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Abstracts Can the output of human cognition be predicted from the assumption that it is an optimal response to the information-
processing demands of the environment? A methodology called rational analysis is described for deriving predictions about cognitive
phenomena using optimization assumptions. The predictions flow from the statistical structure of the environment and not the
assumed structure of the mind. Bayesian inference is used, assuming that people start with a weak prior model of the world which
they integrate with experience to develop stronger models of specific aspects of the world. Cognitive performance maximizes the
difference between the expected gain and cost of mental effort. (1) Memory performance can be predicted on the assumption that
retrieval seeks a maximal trade-off between the probability of finding the relevant memories and the effort required to do so; in (2)
categorization performance there is a similar trade-off between accuracy in predicting object features and the cost of hypothesis
formation; in (3) casual inference the trade-off is between accuracy in predicting future events and the cost of hypothesis formation;
and in (4) problem solving it is between the probability of achieving goals and the cost of both external and mental problem-solving
search. The implemention of these rational prescriptions in neurally plausible architecture is also discussed.
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1. A rational theory ©f cognition

There has been a long tiadition of trying to understand
human cognition as an adaptation to its environment. The
writings of Brunswik (1956) and Gibson (1966; 1979)
represent classic examples of this approach. More re-
cently, Marr (1982) and Shepard (1987) have provided
rigorous developments of this perspective. I (Anderson
1990a) have tried to develop what I call "rational analy-
ses" of several broad categories of human cognition. A
rational analysis is an explanation of an aspect of human
behavior based on the assumption that it is optimized
somehow to the structure of the environment. The term
comes from an analogy with the "rational man" hypoth-
esis that plays such a major role in economic explanation.
As in economics, the term does not imply any actual
logical deduction in choosing the optimal behavior, only
that the behavior will be optimized.

This rationality thesis has often been supported with
evolutionary arguments, but from my perspective the
evolutionary connections are as much of a hindrance as a
help. The idea that any aspect of an organism has evolved
to an optimal form is quite problematical (e.g., see the
readings edited by Dupre 1987). I will discuss these
problems shortly; first I would like to state what draws me
to the position in the absence of any strong encourage-
ment from evolutionary considerations.

If there were some precise relationship between the
structure of the environment and the structure of behav-
ior, this would provide a much needed perspective in
cognitive psychology. The principal goal of the field has
been to find mental structures that explain behavior. This
goal has been impeded by two related obstacles. First,
there is a serious and perhaps intractable induction prob-

lem in inferring the structure of a black box from the
structure of the behavior it produces. Second, there is a
serious and intractable identifiability problem in that
many different proposals about mental structure are
equivalent in their behavioral consequences.

The rational approach helps rather directly with the
induction problem. If we know that behavior is optimized
to the structure of the environment and we also know
what that optimal relationship is, then a constraint on
mental mechanisms is that they must implement that
optimal relationship. This helps suggest mechanisms,
thus reducing the induction problem.

A rational theory can also provide help with the identi-
fiability problem. It provides an explanation at a level of
abstraction above specific mechanistic proposals. All
mechanistic proposals which implement the same ra-
tional prescription are equivalent. The structure driving
explanation in a rational theory is that of the environ-
ment, which is much easier to observe than the structure
of the mind. One might take the view (and I have so
argued in overenthusiastic moments, Anderson, in press)
that we do not need a mechanistic theory, that a rational
theory offers a more appropriate explanatory level for
behavioral data. This creates an unnecessary dichotomy
between alternative levels of explanation, however. It is
more reasonable to adopt Marr's (1982) view that a ra-
tional theory (which he called the "computational level")
helps define the issues in developing a mechanistic theo-
ry (which he called the level of "algorithm and represen-
tation"). In particular, a rational theory provides a precise
characterization and justification of the behavior the
mechanistic theory should achieve.

This target article discusses the general issues sur-
rounding a rational analysis and reviews its applications to
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memory, categorization, causal analysis, and problem
solving. It closes with an example of how rational analysis
might be related to a mechanistic implementation.

ewolutionary perspectiwe. A rational theory
should stand on its own in accounting for data; it need not
be derived from evolutionary considerations. Still, its
connections with evolution are undeniable and have
influenced the formulation of the rationalist program. It is
accordingly worth discussing these evolutionary consid-
erations explicitly.

Here is the simple view of evolution adopted here: At
any stable point in evolution a species should display a
range of variability in its traits. The differences in this
range are not important enough in their adaptive value for
any to have been selected. There may be some change in
the species during this stable stage because of such things
as genetic drift, in which the distribution of nonsignificant
variability alters. Optimization might get involved if
some truly novel genetic variation is created by some
random mutation. Optimization is more often evoked,
however, when the environment undergoes some signifi-
cant change, after which the former range of traits is no
longer equivalent in adaptive value. According to this
view, changes in the environment are more significant
than random changes in genetic code in driving evolu-
tionary change.

If this view is approximately correct, evolution is a local
optimizer. This can be understood as a kind of hill-
climbing in which the set of possible traits defines the
space and the adaptive value defines altitude. At a stable
point in time the species is at some point or plateau of a
local maximum. When there is an environmental change,
the contours of the space change and the species may no
longer be at a maximum. It will climb along the slope of
steepest ascent to a new maximum and reside there.
Extinction occurs when it is not possible for a species to
adapt to the environmental changes. New species appear
when different members of one species evolve to adapt to
different environments. This means that the local op-
timum that any species achieves is a function of the
accidents of its past. Maybe humans would be better
adapted if they had the social structure of insects, but
given our mammalian origins, there is no path to this
hypothetical global maximum.

According to the hill-climbing metaphor, there are two
major constraints on the predictions of an optimization
analysis. One comes from the proximity structure of the
space of traits and the other comes from the species'
current location in that space. Only certain variations are
reachable from where it is right now. Consider the case of
the moths of Manchester, a standard illustration of evolu-
tionary optimization (Kettlewell 1973): When pollution
became a major factor in Manchester, the former pep-
pered gray moth was no longer optimal in avoiding
predators and a mutant black moth largely replaced it.
Other conceivable morphological responses to predators
are just as effective as changing color or more so. For
example, one could imagine the development of offensive
weapons like those of other insects. Moth mutants with
offensive weapons do not occur, however, whereas color
mutants do. Thus, color was a direction open for hill-
climbing but offensive weaponry was not.

This means that any species or any aspect of a species is

subject to constraints which depend on evolutionary
history and can be arbitrary and complex. The more
arbitrary and complex these constraints, the less explana-
tory an appeal to optimization will be. The general lesson
we can take from such considerations is that in some cases
much explanatory power is achieved by appealing to
optimization and in other cases little. In optimal foraging
theory (e.g., Stephens & Krebs 1986) we see a full range
of explanatory outcomes from an optimization analysis.
[See also: Fantino & Abarca: "Choice, Optimal Foraging,
and the Delay-Reduction Hypothesis" BBS 8(3) 1985; and
Houston & McNamara: "A Framework for the Functional
Analysis of Behaviour" BBS 11(2) 1988.] My work on
rational analysis is intended to explore explanatory power
in human cognition.

The idea that cognition is optimized to the environ-
ment should be taken as a scientific hypothesis and
evaluated by how well it organizes the data. One should
not be surprised to find it successful in explaining some
aspects of cognition but not others. In particular, I have
held that the strong regularities in basic cognitive func-
tions such as memory or categorization reflect a statistical
optimization to the structure of the environment.
Shepard has been a strong proponent of the idea that
deep regularities of the mind reflect deep regularities of
the world. "In view of the extended time base of biolog-
ical evolution, I suppose that it would have been the most
persuasive and enduring features, invariants, or con-
straints of the world in which we have evolved that would
have become most deeply and thoroughly entrenched"
(Shepard 1982, p. 50). It is interesting to ask whether
these function-specific optimizations add up to an overall
optimization of human cognition. I return to this question
at the end of the paper.

As a final remark, it should be noted that developing a
rational theory of an aspect of human cognition is a
higher-risk, higher-gain enterprise than cognitive psy-
chology's more normal endeavor of developing a mecha-
nistic theory. It is high risk in that it may turn out that the
given aspect of human cognition is not optimized in any
interesting sense. In contrast, there is little doubt nowa-
days that human cognition is realized in a set of mecha-
nisms. The rational approach is high gain in that we will
have made a substantial discovery if we can show that
certain aspects of human cognition are optimized in some
interesting sense. This would be informative, whereas
discovering that the mind is mechanistically realized is no
longer news.

1 o2o Applying the principle @ff rationality. So far the notion
of a rational theory has been very general. I have followed
a rather specific program for developing such a theory,
one involving six steps (outlined in Table 1). Each step
requires some discussion:

Step 1. The first step in developing a rational analysis is
to specify the goals being optimized by the cognitive
system. Any behavior can be seen as optimizing some
imaginable goal. Thus, the mere fact that one can predict
a behavior under the assumption of optimality is no
evidence for a rational analysis. One must motivate the
goals to be optimized. So far this has been easy because
there is the strong constraint that these goals must be
relevant to adaptation. If we were to analogize from other
adaptionist applications, however, we would expect that,
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Table 1. Steps in developing a rational theory

1. Specify precisely the goals of the cognitive system.
2. Develop a formal model of the environment to which the

system is adapted.
3. Make the minimal assumptions about computational

limitations.
4. Derive the optimal behavioral function given 1-3 above.
5. Examine the empirical literature to see whether the

predictions of the behavioral function are confirmed.
6. Repeat, iteratively refining the theory.

as the cognitive analyses advance, circumstances will
arise in which it becomes a significant research problem
to determine what needs to be optimized, A good exam-
ple of such an issue comes from optimal foraging theory
where the question arises whether caloric intake should
always be maximized and how to trade off caloric intake
with other goals (Stephens & Krebs 1986). [See also
Houston & MacNamara: "A Framework for the Func-
tional Analysis of Behaviour" BBS 11(2) 1988.] Although
maximizing caloric intake is a good first-order rule of
thumb, situations can arise which require more compli-
cated formulations. Such considerations are a sign of
maturity and success, indicating that we have reached a
point where we can apply our theory to particular situa-
tions in such detail that we can raise very specific ques-
tions about what should be optimized.

Step 2. The second step is to specify the structure of the
environment to which cognition is optimized. As in Step
1, any behavior can be seen as optimal in some possible
environment. Thus, converging evidence is needed to
support one's assumptions about the environment. It is
here that the observability of the environment is a great
potential strength of the rational analysis, although just
how one capitalizes on this potential can vary. Sometimes
one can appeal to existing scientific theory about the
relevant environment, as in the rational analysis of cate-
gorization that is described later in this paper. Other
times, one must resort to statistical studies of the environ-
ment, as in the rational analysis of memory. Occasionally,
one must turn to plausibility arguments, as in the rational
analysis of problem solving. The first approach yields the
most compelling theory and the last the least compelling.

There are two problems in any attempt to characterize
the environment. The first is that one's characterization is
usually based on only a portion of the environment and it
is uncertain whether this will generalize to other por-
tions. The second problem concerns whether the en-
vironment that one has characterized is the right one. For
example, if one takes an evolutionary perspective, one
might argue that our current environment is quite differ-
ent in its information-processing demands from the past
environment that shaped our evolution. The solution to
both of these problems should be to study the informa-
tion-processing demands imposed by many aspects of the
environment in many different cultures. To the extent
that these studies tell the same story, generalization is
justified. To the extent that different patterns appear, one
must complicate one's environmental theory.

The theory of the environment that seems to arise in
most situations is basically probabilistic. The information-

processing implications of various environmental cues are
not certain. This leads to the Bayesian character of the
optimization analysis in Step 4. Many characterizations of
human cognition as irrational make the error of treating
the environment as being much more certain than it is.
The worst and most common of these errors is to assume
that the subject has a basis for knowing the information-
processing demands of an experiment in as precise a way
as the experimenter does. What is optimal in the micro-
world created in the laboratory can be far from optimal in
the world at large.

An example is the matching law in operant condition-
ing (see Williams, 1988, for a review). Choices between
two alternative behaviors generally tend to be propor-
tional to the reinforcement allocated to each behavior.
This can be derived for a momentary maximizing model
(Shimp 1966) or a melioration model (Herrnstein &
Vaughan 1980) in which the organism chooses the behav-
ior with the greatest local probability of reinforcement. It
turns out that such local optimization can in some circum-
stances lead to behavior which is globally nonoptimal
(Herrnstein 1990). For example, there are experiments in
which response A always is reinforced more than re-
sponse B. However,̂  the rate of reinforcement of both
responses increases with the proportion of response B.
The "optimal" behavior is to choose B often enough to
keep the reinforcement level high but A often enough to
enjoy its higher payoff. Organisms typically choose A too
often to maximize this overall level of reinforcement. [See
also: Rachlin et al.: "Maximization Theory in Behavioral
Psychology" BBS 4(3) 1981.]

It has been called into question (e.g., Stadclon 1987)
whether organisms can be aware of such complex con-
tingencies. It also seems inappropriate to call such behav-
ior nonoptimal. It is nonoptimal in the experimenter's
definition of the world but might actually be optimal in
the organisms's definition (see Rachlin et al. 1981). To
determine what is optimal from the organism's perspec-
tive, one must know the distribution of reinforcement
contingencies in the organism's environment in general,
the symptoms of these various contingencies, and what
would be reasonable inferences about the current situa-
tion given these assumptions and the organism's current
experience. In Bayesian terms, the distribution of con-
tingencies is the prior probability, the symptoms given
the contingencies are the conditional probabilities, and
the inferences given the experience are the posterior
probabilities. Characterizations of the organism as non-
optimal make the error of ignoring prior uncertainty and
assume that the organism should have the same model of
the situation as the experimenter. It is possible, given
reasonable assumptions about priors, that local maximiza-
tion has the highest expected value over possible con-
tingencies in the environment. The hypothesis about the
actual contingencies might have too low a posterior prob-
ability to influence behavior.

Step 3. The third step is to specify the computational
constraints on achieving optimization. This is the true
Achilles heel of the rationalist enterprise. It is here that
we take into account the constraints that prevent the
system from adopting a global optimum. As admitted
earlier, these constraints could be complex and arbitrary.
To the extent that this is the case, a rationalist theory
would fail to achieve its goal, which is to predict behavior
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from the structure of the environment rather than the
structure of the mind.

This potential danger has not caused problems in my
own work on rational theory so far. It has only called for
two global constraints on cognition. The first is that it
costs the mind something to consider each alternative. A
basic capacity limit on processing alternatives is quite
reasonable given current conceptions of both cognition
and computation. The second constraint is more uniquely
human: There is a short-term memory limit, on the
number of things that can be simultaneously held in
mind.

Step 4. The fourth step is to combine the assumptions
in Steps 1-3 to determine what is optimal. Given the
statistical characterization in Step 2, the optimization
process becomes a Bayesian decision-making problem.
Specifically, what behavior will maximize expected util-
ity, defined as the expected goals from Step 1 minus the
expected costs from Step 3? Expectations are defined in
terms of the statistical structure of the environment from
Step 2.

The major complication in this step is analytic trac-
tability. While the Idea of optimal behavior is precise
enough, it is not always trivial to determine just what It is.
In principle, it can always be determined by a Monte
Carlo simulation in which we go through the conse-
quences of different possible behavioral functions in the
hypothesized environment. It would not be feasible to
consider a full Monte Carlo simulation in practice, al-
though we have done partial simulations (e.g., Anderson
& Milson 1989). One consequence of the problem of
analytic tractability is that many simplifying assumptions
have to be made. This is a ubiquitous practice in science.
Although I am fairly comfortable with the simplifying
assumptions, the range of possible simplifying assump-
tions and their consequences should be explored. As will
be noted in Step 6, most of my iterative theory construc-
tion activity has involved such exploration.

Step 5. The fifth step is to see whether subjects'
behavior can be predicted from the optimal behavior. A
noteworthy feature of my work to date Is its reliance on
existing experimental literature to test predictions of the
rational theory. On the one hand, it is relatively im-
pressive that such a scope of literature can be accommo-
dated within the theory. On the other hand, this raises
the question (worrisome to some) of whether the theory
leads to novel predictions and experiments. There are
many potential research directions. I have chosen to
begin by using the wealth of the existing literature on
human cognition. This paper will nonetheless describe a
number of novel empirical tests (Phenomena 14, 16, and
21).

Step 6. The sixth step is to refine the theory iteratively.
If one formulation does not work, we must be prepared to
try another. Such iterations have often been seen as a sign
that an adaptionist enterprise is fatally flawed (Gould &
Lewontin 1979). As Mayr (1983) notes in response to
Gould and Lewoetin, however, Iterative theory construc-
tion Is the way of all science. In cognitive science we have
certainly seen a long succession of mechanisms for ex-
plaining cognition. It is to be hoped that In cognitive
science we understand that a theory should be evaluated
by how well it does in organizing the data and not by
whether it is the nth theory of that type that has been

tried. Let me also add that my own experience with
theory construction in the rationalist framework has been
less Iterative than my experience with theory construc-
tion in the mechanistic framework. This is what we would
hope for — that rational considerations would provide
more guidance in theory construction. The major point of
iteration has been to play with approximating assump-
tions, trying to find a set that is reasonable and which
leads to a modicum of analytic tractability. Thus, the
iteration is being focused on trying alternative forms of
the theory to fit the data.

1.3. Pre-empirical summary B The theory is created in
Steps 1-3 In Table 1. The remaining points in that table
are concerned with deriving and testing predictions from
the theory. I refer to the theory created in Steps 1
through 3 as a framing of the information-processing
problem. So far I have attempted framings for four sepa-
rate aspects of cognition: memory, categorization, causal
Inference, and problem solving. Given that the evidence
for rational analysis Is based on how well we can predict
behavior from the structure of the environment and not
on rhetoric about the prior plausibility of an adaptionist
analysis, this article reviews these four subtheories and 21
nontrivial behavioral phenomena which have been ex-
plained by rational analysis.1 Table 2 provides a summary
of these four subtheories by specifying their assumptions
about the goals, the environments, and the costs. The
following sections will review these subtheories.

2. A rational theorf of memorf

The goal of memory Is to get access to needed Information
from the past (e.g., remembering where the car is parked
in the airport parking lot). The relevant structure of the
environment has to do with how the need for information
tends to repeat itself in various situations. The simple cost
function Is that it costs something to retrieve a memory.
These considerations all fit into a basic decision theory.
The system can use its model of the environment and
experience with any memory A to estimate a probability
p(A) that the memory is relevant at the current moment.
If G Is the value of achieving the current goal and C is the
cost of considering any single memory, the optimal re-
trieval algorithm can be specified. A rationally designed
Information-retrieval system would retrieve memory
structures ordered by their probabilities p(A) and would
stop retrieving when

p(A)G < C (Equation 1)

That Is, the system would stop retrieving when the
probabilities are so low that the expected gain from
retrieving the target is less than its cost. This strategy
guarantees retrieval episodes of maximum utility where
this is defined as the probability of successful retrieval
multiplied by G minus expected cost.

A basic assumption is that the probability of being
needed, p(A), Is monotonically related to the latency and
probability of recall, which are the two major dependent
measures used in the memory literature. It is related to
latency because memory structures are ordered accord-
Ing to p(A), and It Is related to accuracy because of the
threshold on what items will be considered.
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Table 2. Summary of rational analyses of the four domains of cognition

Goal Structure Cost

Memory

Categorization

Causal inference

Problem solving

Get access to needed
experiences

Predict features of
new objects

Predict future events

Achieve certain
states in external
world

Patterns by which
need for
information repeats

How features of
objects cluster
together

Statistical models of
causal structure

How problems vary in
difficulty and how
similarity to the
goal is related to
distance to the goal

Retrieving a memory

Hypothesis formation

Hypothesis formation

Internal effort in
generating plans
and external effort
in executing plans

This means that a rational theory of memory is going to
be a theory of how to estimate p(A). It is assumed that,
like computer information-retrieval systems (Salton &
McGill 1983), human memory has two sources of informa-
tion for deciding whether a memory A is going to be
relevant in the current context. One is the past context-
independent history of use of that memory. The other is
the cues impinging on the person in the current context.2

Estimation can be characterized as a process of infer-
ring a Bayesian posterior probability of being needed,
conditional on these two sources of information. For-
mally, we are conditionalizing on a history HA of being
relevant in the past and a set of cues, denoted as Q. These
cues will consist of a set of terms denoted by indices i.
Characterized this wxay we can come up with the following
Bayesian odds formula for estimating the conditional
probability P(A\HA & Q) which is P(A) from Equation 1:

P(A\HA & Q) _ P(A\HA

P(A\HA & Q) F(A|H n PH\A)

P(i\A)
(Equation 2)

That is, the odds ratio for item A is the product of the odds
ratio for item A given history HA multiplied by the
product of the ratio of the conditional probabilities for
each cue in the context. This equation makes certain
assumptions about conditional independence, namely,
that the degree to which A affects the probability of i in
the context does not depend on A's past history or the
other cues in the context. This assumption is typically
made in the computer information-retrieval literature for
purposes of tractability.3

The first term on the right side of Equation 2,
P(A\HA)/P(A\HA), is basically a prior odds ratio for the
item given its past history. This is the history factor. HA

will be a record of all the times A has been needed. As
such, it reflects, among other things, frequency of use and
how recently it was last used. The other quantities, the
P(i\A)/P(i\A) are the odds ratios of the conditional proba-
bilities of the cues given that the memory is needed
versus not needed. These ratios can be thought of as
associative strengths between cues and memories. They
constitute the context factor. This history and context
factors will be considered in the next two subsections.

