition, by sim­
ply localizing it in the brain. As an example, findings of
common brain sites involved in perception and produc­
tion of language, rather than supporting a motor theory
of perception, might simply reflect a common mechanism
used by both perception and production (Mehler et al.,
1984). We have different objectives for the different levels
of explanation, and a valuable model at the psychologi­
cal level might not be directly reflected in a neuro­
physiological model. Mehler et al. (1984) make an im­
portant distinction between causation and descriptive
explanations. Even if schizophrenia were caused by a bio­
chemical defect, it would be still necessary to give a
processing-model account of schizophrenic (and non­
schizophrenic) behavior. I have provided a similar justifi­
cation for a psychological theory of reading (Massaro,
1984a).

The importance of a psychological level of description
was apparent when I recently confronted the latest work
(Okita, Wijers, Mulder, & Mulder, 1985) in electro­
physiological response potentials (ERPs). If these mea­
sures are tapping brain function directly, we might ex­
pect less need for a psychological model to make sense
of the observations. But, in fact, ERPs seem fruitful
primarily as a dependent variable that can illuminate psy­
chological function. This variable can do so not simply
because ERPs tap brain activity but because the brain ac-
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Figure 21. Three levels of explanation in psychological inquiry (af­
ter Bieri, 1985).

SIX CRITICISMS OF THE
COMPUTATIONAL METAPHOR

teractive system, that is, the organism functioning in its
ecological niche. Although the more global level of
description has proved useful (Gibson, 1979) and promises
to shed light on the other levels, it does not solve the mind­
body problem as formulated here, nor does it disambigu­
ate the question of a computational level of explanation.

The existence of different levels of explanation is fun­
damental to the question of the computer metaphor in psy­
chological inquiry. This issue leads to the first of six criti­
cisms of the computer metaphor that I would like to
consider. These criticisms give us the opportunity to ex­
plore the value of the metaphor itself, as well as giving
us the opportunity to improve the metaphor to make it
even more valuable.

Searle's Criticism
The traditions of materialism in philosophy and be­

haviorism in psychology reject any role for a middle psy­
chologicallevel of explanation. In recent argumentation,
John Searle (1984) has delineated some of the strongest
arguments against the necessity of an information­
processing level of explanation. In his view, psychology
might be viewed as a century-old enterprise of failures
to fill the gap between the neurophysiological and inten­
tionallevels. Introspection, behaviorism, cybernetics, and
artificial intelligence have not succeeded. According to
Searle, two levels of explanation are sufficient, and the
interaction between the bottom and top levels is not sym­
metrical. The lower level can have an immediate cause
at the higher level, but not the reverse. Any influence of
the higher level on the lower level must be delayed in time
and mediated by the lower level. For Searle, the asym­
metry is justified by our belief in reductionism and be­
cause it supposedly precludes metaphysical problems with
the notion of causality when higher order properties are
assumed to cause lower order properties.

What is important for our purposes is Searle's hypothe­
sis that we don't need the computational level between
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tivity is being examined in the light of experimental and
theoretical analyses at the psychological level. In this
sense, ERPs are compatriots ofRT and accuracy with no
privileged status as more direct indices of psychological
function. Analogously, brain damage and brain activity
actually might be more informative when analyzed at the
psychological than at the physiological level.

My pet peeve about the science of localizing function
is the study of hemispheric asymmetries. It is now clear
that there is no one-to-one mapping between hemispheric
advantage and the putative localization of function. In
speech, for example, a number of dimensions produce a
right-hemisphere advantage (Blumstein & Cooper, 1974),
and, therefore, speech perception cannot be localized in
just one hemisphere. In addition, hemispheric differences
vary with attention, memory, and response strategies
(Freides, 1977; Kinsbourne, 1978). I also wonder how
many dichotic listening studies have not seen the light of
day because the results came out in the "wrong" direc­
tion. As pointed out by Mehler et al. (1984), localizing
the function can distract us from seeking to understand
the nature of the processing. Analogous to a view of at­
tention (Massaro, 1975a), a theory of hemispheric differ­
ences can only follow, not precede, a theory of psycho­
logical functioning.