2.1. The history factor. To address the history factor,
P(A|JJA), we need to determine how the past history of a
memory structure's use predicts its current use. To deter-
mine this in the most valid way, we would have to follow
people about in their daily lives keeping a complete
record of when they use various facts. Such an objective
study of human information use is close to impossible.
One possibility is to study records from nonhuman infor-
mation-retrieval systems. Such studies have been done
on borrowing books from libraries (Burrell 1980; Burrell
& Cane 1982) and on accessing computer files (Sat-
yanarayanan 1981; Stritter 1977). Both systems tend to
yield rather similar statistics. It is also possible to look at
various recorded subsets of the information-processing
demands placed on human memory: Lael Schooler and I
have examined the use of words in New York Times
headlines and sources of messages in electronic mail.
These display the same kinds of statistics as libraries or
file systems. Thus, there appear to be certain universals
in the structure of information presentation and use.

Burrell (1980; 1985) has developed a mathematical
theory of usage for information-retrieval systems such as
libraries (a similar model appears in Stritter, 1977, for file
usage). His theory can be plausibly extended to human
memory. It involves two layers of assumptions: First, the
items (books, files, memory structures) in an information-
retrieval system vary in terms of their desirability. These
desirabilities vary as a gamma distribution. Second, de-
sirabilities determine rate of use in a Poisson process.
Burrell's model was augmented by Anderson and Milson
(1989) with the assumption that there will be fluctuations
in the desirability of items - an assumption that is true of
books in libraries, words in the New York Times, or
sources of electronic messages. The detailed application
can be found in Anderson and Milson (1989) or Anderson
(1990a), but, in summary, this augmented Burrell model
predicts:

Phenomenon 1. Memory performance increases as a
power function of the amount of practice (Newell &
Rosenbloom 1981). Basically, if we look at these various
sources (libraries, headlines, etc.) we find that the proba-
bility that an item will be used in the next unit of time
increases as a power function of the number of times it has
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been used. Thus, the memory function is a direct reflec-
tion of the environmental function.

Phenomenon 2. Memory performance decreases as a
power function of delay between experience and test
(Wickelgren 1976). Basically, if we look at these various
sources we find that the probability that an item will be
used in the next unit of time decreases as a power function
of the time since last use. Again, the memory function is a
direct reflection of the environmental function.

Phenomenon 3. Holding constant the number of ex-
posures (Phenomenon 1) and the time since last exposure
(Phenomenon 2), there is an effect of the spacing between
the exposures (e.g., Bahrick 1979; Glenberg 1976); If an
item has been used at time t, its probability of use at time t
+ At is approximately maximal if its previous use was at
time t — At. Again the environment shows the same
relationship.

There is no other theory that can fit all three of these
phenomena simultaneously. It needs to be stressed that
these predictions derive from the structure of the en-
vironment and the definition of optimal memory perfor-
mance. These empirical relationships can be seen di-
rectly in library borrowings, file access, New York Times
articles, or electronic mail messages. Any system faced
with the same statistics of information use and optimized
in the sense defined will produce the basic human memo-
ry functions. No additional assumptions are required.

2o2H The context factor The analysis of the contextual
factor focuses on the quantities P(i\A)/P(i\A), which are
the cue strengths. Note that P(i) and P(i\A) are going to be
nearly identical because conditionalizing on the nonrele-
vance of one memory structure out of millions cannot
change the probability of any cue much. Thus, this
discussion of cue strength will focus on the simpler form
of P(i\A)/P(i). Note that P(i\A)/P(t) = P(A\i)/P(A). The cue
strength (the ratio) thus reflects either the degree to
which the context element (f) is more or less probable
when a memory trace (A) is needed, or, equivalently, the
degree to which it is more or less probable that a trace (A)
is needed when a context element (i) is present. Intu-
itively, these cue strengths reflect the degree of associa-
tion between the terms i and the memory structures A.

A critical question is how to estimate these cue
strengths. The assumption of a rational analysis is that
whatever factors should influence the estimation of
P(A\i)/P(A) should also show corresponding influences on
memory. Thus, the associative effects in memory reflect a
rational effort to adjust the estimation of need probability
on the basis of statistical factors relating cues in the
context to the probability that the memory will be
needed. There are two obvious factors. One is based on
direct experience and the other on inference. The direct
experiential factor is the proportion of times that A has
been needed in the past when cue i was in the context.
The inferential factor is the proportion of times that
memories similar to A have been needed when cue i was
in the context. A memory model like SAM (Gillund &
Shiffrin 1984) uses only the direct experiential factor but
this is a poor basis when A is a recent memory and we
have not had sufficient experience for estimating the true
proportion. In that case we want to emphasize the in-
ferential factor. In Bayesian terms, the inferential factor
establishes a prior probability on the basis of similar

memories which can be adjusted as the system gathers
experience.

One question concerns how to measure similarity for
the inferential factor. Following the lead of the work in
information retrieval (Salton & McGill 1983), which is
also reflected by a strong tradition in psychology, we
decompose the memory trace A into a number of ele-
ments. Thus, for example, my memory of Ronald Reagan
defeating Jimmy Carter might be decomposed into the
elements Ronald Reagan, defeated, and Jimmy Carter.
The similarity between a cue i and memory A would be
defined in terms of the similarity of cue i to every element
of A. Thus, if cue i were George Bush, its similarity to the
Ronald Reagan memory could be defined in terms of the
individual similarity of George Bush to Ronald Reagan, to
defeat, and to Jimmy Carter. These element-to-element
similarities should reflect the frequency with which a
memory trace involving one element is needed when the
other element is in the context. Operationally, these
element-to-element similarities can be tapped by free
association norms or direct ratings.

To summarize, the analysis of the contextual factor
identifies direct cooccurrence of the target cue and the
memory and similarity between the cue and memory
components as factors which should be related to
P(A\i)/P(A). Given that identification, a number of phe-
nomena from the experimental literature can be pre-
dicted, including the following:

Phenomenon 4. Recognition memories are generally
poorer when cued by more frequent words (Gillund &
Shiffrin 1984; Kintsch 1970). The basis for this can be seen
in the ratio P(i\A)/P(i). If P(i\A) is held constant, as it
usually is in memory experiments, there will be a nega-
tive effect of the frequency of i, which increases P(i).

Phenomenon 5. Memories are poorer the more memo-
ries are associated to a particular term (Anderson 1983).
The basis for this classic interferential effect is easy to see
in the ratio P(A\i)/P(A). If the probability of a particular
memory is held constant as it usually is in a memory
experiment, this ratio will vary with P(A
things, A, associated with i, the lower P(A

i). The more
i) must be on

average for any A.
Phenomenon 6. Memories are more accessible in the

presence of related elements and less accessible in the
presence of unrelated elements. This phenomenon oc-
curs in many contexts but has been studied at great length
in research on word priming, where words related to
primes are processed more quickly than unprimed words
but words unrelated to primes are processed more slowly
(e.g., Meyer & Schvaneveldt 1971; Neely 1977). Because
of the similarity factor, P(A\i)/P(A) is greater than 1 for
primes i that are related to the word. Since, the P(A\i)
must average to P(A) and the P(A\i) are greater than P(A)
for related primes, they must be lower than P(A) for
unrelated words. Thus, for unrelated words, P(A\i)/P(A)
will be a ratio that will lesson the estimated odds of A.

Many other phenomena are addressed in Anderson
(1990a) and Anderson and Milson (1989), but the three
examples above establish that frequency, interference,
and priming effects all reflect adaptive estimation strat-
egies on the part of memory. This contrasts with their
typical treatment, according to which they are idio-
syncrasies of the memory system. Interference (Phe-
nomenon 5) is typically seen as a weakness. These effects,
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as well as those associated with the history factor, how-
ever, reflect sensible procedures for estimating the po-
tential relevance of a target memory rather than weak-
nesses or peculiarities of the memory system.

3e A rational theory of categorization

The goal assumed for categorization is to predict features
of objects (e.g., predicting whether a creature will be
dangerous). A category label is just another feature to
be predicted. On this view, predicting that a creature
will be called a tiger is no different from predicting that it
will be dangerous. There has been a tendency in the
empirical literature to assume that category labeling is
the raison d'etre of a category. A number of investigators
(e.g., Kahneman & O'Curry 1988; Mandler et al. 1988)
have recently pointed out that the focus on predicting
category labels may have distorted our understanding of
categorization. Category formation is not equivalent to
assigning labels, and it is possible to form categories in the
absence of any labels (Brooks 1978; Fried & Holyoak
1984; Homa & Cultice 1984). A label is just another
feature.

Having specified the goal of categorization, the next
step in a rational analysis is to specify the relevant
structure of the environment. Our rational theory of
categorization rests on the structure of living objects
produced by the phenomenon of speciation. Species form
a nearly disjoint partitioning of the natural objects be-
cause they cannot interbreed. Within a species there is a
common genetic pool, which means that individual mem-
bers will display particular feature values with proba-
bilities that reflect the proportion of those phenotypes in
the population. Another useful feature of species struc-
ture is that the display of features within a freely in-
terbreeding species is largely independent.4 For exam-
ple, there is little relationship between size and color in
species where those two dimensions vary. Thus, the
critical aspect of speciation is the disjoint partitioning of
the object set and the independent probabilistic display
of features within a species.

An interesting question concerns whether other types
of objects display these same properties. Another com-
mon type of object is the artifact. Artifacts approximate a
disjoint partitioning but there are occasional exceptions —
for example, mobile homes are both homes and vehicles.
Other types of objects (stones, geological formations,
heavenly bodies, etc.) seem to approximate a disjoint
partitioning but here it is hard to know whether this is just
how we perceive them or whether there is any objective
sense in which they are disjoint. One can use the under-
standing of speciation in the case of living objects and the
manufacturer's intended function in the case of artifacts to
objectively test disjointness.

I have taken this disjoint, probabilistic model of catego-
ries as the approximate structure of the environment for
predicting object features. As discussed in Anderson
(1990), it would be too costly computationally to calculate
the exact probabilities with this model. Based on consid-
erations of controlling computational cost, an iterative
categorization algorithm (much like those of Fisher 1987
and Lebowitz 1987) has been developed that calculates

approximations to the exact probabilities. The following is
a formal specification of the iterative algorithm:

1. Before seeing any objects, the category partitioning
of the objects is initialized to be the empty set of no
categories.

2. Given a partitioning for the first m objects, calculate
for each category k the probability Pk that the m + 1st
object comes from category k. Let Po be the probability
that the object comes from a completely new category.

3. Create a partitioning of the m + 1 objects with the m
+ 1st object assigned to the category with maximum
probability calculated in Step 2.

4. To predict the probability of value j on dimension i
for the n + 1st object, calculate:

y = S PkP(ij\k) (Equation 3)
k

where Pk is the probability the n + 1st object comes from
category k and P(ij\k) is the probability of displaying value
j on dimension i.

The basic algorithm is one in which the category
structure is grown by assigning each incoming object to
the category it is most likely to come from. Thus a specific
partitioning of the objects is produced. Note, however,
that the prediction for the new n + 1st object is not
calculated by determining its most likely category and the
probability of j given that category. The calculation in
Equation 3 is performed over all categories. This gives a
much more accurate approximation to Predy because it
handles situations where the new object is ambiguous
among multiple categories. It will weight these compet-
ing categories approximately equally.

It remains to come up with a formula for calculating Pk
and P(ij\k). Since P(ij\k) turns out to be involved in the
definition of Pk, we will focus on Pk. In Bayesian termi-
nology, Pk is a posterior probability P(k\F) that the object
belongs to category k given that it has feature structure F.
Bayes' formula can be used to express this in terms of a
prior probability P(k) of coming from category k before
the feature structure is inspected and a conditional proba-
bility P(F\k) of displaying the feature structure F given
that it comes from category k:

Pk = P { m =

P(k)P(F\k)
(Equation 4)

where the summation in the denominator is over all
categories k currently in the partitioning, including a
potential new one. This then focuses our analysis on the
derivation of a prior probability P(k) and a conditional
probability P(F\k).5

3.1. The prior probability. The critical assumption with
respect to the prior probability is that there is a fixed
probability c that two objects come from the same catego-
ry and this probability does not depend on the number of
objects seen so far. This is called the coupling probability.
If one takes this assumption about the coupling proba-
bility between two objects being independent of the
other objects and generalizes it, one can derive a simple
form for P(k) (see Anderson, 1990a, for the derivation):

cnh
(1 - c) + en

(Equation 5)
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where c is the coupling probability, nk is the number of
objects assigned to category k so far, and n is the total
number of objects seen so far. Note that for large n this
closely approximates nk/n, which means that there is a
strong base rate effect in these calculations with a bias to
put new objects in large categories. The rational basis for
this is presumably apparent.

We also need a formula for P(0), which is the proba-
bility that the new object comes from an entirely new
category. This is

F(0) = ( 1 - c )
(1 - c) + en

(Equation 6)

For a large n this closely approximates (I — c)/cn,
which is again a reasonable form - that is, the probability
of a brand new category depends on the coupling proba-
bility and the number of objects seen. The greater the
coupling probability and the more objects, the less likely
it is that the new object comes from an entirely new
category.

3.2. Conditional probability. In the case of the conditional
probability, the critical assumption, based on our analysis
of speciation, is that the probability of displaying features
on various dimensions given category membership is
independent of the probabilities on other dimensions.
Thus we can write

P(F\k) = I I P(ij\k) (Equation 7)

where P(ij\k) is the probability of displaying value j on
dimension i given that the object comes from category k.
This is the same quantity that appeared in Equation 3.
The importance of Equation 7 is that it allows us to
analyze each dimension separately.

Standard Bayesian models (Berger 1985) can be used to
calculate a posterior density of probabilities and the mean
of this density. There are different solutions for discrete
and continuous dimensions. I will present the discrete
case here. Anderson and Matessa (1990) can be consulted
for the more complex continuous case. In the discrete
case we have:

P(ij\k) = (Equation 8)

where the OLJ are parameters reflecting our priors, a0 =
2 OLj, nk Is the number of objects In category k which have
a known value on dimension i, and ntj Is the number of
objects in category k with the value j . OLJ/OLQ reflects the
prior probability of the value j and a0 reflects the strength
of belief in these priors. For large nk P(ij\k) approximates
nij/nk which one frequently sees promoted as the rational
probability. It has to have this more complicated form to
deal with problems of small samples, however. For exam-
ple, If one had just seen one object In a category and It had
the color red, one would not want to guess that all objects
were red. If there were seven colors with the a- for each
equal to 1.0, the above formula would give \ as tine poste-
rior probability of red and J for the other unseen six colors.

Basically, Equations 7 and 8 define a basis for judging
how similar an object is to the category's central
tendency.

3.3. Empirical phenomenaB The algorithm and mathe-

matical relationships just described have allowed us to
simulate a large number of experimental results in the
literature Including:

Phenomenon 7. Subjects more reliably assign an object
to a category the closer it is to the central tendency of the
category (Hayes-Roth & Hayes-Roth 1977; Posner &
Keele 1968; Reed 1972). This Is In direct response to
Equation 8 and variations on it which Indicate that the
conditional probabilities should be higher for closer
objects.

Phenomenon 8. Although test objects tend to be more
reliably categorized the closer they are to the central
tendency of the category, there is also an effect of their
distance from specific members of the category (Medin &
Schaffer 1978). This is demonstrated by having subjects
study instances that are distant from the central tenden-
cy. Subjects will do well in categorizing test Items that are
similar to the distant instance. The way the model han-
dles this is to create two categories - one for the instances
that define the central tendency and one for the oddball
Instance. This Is done because it maximizes the overall
predictive structure of the object set.

Phenomenon 9. Lately, much has been made of the fact
that the probability of categorization Is an exponentially
decaying function of the number of features on which the
test Instance mismatches the category (Russell 1986;
Shepard 1989). This is produced In the rational model by
Equation 8, which makes conditional probability a prod-
uct (not a sum) of the probabilities on individual
dimensions.

Phenomenon 10. Subjects' categorization Is sensitive to
the number of objects in a category such that they have a
greater tendency to assign objects to categories with
larger membership (e.g., Homa & Cultice 1984). This
sensible base rate effect Is produced by Equation 5, which
defines the prior probability of belonging to a category. It
turns out that the model also predicts some of the subtle
deviations from base rate effects reported by Medin and
Edelson (1988).

Phenomenon 11. Subjects are sensitive to the correla-
tion of features in an experimenter's category (Medin et
al. 1982). The model predicts this despite the fact that It
treats dimensions In its internal categories as indepen-
dent. When there are correlated features it breaks out
different categories to correspond to each combination of
correlated values. This Is just one example of many where
the model does not observe the labeling conventions of
the experimenter In deciding what category structure
maximizes prediction.

Phenomenon 12. Subjects tend to Identify a category
structure In which the categories are sufficiently specific
to pick up most of the predictive structure of the objects
but are not unnecessarily narrow. Rosch (e.g., Rosch et
al. 1976) called these the basic level categories. This
model forms categories that correspond to the basic level
categories subjects identify (Hoffman & Ziessler 1983;
Murphy & Smith 1982) because this does maximize the
predictive structure of the categories.

For details of these phenomena and others see Ander-
son (1990a; in press). The evidence seems quite compel-
ling that subjects' categorization behavior can be seen as
an attempt to optimize their predictions about the fea-
tures of objects. Shepard (1987) also analyzes generaliza-
tion phenomena as the consequence of trying to optimize
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prediction. Although his method of analysis is quite
different, he comes to very similar conclusions. This is
comforting, because an optimization analysis should not
depend on the details of the optimization methodology.
What is optimal for achieving a goal in a particular
environment should be the same under all carefully
reasoned analyses.

4= A rational analysis of causal inference

The analysis of causal inference is quite parallel to the
analysis of categorical inference. In the case of causal
inference, the assumed goal of the system is to maximize
the accuracy of its predictions about future events (e.g.,
whether a light will go on when a switch is flipped). To do
this, the system must extract the laws that govern the
world's predictive structure and recognize the situations
in which these laws are apt to apply. These laws are
serving the same basic role in making predictions about
events as categories were in making predictions about
objects.

There are a number of ways causal inference is more
complicated and the rational analysis correspondingly
less complete. For one, it is not entirely clear what the
best conception is of a "causal law." I have opted for such
rather traditional situation-action rules as, "If the forest is
dry and lightning strikes, there will be a fire." Such laws
are necessarily probabilistic. Another complication is
that generalizing these laws requires generalizing over
relational structures and the problem of relational gener-
alization is notably more difficult than categorical
generalization.

A situation can be conceived as presenting a set of cues,
C, that might be relevant to predicting that an event, E,
will occur (Einhorn & Hogarth 1986). The prediction task
is to come up with a probability P(E\C) of an event E
conditional on the cues C. The relevant intervening
constructs are the set of causal rules, i, that we have
inferred. P(E\C) can be calculated by the following rule:

P(E\C) = E P(i\C)P(E\i) (Equation 9)
i

where P(i\C) is the probability of rule i applying in the
presence of cues C and P(E\i) is the probability of event £
should rule i apply. This rule is the analog of Equation 3
for categorization.

Equation 9 focuses on P(i\C), the probability of a causal
law applying in a situation and P(E\i), the probability of an
event should a causal law apply. P(E\i) will be basically
derived from how often the event occurs when the rule is
applicable. Analogous to Equation 3 the relevant equa-
tion for P(i\C) is:

=
Con(i)P(C\i)

(Equation 10)

where Con(i) denotes the confidence that i exists and
P(C\i) is the probability of cues C if rule i did apply. Note
Con(i) plays the role of a prior probability but it. is not a
prior probability. Rather than reflecting a probability that
the rule will apply it reflects a confidence in the existence
of the rule.