Thus, it is meaningful to understand the software or
programming level regardless of the biological or elec­
tronic structure it is instantiated on. As noted by MacKay
(1984), the current computational approach resembles the
cybernetic approach. Their function is to give an inter­
mediate conceptual level that affords a working link be­
tween the level of conscious agency and the level of neu­
ral activity. The existence of different levels of explanation
is fundamental to the question of the computer metaphor
in psychological inquiry. Following Bieri (1984), the
question of interest might be formulated in terms of hav­
ing three explanatory strategies for psychology, as illus­
trated in Figure 21. These three strategies correspond to
three different levels of reductionism, spanning the con­
tinuum from the molecular to the global. Although we
describe three different levels, the boundaries between
them might be considered to be fuzzily rather than cate­
gorically defined. At the bottom level, the properties of
physics and neurophysiology are used to explain behavior.
At the middle level, an information-processing system,
conceptualized in terms of a program and its functions,
is used to explain observable behavior. At the top level,
a person is conceptualized as an intentional system in
which beliefs and desires (intentional states) are used to
rationalize behavior. Within this framework, the mind­
body problem reduces to the relation among the levels,
and the issue of the computer metaphor reduces to the
usefulness of the middle level.

One might, especially if one is an ecologically oriented
scientist, conceptualize a fourth level (Owens, 1985).
Here, behavior would be explained as part of a larger in-



neurophysiological and phenomenological levels. His
well-known disproof of artificial intelligence as a model
of behavior involves a person's successfully communicat­
ing in Chinese without understanding. The person suc­
ceeds by following a rulebook for matching the incom­
ing symbols, representing the input message, with symbols
to be provided as the outgoing message. The idea is that
the translator would have a syntax without a semantics.
Thus a computer without a semantics cannot be said to
understand English even if it succeeds in passing a Turing
test. What is necessary to understand is what the sym­
bols (words) mean. I am not convinced by Searle's criti­
cal gedanken experiment, however, because the
information-processing level of the computer metaphor
allows for semantic content as well as syntax. In fact, the
psychological reality of heuristics, relative to algorithms,
as information-processing explanations in many be­
havioral contexts, attests to this fact. The former might
be thought of as having a greater contribution of seman­
tics (knowledge states) than syntax (operations of these
states). The information-processing view holds that pat­
tern recognition results in semantic content, not just syn­
tax (Allport, 1984). An important explanatory level for
understanding language is neither at the intentional nor
the physiological level, but at the information-processing
level. We simply need a functional analysis of mind
(Pylyshyn, 1984).

Computation and Limited Capacity
If any criticism can be leveled at the computer

metaphor, it might be in terms of limited capacity. George
Miller (1956), Colin Cherry (1953), and Donald Broad­
bent (1958, 1971) acknowledged the primary contribu­
tion of communication theory for the concept of capac­
ity. Miller viewed the magical number 7 ±2 as a reflec­
tion of limited capacity. Cherry and Broadbent (Figure 22)
studied the limitations in our ability to process informa­
tion arriving simultaneously to multiple channels. Today,
many are questioning the usefulness of such a concept
(Cheng, 1985; Heuer, 1985; Kantowitz, 1984; Navon,
1984; Neumann, in press). A concern for demonstrating
capacity limitations or nonlimitations seems to have dis­
tracted many of us from discovering how the processes
themselves really work. Rather than being content to show
that individuals can or cannot optimally perform some
task, the goal should be to delineate the laws describing
the processes involved in the task. What is important is
not so much whether attention is necessary to conjoin two
properties in pattern recognition, but the nature of the
processes involved (Massaro, 1985).

Miller (1956) and Broadbent (1958) operationalized the
concept of a limited-capacity channel in terms of the met­
ric of information theory. Humans were supposedly
limited in their rate of information transmission or recep­
tion when measured in bits per unit time. As an example,
reaction times were shown to increase with increases in
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Figure 22. Donald E. Broadbent. Photograph printed with per­
mission of Donald E. Broadbent.

the number of alternatives in the task (Hyman, 1953).
What is significant for our purposes is that the concept
of limited capacity was internally consistent with the root
metaphor of information. In contrast, Kahneman (1973)
and others (e.g. , Norman & Bobrow, 1975) extended the
limited-capacity concept beyond the domain of informa­
tion to the domain of effort. Here we seem to return to
the metaphor of energy, and when combined with the con­
cept of information, which Kahneman maintained, we
have a mixing of metaphors. A decade later, enthusiasm
for capacity and resources seems to be deflating quickly.
The reason is that the limited-capacity question is
unproductive, certainly as long as we allow multiple
resources as an explanation or permit physical and struc­
tural kinds of interference to be interpreted as limited
capacity. The consensus might be that the question has
been a distraction from more important ones. Thus, a bad
marriage between computation and limited capacity should
not be taken pejoratively, since the concept of computa­
tion is neutral with respect to it.