Before turning to the empirical phenomena, a brief

comment is required on the treatment of causality as
probabilistic. There is a long standing tradition in philoso-
phy, extending back to Hume and Kant, of treating
causality as deterministic. I am relatively naive with
respect to the underlying philosophical issues, but I am
inclined to agree with Suppes's (1984) characterization of
nonprobabilistic treatments of causality as fundamentally
incoherent. More to the point, however, our enterprise is
not directly concerned with philosophical issues but
rather with how to maximize predictions about events in
the future. Whatever one's conception of the nature of
causality, I assume one would be hard pressed not to take
a statistical and hence a probabilistic approach to the
prediction task.

4.1. Empirical phenomena. This analysis identifies a
number of quantities as relevant to causal inference -
Con(i), P(C\i), and P(E\i). Con(i) is one's confidence in a
causal rule such as "smoking causes lung cancer." P(C\i) is
the conditional probability of a cue C given that law i
applies. An example might be the probability that one
would see yellow teeth in someone to whom the law
applies (i.e., a smoker). P(E\i) is the probability of getting
the effect when the law applies — that is, the probability
that someone will have lung cancer because of smoking.
We have been able to examine a number of empirical
phenomena relevant to these quantities and to show their
rational basis:

Phenomenon 13. With respect to Con(i), there are a
number of studies of human causal inference given 2 x 2
contingency data in which subjects experience an effect
or the absence of an effect in the presence or absence of a
purported cause (e.g., Arkes & Harkness 1983; Crocker
1981; Schustack & Sternberg 1981). Human inference has
often been characterized as nonoptimal in such situations
because people are more influenced by changes in the
joint cooccurence of cause and effect than changes in the
joint nonoccurrence of cause and effect. It is assumed that
subjects should be symmetrically sensitive. This assump-
tion depends, however, on subjects' prior beliefs about
the frequency of an effect in the presence of a cause
compared with its absence. If subjects are much more
certain about what the frequency is in the absence of a
cause than in its presence, an asymmetry is predicted that
corresponds to what is empirically observed. It seems
reasonable to assume that subjects will assume that any
particular event should have a probability near zero in the
absence of a cause whereas they should be uncertain just
how strong the relationship is in the presence.6 Anderson
(1990a) reports very good data fits to human causal at-
tributions given these assumptions. Thus, what has been
characterized as nonrational may in fact be optimal given
appropriate assumptions about prior probabilities.

Phenomenon 14. With respect to P(C\i), there has been
a long history of concern with the effect of cues about the
temporal and spatial contiguity between cause and effect.
At least since Hume's writings there has been the belief
that humans reflexively see causality in cases of close
spatial and temporal proximity. In joint research with
Mike Matessa and Ross Thompson, however, we find that
how subjects use these cues depends on the particular
prior model they bring to the situation.

Because contiguity has been so closely tied to thinking
about causality and since our research on this is not yet
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Figure 1. The stimulus situation for judging causality: (a) when
a weight is dropped and a vibratory wave model is invoked and
(b) when a ball is dropped and a projectile model is invoked.

published, we will describe it in a little detail. Figure 1
shows the two experimental situations we used with our
subjects: In all cases, the event to be explained is a trap
door opening and a ball rising out of the hole at the right of
the box. Prior to this, an event occurs to the left of the
hole. The subject's task is to judge whether or not the first
event appears to be the cause of the door opening and the
ball coming out. In Figure la, a hand lets go of a weight
and it drops onto the box. Subjects are told that it may
have jarred loose a latch that opens the door and releases
the ball. Subjects are asked to judge how likely it is that
the weight is responsible. In Figure 1b, subjects see a
hand drop a ball into a hole and are told that there might
be a passage in the box through which it goes and comes
out at the trap door. The time between the dropping of
the weight or ball and the opening of the box is varied, as
is the distance between where the weight or ball drops
and the door.

Subjects were asked to rate on a 1—7 scale how strong a
causal link they perceived between the two events (the
dropping of either the weight or the ball and the ball
rising from the hole). The first event occurred at various
distances from the second and at various delays in time.
Figure 2 shows how subjects' ratings varied as a function
of these two dimensions. The results are in sharp contrast
for the two conditions. In the case of the weight (Figure
2a), the results correspond approximately to the classical
prescriptions. There is a large effect of temporal con-
tiguity on the causal ascriptions. The effect of spatial
contiguity is more complex. People ascribe more
causality to the closer stimulus only in the case of short
temporal contiguity. The effects of the two dimensions
are not additive. This interaction is what would be pre-
dicted under the appropriate physical model: The weight
dropped on the beam should set up a vibratory wave that
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Figure 2. Strength of causal perception as a function of dis-
tance in space and time for (a) the weight and the vibratory wave
model and (b) the ball and the projectile model.

travels through the beam nearly instantaneously (and
presumably jars the mechanism that causes the door to
open and the ball to spring forth). Any substantial delay
between one event and the other should appear causally
anomalous. In nonanomalous cases, distance becomes a
valid cue because the force at a location should diminish
with something between lid and lid2 where d is the
distance from the source.

The case where the ball is dropped into the beam
(Figure 2b) shows an even stronger interaction between
time and distance. There is no favored time or distance.
Rather, subjects are looking for a match between time
and distance. The model they must be assuming is one in
which the ball moves through the beam at a constant
velocity and what they are looking for is cases where the
ball would travel that distance in that time. Thus, in both
parts a and b of Figure 2, we see that temporal and spatial
contiguity are not used as mindless cues to causality, but
rather are filtered through plausible models of the situa-
tion to make sensible inferences about causality. If closer
temporal and spatial contiguity usually lead to causal
ascriptions, it may reflect the fact that people tend to
perceive situations in terms of something like the vibrato-
ry wave model Schultz (1982) has emphasized the pri-
macy of a prior model in people's causal attributions.

Phenomenon 15. People are also influenced by sim-
ilarity between cause and effect in their causal attribu-
tions; there has been a long tradition of viewing this
reliance on similarity as irrational (for a review, read
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Nisbett & Ross 1980). We were able to show that under
certain prior models similarity is a valid cue to causation -
basically, when the cause transfers part of itself to the
effect. For example, when all the wash turns out a
brilliant purple it is reasonable to blame an item of
clothing that has that color and people naturally use
similarity in this case. On the other hand, they are very
unlikely to blame a similarly colored wallpaper. Thus,
similarity is not used mindlessly as a cue for causality but
is within the framework of justifiable prior models. Such
inferential use is statistical (or, in artificial intelligence
terms, a heuristic) and may lead to incorrect conclusions
on occasions. This does not make its use justified,
however.

Phenomenon 16. When we see a causal law apply to an
object it is reasonable to infer that it will apply again to
that object but what other objects will it also apply to? It is
an implication of the rational analysis of categorization
and the rational analysis of causal inference that subjects
ought to use category boundaries to define the range of
generalization of their causal inferences. We showed
experimentally (Anderson 1990a, Chapter 4) that sub-
jects' causal inferences do take place in the manner
predicted by the conjunction of the two models.

Phenomena 13-15 have a status somewhat different
from that of the earlier ones. In the case of these three,
there were certain aspects of human causal inference that
had been commonly described as irrational. In each case
there was a failure to consider reasonable prior models
one might bring to situations of causal inference. When
reasonable prior models are factored in, there is evidence
for a great deal of rationality in human causal inference.

5. A rational analysis of problem solwing

With respect to problem solving it was assumed that the
goal of the system was to achieve certain states of affairs
(e.g., getting from one location to another). Achieving a
state of affairs has some value, G. The problem solver is
characterized as searching for some plan which will
achieve this state of affairs. Any plan is characterized as
having a certain cost, C, and probability of success, P. The
rational behavior is one of choosing among plans to find
one that maximizes PG — C and executing it, provided its
expected value is positive.

This characterization of problem solving is unlike the
characterization that exists in the problem-solving liter-
ature in that it considers plans as probabilistic and con-
cerns itself explicitly with the trade-off of gains and costs.
This seems more like the actual problem solving that
people face daily, however. This characterization of prob-
lem solving is clearly connected to the decision-making
tasks that have been studied and indeed such decision-
making tasks are special cases of problem solving under
this characterization. This leads to the first rational phe-
nomenon under problem solving:

Phenomenon 17. Subjects appear to make decisions in
which they combine subjective probabilities and subjec-
tive utilities in accordance with a standard economic logic
(for a review, Kahneman & Tversky 1984). A rational
analysis would predict the economic combination princi-
ple but it is often thought that rational subjects should
combine the stated probabilities and utilities and not

subjective quantities that systematically deviate from
them. This only follows, however, if the stated quantities
are the true values, and there is no justification for
believing this is so. It is rare for probabilities that are
stated to us to be accurate, particularly extreme proba-
bilities (e.g., I don't know how many times programmers,
students, friends, etc., said they were almost certain to
have a task done by a particular date). Also, true adaptive
utility (e.g., number of surviving offspring) could not be
linearly related to money or other stated utilities over an
unbounded region. Matching these discrepancies be-
tween stated and true quantities, subjective probability
functions tend to discount extreme stated probabilities
and subjective utility functions are nonlinear in money
and wealth. Although there are still many second-order
considerations (which would require a paper in them-
selves) it still appears to be more adaptive to use subjec-
tive probabilities and utilities than stated probabilities
and utilities.

5.1. Combinatorial structure Problem-solving tasks often
have a combinatorial structure that most experimental
decision-making tasks do not. A typical decision-making
task involves taking a single action. A typical problem-
solving task Involves taking a sequence of actions or steps
to achieve a goal. Therefore, there is a sequence of
decisions to be made. For example, in the Tower of Hanoi
problem (see Anderson 1990b, Chapter 8), no single
allowable step will go from the start state to the goal state.
There are logically more complex possibilities, but con-
sider a pure serial step structure such as in an eight
puzzle7 or getting from an office to a new lecture hall.8 In
these cases each step causes a new state that "enables"
the next step and finally results in the goal.

The probability that a sequence of steps intended to
produce the goal will actually do so is the product of the
probabilities' that the individual steps will have their
intended effects.9 The cost is the sum of the costs of all the
steps. This suggests that such step combinations can be
treated as single macro-steps with the derived proba-
bilities and costs, and that one can choose among them
with the same expected utility logic (discussed under
Phenomenon 17) used for choosing single steps.

The major difficulty is in applying this logic to discover-
ing such sequences for the first time. This is the tradi-
tional domain of problem-solving search. In the problem-
solving literature, the steps are called operators. The
difficulty is searching the exponentially expanding space
of operators leading from the current state: If a operators
can apply to each state there are an chains of n operators
extending from the start state.

The typical AI program searches through such se-
quences of steps using various heuristics, finds some
sequence that leads to the goal state, and then executes
that sequence. Thus, the typical scheme is to plan a
complete solution and then act on it. There are two
difficulties with this scheme. The first concerns the prob-
abilistic nature of these steps. That is, the planned se-
quence of steps will lead to the goal only with a certain
probability. With some probability they will fail and lead
elsewhere. It would not always be rational to plan a long
sequence of steps if the sequence is going to diverge from
the intended path at an early point. The second difficulty
is that limits on memory span results imply that one
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cannot hold a long sequence of such steps in mind, let
alone compare a large number of such sequences.

Thus, one can at best plan a few steps before acting.
This is in fact how human problem solving typically plays
itself out. For example, when I put something in one side
of the car I seldom consider whether it is the easier side to
take it out from - only whether it is the easier side to put it
in from. This can and does lead to overall problem-solving
episodes that are nonoptimal. This iterative plan-and-act
structure is an inevitable consequence, however, of the
uncertainty of problem solving in these domains and the
limitations of working memory.

The iterative plan-and-act structure in human problem
solving is transparent in many situations. For example,
people trying to solve the eight puzzle will plan short
sequences of steps to get a piece in a desired position,
execute them, plan, execute, and so forth. Their prob-
lem-solving episodes often consist of a pause when a plan
of some sort is being hatched, a sequence of steps result-
ing in a piece in position, another pause, and so on.

The basic logic of such iterative plan-and-act schemes is
to approximate optimality in global problem solving by
achieving local optimality. This is reminiscent of the
issues discussed with respect to the operant literature on
the matching law. Just as local maximizing can lead to
global nonoptimality, so too problem-solving sequences
which are locally optimal might not be globally optimal.
The argument here, as in the case of the matching law, is
that such exceptions are too unpredictable statistically
and too costly computationally to be considered. Such
local optimization can have optimal expected value even
if it produces a specific instance of behavior that is
nonoptimal (ignoring computational cost) in a specific
situation.

5.2, Rational analysis of partial plans. I use the phrase
plan or partial plan to refer to a plan for achieving a goal
which involves a move (a sequence of one or more steps)
followed by the intention to complete the achievement of
the goal after this move. An interesting question is how
one chooses the partial plan to execute. One cannot use
the criterion that the plan achieves the goal because the
plan does not get one all the way to the goal.

Figure 3 is an objective analysis (i.e., not necessarily in
the subject's head) of the state of affairs with respect to
evaluating a plan i involving a move of one or more steps
and then the intention to reach the goal. The diagram
starts at state S and branches off from there. Each branch
in that diagram is explained:

1. The move in plan i has some probability p{ of
producing its intended state I and some cost at associated
with that move.

2. Since I is not the goal state, there is some proba-
bility qt that the goal state will be reached from 1 with a
cost cv

3. With probability (1 — qt) the goal state cannot be
reached from I. There will be some cost d{ associated with
the moves before the goal is abandoned.

4. With probability (1 — pf) the move in plan i does not
produce its intended state I but some unintended state U.
There is a cost b{ associated with getting to U.

5= From state 17 there is still some probability rt that
the goal can be achieved with cost ev

6. Finally, there is a probability (1 — r{) that the goal

Figure 3. The state of affairs with respect to evaluating a move
i. The first level in the tree represents whether the move
achieves its intended state (I) or some unintended state ([/). The
second level reflects whether it is possible to get from these
states to the goal (G) or not (F).

cannot be reached from state U and a cost f{ before the
goal is abandoned.

The overall probability of success and cost associated
with plan i is

Pi = PiQi + (1 ~ P ih _. (Equation 11)

C, = Piki + qfi + (1 " qW
+ (1 " PiP* + rf, + (1 - r^/J (Equation 12)

Given this definition of P{ and Ci for a plan i, the system
should choose among the plans just as it chose when there
was only one step to the goal. The logic for choosing
among plans is one in which one considers them mutually
exclusive and chooses the one that maximizes P.G — Ci

provided that quantity is positive. Indeed, multimove
plans can be put into competition with single-move plans
and a choice can be made among all of the possible plans
according to this economic logic. In some cases, a multi-
move plan might be chosen over a single-move plan
because the multimove plan is cheaper or more probable.

Anderson (1990a) goes through a series of mathematical
simplifications to reduce Equations 11 and 12 into the
following more easily analyzable forms:

Pi = PflAl - (1 ~ Pi)fl (Equation 13)

C. = a{ + c. (Equation 14)

where / is a parameter reflecting how much a failure to
achieve an intended intermediate state affects the pros-
pects of finally achieving the goal.

The upshot of these simplifications is to reduce the
estimation problems to that of estimating p., the proba-
bility of the move in the partial plan producing the
intended state; qp the probability of getting from that
state to the goal; ap the cost of the partial plan; and ci9 the
remaining cost if it succeeds. The decision procedure
becomes simply to choose i with maximum expected PtG
~ Ct (as defined by Equations 13 and 14) or to give up if
there is no i such that P.G > Cv

10

The terms a{ and p. can be estimated directly from
knowledge of the steps in the move associated with the
partial plan. The question becomes how to estimate qi

and ci9 since they are associated with unknown steps after
the intermediate state has been reached. There are a
number of possible bases for their estimation, but two
have been analyzed in detail One is the similarity be-
tween the goal and the state the move is intended to
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result in. The second is the amount of effort expended so
far.11

Bayesian techniques were used again to estimate qt and
ci from similarity and effort. This involved developing
prior models of how problems varied in the amount of
effort they required for completion and how they varied
in similarity. In the case of effort required for completion,
the assumption was that problems varied according to a
gamma distribution. With respect to similarity, a correla-
tion was assumed between the number of differences
between a state and a goal and the amount of effort
required to reach the goal. If differences were indepen-
dent there would be a perfect correlation - every dif-
ference would require an extra unit of effort to eliminate.
Because of nonindependence of differences, this correla-
tion is not perfect, and an exponential distribution of
differences was assumed with the mean of the distribu-
tion proportional to the amount of effort.

A final issue that needs to be factored into the analysis
of problem solving is an internal cost of generating moves.
A satisflcing model (Simon 1955) was produced in which
the problem solver stops generating moves when the
expected improvement from considering another move is
less than the cost of generating it.

63. Empirical phenomena. Based on these assumptions a
simulation of human problem solving was developed
which reproduced the following phenomena (see Ander-
son, 1990a, Chapter 5, for details):

Phenomenon 18. The typical first attack on a problem in
a novel domain is to do hill-climbing (e.g., Atwood &
Poison 1976; Kotovsky et al. 1985). This falls out of the
correlation between difference and amount of effort.

Phenomenon 19. When subjects have difficulty with a
novel problem they switch from hill-climbing to means-
end analysis (Kotovsky et al. 1985). This turns out to be
the result of the fact that hill-climbing promises to mini-
mize effort whereas means-ends analysis promises to
maximize probability of success. Early in a problem
sequence the subject is justified to believe in a high
probability of success because most problems are solvable
by this means. If the subject fails to succeed for longer
than expected, he will switch to a method that promises to
maximize probability of success.

Phenomenon 20. This analysis predicts that subjects are
variable in their behavior and do not always make the
optimal moves. This follows from the analysis of "satisfic-
ing" in which students stop seeking moves when the
expected value of search decreases below a threshold.
Moreover, their variability and nonoptimality is a func-
tion of both the value of the goal and the cost of consider-
ing moves.

The phenomena listed above do not really test the
sophisticated interactions implied by the rational model
of problem solving. This basically reflects a mismatch
between this theory and the literature on problem solv-
ing. No literature deals with problem solving under
conditions of uncertainty, real costs and gains, and com-
plex problem-solving structure. There are decision- mak-
ing tasks that involve uncertainty and real costs and gains.
Unfortunately, they focus on simple one-step problems.
There are problem-solving tasks that have a complex
combinatorial structure, but they involve steps whose
outcome is certain with unclear costs and gains. The

rational model applies to these two types of tasks in a
rather degenerate way.

In the case of decision making, the problem of manag-
ing search does not arise. The problem concerns how
gradations in subjects' choice behaviors vary with grada-
tions in the choice sets. In contrast, the problem-solving
literature tends to treat the subject as totally determin-
istic, making all-or-none choices. There is no way to
conceptualize the fact that subjects make different
choices except to put a random function in the simulation.
As a consequence, the typical problem-solving theories
(including previous theories of my own) have great diffi-
culty dealing with the statistics of group behavior and are
content to simulate single subjects.

Phenomenon 21. Most everyday problem solving has a
structure that differs significantly from the one studied in
the decision-making and problem-solving literature. A
paradigmatic example is route finding, where the maze of
potential paths creates a very concrete search space in
which the uncertainties of passage cause real variability
and time and money are real costs. Recently, we have
been studying route finding in the laboratory (Anderson
& Kushmerick 1990), putting novel predictions of the
theory to test. We show, for example, a linear rela-
tionship between decision time and the number of alter-
natives considered before our satisficing model selects an
alternative. This is an example of a novel prediction of the
rational model being put to test.

6. implementation of a rational analysis

It is in the spirit of a rational analysis to prescribe what the
behavior of a system should be rather than how to
compute it. It is not our claim that the human system
actually goes through the relatively complex Bayesian
analysis used to establish what the optimal behavior was.
Inevitably, however, the criticism is made that such
rational models are unrealistic because they imply unre-
alistic mental computations. It is often quite easy to
convert these rational prescriptions into plausible mecha-
nisms, however. As one example, consider the following
proposal for implementing the categorization prescrip-
tion described earlier in a connectionist architecture.

Figure 4 shows a connectionist network designed to
implement a category structure created by a rational
model simulation of an experiment by Gluck and Bower
(1988). Subjects in their experiment learned to associate
two diseases, a rare and a common one, with the absence
or presence of four symptoms (thus there are in effect
eight symptoms). Our system in this simulation induced
four categories to capture various patterns of symptom-
disease correlation. It should be noted that the disease
labels are features associated with the category and are no
different from the symptoms. In the center of the figure
are the four categories. Figure 4 illustrates associations
from each of the 10 features (eight symptoms and two
disease labels) to each category and from the category to
each feature. Activation will spread from the input fea-
ture nodes to the category nodes and then to the output
feature nodes.