It was also the case that early computers were limited
in many ways, such as having only a single central
processing unit. As pointed out by Schweikert and Boggs
(1984), however, this is no longer the case. We now have
more powerful machines and the computational metaphor
no longer necessitates serial processing and limited
capacity.

Computation and Indirect Realism
Carello, Turvey, Kugler, and Shaw (1984) attempted

to explain the attraction to the computational metaphor
on the basis of our erroneous pretheoretical notions of
what requires explanation. They saw indirect realism as
the root of the problem. Since the time of Herman
von Helmholtz (Figure 23) and Franciscus Donders
(Figure 24), much of empirical psychology has operated
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on the assumption that the sense data we have available
are related equivocally to the environment as it must be
understood. Internalized cognitive processes are neces­
sary to operate on the sense data to provide such under­
standing. Since these processes can be represented in
terms of simple algorithms rather than homunculi, they
are attractive to the scientific community. Gibson (1979),
of course, offers the alternate perspective of direct real­
ism. If the important aspects of the environment can be
detected directly with no computation, such a notion can
be exorcised at least from explanatory models of percep­
tion. However, much of perception involves decision mak­
ing and memory, processes compatible with the computer
metaphor. Whether perception is direct or indirect is or­
thogonal to the value of the computer metaphor. For our
purposes, I just want to reject the neo-Gibsonian equa­
tion of the computational metaphor with indirect realism.

The Human Component
Dreyfus (1979) and others have been skeptical of

simulating blood and guts by machine or computation.
How can we capture or explain animal action, such as
the emotion observed by Darwin (see Figure 25), at the
symbolic level? What these criticisms miss, however, is
the nature of explanation and modeling. A model, the­
ory, or simulation is a representation of the real thing;
it is not the real thing. If it were, it would no longer be
a model, theory, or explanation. I fail to see a qualitative
difference between cognitive and emotional behavior, and
there is no reason to reject the computational metaphor
for the emotional side of cognition.

Uncovering Computational Processes
An important criticism is that it is not possible to

eliminate explanations at the computational level. The par­
ticular theoretical framework that is chosen is arbitrary.
The more we learn about some phenomenon, it seems the
number of possible explanations only increases, or at least
remains relatively fixed. Consider what might appear to
be a straightforward question within the context of horse­
race models of psychological function. If two horses are
in a race, relative to just one, what are the possible con­
sequences? Early experiments showed that detection reac­
tion times (RTs) to the combination of a light and a tone
were faster than RTs to either the light or the tone
presented alone. The attractive explanation at the time had
to do with intersensory facilitation: stimulation of one mo­
dality enhances the stimulation produced by a stimulus
to the other modality. However, Raab (1962) observed
that the results can be explained by assuming variability
in the finishing times of the horses in the race. With this
assumption, there is no evidence for a cross-modal inter­
action or cross-talk. The finishing time of the first horse
in a two-horse race will, on the average, be faster than
the finishing times of the two horses racing separately.

He described the outcome as "statistical facilitation."
Thus, if we assume that the detection time for the light
has some variability and the same is true for the tone, then
average RT to the pair will be somewhat faster than to
either signal presented alone, simply because of statisti­
cal facilitation.

With this revelation, investigators during the next two
decades were informed and required a larger RT differ­
ence than that predicted by statistical facilitation to con­
clude that the horses were interacting in the race (Gielen,
Schmidt, & van den Heuvel, 1983; Miller, 1982). Results
indicated that the facilitation was greater than that predicted
by statistical facilitation, and the idea of independent horses
in the race was rejected. However, even though we should
have known better, the statistical facilitation model assumed
that the only variability in the RT had to do with the process
of interest (e.g., detection time). We know only too well
that the RT also includes response selection and motor ex­
ecution times and that these surely contain variability. If
the variability from these other processes is substantial, then
a model assuming independence between the two horses
makes predictions very similar to those of a model assum­
ing interactions between the two horses. Thus, we have
yet to provide a definitive answer to what seems to be a
straightforward question about mental processes.