We can use the rational analysis to prescribe the
appropriate activation calculations. Let us first consider a
calculation of the activation levels of the category nodes.
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Figure 4. A schematic representation of how a category struc-
ture might be represented in an ACT declarative network.

This activation calculation should implement Equations
4-8. The two relevant probabilities in this equation are
P(k) for each category and P(ij\k) for each link from feature
j to category k. Actually, we do not have to calculate
Equation 4; rather, we need only calculate a quantity
proportional to P(k) II P(ij\k) which is what the numerator
in Equation 4 will become. Continuing this logic of
proportionality, we can substitute the numerators of
Equations 5 and 8 and make it our goal to calculate a
quantity proportional to nk II [(n^ + (Xj)/(nk + a0)]. This is
a multiplicative relationship whereas it is typical to think
of activations from various sources as adding. We there-
fore take logarithms and make In nk the activation level of
the category nodes and I n ^ . + ô .) - ln(nk + a0) the
strengths of the j to k links. For example, for category l,nk

= 28 and In nk = 3.33, which is what is shown in Figure 4.
Similarly, for category 1 and bloody nose ntj = 7 and,
assuming ô . = 1, ln(n^. + G )̂ — ln(nk + a0) = —1.32,
which is what is shown in Figure 4. Activation spreading
from the prescribed features would calculate

Hnk ot,) - \n(nk + a0)],

which is the log of a quantity proportional to the proba-
bility of the object coming from the target category.

The real purpose of categorization is not to assign
objects to categories but rather to make predictions. This
requires the spreading of activation out of the category
nodes to the feature nodes and the accumulation of

activation there. According to the rational analyses, we
want to calculate Equation 3. This requires converting
the log quantities, which is what the node activation
represents, to probability, which is what the output
activation should represent. Therefore, we need the
following formula, which relates a node's activation, A, to
the amount of activation output, O.

O = ebA,

which makes the output activation proportional to the
probability. This output activation is multiplied by P(ij\k),
which represents outgoing link strength, to determine
the amount of activation arriving at features j from catego-
ry k.

The activation-based scheme just described will deliv-
er a level of activation to node j which is proportional to
the probability Pred^. If we assume that the probability of
making a prediction is a function of this level of activation,
we have an architecture that produces the categorization
results we reviewed. There are such architectures. For
example, the probability of pattern-matching in the
ACT* (Anderson 1983) architecture is a function of level
of activation.

Given this mapping of the categorization process into
an architecture, one can specify the category learning
algorithm. New category nodes have to be created every
time an object cannot be assigned to an existing category
(or, equivalently, each time it fails to get activation of a
category node above threshold). Every time an object is
assigned to an existing category the link strengths be-
tween the category and features have to be updated so
that they are linearly related to ln(n^. + ĉ ) — ln(nk + oto)
for incoming links and proportional to n{j + aj(nk + a0)
for outgoing links. Also, the base level activation of the
category node has to be updated to be linearly related to
ln(n^). Note that these are very trivial learning al-
gorithms. We are not doing complex Bayesian mathemat-
ics; we are just updating strengths to reflect frequency.

There are striking similarities between this network
and PDF networks with hidden units that are learned by
the backprop algorithm (Rumelhart et al. 1986). The
category nodes are like hidden units and the calculations
in which they participate are similar if not identical. The
real difference occurs in the learning algorithm. Whereas
it takes huge numbers of iterations to get the backprop
algorithm to learn a category structure, this algorithm
basically gives asymptotic structure after each trial. The
speed of learning of this procedure is gained by its strong
priors concerning the structure of the environment
whereas the backprop algorithm assumes, unrealistically
I think, a much less structured environment.

Learning algorithms are not optimal in and of them-
selves. They are optimal with respect to environments.
There are imaginable environments in which the back-
prop algorithm would do better. A rational approach
encourages us to inquire about the structure of our actual
environment and to design an algorithm optimal for it
rather than designing algorithms which would only be
optimal in some bizarre world.

This completes the review of the application of rational
analysis. Although many details were necessarily omit-
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ted, I hope it is clear from this review that many of the
major characteristics of human cognition can be explained
as an optimal response, in a Bayesian sense, to the
informational structure in the world. We also see in
examples like the network implementation of categoriza-
tion, the potential to advance to the second stage of the
program outlined by Marr, which is to implement these
rational prescriptions in a cognitive architecture.

I am not advocating rational analysis to the exclusion of
other approaches to cognition. I think we see evidence,
however, that other approaches to human cognition
would be more profitable if we took seriously the idea that
there is a reason for the way the mind is. We are not trying
to understand an arbitrary black box built out of billions of
neurons.

Finally, to return to the title of this target article, is
human cognition adaptive? Despite the compelling evi-
dence that various components of it are optimized to the
structure of the environment, it is unclear that we can
leave with as positive an opinion about the functioning of
the cognitive system as a whole. Consider memory, for
example. Our memory performance can be relatively
insensitive to our knowledge about our memory needs.
Therefore, we may know we will need to remember a
telephone number in an hour's time and will then be able
to forget it. Memory does not respond to this knowledge
and provide a momentary surge in the availability of the
number in an hour's time, however. Rather, it responds
to the general statistics of the number's use, oblivious to
our-"knowledge" about its future use. It is possible that
the various components of cognition are optimized within
their narrow bounds but that they are unable to pass
information which allows a global optimum to be
achieved. Just as we achieve only local optima in problem
solving over time, we may only achieve local optima over
components. If so, such local-by-component optimization
may or may not be explainable by considering computa-
tional constraints and uncertainty in defining the global
optimum.
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NOTES
1. This is not to imply that these are the only behavioral

phenomena that can be explained or that there are contradictory
phenomena. A fuller exposition of this approach can be found in
Anderson (1990a).

2. Thus, for example, my memory for my locker combination
has a history of being periodically useful and I may now be in
context where the cues are those of the locker-room, such as
lockers, showers, towels, etc.

3. Human memory may not be so constrained and it is
interesting to ask which predictions might be upset by
nonindependence.

4. This independence assumption is not perfect because
more than one phenotypic feature can be controlled by the same
gene. The most frequent form of nonindependence involves
sex-linked characteristics. However, even here there is much
less variation of most features (size) between sexes within a
species than between species. As we will see (discussion of
Phenomenon 11), in the presence of a strong set of sex-linked

characteristics, the model would extract two categories - one for
the male and one for the female members of the species.

5o A somewhat different Bayesian approach to categorization
can be found in Cheeseman et al. (1988).

6o Consider one's confidence about the probability that a
forest fire will start spontaneously at any moment when light-
ning does not strike versus the probability that it will start when
lightning does strike. The probability in the former case is
presumably near zero whereas I, at least, am very uncertain how
to assign a probability in the latter case.

7* The eight puzzle is the tile-moving game (see Anderson
1990b) where the problem solver is given a 3 X 3 matrix
containing eight tiles and one open space. The problem solver
can move the tiles into the free space. The goal is usually to
achieve some target configuration of the tiles.

8, Presumably a "step" in going from the office to the lecture
hall is not an actual physical step but such a well-learned
fragment of a route as getting from the office to the hall.

9o Conditionalized on the success of prior steps.
10. That is, if giving up is a costless option. Otherwise, one

must consider the cost of giving up in competition with the other
options and choose the minimum cost option.

11. Another possible basis we are currently studying is the
history of past success with a method. Therefore, if I have had a
history of success with trying to repair things by hand, I will be
more inclined to try to repair something myself rather than call a
repair shop.
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Human cognition is an adaptive process

Gyan C. Agarwal
Department of Electrical Engineering and Computer Science (mc-154),
University of Illinois at Chicago, Chicago, IL 60680
Electronic mail: agarwal@uicbert.eecs.ulc.edu

Coming from an engineering background, I read this article
with some amazement. My reason for writing this commentary
is to point out that there are many parallels in the target article to
what is common in control engineering practice. There are some
very significant differences in approaching and even in defining
the problem, however.

Anderson's basic premise is that human rational behavior can
be adequately explained on the basis of optimization to the
structure of the environment. It appears that the author has
chosen to define the environment as the output of this black box
(human behavior) because the field of cognitive psychology is
unable, at least at present, to define the structure of the black
box and its relation to the environment. The nature of the
internal system and constraints because of the limited capability
of any information-handling system is completely lost in such a
view. It would be equivalent to posing an optimal control
problem of predicting an optimal behavior of a system by
assuming a performance index and the actual output but without
any knowledge of the system itself or any of the prior inputs
applied to it. In other words, the nature of the system and its
history has nothing to do with its performance. In engineering
analysis, such a statement could not be taken seriously.
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The discussion of local and global optimality and iterative
decision making may be more formally stated in terms of
Bellman's Principle of Optimality: "An optimal policy has the
property that whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision" (Bellman
1961, p. 57). The dynamic programming approach developed by
Bellman has been extensively applied in deterministic as well as
stochastic multi-step problems. It appears to me that Anderson
is reinventing this approach limiting his analysis to output data
only. The dynamic programming is an alternative to a variational
approach in calculus and can be used to develop equations of
Pontryagin's maximum principle. [Cf.: Clark: "Modeling Be-
havioral Adaptations" BBS 14(1) 1991; and Schoemaker "The
Quest for Optimality: A Positive Heuristic of Science?" BBS
14(2) 1991.]

I take serious exception to the notion that a mechanistic
theory is not needed and that a rational theory offers a more
appropriate explanatory level for behavioral data. Anderson is
asserting that a rational theory provides a precise characteriza-
tion and justification of the behavior which the mechanistic
theory should achieve. Would this not be the tail wagging the
dog? The behavior of a physical system depends not only on the
environment (either in the form of parameter dependence or
external inputs) but more significantly on the structure and
constraints of the system. I would think that similar conditions
are also valid in biology.

Let me consider two examples to justify these concerns about
Anderson's theory. First, for generating uniformly distributed
random numbers on a digital machine, one can use one of
several available algorithms. This problem has a well defined,
discrete, deterministic system structure. The output represents
a series of uniformly distributed random numbers with no
apparent relationship between one and the other. The rational
theory approach would not be able to predict the internal
structure of such a mechanistic algorithm and the information
derived from rational theory would be of little value.

A second example is the famous Fitts law for speed-accuracy
tradeoff. Fitts (1954; 1964) had argued that speed-accuracy
tradeoff' can be accounted for by assuming that the channel
capacity of the motor system is independent of task conditions.
Fitts merely assumed that the average amplitude of movement
is equivalent to average signal plus noise amplitude and that half
the range of movement variability is equivalent to peak noise
amplitude. Shannon's channel capacity theorem was then used
to define the index of difficulty. Fitts's explanation neglected the
principles of mass-limb system mechanics. His explanation
would imply that an increase in movement time arising from an
increase in movement distance results entirely from the conse-
quent increase in information per symbol. This assertion ne-
glects the fact that even with a perfect channel, movement time
must increase with distance. Although Fitts's law has been
shown to apply in many situations, several alternate hypotheses
have been proposed (Gottlieb et al. 1989; Meyer et al. 1982;
1988). Fitts's equation is an empirical result and does not hold
for movement velocity or muscle activations (Corcos et al. 1988).
It also fails to provide any insight about the nature of motor
control mechanisms and their learning and adaptation ca-
pabilities. (An alternative explanation of speed-accuracy trade-
off based on a mechanical model of limb and time optimal
control theory has recently been provided by Logsdon [1990].)
Fitts's explanation is equivalent to Anderson's rational theory,
which considers only the behavioral data and an empirical fit.

I am also concerned about Anderson's definition of the princi-
ple of rationality and the steps necessary for developing such a
theory. The first step is to specify the goals being optimized by
the cognitive system. This is likely to be the most difficult
problem and something that cannot be easily verified. I agree
that any behavior can be seen as optimizing some imaginable
goal. On the other hand, considering the nature of biological

systems, there is no certainty of uniqueness between the goals
and the cognitive performance. Anderson's assertion that char-
acterizations of the organism are nonoptimal makes the error of
ignoring prior uncertainty and assumes that the organism
should have the same model of the situation as the experiment-
er. If Anderson's data and this theory do not match, how would
one test the validity of the theory? In biology it is very difficult to
develop criteria by which a theory is to stand or fall. As Wilkie
wrote: "Even more suspect should be the theory which explains
nothing because it can be adopted to explain anything. Such a
theory can never be disproved, which gives it an illusory
strength" (Wilkie 1954, p. 322).

Human cognition is based on the learning ability of biological
neural nets. In the artificial neural nets of which Anderson is
well aware, the learning process is an adaptive process. Al-
though the biological neural nets are considerably more com-
plex, there is no reason to doubt that these nets are also adaptive
processes.

Some thinking is irrational

Jonathan Baron
Department of Psychology, University of Pennsylvania, Philadelphia, PA
19104-6196
Electronic mall: haron@cattell.psych.upenn.edu

Peterson and Beach (1967) reviewed a number of findings that
suggested that human statistical judgments were roughly nor-
mative. Most of the data showed, as do Anderson's, that judg-
ments were monotonic and sometimes linear functions of those
predicted by a normative model. When all else is held constant,
it is clear that people are often sensitive to the normatively
relevant variables.

Since Peterson and Beach, however, investigators who have
looked for nonnormative influences on performance have often
found them. To be sure, as Anderson points out, some of these
authors shot from the hip, using indefensible normative models.
But other results cannot be so easily dismissed. For example:
people are temporally impulsive, choosing a small immediate
reward over a larger delayed reward repeatedly (Solnick et al.
1980); when they are asked to make repeated predictions of
uncertain events, they often predict the less likely of two events,
even when events are obviously independent (Gal 1990; Peter-
son & Uhela 1964); they are unable to ignore their knowledge of
outcomes, even when they must ignore it in order to predict the
behavior of others (Camerer et al. 1989); they fail to learn or
unlearn correlations between cues and outcomes when prior
beliefs are present (Chapman & Chapman 1967; 1979); and, in
detecting correlations, they are subject to blocking effects and
cue competition, which do not reflect reality either globally or
locally (Chapman 1990; Wasserman 1990).

Anderson now tries to resurrect rationality as a basis for
understanding human cognition. In some cases, this new ap-
proach leads to impressive results, reminiscent of the achieve-
ments of economics, which has taken a similar approach. But,
like many economists, Anderson wants to go beyond these
successes to claim that people are generally rational. To defend
this theory, he has added: (1) a distinction between local and
global optimization; (2) a claim that subjects do not understand
the tasks as the experimenters do (sect. 1.2); (3) a claim that
"what is optimal in . . . the laboratory can be far from optimal in
the world at large" (sect. 1.2); and, (4) a claim that a full theory of
rationality must account for the cost of thinking. I consider these
in order.

(1) I interpret the global-local distinction (perhaps wrongly) to
imply an admission that people can subvert their own goals as a
whole, in the long ran, even while they do their best to achieve
some limited goal If this interpretation is correct, then I would
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agree with Anderson, except that I would like to see some
evidence for the limited goal aside from the assumption that it
must be present. I would also ask whether the limitation is
remediable. If not, I would not want to call it irrational.

(2) As for Anderson's claim that subjects do not understand
the tasks as the experimenters do, many experimenters indeed
fail to check their subjects' understanding. In the studies cited
earlier, however, subjects had an opportunity to learn the
contingencies in effect even if they failed to understand the
experimenters' instructions, and the biases survived the learn-
ing. In a great many other studies (see Baron 1988), experiment-
ers test for misunderstanding before concluding that subjects
are irrational.

Anderson's reporting of subjects' interpretations of decision
making experiments (Proposition 17, sect. 5) does not account
well for the results. He argues that the distortion of probabilities
is reasonable given the fact that stated probabilities are usually
inaccurate. This explanation cannot apply when probabilities
are stated in terms of numbers of lottery tickets rather than
subjective judgments, as they often are. Moreover, the type of
inaccuracy found in probability judgment (Lichtenstein et al.
1982) cannot explain the distortion observed in decision making
(Kahneman & Tversky 1979): In decision making, a probability
of 1 is weighed more than a slightly lower probability, but in
probability judgment, it is only a little more overconfident.
Finally, irrationalities in decision making cannot be ascribed to
probability distortion alone. Many are the result of framing
effects, and these occur even when no uncertainty is present
(e.g., Knetsch & Sinden 1984). (Anderson seems to imply in this
section that nonlinear utility of money has been said to be
irrational. This is puzzling. Anderson's equating "true adaptive
utility" with number of offspring in a time of overpopulation is
also puzzling.)

(3) Anderson's third claim - about the differences between
the laboratory and the world - is a half truth. From the
beginning of the study of "heuristics and biases" (e.g., Kahn-
eman & Tversky 1972), irrational biases were thought to result
from the overgeneralization of heuristics that are ordinarily
useful. This is still the most promising general theory of irra-
tional biases in my view (Baron 1990). At issue here is whether
people can learn to discriminate conditions that control the
usefulness of heuristics. Two arguments suggest that they can do
so. First, unlike optical illusions (Funder 1987), most of the
biases found in judgment and decision making are not universal.
Moreover, those who do not show these biases seem no worse
off than others. If anything, they are better off (Kuhn et al. 1988;
Kuhn, in press; Larrick et al. 1990b). Second, many studies
show that people can learn to improve their judgment and
decision making (Larrick et al. 1990a; Nisbett et al. 1987).

(4) Finally, Anderson argues that the cost of thinking is a
relevant consideration in determining rationality. Here I agree
(Baron 1985). It is possible, however, that people are sometimes
irrational in time allocation (Baron et al. 1986; Baron et al., in
press). Moreover, many biases do not obviously save time or
effort (e.g., the endowment effect found by Knetsch & Sinden
1984; the impulsiveness effect found by Solnick et al. 1980).

More generally, despite the value of the rationality assump-
tion as a heuristic device for the development of a descriptive
theory, a great deal of evidence indicates that people are
sometimes systematically irrational, often in ways that are re-
mediable. We must be careful not to miss (nor dismiss) the signs
of such irrationality, because they provide us with a useful tool
for the amelioration of the human condition.

The nonoptimality of Anderson's
memory fits

Gordon M. Becker
Psychology Department, University of Nebraska at Omaha, Omaha, NB
68182
Electronic mall: becker@unoma1 .bitnet

Anderson's "rational analysis" fits an impressive range of cog-
nitive data; he has also been very resourceful in finding environ-
ments that make human memory appear optimal. He does not
show, however, that these environments describe the "real
environment" as conceived by the subject or by others, includ-
ing other scientists or other sciences.

He erroneously describes (a) borrowings from libraries and
accesses to computer files as "nonhuman information-retrieval
systems," and (b) the use of words in New York Times headlines
and the sources of messages in electronic mail as environmental
demands placed on human memories. The underlying process
in these systems is the human mind; and models (such as
Burrell's 1980; 1985) that describe such data, are descriptions of
human cognition. The Burrell parameters and distributions that
Anderson uses in his memory studies were determined by data
similar to that used later to "test" the model.

His definitions of parameters, and concepts like "optimal"
and "environment," are often vague. For example, he defines G
and C in Equation 1 as the relative gain and cost without
specifying whether they are subjective (utility) or objective
environmental measures. The payoff for not attaining the goal is
not mentioned even though G is the (utility) difference between
the payoffs for attaining and not attaining the current goal. The
payoff when one does not attain the current goal is the expected
gain from the next goal pursued, which depends on the expected
gain from the following goal, and so on, which depends on all the
possible goals one could have. Thus G in Equation 1 requires so
much computation that Simon (1955) has argued that people
satisfice instead of optimize. If the wrong G is used, the process
will not be optimal. How does Anderson's subject know the
correct value of G to use in Equation 1?

Anderson states that an optimal retrieval system "would stop
retrieving when the probabilities are so low that the expected
gain from retrieving the target is less than the cost of retrieving
that item." Does he mean that the subject will continue retriev-
ing memories and reaching the first goal repeatedly with the
same gain G each time a retrieved memory structure achieves
it? This would also require that utility be linear in both the C and
G commodities. Repeating the same goal seems inconsistent
with his example of remembering where he parked his car. If the
gain from the first memory structure that correctly locates the
car is G, wouldn't the gain from retrieving other "verifying"
memory structures be less than G?

Equation 1 also assumes that retrieving a memory structure
that does not attain the goal has no effect on the distance to the
goal and no information about the relevance of other memories.
A retrieved memory, however, can provide relevant (or mis-
leading) cues not present in the initial set. After a retrieved
memory structure failed to reach the goal, an optimal retrieval
system would use this information, along with the joint proba-
bilities to revise, in a Bayesian way, the probabilities of the other
memories.