The horse-race example seems to support the criticism
that it is difficult to eliminate alternative explanations and
to uncover computational processes. However, progress
can be, and is being, made. What is required, as in all
scientific endeavor, is a fine-grained analysis (Oden,
1984). Kepler was troubled by the 8' of arc deviation be­
tween the actual orbit of Mars and that predicted by
Ptolemaic theory. Scientific inquiry at the computational
level should exploit good scientific practice as it does in
other domains of natural science. The information­
processing paradigm is perfectly compatible with the
frameworks of falsification (Popper, 1959) and strong in­
ference (Platt, 1964). This strategy, along with a fine­
grained analysis, is capable of providing major constraints
on explanatory processes and mechanisms.

Computation and the Discrete Mode
I believe that many of the apparent limitations of the

symbolic representation and information-processing
metaphor are due to its alignment with the discrete, rather
than the continuous, or analog, mode. That is, informa­
tion is usually conceptualized as being represented dis­
cretely, and processing is seen as the transformation from
one discrete representation to another. Pattee (1974) also
has criticized the current emphasis of cognitive science
on the discrete mode on the grounds that it ignores the
continuous dynamic mode. As an example of the overex­
tension of the discrete mode, pattern recognition is
described as the integration of a set of distinctive features
that is present or absent to select unambiguously one of
a fixed set of alternatives. Few scientists have seriously



Figure 23. Hermann Ludwig Ferdinand von Helmholtz,
1821-1894.

Figure 24. Franciscus C. Donders.

COMPUTER AS A METAPHOR 85

Figure 25. Disappointed and sulky emotions, by Darwin.

Figure 26. Clark Hull.
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considered the alternative, and most go to lengths to con­
serve the discrete mode. Readers have no trouble recog­
nizing letters in different type fonts, and such skill might
be nicely described within the context of continuous in­
formation. However, rather than taking such a tack, the
assumption has usually been that we have different dis­
crete features for different type fonts. (e.g., Smith, 1971).

We have inherited a construct for the continuous mode,
usually called strength, as in habit strength (Hull, 1943),
response strength (Luce, 1959), or memory strength
(Wickelgren & Norman, 1966). (Clark Hull is shown in
Figure 26.) This concept went out of vogue with the
decline of behaviorism and mathematical psychology and
the onset of the information-processing framework. Rather
than argue for a revival of this construct, I would like
to consider a form of continuous representation that can
be easily incorporated into the computational metaphor.
In a similar fashion, Allport (1984) has observed that
modality-specific representations are not inconsistent with
the symbolic mode of information processing. The con­
tinuous mode does not compromise the power of the sym­
bolic level of description (see also Kosslyn, 1983). Early
in the history of computational models, Oliver Selfridge
(1959) (Figure 27) assumed continuous rather than dis­
crete degrees of shouting of the demons in his pandemo­
nium model of pattern recognition. As many of you have
anticipated, I am talking about the fuzzy logic and fuzzy
sets invented by Lotfi Zadeh (Figure 28) (Goguen, 1969;
Zadeh, 1965, 1984). In fuzzy logic, propositions are
neither entirely true nor entirely false, but rather take on
continuous truth values. For example, we might say that
a meal is somewhat spicy. Ordinary logical quantifica­
tion would require that the meal be either spicy or not.
In contrast, fuzzy logic allows us to represent the nature
of things as continuous.

It should be stressed that fuzzy truth is different from
probability, primarily because probability maintains the

Figure 27. Oliver Selfridge. Photograph printed with permission
of Oliver Selfridge.

Figure 28. Lotti Zadeh. Photograph printed with permission of
Lofti Zadeh.

discrete mode, whereas fuzzy logic does not. The ap­
propriate contrast for probability is determinism, not dis­
creteness. A probabilistic event means that the event either
occurs or does not occur with some probability. It does
not mean that the event occurs to some degree. If we say
that a whale is a mammal to degree .8, it does not mean
that there is a .8 probability that a particular whale is a
mammal. Rather, it is true that the whale is a mammal
to degree .8. The mammal category must be stretched
somewhat to include whale, but whale is included to
degree .8.