It should also be noted that Equation 1 does not describe the
stopping problem for a parallel processing system that simul-
taneously retrieves n memories. The optimal rule for a parallel
processor will replace the p(A) in Equation 1 with p'(Av . . . ,
An), the probability that at least one of the n retrieved memory
structures will reach the goal. This probability will also take into
consideration the redundancy of different memory structures,
because it is unlikely that they are independent. It should be
noted, however, that this calculation is needed only when the
cost depends on the number of memories retrieved, or when the
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capacity of the parallel processor is such that it must limit its
processing to less than the available memory structures. Thus
the optimal stopping rule depends not only on the type of
system, but on its specific limitations and costs, contrary to
Anderson's statement that the optimal rule does not depend on
the architecture.

Anderson's fits, however, are based on part of Equation 2;
they ignore G and C and other parameters of Equation 2. The
logic that allows him to claim that behavior is optimal when most
of the equation is ignored is questionable. Moreover, he as-
sumes that "the probability of being needed, p(A), is monoto-
nically related to the latency and probability of recall," and
accuracy because of the threshold on what items will be consid-
ered. The reasoning here is: If p(Ax) > p(A2) then the latency
and accuracy of Ax > A2. But, when he finds an estimate of A{ >
Aj he makes the logical error of concluding that p(A{) > p(Aj).
Furthermore, the estimates of p(A) are not obtained from an
examination of the structure of the environment (as he suggests
in Step 2 of Table 1) and no test is made to see whether the
arbitrary equating of Burrell's parameter with p(A) does in fact
describe the "real" environment.

The Burrell parameter used to estimate p(A/HA), assumes
that desirabilities "should be" distributed in the gamma dis-
tribution that fits the HA responses of subjects and that these
estimated desirabilities are those dictated by the environment.
Although HA is suppose to be the "record of all the times A has
been needed," Burrell's estimate of P(A/HA) seems to be based
on the assumptions that: (1) every time A was used it was
relevant, (2) the subject always used an optimal strategy, and (3)
the subject's responses are a direct reflection of the statistical
structure of the environment and not the hypothesized struc-
ture of the mind. But HA is a reflection of the subject and the
estimate of P(A/HA) is based on the subject's responses not
the environment. In fact we don't know how the fit relates to the
environment . . . or optimality.

Thus even if Anderson's fits were optimal for the environ-
ments he describes, there is no evidence that they are optimal in
the "real world" or even in the "perceived world" of his subject.

if human cognition is adaptiwe, can human
knowledge consist of encodings?

Robert L. CampbeIIa and Mark H. Bickhardb

aIBM T. J. Watson Research Center, Yorktown Heights, NY 10598; and
bDepartment of Psychology, Lehigh University, Bethlehem, PA 18015
Electronic mail: arlc@ibm.com. or rlc@yktvmh.bitnet;
bmhh0@lehigh. bitnet

Hawe assumptions about mechanisms been awoided? Ander-
son asserts that a "rational" analysis of cognition can be sepa-
rated from an "algorithmic" or "mechanistic" account (sect.
1.1), and that this amounts to "the framing of the information-
processing problem . . . a nearly mechanism-free casting of a
psychological theory." In his analyses of cognitive functions
such as memory and categorization "the computational assump-
tions are indeed weak, involving claims that almost all informa-
tion-processing theories would agree on" (Anderson 1990, p.
36). Weak though these assumptions may be, they still have
consequences. Anderson's project is haunted by the ghosts of
mechanisms that he has not yet exorcised from his "rational"
level of analysis.

Is rational analysis committed to encodings? Anderson
equates knowledge with encodings. By encodings, we mean
objects, events, or structures of objects, in the mind that
represent objects, or structures of objects, in the world and do
so by correspondence (Bickhard & Campbell 1989; Bickhard &
Richie 1983). In Anderson's (1983) ACT framework, declarative
knowledge consists of hierarchical structures of encoding ele-
ments (the structures can be temporal, spatial, or prepositional).

Procedural knowledge consists of encoded production rules
whose encoded conditions must be matched with symbols in
working memory. Following Pylyshyn (1984) and Newell
(1980), Anderson affirms that the algorithmic level is psychologi-
cally real and that what happens there is computations on
symbols (Anderson 1990). Although Anderson does not mention
it, he is also endorsing Fodor's (1975) "representational theory
of mind," with consequences that we will explore below.

Anderson's specific rational analyses presume some obvious
encoding atoms (such as "memory traces," sect. 2.2), or objects
in the environment for such atoms to correspond to (such as
discrete objects with discrete features, already clustered in
predictively useful ways, sect. 3), so they too are hardly free of
assumptions about mechanism.

In fact, Anderson takes encodingism for granted. Though he
admits that "it has become apparent to me that this rational
analysis has assumed the general ACT framework, if not the
ACT* theory" (Anderson 1990, p. xi), the ACT assumptions,
when finally enumerated, consist of such things as "a system in
which memories are retrieved and tested for appropriateness"
(p. 252). In such "weak" assumptions, encodingism is too deeply
presupposed to be mentioned.

Is encodingism tenable? We have argued (Bickhard 1980;
Bickhard & Campbell 1989; Bickhard & Richie 1983) that any
framework that treats encodings as an irreducible, foundational
form of representation is untenable. Encodings have to derive
from some other form of representation, because they presup-
pose knowledge of what they are supposed to correspond to.

Foundational encodings are ubiquitous in the ACT frame-
work. Two kinds of declarative encodings - temporal strings and
spatial images - are hierarchical structures of elements that are
held to encode the environment directly (preserving temporal
or spatial sequence), whereas abstract propositions recode en-
vironmental structures by a process that has to be learned
(Anderson 1983). Hence, for Anderson, temporal strings and
spatial images appear to be foundational encodings, and their
elements must be, along with the elements of abstract
propositions.

Our argument against foundational encodings runs as follows:
In the clear cases (Morse code, digital audio, etc.), encodings
stand in for some other form of representation: X encodes Y
means that X represents the same thing that Y represents. The
encoding relationship presupposes that Y already represents
something. Y might be an encoding itself, but if it is, it must
stand in for another representation Z. The regress has to stop
somewhere, and it cannot stop with an encoding. If Z is a
foundational encoding, it must stand in for something already
known, yet Z is supposed to be the means by which that thing is
known. But "Z represents the same thing that Z represents"
does not define an encoding. Hence encodings cannot be a
foundational form of knowledge (Bickhard, in press a; in press
b).

The incoherence of foundational encodings has been partially
recognized by quite a few thinkers. For instance, Piaget (1970)
argued that perception could not be a copy of structures in the
world, but he did not extend the argument to concrete and
formal operational structures, and Harnad (1990) has argued
that digital encodings (symbols) cannot be a foundational form of
knowledge, but he has not extended the argument to analog
encodings (such as spatial images).

Can encodings dewelop? It follows directly from the in-
coherence argument that genuinely novel representations are
impossible within an encoding framework. A fundamentally
new kind of encoding cannot be acquired, because it would have
to be defined in terms of the new kind of thing that it represents,
yet that kind of thing supposedly cannot be known without the
encoding (Bickhard, in press a; Campbell & Bickhard 1987).

The impossibility of novel encodings is best illustrated by the
work of Fodor (1975; 1981). From Fodor's standpoint, all encod-
ing approaches must posit an innate set of primitive encodings.
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All that distinguishes such approaches is the extent to which
"complex" encodings can be defined as simple combinations of
the primitive encodings.

Fodor (1981) argues that, while "phrasal concepts" (e.g.,
sentences) may be built out of primitive encodings, "lexical
concepts" cannot be, and must therefore be primitive encodings
themselves. In Anderson's terms, this would be a claim that
structures of encoding elements, such as phrase units, image
units, or propositions, can be built of more basic encodings (it is
not clear that they always are), but individual elements, - for
example, words, basic subimages, and concepts - are not
further reducible and are therefore primitive encodings.

Fodor's innate concepts cannot be learned; they must already
be present to figure in any encoded hypothesis. Nor can they be
products of any constructive developmental process (Fodor
1980). Fodor (1981) is forced to posit a process of "triggering,"
extrinsic to the passive built-in encodings, which elicits the
activation of innate concepts through sensory conditions or the
prior activation of other innate concepts.

Can encodings ewolwe? Positing innate encodings, however,
just shifts the burden of their construction from the develop-
ment of the individual to the evolution of the species. And
Fodor's arguments imply that the acquisition of novel encodings
through hypothesis testing is impossible in principle. Fodor's
arguments lead to the conclusion that if evolution is a variation
and selection process, there is no way for encodings to evolve.
Though ambivalent about evolution, Anderson does treat it as a
variation and selection process (sect. 1.1). He is occasionally
willing to consider evolutionary constraints on the differentia-
tion of "new representational types . . . there must reasonably
have been time in our evolutionary history to create such a
representation and an adaptive advantage to doing so" (1983, p.
46).

Given his commitment to encodingism and to evolution as
variation and selection, Anderson is therefore obliged to (1)
identify errors in Fodor's reasoning, (2) propose an alternative to
encodingism, or (3) embrace Fodor's conclusions.

Presenting encodingism while refuting Podor, To refute
Fodor, Anderson would have to show that there is a process
compatible with the rest of his theory that can generate
emergent representation: representation constituted out of
phenomena that are not themselves representational. This
would be an uphill fight: A recent survey of production system
models has concluded that the constructive processes invoked
in such models are not even capable of generating new goals or
radically reorganizing algorithms (Neches et al. 1987). Because
Fodor's conclusions follow from the weakest assumptions of
encodingism, Anderson would be hard pressed to avoid Fodor's
reductiones ad ahsurdum while retaining anything like the ACT
framework.

Replacing encodingism. Rejecting encodingism, in Ander-
son's case, would mean rejecting the physical symbol system
hypothesis. Information-processing (IP) modelers would then
have to venture into completely unexplored territory. There is
not only the challenge of coming up with an alternative account
of representation that avoids the stumbling blocks of en-
codingism and provides for the emergence of representation
from something nonrepresentational. There is also the task of
tracing its ramifications.

Convergently with some others (e.g., Brooks 1987), we have
been engaged in this sort of effort for some time. An account of
our alternative, interactive representation, would overflow this
commentary. We would just like to point out that replacing
encodings with interactive representation has forced changes
throughout our conception of cognition, from learning to lan-
guage to developmental stages to consciousness to psycho-
pathology and beyond (Bickhard, in press b; Campbell & Bick-
hard 1986). For instance, traditional views of language as the
recoding, transmission, and decoding of encoded messages
cannot be maintained in an interactivist approach (Bickhard

1980a; 1987), hence language learning cannot be presumed to
start with pairings of utterances and encoded meanings (as it is
by Anderson 1983).

It would be most convenient if the changes that ensue from
the adoption of nonencoded representations could be bottled up
in a preprocessing stage, which converts everything into encod-
ings, allowing computational business to go on as usual. Harnad
(1990), for instance, proposes that perceptual categorization
yields meaningful symbols, which can thenceforward be pro-
cessed in the conventional fashion. But non-encoding-based
sensory processing can't be divided this way (Bickhard & Richie
1983).

Embracing Fodor's natiwssm. The contemporary practice of IP
modeling is already nativist, albeit unwittingly. Researchers
simply introduce new elements of declarative representation
whenever necessary to model a phenomenon, without consider-
ing their learnability. IP modelers could stipulate that any
primitives introduced for modeling purposes are innately pres-
ent and must be activated by triggering. Such a move, however,
would wreak havoc on the empiricist allegiances usually pro-
fessed by IP modelers. It would also restrict evolutionary
constraints to operating on the generation and selection of
combinations of encoding atoms, while leaving unsettled the
question, ignored by Fodor, of the possible evolutionary origins
of the primitive encodings.

Conclusion. It is certainly desirable to introduce evolutionary
constraints, and constraints of optimization to the environment,
into cognitive science, and we salute Anderson for doing so. But
there is considerable irony in the introduction of such consider-
ations within an encoding-based framework, which makes the
evolution of mental representation impossible.
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Evolution is more likely to be a "satisficer" than an optimizer.
With that proviso, it does appear from Anderson's target article
that a surprising number of the detail about human cognitive
behavior can be explained as a satisficing, if not an optimal,
response to the structure of the environment. What conse-
quences follow for various research programs is not quite clear,
however. I am an Al person, not a traditional cognitive psychol-
ogist. In addition to whatever explanatory powers psychologists
want from their theories, I want the theories to have design-
prescriptive powers as well; that is, I want them to tell me how
to create mind-like entities. Historically, the route for this sort
of progress has come from mechanistic explanations (ME) of
mental phenomena. Thus, I read the target article from the
perspective of what rational analysis (RA) has to say about ME.

Anderson's views on this range from his belief, in "over-
enthusiastic moments," that RA can supplant ME, to a more
sober suggestion that RAs place constraints on MEs. Finally, he
displays an ME for categorization that actually implements his
RA, in the sense that it can be thought of as literally estimating
the various probabilities involved.

Given a cognitive agent in an environment engaging in a
certain behavior, how one should allocate an explanation of the
behavior between the structure of the agent and the structure of
the environment has been discussed before in psychology and
Al. For example, consider Simon's (1982) ant: It produces a path
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of great complexity on the beach, but a great deal of this
complexity is explained by the properties of the environment,
that is, the shape of the sandhills on the beach. In this case,
roboticists charged with producing an artificial ant would be
making a mistake if they thought that the ant had an internal
structure that somehow had an encoding of the path. Not only
would their explanations be wrong but they would find them-
selves constructing an ant that didn't work correctly.

But the problems Anderson is concerned with are not of this
type. Here the explanations are not necessarily allocated be-
tween the internal structure of the agent and the structure of the
external environment; both simultaneously account for the
behavior, albeit in different ways. We need to define some
notations to clarify this idea.

Let E stand for the environment and Si and bi for the
structure of an agent and its behavior at time i. Let M stand for
any body of mechanisms in the agent that takes as input Si, bi,
and the response of the environment and produces as output S(i
+ 1), that is, it is some sort of learning or structure-modifying
function. Let us assume for the purposes of this discussion that
the structure of £ is invariant in time and that we are interested
in the steady state properties of S and b, that is, for i = infinity.

M itself may be a complex collection of mechanisms with
different time constants: one in the scale of biological evolution,
perhaps another in the scale of cultural evolution, and a third in
the scale of learning by an individual.

For the question, "Why is b the way it is?" we have two types
of answers. One is that b is the way it is because S of such-and-
such type produces it (traditional ME). The other is that b is the
way it is because it is optimal for E (RA), but this story has a
subplot: M modified S such that § was optimal for E, that is, it
could produce an optimal b. Both answers involve S, sooner or
later.

If our aim is to make agents that display behavior b, we either
need to know Sinr, or we need to know M, Sinit and have enough
time to let M shape the S into Sinj. For the latter alternative,
depending on whether Sinit reflects the initial situation for the
individual, the culture, or some point in biological evolution, we
are talking of a more or less practical program.

In the above, I have accepted the RA hypothesis that b is
optimal, but, as Anderson acknowledges in the concluding
section of the target article, some b's may not be optimal after
all. It seems to me that whether b is optimal depends on the
following things:

(1) The presumed goal of the agent. If a behavior b is not
optimal for goal g, perhaps it is optimal for goal g\ In some sense
we can go shopping for goals. (Anderson is admirably careful
about this issue in the examples he has studied; his statement of
goals does not seem problematic, but it is not clear how long this
fortunate state of affairs will last. For example, Marr assumes
that a goal of the human visual system is to produce an account of
3-D shapes of the objects in the scene, but why is that not a
reasonable goal for the frog's visual system as well? In general,
why wouldn't any goals that we would ascribe to the human
visual system not be appropriate goals for the frog's as well? To
get RA off the ground, we will have to make additional assump-
tions, some of them about the structure of the respective visual
systems.)

(2) The properties of Sinit and M relative to the search space in
which the specifications for optimal Sinylie. Perhaps S will never
get to the optimal Sinf. Thus, for a specific cognitive function, we
will not know until after RA and data analysis are complete
whether in fact b is optimal. In this sense, as a general research
program, RA is asserting that b is optimal whenever it is.

My points in the above have been that ME and RA are
complementary analyses, not alternatives, and that the RA
program is not unambiguous in its methodology. Now I want to
examine the claim that RA places strong constraints on ME.

The optimality of an agent's behavior does not imply that the
agent is using explicit optimization to produce the behavior.

This has been a pet peeve of mine about quite a bit of work in AI
which assumes (1) that the job of an intelligence is to produce
correct or optimal answers, and (2) the mechanisms for produc-
tion of intelligent behavior should implement normative meth-
ods of producing optimal answers, most commonly some form of
logic or Bayesian analysis. On the contrary, it seems to me that it
is neither necessary nor desirable that the mechanisms of
behavior production be explicit implementations of normative
methods.

I need to clarify some terms before I proceed. The idea of the
"structure" of cognition is a bit too vague. We can assume that
what is meant by that word is, in information-processing lan-
guage, two things: a mechanism and some content that has been
put into the mechanism. To use some concrete examples, one
proposal for a cognitive mechanism is a search engine, the latest
example of the proposal being the SOAR architecture of Rosen-
bloom et al. (1987). Such a mechanism corresponds to a lan-
guage in which specific programs with specific content can be
written. Thus, SOAR can be programmed to have knowledge
about some domain and methods. A SOAR machine so pro-
grammed can actually work on problems in that domain. The
metaphor of a programming language does not restrict the above
idea to symbolic mechanisms. The PDP-style connectionist
research similarly specifies an abstract mechanism, but that
mechanism itself needs to be given content to solve specific
problems. For example, when one designs a PDP-style network
to solve word recognition, one has in fact used the abstract
"programming language" of a PDP-style connectionist mecha-
nism to produce a specific "program" of that type.

In my view, what is interesting about both these (and many
other) mechanisms that have been proposed for cognition is that
they can be used to implement both optimal and nonoptimal
methods for specific goals. In fact, this property seems to be
especially desirable: The agent can adapt itself to changes in the
environment without changing the basic mechanism because it
is neutral with respect to optimal and nonoptimal algorithms. I
want to give two examples of this.

I am told that frogs' visual systems are so organized that
sensing danger they jump toward blue and away from green. It
has been proposed that this is optimal behavior: Blue represents
a body of water, safer for the frog, and green represents land, full
of predators. The neural mechanisms that implement this strat-
egy could just as easily implement some other strategy of color
preference. The RA that suggests that the optimal behavior is
"jump to blue" is putting no constraints whatsoever on the basic
neural mechanisms. Of course, such an RA is placing a con-
straint on the content of the mechanism, namely, that it should
be programmed to prefer blue to green.

Similarly, I am told that during the plague in medieval
Europe, some villages, on hearing of the breakout of the disease
in a nearby village, engaged in a ritual of dancing at night near
the village dump, making loud noises with pots and pans. As it
happened, such villages had a smaller chance of catching the
infection. A modern-day RA would show that this was actually
optimal behavior, because the ritual kept the rats away from the
dumps and consequently from the village. Many cognitive
mechanisms can implement this strategy, including the follow-
ing pair: a more or less random behavior-generating mechanism
that first conceived of some version of the ritual, and a cognitive
mechanism that in some way remembered and passed on the
ritual. Villages that survived were more likely to pass the ritual
on. The same mechanisms could be used to implement rela-
tively ineffective strategies.

Depending on what is meant by the word "structure," RA can
be thought of as giving clues about the structure of cognition. If
structure means abstract mechanisms, the case is in general less
compelling. If structure means the totality of abstract mecha-
nism plus content, it seems quite reasonable to say that RA can
give clues about structure, since, as seen in the above examples,
it gives clues about content.
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This brings me to the relation of Anderson-style RA to Marr's
approach. Anderson proposes that RA is similar to Marr's
computational level. It is true that Marr, in his work on vision,
proposes that we should start by asking "What are the goals of
computation?" and, "What is available in the image?" The latter
question, in its generalization, can be construed as "What is the
nature of the environment?" Although Marr uses his analysis of
what is in an image to constrain what he could plausibly expect
the visual system to be computing, however, his computational
level account of vision is really a proposal about the structure of
the visual system. Marr did not infer the existence of a level
called the "2V2-D sketch" purely from the properties of the
image and the hypothesized goal of the visual system. It was a
hypothesis, inspired by the analysis of the image no doubt, but
nevertheless a hypothesis. The computational level, to use
Newell's (1982) term, avoids symbol-level commitment to how
the computation is implemented, but it nevertheless remains a
partial specification of a structure. The spirit behind Marr's
levels is close to that behind Newell's distinctions between
knowledge and symbol levels, in that both are attempts to
develop a way of talking about structure without being tied
down to the incidental aspects of implementation, but neither is
an attempt to avoid specifying the structure needed for
explanation.

I have tried to clarify the relationship between Marr's com-
putational level and Anderson's RA, because I think the former
still hews to the ME program. I can actually try to implement
Marr's three stages (using additional commitments) to make a
vision machine. I can't in general implement an RA. to make the
corresponding cognitive machine. Anderson's classification net
is not really a counterexample, because, as I have argued, we do
not in general want to be committed to literal implementations
of optimizing methods to achieve optimizing behavior. In sum-
mary, I have supported that side of Anderson that believes that
RA, and ME are complementary. I have also argued that RA may
give general guidance, not about the abstract mechanisms of
cognition, but about their content.

Before concluding, I'd like to express my admiration for
Anderson's piece as a tour de force of analysis and writing that
illuminates the relation among behavior, the structure of the
agent, and the environment. I think RA, also helps provide
arguments for why AI should worry about natural (i.e., human)
intelligence. Often AI people make a fairly strong distinction
between human and machine intelligence claiming that there is
no reason to base our mechanically intelligent agents on the
structure of human cognition. If we want our machines to share
our goals and operate intelligently in the sorts of environments
we operate in, we had better look to the structure of human
intelligence for inspiration, because according to RA, it is
probably pretty optimal for the task.
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"Rational" or normative accounts of categorization are not new.
At least since Rosch's seminal work on "basic level" categories
(Rosch et al. 1976), it has been proposed that the categories we
tend to use most are those that optimize some useful charac-
teristic. For Rosch, one potential optimization criterion was the
"informativeness" of categories. Medin (1983) and Jones (1983)
suggested that it is desirable to maximize the certainty of
inferences that can be made about the features of instances of a

category ("category validity"). Gluck and Corter (1985) pointed
out that the expected number of correct inferences that can be
made actually involves two factors. The first is the category
validity, which is indexed for an individual value of a single
feature by F(f.|c), the conditional probability of the feature value
given that the instance is a member of category c. The second
factor is P(c), the overall relative frequency or base rate of the
category. Anderson's account of categorization begins with
these same assumptions.

A relatively novel aspect of Anderson's theory concerns the
role of prior expectations in affecting what categorizations are
made. A, Bayesian approach seems perfectly suited to providing
a rapprochement between "similarity-based" and "theory-
based" views of categorization. A "theory-based" view of catego-
rization (e.g., Murphy & Medin 1985) holds that the categories
people form are largely determined by their causal theories
about why the categories should exist, rather than by statistical
criteria measuring category-feature associations. For example,
rats and humans alike find it more natural to associate nausea
with a recently experienced food substance than with a recently
experienced light or tone stimulus. Normatively, it seems diffi-
cult to argue against a Bayesian solution, in which the influence
of prior knowledge and beliefs on inferences is represented by
prior probabilities on propositions, and Bayesian methods are
used to incorporate these priors with the evidence at hand,
producing posterior probabilities for the various propositions or
inferences. Indeed, there has been much interest in Bayesian
methods in the machine learning community. In Anderson's
model, Bayesian priors are used to model, the influence of the
base rate of a category, P(c). The influence of these base rates,
however, is assumed to be moderated by a free parameter of the
model, the "coupling parameter." This parameter is interpreted
as the subject's prior tendency to put any two objects into the
same category and is introduced to improve the performance of
the category-learning model during the early stages, when only
a few instances have been seen. But the need for this parameter
seems to weaken the case for Anderson's claim that category-
learning mechanisms operate so as to maximize the normative
criterion. This parameter does not seem to represent a cognitive
limitation, which is allowed in Anderson's rational analysis, but
rather a fairly arbitrary processing assumption.

Anderson's larger endeavor, to provide a framework for de-
veloping and evaluating normative accounts of cognitive phe-
nomena, is a valuable contribution. Anderson proposes that a
rational analysis should begin with a specification of the goals the
organism should maximize. The second step, to describe fully
the environment in which the person is to operate, is a difficult
one, but undeniably important. Indeed, Rosch et al. (1976)
described this step as the major goal of their work on basic level
categories. One might argue with some of Anderson's results
here, however. For example, Anderson concludes that catego-
ries are almost always disjoint. This seems to ignore the pos-
sibility of classifying things at varying levels of abstractness -
after all, a thing can be a computer, an object, a word processor,
a possession, and a Zenith simultaneously. Another controver-
sial conclusion about the nature of the environment concerns
the assumption of independence of features, which is necessary
to make the computational problem tractable and to give the
theory more predictive value. Anderson points out that within a
species, many features seem to vary independently (i.e., size
and coloration). But between species, features are not indepen-
dent. For animals, the features sings, flies, lives in trees, and has
feathers are correlated. It is this correlation that makes the
category bird so salient. Step 3 of Anderson's methodology is to
make some set of (minimal) assumptions about cognitive limita-
tions. The assumptions must be minimal because very stringent
limitations might result in a complete obliteration of any bias
toward "rational" performance, thus negating the value and
severely limiting the testability of the rationality hypothesis.

The truly bold hypothesis at the heart of Anderson's theory is
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that human cognitive mechanisms might have adapted so as to
maximize normative goals. It seems somewhat unclear whether
Anderson means that the human mind incorporates a flexible set
of abilities, allowing people to "learn to learn" in the most
rewarding way, or whether he means that "locally" better ways
of thinking and learning have been bred into humans by natural
selection. The unresolved question here is whether these "op-
timal" cognitive tendencies are encoded genetically in the
individual, or in plastic (but very fundamental) learning mecha-
nisms. A third possibility, not discussed by Anderson, is that
superior outcomes might reinforce and encode optimal categori-
zation performance not at the individual level at all, but rather at
the level of a society of category users. Freyd's (1982) share-
ability hypothesis suggests that the categories that survive in a
society of cognitive beings are those that can be readily ex-
plained and communicated among individuals. Corter and
Gluck (1985; submitted) have suggested that the categories that
survive in a culture and language tend to be those that that are
most informative, that is, that allow the maximal number of
inferences to be made concerning the values of features. Thus,
optimal categories can be selected for at a societal-cultural level
without postulating any optimizing cognitive tendencies on the
part of the individual.

Rational analfsis: rational for comfort?

Ronald de Sousa
Department of Philosophy, University of Toronto, Toronto, Ontario
M5S 1A1, Canada
Electronic mail: sousa@vm.epas.utoronto.ca

Philosophers define the induction problem in such a way as to
guarantee that it will be insoluble. Perhaps this is merely a
matter of not wanting to drive ourselves out of business. Ander-
son's approach, by contrast, promises to take account of the fact
that in an evolutionary context the problem is heavily con-
strained by the range of specific problems organisms face. This
results in an exciting research program, holding out hope of
understanding what types of inferences need to be privileged to
succeed at the business of life.

But in the promising aspect of this project also lies its danger.
To be adequately constraining and realistic, our conception of
that "structure of the environment" to which our inferential and
categorizing strategies are to be adapted must be relativized to
the interests and capacities of some existing organism. For
psychological purposes, there is no objective "structure of the
world" independent of what we need to find in our specific
environment. This is not to take sides on the issue of scientific
realism. We could easily believe that the structure of the world
as described by the hard sciences is in some strong sense the
real, objective structure of the world; but that structure is
notoriously difficult for organisms like ourselves to visualize and
manipulate: It is counterintuitive to the point of unintelligibility
to common sense. The level at which we form the sort of
predictive and categorial common sense with which psychology
must be concerned may be relatively far removed from anything
we can call the "objective structure of the environment." But
how exactly are we to define that level? It must presumably lie
somewhere between the level of physics (a level largely
irrelevant to our concrete experience) and that level at which
inferences are made on the basis of highly specific knowledge-
drive rules, constrained by the demands of a particular ecologi-
cal niche.

Evolution is "local optimizer" (sect. 1.1, para. 3). But our
conception of where local maxima were actually to be found in
the history of evolution must remain largely a matter for spec-
ulation. Because some evolutionary changes result from drift
and not from selective pressure, as Anderson points out, we are

unlikely ever to discover whether a particular case of less-than-
perfect adaptation results from the limitations of a particular
hilltop or from some episode of random drift resulting in a
changed landscape of available hills to climb.

On the other hand, the most favorable cases of apparent
adaptation may partly be the product of a certain way of concep-
tualizing the problem. Rational analysis tells us how things
would be if they were optimally designed for solving a range of
problems understood in a certain way. One obvious danger is
that the crucial features of "the environment" may be fabricated
on the basis of particular capacities of a given species to detect
and manipulate just those features. This would not diminish the
interest of Anderson's descriptive work, but it would introduce a
circularity into his explanatory project. It could also confirm the
skepticism that some have expressed about the prospect of
finding any differences in intelligence between different species
(MacPhail 1987).

The real pitfall, however, lies in the opposite direction. If the
mechanisms are conceived too abstractly, the promised con-
straints will be weak or nonexistent. One is almost bound to
come up with the result that our cognitive powers are well
adapted up to a point, and that beyond that point our irra-
tionality is just brute fact. For example: I find it hard to see how
the rational analysis of problem solving tells us anything about
"the informational structure of the world" in any empirical
sense, as opposed to merely working out some plausible but a
priori Bayesian principles of choice under uncertainty. Another
example is provided by the "prior models" used to supplement
the Humean principles of causal inference by contiguity. The
ball and projectile experiment (target article, Figure 2b) gives us
just what we would expect from the principle of contiguity,
supplemented by the belief that the ball must travel through the
mechanism before it can release the projectile. The "prior
model" is just an application of the principle of contiguity itself.

In summary, there are actually three poles of attraction, with
their attendant dangers, not two. The third pole - contrasting
both with objectifying science and with speculation about the
informational structure of excessively specific niches - is a
merely a priori analysis of the demands of life. I suspect, to give
one last example, that Anderson's "environmental constraint"
on memory is of this kind. If one were to invent a principle
governing the availability of recalled information, what else
would we devise but a formula that specifies that the information
most often needed is the information most often used? This
seems to be the content of Anderson's remark that the "relevant
structure of the environment has to do with how the need for
information tends to repeat itself in various situations." As-
Anderson himself points out, the matching of our memory
function to that "structural" fact is actually rather inconvenient
in all those cases in which we know something more about the
future need for some specific item of information. But is his
theory able to provide any explanation for this inconvenient
feature? In reply, Anderson appeals to the fact that our cognitive
capacities are limited by local optima, but it's not clear what
more is being said here than that some of our cognitive capaci-
ties are not as satisfactory as a perfect designer would have
wished, because it somehow happened that way. Although I
find Anderson's work seductive and impressive, I am tempted to
conclude that he is, after all, too much like a philosopher.

Adlaptiwitf and rational anaSf sis

Bradley W. Dickinson
Department of Electrical Engineering, Princeton University, Princeton, NJ
08544-5263
Electronic mail: hradley@princeton.edu

Anderson has selected a rather provocative title for his target
article, particularly in view of the carefully delimited scope of
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his discussion explaining and illustrating the methodology of
rational analysis. In my view, adaptivity is a process by which
changes in system properties, either structural or parametric,
produce changes in system response that improve, or even
optimize, some intrinsic system performance measure. The
system performance measure incorporates relevant environ-
mental influences and uncertainties, and the changes in system
properties result from a feedback process that may take into
account observed performance effects of prior response
changes. These changes occur over time, and adaptive phe-
nomena may exist at multiple time scales.

From this perspective, rational analysis as described by An-
derson involves models for instantaneous "snapshots" of cog-
nitive processes where adaptivity over long time scales may be
an underlying mechanism. The probabilistic models that are
formulated involve plausible relationships between variables,
and to the extent that accurate conclusions about experimental
outcomes are reached, they provide a framework for explana-
tions. The capability of using a variety of environmental models,
from theoretical to statistical to ad hoc, makes rational analysis a
very flexible tool.

Because categorization was included as the example of where
a theoretical model of the environment could be used, I think it
would have been appropriate to describe the probability model
based on speciation more explicitly. The reader is left without
any insight into the statement that the model leads to an
excessively complicated computational task. Is this a case of
fundamental constraint complexity (corresponding to Step 3 in
target article Table 1), or is this a case in which simplification is
needed only for efficient simulation of the model (corresponding
to Step-4 in Table 1)? Without knowing the theoretical model,
the reader also has no basis for understanding the nature of the
approximations used to obtain the empirical estimates of the
probabilities used in the categorization algorithm.

For an extension of the ideas of rational analysis to models
where optimization is carried out over time, dynamic program-
ming models may be employed. The computational constraints
and optimality issues to be addressed, however (again corre-
sponding to Steps 3 and 4 of Table 1), are much more severe. In
the context of behavioral adaptation processes, some dynamic
programming models are discussed in BBS by Clark (1991).

Adaptiwe cognition: The question is how

Jonathan St. B. T. Evans
Department of Psychology, Polytechnic South West, Plymouth, Devon PL4
8AA, England

Anderson's title poses the wrong question. Surely we would all
agree that intelligent behaviour is a function of the organism's
goal, the environmental structure and the cognitive mecha-
nisms available. We would further agree that the cognitive acts
we study are, as Newell and Simon (1972) put it, of intendedly
rational behaviour on the part of our subjects. The real questions
concern not whether cognition is adaptive but in what ways
people attempt to achieve their goals and what kinds of mecha-
nisms have been developed for these purposes. In fact, those
psychologists like myself who earn their living by studying
cognitive biases can do so only on the assumption that our
subjects intend to be rational. If behaviour were random or
unmotivated then the errors we observe would be of no the-
oretical or practical interest.

Anderson's thesis should be seen not so much as a theory that
cognition is rational, but rather as a theory of what rational
cognition looks like. Actually, it breaks down into two compo-
nents that can be assessed separately. The first is a particular
theory of rationality. The second is the contention that this
theory is reflected in the behaviour of human beings. This
approach has been tried before - with rather limited success.

Two of the most notable previous attempts to apply a theory of
rationality as a descriptive psychological theory illustrate two
broadly different concepts of rationality. The first is the notion
that logic describes human deductive reasoning. This approach,
sponsored by many philosophers and psychologists - including
Piaget - defines rationality by mechanism. Roughly speaking,
the argument runs that people are intelligent, intelligence
requires accurate reasoning, logic describes how correct deduc-
tions are made, so people must reason by logic. This theory has
had a hard time of it in the past 20 years or so, however, with
much experimental evidence of logical errors and content-
dependent reasoning (see Evans 1989), as well as the postulation
of a rival method of deductive competence In the form of mental-
models theory (see Johnson-Laird & Byrne, in press).

The second major attempt concerns the application of eco-
nomic decision theory to the study of behavioural decision
making. This approach defines rationality by purpose. Thus,
decision behaviour is rational if it maximises the organism's
expectation of gain or minimises its expectation of loss. This
rationalist approach also underwent a rapid fall from grace.
Within a decade of man's being declared a good intuitive
statistician by Peterson and Beach (1967), the economic model
was judged a descriptive failure (Slovic et al. 1977). In parallel
with the study of deductive reasoning, the decision and judge-
ment literature had thrown up a plethora of experimental
findings - including much evidence of bias - that appeared to
require a different approach, such as the assumption that rea-
soning and judgement is based on the widespread use of
heuristics (Kahneman et al. 1982).

It is clear that Anderson's theory is of the second kind, in
which rationality of purpose - that is, achieving goals within a
defined environmental structure - takes priority over consider-
ations of mechanism. Indeed, his theory can be seen as an
extension of the economic decision model to a range of cognitive
activities that have not traditionally been thought of as involving
decision tasks. No such theory can be complete, however,
without assumptions about mechanism. For example, on what
basis does the chooser decide that one act is preferable to
another? Does one rely on past experience or engage in mental
modelling of possible future worlds?

Consider two sample problems: (1) how to choose a move in a
given chess position and (2) how to decide which candidate to
vote for in an election. In either case there are two fundamen-
tally different ways one might suppose that the decision is made.
One is to assume that the chooser attempts to calculate possible
future consequences of the choices by imagining the possible
moves and counter-moves of the game or by running a mental
simulation of the likely future behaviour of the political candi-
dates. At some arbitrary point in the projected future the tree is
terminated and the current choice is determined by the optimal
world state that can be reached. This is certainly one model of
rational choice - favoured, for example, by decision analysts
(see von Winterfeldt & Edwards 1986). The second approach
assumes that little or no forward search occurs and that one
instead tries to match the features of the current situation to one
previous experience and to choose on that basis. Thus I recog-
nise that this chess position is similar to one in a previous game
in which a particular move was effective, or I rely on a belief that
one candidate's political party has a better track record.

Anderson's discussion of problem solving, in particular,
makes it clear that his theory favours the second notion. But is
this because of considerations about mechanisms (he refers to
working memory constraints) or because it maps more conven-
iently onto the model of rationality he favours? Does it not in fact
demonstrate that his cognitive theory - like everyone else's - is
determined both by considering the function that the system
serves and by the plausibility of the postulated mechanisms?

In conclusion, Anderson presents us with an interesting and
powerful cognitive theory, but he confuses us with his use of the
concept of rationality. He does not distinguish himself from
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other cognitive scientists by his belief that cognition is adaptive,
but rather by his proposal of a particular theory of rationality.
Furthermore, his particular applications of the theory are - in
common with other cognitive theorists - constrained by his
view of the plausibility of the cognitive mechanisms involved.

Rational analysis and illogical inference

Edmund Fantino and Stephanie Stolarz-Fantino
Psychology Department, University of California San Diego, La Jolla, CA
92093-01091

Electronic mail: ps28%sdcc12@ucsd.edu

Anderson's view of human cognition as an optimal response to
environmental demands is appealing and potentially produc-
tive. If it attracts the attention it deserves in terms of research
activity designed to elaborate it, this approach may well revolu-
tionize the theoretical and empirical future of cognition. In
addition, rational analysis has the potential to help bridge the
unfortunate gap between cognitive psychology and more behav-
iorally oriented approaches, which we have lamented elsewhere
(e.g., Stolarz-Fantino & Fantino 1990; see also Rachlin 1989;
White et al. 1989). [See also Fantino & Abarca: "Choice,
Optimal Foraging and the Delay-Reduction Hypothesis" BBS
8(2) 1985.]

We applaud rational analysis as an eminently plausible ap-
proach to categorization, causal inference, problem solving, and
memory, but as the target article makes clear, the actual applica-
tion in any given case - however straightforward in principle -
may be difficult or impossible in practice. The four steps re-
quired to develop the optimal behavioral function for any given
situation may be extremely difficult to traverse. Moreover, as
Anderson notes, what "is optimal in the micro-world created in
the laboratory can be far from optimal in the world at large"
(sect. 1.2, para. 5). As an example, the target article discusses
operant research in which local optimization may lead to behav-
ior that is globally nonoptimal. In one series of such experi-
ments, Hey man and Herrnstein (1986) showed that pigeons
would match their choice responses to the rates of reinforce-
ment obtained on two available schedules even when matching
resulted in much lower rates of reinforcement than a maximiz-
ing strategy. Michael LaFiette and the first author are complet-
ing a comparable experiment with college students. Somewhat
to our surprise, our students did no better than Heyman and
Herrnstein's pigeons: Subjects displayed a matching strategy
even when it resulted in lower monetary earnings. Anderson
raises the question of whether organisms can be sensitive to
such complex contingencies (citing Staddon 1987). In support of
this caveat are the results of a second portion of our study: When
cues in the experimental room made it clearer to the subject that
more money could be earned with a maximizing strategy, our
college students did adopt one.

Unfortunately, resolving some other examples of ostensibly
nonoptimal behavior may be more difficult. For example, sub-
jects demonstrating the conjunction effect found by Tversky and
Kahneman (1982) report that the conjunction of two events is
(more rather than less) likely to occur than one of the events
alone. We have found this effect even when our instructions to
college students were manipulated to facilitate logical thinking
(Stolarz-Fantino & Fantino 1990). It is possible that when
subjects display the conjunction effect, they are applying strat-
egies that have proved adaptive in other contexts - categoriza-
tion tasks, for example. If this is true, subjects may rate the
sometime, "Linda is a bank teller and is active in the feminist
movement," as more likely than, "Linda is a bank teller and may
or may not be active in the feminist movement," because it
seems more informative about Linda. In any event, it would be

instructive to show how rational analysis might account for this
type of illogical inference.
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Beyond Helmholtz, or why not include inner
determinants from the beginning?