It is unfortunate for psychological theory that Zadeh
(1965) dubbed this view of continuous truth as "fuzzy,"
because continuous representation in no manner implies
the common meaning of fuzziness. When we say a whale
is a fish to degree .2, we are not necessarily any less con­
fident of this proposition than we are of the proposition
that a robin is a bird to degree I. The difference between
discrete versus continuous truth values might be a more
descriptive contrast than that between standard logic and
fuzzy logic. Since the principles of fuzzy set theory were
direct generalizations of standard set theory, "fuzziness"
misses the contrast between the two logics. In related work
on concepts and categorization, Mervis and Rosch (1981)
observed that the representation of the concept does not
have to be fuzzy, even though a particular instance fits
the concept only to some degree.

The empirical question is whether our symbolic
representations are continuous or discrete. I would like
to mention a few of our tests of this question within the
domain of speech perception (Massaro, 1984a; in press a,
in press b). Speech perception is the ideal domain in which
to find evidence for the continuous mode, because it is
so widely accepted that speech perception is categorical
(as witnessed by our textbooks and popular journals such
as Scientific American). Three pieces of evidence argue
for the continuous over the discrete mode of representa-



tion in speech perception. The first involves testing for­
mal models of continuous and categorical perception
against the perceptual judgments of speech events involv­
ing the orthogonal variation of audible and visible speech.
The second measures RTs of the perceptual judgments.
The third test addresses the ability of subjects to rate reli­
ably the degree to which a speech event resembles a per­
ceptual category. All results support the continuous over
the discrete mode. In addition, the results can be ade­
quately described by a computational model in which the
sources of information are represented continuously.
Thus, we have good reason to expand our symbolic level
of description from discrete to continuous.

ALTERNATIVES TO THE
COMPUTER METAPHOR

Churchland (1984, p. 92) proposed that there are three
criteria to assess the success of the functional approach
to mind. In formulating and testing computational
hypotheses, the first criterion is that the hypothetical com­
putational system must account for the input-output rela­
tions of the cognitive faculty under study. That is, it must
simulate or model what the selected faculty does.
However, as we all know too well, there are many differ­
ent computational procedures that will produce some finite
set of input-output relations. Churchland (1984) gave the
example of a small calculator computing the value 2n,
given the value n. In addition to multiplying by 2, it might
multiply by 6 and then divide by 3, and so on. (Actually,
for the psychologist, a table lookup for the answer, versus
some mathematical procedure, would be a contrast of
more interest.) The second criterion is that the ingenious
psychologist must pursue fine-grained analyses of vari­
ous tasks to eliminate alternate explanations. These in­
clude the temporal course of the behavior and the nature
of errors that are made. The third criterion is that the com­
putational procedures must be consistent with the under­
lying physiology (however, this constraint is practically
meaningless given the current state of knowledge in this
domain; see Mehler et aI., 1984).

Methodological Materialism
Churchland (1984) apparently had no real criticism of

this approach but offered methodological materialism as
the better alternative: Since cognitive activities are sim­
ply activities of the nervous system, the best way to un­
derstand those activities is by understanding the nervous
system. He was also optimistic about progress in this area
of research. I have two complaints. First, the progress
made at the level of the nervous system does not seem
to overwhelm that made at the information-processing
level. Second, understanding the nervous system indepen­
dently of the organism's functioning in its environment
will not explain what we are interested in explaining. A
satisfactory account will include a psychological level of
description (Pyiyshyn, 1984).
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A Skills Approach
Kolers and his colleagues (Kolers & Roediger, 1984;

Kolers & Smythe, 1984) have rejected the information­
processing approach but not the symbolic level. "Men­
tal life is intrinsically symbolic" (Kolers & Roediger,
1984, p. 445). As one alternative, they have proposed the
study of mind as a skill in manipulating symbols, analo­
gous to the study of motor skills. As evidence against the
information-processing metaphor, they have cited the liter­
ature demonstrating the primacy of surface features over
semantic features in the acquisition and retention of spoken
and written language (e.g., Kolers & Ostry, 1974). By
varying the orientation of the type of written sentences,
Kolers and Ostry (1974) asked whether the learning and
memory of the sentences would be influenced by this "su­
perficial" feature. Subjects read normal or inverted sen­
tences and some time later were asked to read the same
sentences mixed in with some novel ones. Subjects indi­
cated whether each sentence had been read before and,
if it had, whether the visual appearance was the same as
in the original reading. The inverted sentences were recog­
nized more accurately than those presented in normal
orientation, arguing for specific memory of the original
orientation.

This result was explained by Kolers and his colleagues
in terms of procedures or the acquiring of information
from an object by means of pattern-analyzing operations.
I doubt that results of this nature, although valuable, pro­
vide a serious challenge to information processing, or evi­
dence for a skills approach (whatever it is). Recently,
Horton (1985) demonstrated that the advantage of read­
ing spatially transformed text emerges because of the
elaborate semantic memory extracted during the initial
presentation of the test sentence. When objects have both
graphemic and semantic information present during the
recognition phase of the experiment, they appear to rely
exclusively on the semantic information. It seems improb­
able that the conceptualization of memory as a skill will
be a robust enough metaphor to replace that given by in­
formation processing.

New Connectionism
As mentioned earlier, there is an impressive growing

research enterprise involving the production of behavior
phenomena emerging from the simulation of brain
processes (Feldman, 1985). To understand this new con­
nectionists' movement, it is helpful to review the old con­
nectionists' perceptron (Minsky & Papert, 1968; Rosen­
blatt, 1958). As far as I can tell, the perceptron has all
of the essential ingredients of the current parallel dis­
tributed processing (PDP) theories within the new con­
nectionism. Rosenblatt rejected the language of symbolic
logic and Boolean algebra and formulated his model in
terms of probability theory. His goal was to model the
nervous system in a more realistic manner than was pos­
sible with the von Neumann metaphor using symbolic
logic. However, it is important to note that Rosenblatt was
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proposing a theory at the hardware level rather than at
the software level [a point also made recently by Broad­
bent (1985) with respect to the new connectionists]. In
Rosenblatt's model, a signal is transduced by sensory units
and impulses are transmitted to association cells via a
projection area. The connections between the projection
and association areas are random. The response cells
receive impulses from a large number of association cells.
Connections in both directions are established between
the association and response cells by coactivation and feed­
back. This system can learn to associate specific responses
to specific stimuli and to generalize to new stimuli of the
appropriate class. Thus, it appears to solve the fundamen­
tal problems of pattern recognition without assuming any
higher level operations, such as those of feature evalua­
tion, integration, and decision making (Selfridge, 1959).

At first glance, a theory of this form would appear to
offer a substitute for the information-processing level of
symbolic representation and algorithm. The reductionists
(Krech, 1955) would applaud such a move. In actual prac­
tice, however, the implementation level of the theory
mixes the connectionistic level with the symbolic level.
For example, McClelland and Rumelhart (1981) found
it necessary to assume that subjects had different process­
ing and decision criteria to predict performance differ­
ences under different experimental conditions. Thus, the
psychological result of interest had to be explained out­
side of the domain of the connectionist theory itself. This
example and others illustrate that description within the
new connectionist framework will not necessarily
eliminate the need for a psychological level of explana­
tion. It is my opinion that the connectionist theory is not
adequate to explain psychophysical and psychological per­
formance because the level of description is neurophysio­
logical and not psychological. The latter is necessary to
make sense of the phenomena requiring explanation. More
recently, Ackley, Hinton, and Sejnowski (1985) agreed
that multiple levels of explanation are necessary; they be­
lieve that it is necessary to bridge the gap between the
hardware-oriented connectionistic descriptions and the
more abstract symbol manipulation models.

What we sometimes forget is that neural models are also
metaphoric; that is, they are models, they are not the real
thing. As noted by Gentner and Grudin (1985), however,
they are less detectable as metaphors and less subject to
the analytical scrutiny that leads to greater precision and
systematization. They seem to convey greater face valid­
ity because of the value we place on reductionism in scien­
tific inquiry (Krech, 1955). One might use this observa­
tion to justify the current honeymoon with the new
connectionist movement.

In summary, we might ask two questions with regard
to this movement. First, does it provide a real alternative
to the von Neumann machine? Second, does it eliminate
the value of computational models aimed at providing a
psychological level of description? With respect to the first

question, the von Neumann machine is controlled by
means of a program stored in memory. The activation and
inhibition links among hypothetical neurons or nodes in
parallel distributed-processing models might be concep­
tualized as a stored program. In this sense, the two types
of machine do not seem that different. The second ques­
tion is answered readily if the connectionistic models are
conceptualized as addressing' a neurological rather than
a psychological level of description, also noted by Broad­
bent (1985). One should not view these models as a
challenge to delineating laws and constraints at a psycho­
logical level.