Hans-Georg Geissler
Department of Psychology, University of Leipzig, 0-7030 Leipzig, Germany

I am struck by the similarity between rational analysis (RA) and a
methodology called the "adaptive view" (AV), which I sug-
gested several years ago (Geissler 1983; cf. also Geissler 1976).
There is agreement about the basic role of optimality assump-
tions as well as the stress put on the objective, environmental
determination of cognition (Geissler 1983, p. 88). At the same
time, overall closeness brings important specific differences into
prominence. Most strikingly, AV differs from RA (a) by the
emphasis it puts on inner codeterminants and on indirect
validation of perception and (b) by the specification of optimality
(p. 89). To some extent the differences between RA and AV
reflect differences in the domains for which they are devised.
There is a considerable overlap between both methodologies,
however, which strongly suggests the need for a synthesis of
divergent features. Specifically, I maintain that RA might bene-
fit from explicitly taking into account inner constraints of cogni-
tion on which AV focuses. I will discuss this point in three steps.

Parameter constraints and cross-task analysis* Anderson
takes care to state assumptions of RA as a basis for deductive
procedures so that they do not refer to inner constraints (the
"structure of mind") with the exception of short-term memory
limitations. This position represents a favorable alternative to
inductive curve fitting strategies which notoriously suffer from
arbitrariness of parametrization. Note, however, that the pa-
rametrization objection does not apply to inductive cross-task
comparison techniques that are based on parameter invariances
among task-specific families of functions (for a brief survey see
Geissler & Buffart 1985). This rationale has been successfully
applied in visual space orientation (Geissler 1980; 1970), recog-
nition of serial structures (Geissler et al. 1978) and multiple
categorization (Geissler & Puffe 1983). Cross-task comparison
procedures simultaneously validate parameter constraints of the
processing systems and assumptions on processing strategies,
whereas RA considers only the latter. Hence a potential draw-
back of RA seems to be that by excluding parameter constraints
from explicit consideration it has to dispense with important
theoretical tools. To illustrate within the context of the target
article consider the function:

y = 4.93-{l - [ahs(t -
+ 2.21.

- t0)] - 0.24-4
(Equation 1)

Equation 1 provides a rough approximation (obtained by a hand-
held calculator) of the confidence judgments of both Figures 2a
and 2b of the target article, where d denotes distance, t time and
t0 time at the relative confidence maximum. To satisfy the
weight data it suffices to assume t0 = 0. The ball data require
separate estimates of t0 for each value of d. The result (Equation
1) is compatible with Anderson's notion that temporal and
spatial contiguity are filtered through different models of the
situation. However, in detail, Equation 1 is at variance with a
straightforward rationality assumption: t0 can be reasonably
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interpreted as the time the spread of a vibratory wave or a ball
movement takes to match the given distance. But then the
content of the second product term of Equation 1 cannot be
reduced to matching. This becomes obvious from the fact that
the d range enters for the ball data the same way as for the
weight data. Furthermore, there is no effect of absolute time.
Rather, it enters into the first (distance independent) and into
the second term relative to matching time.

The limited data base does not warrant a detailed discussion of
the parameter constraints per se. A possible exception is the
decay parameter of 8.1 seconds, which obviously depends on
autonomous characteristics of the processing systems. It may be
noted that there is a significant body of evidence from various
paradigms of a universal critical time period of about 9 seconds
(cf. Geissler 1987; 1991).

Hole constraints and optimality. In addition to parametric
constraints the example illustrates the presumptive existence of
a complementary type of inner constraint on cognition that may
be called a rule constraint. This involves limitations of task
adaptivity caused by the format of potential rules. As causality
judgments are a particular case of information integration in the
sense defined by N. H. Anderson, rule (1) can be looked upon as
a complex "mental algebra" (cf., e.g., N. H. Anderson 1981). A
first argument suggesting that this classification is useful comes
from the empirical evidence that complex rules result from
combining a small number of elementary rules. Thus a major
goal of RA, the derivation of cognitive rules, could be related to
an inner iterative process of rule construction.

A second argument relates rule constraints to optimality. An
example bearing on sensation is given in Geissler and Puffe
(1983). The general argument is as follows. Suppose some set of
constraints among subjective variables is modelled by a set of
rule constraints among subjective variables. Then, in general,
both sets of constraints do not uniquely determine the mappings
of objective variables onto subjective ones. Uniqueness can be
attained by assuming extremality principles as a basis for selec-
tion rules. For sensory attributes these principles take the form
of invariance or constancy predicting power laws of mapping for
multiplicative, and logarithmic laws for additive rule con-
straints. In the realm of perceptual organization the same basic
principle takes the form of the minimum principle of structural
information (cf. Leeuwenberg & Buffart 1983).

Extremality principles of this type are forms of optimality
criteria that seem to have nothing to do with those advocated by
Anderson. On a deeper level, however, at least two rela-
tionships between both types of criteria can be relevant within a
broader theoretical framework: (1) Cognitive performance can
become optimal in the sense of an absolute structural minimum
in a stationary state after the application of Anderson's rule. This
may be trivial in some problem-solving tasks where the solver
proceeds along a trajectory of minimal length from the start to
the goal after recognizing the general solution. Minimality
reached in this way can be nontrivial in other cases, for example,
if the task of cognition is to find a shortest cognitive code of a
category. (2) A cognitive code may involve a hierarchy, with
both types of optimal criteria operating. A memory search task,
for example, may be accomplished using the optimal memory
code at hand.

Anderson's theory of categorization presupposes well-defined
and fixed features. (2) will become relevant in situations in
which features must be considered the result of structure
formation processes that become part of adaptive behavior. This
expanded notion of adaptivity may also apply to the assimilation
of category structures. Geissler and Puffe (1983) and Buffart and
Geissler (1983) provide evidence that the phenomenon of basic
level categories, which is considered primary by Eosch and
coworkers, Hoffmann and Ziessler (1983) and others, can be
derived from a generalized minimum principle.

The place of Bayesian statistics. The above considerations can

be summarized as follows: (a) The deductive something of RA,
and more inductive strategies of analysis may represent comple-
mentary exploratory paths rather than mutually exclusive ones.
(b) It seems useful to complement the rationale of RA by
techniques which take into account inner constraints on brain
activity or, if you like, the "structure of mind." (c) RA and AV
become related theoretical points of view as soon as the repre-
sentation and generation of information become mutually
dependent.

If this is true, what about Bayes' theorem? To me it seems a
very forceful implementation of Helmholtz's principle of uncon-
scious or inductive inference. It has turned out to be of great
heuristic value in the prediction of visual illusions within the
indirect validation framework I used in early work (Geissler
1970). Still, I suspect it needs modifying if inner constraints are
implied. If a guess is permitted, it might take the form of a self-
consistency relation established within neuronal networks of the
types suggested by the principles of adaptive resonance
(Grossberg 1988) or reentry (Edelman 1987).

he environment hawe the same
structure as Bayes5 theorem?

Gerd Gigerenzer
Institut fur Psychologie, Universitat Salzburg, 5020 Salzburg,
HellbrunnerstraBe 34, Austria
Electronic mail: 1gigerenz@edvz.uni-salzburg.ada.at

Cognition should not be divorced from its environment, argued
Egon Brunswik (1964), comparing the two to a married couple
who have to come to terms with one another by mutual adapta-
tion. His "ratiomorphic explication" of cognition started with
analyzing the statistical texture of the natural environments (the
ecological validities) and the degree to which perception is
adapted to that texture. Anderson's program of "rational analy-
sis" is quite similar: To specify the statistical structure of the
environment, and, on the assumption that cognition is adapted
to that structure, to infer the structure of cognition - or, at least,
to infer constraints imposed on cognition by the environment.
Both Brunswik and Anderson study the coming-to-terms of the
married couple as an adaptation of only one partner (cognition)
to the other, and both view the mind as an intuitive statistician.
But here the similarities end.

Does Anderson pursue Ms own program? The crucial Step 2 of
the "rational analysis" is "to specify the structure of the environ-
ment to which cognition is optimized," which "is much easier to
observe than the structure of the mind." How do we observe
that environmental structure? Among three approaches, Ander-
son proposes the "appeal to existing scientific theory" as the
most compelling, to be illustrated with a rational analysis of
categorization. So let us look at that: What is the structure of the
environment that is reflected in the structure of category forma-
tion? Anderson proposes two structural components, the dis-
joint partitioning of the object set, and the independence of
features of objects. Both are necessary assumptions for his
Bayesian modelling of categorization and other cognitive func-
tions. In the case of categorization, the evolutionary rationale
Anderson gives is twofold: (1) that species cannot interbreed
(disjoint partitioning of the object set), and (2) that features
within species are displayed largely independently of one
another.

Even if these two structural components were characteristic
for the evolutionary context - Anderson himself admits that
independence does not hold when features are controlled by the
same gene - the question is whether they are characteristic for
other contexts, too, as Anderson assumes. Conditional indepen-
dence is a mathematically convenient assumption in standard
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Bayesian models, but not necessarily valid in natural environ-
ments. Brunswik in fact focused on the dependencies between
features of objects in natural environments, which for him
defined the texture of an environment. Similarly, physicians
look for clusters of dependent symptoms to arrive at a disease
classification. In general, conditional nonindependence among
testimonial evidence, clinical symptoms, and other features
poses a well-known problem in the sequential application of
Bayes' rule, as it does in Anderson's "rational theory." Depen-
dence between the prior probability and the likelihood ratio
(which measures the impact of new information) in Bayes'
theorem poses another problem (e.g., Birnbaum 1983).

This may be sufficient to illustrate why I do not think that
Anderson pursues his own program: to analyze the structure of
the environment. Rather, he seems to have started with Bayes'
theorem as a model of rationality and to have assumed that the
structural assumptions underlying Bayes' theorem specify the
structure of the environment as well. This is a legitimate
heuristic: to start with some statistical model of inference —
Fisher's analysis of variance, Neyman-Pearson decision theory,
multiple regression, Bayes' theorem - and to investigate the
hypothesis that the mind is an intuitive statistician of that kind or
school (Gigerenzer 1991). And this is what I understand Ander-
son to be doing. But this is not Anderson's program according to
his own lights.

Is Bayesian statistics adaptiwe? "The information-processing
implications of various environmental cues are not certain. This
fact leads to the Bayesian character of the optimization analy-
sis. . . . " Why? The same fact leads Brunswik to the multiple-
regression character of optimization. Neither Brunswik nor
Anderson explains why they believe that their respective statis-
tics would be adaptive. Bayesianism seems to be flexible enough
to apply to any environment, even to those commonly seen to
contradict it, such as Allais's and Ellsberg's paradoxes (e.g.,
Jeffrey 1987). But insofar as there is a specific Bayesian model of
some cognitive function, I believe that the question whether the
model applies to a given environment can be answered only
empirically, not a priori. This can be done by checking whether
a structural isomorphism exists between a given environment
(or task) and the specific Bayesian model (see Gigerenzer &
Murray 1987, pp. 162-74). Similarly, if we want to see the mind
as a rational intuitive statistician (Bayesian or otherwise), then
we need to postulate not only a statistical algorithm, but in
addition some heuristics (or a second-order algorithm) that
check whether the structural assumptions of the algorithm hold
in the given environment over time and space.

Toward domain-specifsc theories of cognition. One direction
for revising the rational analysis would be to change the singular
form "to specify the structure of the environment" (Step 2) into
the plural form "to specify the structures of environments."
Different environments may have different structures, and
these may also change over time. Thus, the program would need
an extra step before Step 2 to obtain a categorization of various
environments. Let us call the product of this categorization a set
of domains. Domains may correspond with respect to level of
abstraction and predictive power to Rosch's basic level objects
(e.g., Rosch 1978). For example, the recent proposal of domain-
specific theories of reasoning has greatly advanced the potential
to predict people's information search in the Wason selection
task (e.g., Cheng & Holyoak 1985; Cosmides 1989). Proposed
domains (of human interaction) include social contracts, threats,
permissions, obligations. In a social contract, for example, a
decisive structural component seems to be that a participant can
be cheated and that subjects consistently search for information
that can reveal potential cheaters. [See Maynard Smith: "Game
Theory and the Evolution of Behaviour" BBS 7(1) 1984; and
Caporael et al.: "Selfishness Examined: Cooperation in the
Absence of Egoistic Incentives" BBS 12(4) 1989.]

Bayesian models can indeed be very useful in suggesting a
conceptual language for talking about differences in structures

across domains. But domains also have surplus structures, such
as cheating options, which go beyond standard statistical struc-
tures. If we take Anderson's program seriously and start with a
theory of environments (as opposed to starting with Bayes'
theorem) then we might indeed make the "substantial discov-
ery" that Anderson promises. But we might also discover that
cognition is more flexible and does not always rely on Bayes'
theorem and strong assumptions such as independence. A
highly adaptive intuitive statistician of the mind might even
work with exploratory data analysis.

icaS explanation

Peter Godfrey-Smith
Museum of Comparative Zoology, Harvard University, Cambridge, MA
021381

Anderson seeks to apply optimality methods to cognition with-
out appealing to a biological justification for this approach,
claiming that the optimality framework should simply "stand on
its own feet in accounting for data." The program that results,
according to Anderson, is a "high-risk, high-gain enterprise"
compared to standard approaches to cognitive psychology. That
this strategy is high-risk is quite certain; its promise of high gains
is another matter. The main issue I discuss is whether the
optimality approach, removed from its biological context, is in
principle able to deliver the explanatory payoff Anderson seeks.

We must distinguish two kinds of explanatory success that any
approach to cognition might deliver. First, there is what Ander-
son refers to as "organizing the data." A theory might produce
impressive generalizations and predictions about actual cog-
nitive phenomena, leading us to believe that it gives us an
accurate account of the actual structure of the mind. But once
we have a good understanding of how the mind is wired up, we
should be led to a second question: Why is the mind wired the
way it is? These questions are quite distinct, though it is possible
for them to be investigated at the same time and with similar
methods.

Optimality theory is controversial and high risk, but it may
appear that the risks are offset by the possibility that this
approach can yield both kinds of explanatory success. Very
possibly, this is how things appear to Anderson, who thinks that
as well as organizing the data, his approach takes seriously "the
idea that there is reason for the way the mind is." The problem
with Anderson's approach is that severing optimality from biolo-
gy robs the optimality approach of its ability to yield insight into
this mental raison d'etre. This is because it is only as a compo-
nent within a more general biological approach that optimality
has this kind of explanatory potential.

Before I enlarge on this, it is important to recognize that
Anderson might choose to claim only the first kind of explanato-
ry role for his "rational analysis." That is, the sole purpose might
be to describe the actual structure of cognition, making no
claims to explain why we are structured the way we are. I do not
discuss this view of Anderson's target article in detail. I am
skeptical about his specific models but provide motivation for
this skepticism with one brief comment only. It is unlikely that
an analysis of some aspect of cognition in terms of costs and
benefits will succeed if the only costs considered are those
"internal" costs deriving from the mental effort involved in
retrieving memories, forming hypotheses, and the like (Table
2). Such costs must surely pale beside practical, external costs
resulting from bad behavioral choices. To some extent, internal
costs are related to the external, practical ones. Expending
"internal effort" is practically costly if it also spends time, for
example, and the mental operations Anderson considers may
monopolize the resources of attention in critical decision-mak-
ing situations. But if Anderson thinks internal effort has signifi-
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cant costs of its own, unrelated to the ways cognition affects
behavior, this surely needs to be argued.

The more important problem in Anderson's account, how-
ever, does not concern the details of his rational analyses, but his
attitude toward optimality as an explanatory tool. The real home
of optimality-based, adaptationist explanation is within the sec-
ond theoretical project outlined above, the project of explaining
why cognitive mechanisms are structured the way they are.
Anderson seeks to explain the structure of the mind in terms of
the statistical structure of the environment. But even if we show
that some aspect of cognition is an optimal response to a specific
environmental situation, that on its own does not explain why
this aspect of cognition exists in the form it does. For why should
our brains contain mechanisms optimally suited to environmen-
tal problems? Optimality can be used to explain how we are
wired only if this explanation also cites a process though which
optimality is generated. This is the role played by evolution by
natural selection. It could also be played by any mechanism of
individual learning and cultural transmission which can produce
approximations to optimal traits (Boyd & Richerson 1985).
Links, similarities, and correspondences between the structure
of mind and the structure of the environment explain nothing if
we have no idea of a process generating and maintaining those
relations.

Now, as Anderson says, showing that an evolved structure is
optimal is a very difficult business. There is a range of evolution-
ary forces and factors that can thwart the optimizing pressure of
selection (Gould & Lewontin 1979). These constraints and
random elements are important components in an evolutionary
perspective on cognition. The explanatory power of optimality
in psychology is only as great as the role of optimizing forces
within the range of phylogenetic and ontogenetic factors that
produce human cognitive mechanisms. If other factors are more
important than selection, either generally or in some specific
domain, then we should look to these for an explanation of why
cognition is the way it is. It does not do to be skeptical about the
known forces generating optimality, but then to adopt a strongly
optimality-based approach to cognition, without proposing
other factors by which this alleged optimality can be produced.
Showing that a certain relation exists between the mind and the
world is not explaining much about cognition, unless we are able
to show that the mind is the way it is because the world is the way
it is.

NOTE
1= Author is affiliated with the Philosophy Department (B-002),

University of California at San Diego, La Jolla, CA 92093.

Bayes in the context of suboptimaSity

Robert A. M. Gregson
Department of Psychology, University of New England, Armidale 2351,
Australia
Electronic mail: rgregson@gara.une.oz.au

As a committed Bayesian, I welcome Anderson's attempt to give
coherence and rigour to a theory of cognition. I think we should
address the question of whether or not the formalism is suffi-
ciently complete to be testable as a model of real behaviour. It is
Step 3 (the "Achilles heel" of section 1.2) that raises interesting
problems for me.

A Bayesian expression such as his Equation 2 follows from the
axioms of probability if each of its component probability terms
independently satisfies those axioms. The p(i\A) terms may
initially be degrees of belief but a special sort of belief that is
coherent has to be involved. If a Bayesian foundation is to be
adopted, then either we use well-behaved probability mea-
sures, or we use some psychological probabilities - call them
i|ip's - that fuzzily conform to some other axioms.

Human observable behaviour is sometimes noted to be in-
fraBayesian, in the sense that revisions of subjective relative
likelihoods Al? 2, where A12 = p(H1\E)/p(H2\E) do not occur in
the face of new evidence to an appropriate degree.

There are thus two distinguishable senses in which a Bayesian
model of human cognition might depart from the purely mathe-
matical expression. Either I might write (in the simplest two-
hypothesis case)

<*—"*>

where 0 is an operator which modifies the weight of E but at
the same time the probabilities p(E1\E) are well-behaved; or
I might rewrite the whole expression as

(Equation B)

and wish to advance the notion that i|/p functions also satisfy such
expressions as Equation B. The whole, however, may not be
optimal in the sense of Equation A when 9 is an identity
operation. It is not clear which way Anderson is going, and
optimality in the second case may be hard to define (de Groot
1970). Note that 9 is not a cost risk factor in the decision
theoretic sense. Anderson concatenates other such subjective
probabilities as his Con terms, which is admissible but doesn't
get round the problem implicit in Equation B.

My two other concerns relate to the fact that real decisions are
sequential in real time. A Bayesian decision is a best decision in
the long run, and if we wish to use the rule recursively then we
need expectations about the future stability of the conditional
probabilities p(E\H) holding in the future. Nonstationary pro-
cesses can be treated with the modern variants of Kalman
filtering (Spall 1988) but to assume that human judges can revise
simultaneously, from incomplete data, the p(E\H) or typ(E\H)
terms in their repertoire at a sufficient rate to get near optimis-
ing the revision of p(H\E) is to assume a bit much.

I can see that a symbiote of a computer and a human operator
could function as Anderson suggests, but with classes of coupled
probabilities, as in his section 3.1, and the class size itself a
variable over time, I think we have a situation in which it is
beyond unaided human intelligence to behave anything like
rationally. Multivariate time series models have been con-
structed from a Bayesian perspective (Broemeling 1985), but I
am not happy with notions that human neural networks are
going to function that way.

What Anderson is describing is a protocol for a ceiling on
effective cognition; a sort of AI cognition without thought about
the biological substrate which has to run the process. It is
refreshing to have some Bayesian arguments instead of the
Neyman-Pearson inference that ruins much of experimental
psychology, but Anderson's appeal to a connectionist net is an
appeal to accept my Equation B as a network description.
Networks are not, in this day and age, adequately summarised
as lines and boxes; their properties are subtle and diverse. A
network can, for example, transmit chaotic patterns (Mpitsos et
al. 1989) but losing the parameter values involved in so doing. If
tight adherence to a Bayesian formalism is desired, the param-
eters have to get through, or the loss of precise parameter
transmission through the cognitive apparatus has to be present-
ed as a cause of suboptimality.