AN EXAMPLE OF INQUIRY AT THE
COMPUTATIONAL LEVEL

The computational level is useful because it increases
our understanding of behavior. It is my belief that neither
the phenomenological nor the neurophysiological levels
of explanation could provide the same kind of understand­
ing. A decade later, I believe that our (Massaro, 1975b)
information-processing approach to language understand­
ing was productive and anticipated many of the issues that
are extant today. I would like to illustrate this belief fur­
ther by discussing a smidgen of my research on bimodal
speech perception, or how we perceive speech by ear and
by eye, if for no other reason than to provide fuel for Alan
Lesgold's (1984) claim that this Presidential Address is
exploited usually for talking about one's research.

My research has been guided by the information­
processing paradigm, along with the framework of fal­
sification and strong inference (Platt, 1964; Popper,
1959). Binary oppositions are constructed and tested; for
each opposition, multiple tests are implemented so that
no conclusion rests on just one or two observations. Given
the scope of this address, however, I will be able to present
only an illustration of the research. The reader interested
in the research enterprise is referred to other papers (Co­
hen, 1984; Massaro, 1984b, in press a, in press b; Mas­
saro & Cohen, 1983). Although visual speech distin­
guishes among only a subset of speech contrasts (Walden,
Prosek, Montgomery, Scherr, & Jones, 1977), visual
speech appears to be utilized by the hearing perceiver in
face-to-face communication. An auditory-visual blend il­
lusion provides the most direct evidence of this fact (Mac­
Donald & McGurk, 1978; McGurk & MacDonald, 1976).
What we see clearly influences what we perceive in speech
perception. For example, pairing the sound Ibal with a
seen Igal articulation is usually recognized as Ida/.

If both auditory and visual sources of information are
utilized in speech perception, it seems only natural that
the two sources should be integrated. Integration of two
sources of information refers to some process of combin­
ing or utilizing both sources to make a perceptual judg­
ment. However, demonstrating that two sources are in­
tegrated in perceptual recognition is no easy matter (Mas-
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of information, in that both contributed to a single per­
ceptual judgment.

Integration seems to be an efficient system for perceiv­
ing speech. Given multiple sources of information that
are susceptible to random variability, the optimal strategy
would be to evaluate and integrate all of the sources, even
though they might be ambiguous. One cost to a system
designed in this way would be its relative inability to
process selectively a single dimension of the speech event.
Thus, subjects find it difficult to attend only to the audi­
tory speech while looking at the speaker's lips, and
vice versa (Massaro, in press a). These results demon­
strate that integration is a natural process, and that we
difficult to process selectively one dimension of the speech
event without being influenced by other dimensions.

The nature of the integration process can be revealed
by the types of judgments given conflicting sources of in­
formation. Consider the large number of Ibdal judgments
given a visual Ibal and auditory Ida/, and the almost
nonoccurrence of Idbal judgments given a visual Idal and
auditory Iba/. In my opinion, these judgments depict a
smart process with the following constraints. First, the
auditory and visual sources are processed, to some level
in the system, relatively independently of one another
(i.e., without cross-talk). A second constraint is that some
continuous representation is acquired about the auditory
and the visual sources in terms of their compatibility with
candidate categories.

Consider the large number of Ibdal judgments to a
visual Ibal combined with an auditory IdaI in terms of
the visible and audible properties of a Ibdal category. The
visible mouth movement for Ibdal is similar to the move­
ment for Iba/. Thus, we can say that visual Ibal supports
both Ibal and Ibdal alternatives. In addition, auditory Idal
supports the alternative Idal and might even be considered
to support Ivai and Ithal to some degree. Thus, the sys­
tem might be faced with auditory information that sup­
ports IdaI and visual information that supports Ibal and

Figure 30. The proportion of Ibdal judgments as a function of the
auditory and visual dimensions of the speech event.
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Figure 29. Expanded factorial design used in the study of speech
perception by eye and ear.

saro, in press a). A perceiver might utilize the auditory
source on some trials and the visual source on other
trials, giving the overall impression of integration even
though it did not occur.

It might not be possible to demonstrate integration if
subjects are tested only with a factorial combination of
the two sources. By including judgments of the single mo­
dalities, however, the question of integration might be
tested. Consider the perception of bimodal speech events
created by the combination of synthetic speech sounds
along an auditory Ibal to Idal continuum paired with Ibal
or Idal visual articulations. By adding the single auditory
and single visual cue conditions to the factorial design,
as illustrated in Figure 29, it is at least logically possible
to reject the possibility of a subject's using only one source
on each trial. What is necessary is to find judgments of
certain bimodal speech events that cannot be accounted
for by judgments of the visual or auditory dimensions
presented alone.

In our experiments (Massaro, in press a, in press b),
subjects are usually asked to identify bimodal speech
events, auditory-alone trials, and visual-alone trials. For
the bimodal trials, an auditory synthetic syllable along a
9-step Ibal to Idal continuum is dubbed onto a videotape
of the speaker saying Ibal or Ida/. In addition, the audi­
tory speech stimuli are presented alone, with no lip move­
ments, on some trials; and the Ibal and Idal articulations
are presented without sound on other trials. The subjects
are permitted an open-ended set of response alternatives.

For the question of integration, we limit our analysis
to the occurrence of /bdal judgments, shown in Figure 30.
The pattern of occurrences provides strong evidence for
a true integration of the auditory and visual sources. The
critical finding is the large proportion of Ibdal judgments,
given a visual Ibal and an auditory Ida/, when this same
judgment is seldom given to either the visual or auditory
modalities presented alone. We find over five times as
many Ibdal judgments given to the bimodal events rela­
tive to the visual-only condition, and the auditory-only
condition almost never produces Ibdal judgments. It fol­
lows that the Ibdal judgments observed on bimodal trials
could not have resulted from identification of just one of
the two sources on a trial. The result represents the out­
come of the integration of both auditory and visual sources
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Ibda/. Thus, Ibdal can be considered the appropriate iden­
tification because it maintains the most consistency be­
tween two dimensions of the speech input and the per­
ceptual judgment.

The form of the explanation of Ibdal judgments takes
on even more meaning because it can explain the rare oc­
currence of Idbal judgments. Visual Idal supports only
Idal (or Iga/) and to some extent Ivai and Itha/, but cer­
tainly not Idba/. The latter involves a closing of the vo­
cal tract at the lips which is not contained in the Idal ar­
ticulation. The auditory information supports Ibal and to
some extent Ivai and /thai (as indexed by the auditory­
alone condition). Thus, subjects report Itha/, Ivai, and
"other," given a visual Idal and an auditory Iba/. The
perceptual system seeks to reach the best compromise be­
tween conflicting visual and auditory sources; it will not
decide completely in the direction of one source (no mat­
ter how unambiguous or invariant) if it flies in the face
of another source.

Both the phenomenological and neurophysiological
levels seem limited in their explanatory interpretation of
these findings. The perceiver experiences a single speech
event and finds it difficult to report on the separate mo­
dalities, even with extended practice. Thus, phenomeno­
logical reports cannot be taken as evidence for whether
a single modality was used in the judgment or both mo­
dalities were used. How the cues were used would be well
beyond any of our expectations of what phenomenologi­
cal reports could provide. It is also difficult to imagine
how neurophysiological recordings might shed light on
the processes involved. We would expect to find activa­
tion of the appropriate visual and auditory pathways
regardless of whether only one modality or both modali­
ties were being utilized in the perceptual recognition of
the speech event. It is unlikely that the neurophysiology
will constrain sufficiently the various mathematical al­
gorithms describing the integration of the two sources of
information. Thus, the computational level appears to be
informative and cannot be replaced by other, more mo­
lar or more molecular, levels of explanation.

CONCLUSION

Our short journey confronted the value of the computer
metaphor of the mind. It seems necessary to postulate a
computational level of processing to explain and predict
perception and action. Thus, cognitive scientists appear
to be doing more than simply passing the time until the
problem is solved by the neurophysiologists or even the
environmentalists. Computation might be the level of ex­
planation necessary to bridge the gap between environ­
ment and behavior. As I have discussed elsewhere (Mas­
saro, 1984a, in press a), our safest strategy would be to
utilize the tenets of falsification and strong inference in
an empirical study of perception and action. The goal
would be to obtain not necessarily laws It la Kepler, but

important constraints on potential theories at any level of
explanation.
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