I don't think that appeals to "general statistics" (sect. 7) really
say anything; the strength of a Bayesian approach is to use
degrees of belief in a formalized sort of reasoning, as input to a
recursive algorithm that subsequently is about probabilities,
and about what are, in effect, recommendations for action. It
wasn't advanced (posthumously) by Thomas Bayes as a model, of
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imperfect human cognition, but as a prescription. Anderson's
program still has a long way to run.

ittonal analysis ar

Reid Hastie and Kenneth R. Hammond
Center for Research on Judgment and Policy, University of Colorado,
Boulder, CO 80309-0344
Electronic mall: rhastie@clipr.colorado.edu

We are impressed by the close correspondence between the
rational analysis framework developed by Anderson and the
"Lens" model for the analysis of judgment (Brehmer & Joyce
1988; Branswik 1934; 1943; 1956; Hammond 1955). Briefly, the
Lens model organizes the study of judgment phenomena ac-
cording to the elements and relationships summarized in the
diagram that gives the approach its name (Figure 1):

the judgments of the organism being studied (Ys);
the attributes or events being judged in the environment (YJ;
the cues that afford the judgment (x.);
the judge's policy for cue utilization (a regression equation

that summarizes the policy as weights and function forms that
take the cue values as "input" and produce a predicted judg-
ment (Ys));

the structure of the environment (a second regression equa-
tion that summarizes the structure as weights and function
forms that take the cue values as "input" and produce a predic-
tion of the environmental state (%)).

Anderson's rational analysis can be mapped onto the Lens
model: The model of the organism corresponds to Anderson's
cognitive algorithmic model (represented in the ACT* architec-
ture); the model of the environment corresponds to Anderson's
rational analysis (a Bayesian algorithm for optimal performance).
There are some infelicities in the analogy: Anderson uses Baye-
sian probability theory to formulate a model of adaptive perfor-
mance in the environment, Lens modelers use statistical linear
regression models (however, neither preference is a necessary
one); Anderson develops his rational analysis by making a priori
assumptions about cognitive computational limitations; the
Lens modelers do not motivate their acceptance of the regres-
sion model's representation of the environment with explicit
references to cognitive limitations. Most of Anderson's applica-
tions of rational analysis are to hypothetical environments, but
his framework suggests an implicit commitment to Brunswik's
"representative design" methodology for identifying the struc-
ture of the actual environment; whereas the Lens model re-
searchers' commitment to "representative design" is explicit
(and enthusiastic).

The analogy between the two frameworks is inviting, and we
would like to make some predictions about the general conclu-
sions that will emerge from research within the rational analysis
framework, based on the findings from Lens model research in
the domain of judgment and decision making tasks (Brehmer &
Joyce 1988; Slovic & Lichtenstein 1971). We should emphasize
that the Lens model is typically applied to to-be-judged events
that are sampled in a manner that is "representative" or reflects
the actual pattern of occurrences of the events in a natural
environment. Obviously, if the structure of the stimulus set and
its relations to the judged outcomes are altered (e.g., to produce
a uniform distribution of experimental stimuli across a factorial
design), these general conclusions might change.

(1) Accuracy ("achievement,"ra): Moderate to low levels of
correspondence between judgments and environmental criteria
in tasks that include ecologically typical levels of "irreducible
uncertainty" (e.g., clinical judgment, financial, and mete-
orological forecasting).

(2) Model-Model Correspondence (G): The strongest rela-

Figure 1 (Hastie & Hammond). Brunswik's Lens model: En-
vironmental terms on the lefthand side (Ye, Ye), cues for judg-
ment in the center (x̂ ), and judgment responses on the right-
hand side (Ys, YJ.

tionship among components of the framework holds between
the two models constructed by the researcher.

(3) Bootstrapping: The model of the judgment policy predicts
environmental events more accurately than the judge's own
judgments (due to a lack of consistent application of the policy by
the judge).

(4) The model of the environment predicts behavior well -
about as well as the model of the judge. This is the observation
that appears to have contributed most to Anderson's enthusiasm
for rational analysis.

(5) Model-Judge Fit: Not surprisingly, regression models (and
cognitive models) of human behavior, tailored to the specific
task under consideration, describe judges' cue-utilization pol-
icies well.

(6) Model-Environment Fit: Here there is great variation in
findings implying that we need to develop higher order prin-
ciples to prescribe the types of models that are most appropriate
for alternate types of environments. This presupposes that we
develop a useful theory of environments or tasks - we believe
that this is the preeminent problem for psychologists who would
respond to Anderson's challenge to pay more attention to the
environment. Lens model researchers have taken some initial
steps in this direction (e.g., Hammond 1988).

We believe that the parallel emphasis on the significance of
environmental structure and the necessity for research design
that reflects such structure by both a leader in the field of
cognitive psychology and a widely known approach to the field
of judgment and decision making signifies an important event.
Strong similarities combined with different subject matters will
produce complementarities in knowledge that advance both
fields.

the "Achilles' heel" of
analysis

Keith J. Holyoak
Department of Psychology, University of California, Los Angeles, CA 90024
Electronic mail: holyoak@cognetucla.edu

Anderson's systematic attempt to explain basic aspects of human
cognition by optimization assumptions provides a welcome
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supplement to more familiar investigations of information-pro-
cessing mechanisms. He is careful to avoid taking the stance of
"methodological imperialism" (Thagard 1989), which would
elevate one privileged methodology above all others. Nonethe-
less, as a proponent of rational analysis he would clearly like to
minimize the dependence of rational theories on assumptions
about computational mechanisms. Indeed, the third step in
Anderson's stated procedure for developing a rational theory is
to "Make the minimal assumptions about computational limita-
tions" (Table 1) that are needed "to specify the computational
constraints on achieving optimization" (sect. 1.2, para. 8). An-
derson is aware that if these constraints were "complex and
arbitrary," this step could prove to be "the true Achilles' heel of
the rationalist enterprise" (sect. 1.2, para. 8). Anderson is
optimistic, however, that two simple constraints will suffice:
Considering alternatives entails cognitive costs, and short-term
memory has limited capacity. Before accepting this sanguine
assessment, it seems that a more skeptical examination of the
potential Achilles' heel is warranted. I focus on two points.

First, an additional and fundamental class of constraints
involves limitations on the types of information the system can
encode or represent for use in cognitive tasks. There is no point,
for example, in applying the rationalist framework to predict
human responses to ultrasonic waves; rational analysis is only
appropriate for creatures with the relevant representational
capabilities, such as (in this case) bats. Representational con-
straints are by no means limited to peripheral sensory encoding.
For example, in his analysis of memory for sentences, Anderson
assumes that the memory trace of a simple transitive sentence
can be decomposed into elements consisting of the concepts
corresponding to the verb, the subject, and the object. It is
somewhat unclear whether or not it is assumed that these
constituent elements preserve information about role bindings
(e.g., whether or not the elements of The dog bit the boy differ
from those of The boy bit the dog). Whether the representations
used in human memory retrieval encode such structural rela-
tions as role bindings is an empirical question (about which
there has been some debate); and the answers to such questions
about representational capabilities will surely have implications
for a rational theory of memory retrieval. A related illustration is
provided by the work of Kunda and Nisbett (1986), who found
that people were much better able to estimate covariation
between events that were highly codable (e.g., scoring basket-
ball points) than events that people find difficult to encode (e.g.,
friendly behavior). In general, then, optimization is constrained
by the representational capabilities of cognitive mechanisms.

Second, it can be argued that the cost of considering alter-
natives, one of the "minimal assumptions about computational
limitations" acknowledged by Anderson, cannot be clearly de-
fined except in relation to more specific assumptions about
computational mechanisms. The time costs of considering alter-
natives will depend on such factors as whether the underlying
algorithm is serial or parallel (Rumelhart et al. 1986). It is
sometimes the case, for example, that the number of processing
cycles required for a relaxation algorithm to reach a stable state
proves to be independent of the size of the network (e.g.,
Thagard et al. 1990), so that given an adequate number of
processors, solution time will be roughly constant over wide
variations in the numbers of units and links. Given that each unit
may represent an alternative hypothesis about the interpreta-
tion of a constituent of the input, it follows that how much
additional time (if any) it costs the mind to consider each
alternative may depend on the computational mechanisms
available to make the choices. Although some cognitive deci-
sions depend on the serial and costly evaluation of alternatives,
others most likely do not.

There is therefore reason for rationalists to guard the Achilles'
heel of their framework with some care. The constraints on
information processing imposed by the computational mecha-
nisms provided by evolution are undoubtedly complex, al-

though unlikely to be arbitrary, and the progress of rational
analysis may be more dependent on our prior understanding of
these mechanisms than Anderson would hope. He may take
cheer, however, in reflecting that Achilles ran far and swiftly
before anyone could bring him down.

Adaptiwe rationality and identifiability of
psychological processes

Dominic W. Massaro3 and Daniel Friedman13

aProgram in Experimental Psychology and bDepartment of Economics,
University of California, Santa Cruz, CA 95064
Electronic mail: massaro@fuzzy.ucsc.edu

This commentary addresses identifiability - a single, but central
theme of Anderson's important treatise on adaptive rationality.
Anderson states that his research, the research of other psychol-
ogists, and psychological science in general is hamstrung by an
identifiability problem: "And so I will bluntly say that it is just
not possible to use behavioral data to develop a theory of the
implementation level in the concrete and specific terms to
which we have aspired" (Anderson 1990). (Anderson is using
implementation level to refer to the functional level of theoriz-
ing that is dear to the hearts of most psychologists.)

Identifiability is related to the important theorems of E. F.
Moore and subsequent work in formal automata theory. Moore
was concerned with the behavior of sequential machines. As
observers, we have access only to the machine's inputs and
outputs. It is not possible to look inside the machine's black box.
The question is, to what extent can one machine be dis-
tinguished from another, given a set of input-output observa-
tions? One of Moore's (1956, p. 140) theorems states that "given
any machine S and any multiple experiment performed on S,
there exist other machines experimentally distinguishable from
S for which the original experiment would have had the same
outcome." In other words, Moore proved that a given input-
output function can be exactly mimicked by some other differ-
ent input-output function.

As an example of a lack of identifiability, there are two well-
known methods of multiplication: successive addition and log-
arithms. In the first case 5 X 7 is computed by adding 7 to 0 five
times. In the second case, the logarithm of 5 is added to the
logarithm of 7, and then the anti-log of the sum is taken.

These two methods can correspond to two different machines
or to two different psychological processes. Moore's theorem
states that input-output functions would not allow us to dis-
tinguish between these two machines. The same input-output
functions are observed for both machines. For psychology, this
means that some model of an experimental result is not unique.
Some other model can be manufactured to give exactly the same
predictions. For Anderson, this identifiability problem places
an enormous constraint on "traditional" psychological research
concerned with mechanism or process. How can we converge
on a given process or mechanism when we can always compose
another set of processes to make the same prediction? Ander-
son's solution is adaptive rationality. He states: "A rational
theory can also provide help with the identifiability problem."
Somehow, by analyzing behavior within this framework, we can
bypass the identifiability limitation. For Anderson, rationality is
a normative concept that postulates that behavior is optimal
given the environment and given computational constraints.

Our commentary addresses several points related to this
claim. First, we are sympathetic to aspects of the overall ap-
proach. It is productive for psychologists to use normative
models as benchmarks for actual performance, and many have
done so recently. For example, Massaro and Friedman (1990)
used Bayes' theorem as a benchmark for assessing the predictive
properties of psychological models of pattern recognition. In
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addition, the predictions of the models were tested against
actual results. The conclusion was that behavior appeared to
follow the normative predictions of Bayes' theorem — with the
additional assumption that the probability of a response re-
flected the posterior probabilistic prediction of Bayes' theorem.
Psychological models equivalent to Bayes' theorem were there-
fore supported, while those making different predictions were
falsified. Even though we used a normative analysis, identi-
fiability problems remained. Cohen and Massaro (in press)
modified the falsified models to bring them in line with nor-
mative predictions and actual results. The latter effort illustrates
the reality of Moore's theorem and Anderson's concern with
identifiability. The falsified models can be modified to make the
same target predictions. Thus, identifiability remains a barrier,
even when a normative analysis is used.

Just as several psychological models can be used to predict a
given input-output function, several different normative models
could be implemented for a given situation. The normative
models might make the same predictions or different ones. In
either case, it is necessary to test among them. If the different
normative models might make different predictions, then it is
somewhat easier to determine which one is correct (see also
Gigerenzer et al. 1988). For example, there are two normative
models in the Linda-is-a-feminist situation - straight probability
theory and Bayes' theorem. Tversky and Kahneman (1983)
assumed that the first model is the one that should be used to
perform optimally. Massaro (1987) has argued, on the other
hand, that Bayes' theorem is more appropriate for optimality.
We might assume that subjects could use either of these al-
gorithms to derive their answer. The first algorithm might be
deemed appropriate if the subject interprets the question as one
involving the likelihood of single or multiple events (e.g., Is
Linda a bank teller? or Is Linda a bank teller and a feminist?).
The second algorithm might be deemed appropriate if the
subject interprets the question as one involving the likelihood of
something given a single source or given two sources of informa-
tion. That is, what is the likelihood of Linda given bankteller? or
the likelihood of Linda given bankteller and feminist? The
scientist needs to determine which of the two models actually
corresponds to the processes (mechanisms) engaged by the task
of interest. This question about rationality is identical in form to
a question about process.

The major reason Anderson's rational analysis does not solve
the identifiability problem, however, is his assumptions about
processing constraints in the implementation of the models. For
example, he assumes that there is a processing cost for retriev-
ing a memory. Thus, tests of this description of behavior have
the same identifiability constraint as process-oriented research.
Without some sort of independent evidence for the processes
(mechanisms) assumed by the implementation of the two mod-
els, we cannot determine whether behavior is rational. By
permitting computational constraints (Step 3 of Anderson's
Table 1), a normative model could always be implemented in
several ways with different predictions in the different imple-
mentations. We need some independent evidence, other than
the "normativeness" of the model, that allows us to prefer one
implementation over another. This evidence is exactly the goal
of process-oriented research that Anderson claims is plagued
with identifiability problems. Perhaps Anderson is right when
he states that specifying the computational constraints on
achieving optimization "is the true Achilles heel of the ra-
tionalist enterprise."

To state it baldly, it should now be obvious that even research
within the perspective of rationality faces problems of identi-
fiability. We have demonstrated that the framework of adaptive
rationality does not lessen the identifiability problem. The
primary reason is that rationality analysis cannot be carried out
independently of process concerns. This brings the investigator
right back within the constraints of process-oriented research.
In addition, any criterion insisting on rational behavior in every

domain is unrealistic. As stressed by Gould (1986), and acknowl-
edged by Anderson, we can be certain that not all behaviors are
adaptive. Thus, the investigator will have to distinguish among
both rational and irrational models of behavior.

Psychologists are hence left with choosing among a multi-
plicity of sufficient models - consistent with Anderson's claim of
the futility of process-oriented research, but inconsistent with
his remedy. Anderson argues that the search for psychological
processes or mechanisms is plagued with identifiability prob-
lems. We agree with this assessment. We believe that the
barrier of identifiability can be overcome, however; scientific
inquiry can potentially choose among equally accurate models
by extending the empirical data base, evaluating the models on
the basis of parsimony, and testing among viable models using
the principles of falsification and strong inference (Massaro
1987; 1989; see also multiple book review, BBS 12(4) 1989). In
Massaro & Friedman's (1990) analysis, some of the unidentifia-
ble models in a task with just two response alternatives made
different predictions for four responses. In Cohen and Massaro
(in press), some of the indistinguishable models required more
free parameters than others. Extending the data base is a
valuable strategy for distinguishing models that make identical
input-output predictions.

To return to the multiplication example, reaction times (RT)
are a valuable dependent variable. There is an illustrative series
of experiments on how children add two numbers. Experiments
have been able to distinguish between two viable models of
addition by measuring reaction times to different problems. The
results indicate that 6 + 3 takes about the same amount of time
as the problem 4 + 3. These problems take longer than 7 + 1 ,
however. In total, the results indicate that, at one stage of
development, the child recognizes the numbers, chooses the
larger one, and then adds the smaller number by counting from
the larger to the smaller in steps of one. One could cast doubt on
the previously mentioned log-anti-log model by looking at
reaction times and accuracy for larger multiplicands. Thus, the
identifiability problem is not as insurmountable as Anderson
claims.

In closing, Anderson's thesis might be illuminated by noting
an important distinction made in evolutionary biology between
proximate and ultimate causes of (or influences on) behavior
(Alcock 1989). Proximate causes address psychological pro-
cesses that influence behavior. For example, we might ask what
environmental information the gannet (a large seabird) uses to
signal closing its wings when landing on water. Ultimate causes
might concern why the gannet closes its wings when landing -
what evolutionary significance it might have. As psychologists,
we have usually been concerned with proximate (immediate or
close in time) influences. For example, what are the visual
features actually used in letter recognition? How are these
features combined? and How is a decision made given this
information? Ultimate causes, such as the evolution of the visual
system to detect edges and other properties of letters, are of less
interest. The psychologist's concern with proximate causes, in
many respects, makes the framework of evolution less
applicable.

Anderson's rational approach works on the level of ultimate
causation. To the extent that proximate and ultimate causation
interact, a rationality framework helps lessen the identifiability
problem. Indeed, normative analysis is often a valuable guide to
the study of behavior, and Anderson makes a useful contribution
in forcefully stating its importance and illustrating its uses.
However, the psychologist's primary charge remains one of
uncovering proximate causation - how behavior is actually
achieved, not simply how it is optimal or how it reflects its
evolutionary history. As a framework for proximate causation
rational theory appears to offer no free lunch.
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The cognitiwe laboratory, the library and the
Skinner box

Howard Rachlin
Psychology Department, State University of New York, Stony Brook, NY
11794-2500

Those of us who have been trying to use economic models to
explain the overt behavior of whole animals can only applaud
such attempts as Anderson's to do the same in cognition.
Anderson's theories of memory, categorization, and causal in-
ference throw new light on these phenomena, thereby broaden-
ing the power of economic analysis in psychology.

There is a danger in using this approach, however, one that
becomes particularly critical in the analysis of cognitive pro-
cesses - the danger of taking a concept that has an operational
meaning in a money economy and applying it in a vaguely
metaphorical sense to a biological process. Thus, a squirrel
storing nuts may have only surface similarity to a person deposit-
ing money in a bank; the dynamics of the two processes (in
response to variation of environmental constraints) may funda-
mentally differ.

Consider "cost." In a money economy cost may be reckoned
in terms of money; in a barter economy cost may be reckoned in
terms of the amount of a commodity given up. But what
corresponds to cost in a cognitive system? The list in the last
column of Table 2 is not helpful. The concept, "internal effort"
has some intuitive relation to economic cost but is not defined
operationally. The problem is not with the rationalist enterprise
as such but in the application of the rationalist mode of analysis
to wholly covert cognitive mechanisms. Such an application is
not only metaphorical but the metaphors are inevitably mixed.

To see what I mean, consider how you might talk about the
functional characteristics of an automobile as a whole; you might
refer to acceleration, handling, braking, comfort, appearance,
and so on, using the sorts of terms you see in Consumer Reports.
These terms refer to functions of the car as a whole. But these
terms (and the functions they imply) are completely inappropri-
ate in discussing the operation of an internal mechanism like the
carburetor. A functional analysis of the carburetor is certainly
possible but it would have to be made in terms of the car-
buretor's own environment (the thermodynamics of the air-gas
mixture), not that of the car as a whole.

Anderson applies his economic analysis to cognitive processes
to discover an underlying internal mechanism (as in sect. 6). The
difficulty is that an internal cognitive mechanism (unlike the
carburetor of an automobile) cannot be isolated and studied in
relation to its environment. Instead, Anderson talks about
cognitive mechanisms as if their environments were those of the
person as a whole. This is like talking about the acceleration,
handling, comfort and appearance of a carburetor.

As an illustration of both the power of Anderson's economic
analysis and the problems involved in applying it to internal
mechanisms, let us consider section 2, "A Rational Theory of
Memory." It begins: "The goal of memory is to get access to
needed information from the past (e.g., remembering where
the car is parked in the airport parking lot)." But surely the goal
is to find the car; even remembering where it is would seem to
require imagination and thought as well as memory - and then
you would still not have found the car. It is unclear how you
would get from the retrieval of a memory (a picture of the
parking spot? a number like E7? a view of a region? a cognitive
map?) to the behavior, or even whether the former is a necessary
step in the latter.

In discussing "The History Factor" (sect. 2.1), Anderson says

that the best way to get from history to current use would be to
"follow people about in their daily lives keeping a complete
record of when they use various facts." But even if you did follow
people around, how would you separate the facts making contact
with their memory mechanisms from the facts affecting their
behavior directly, from the facts remembered and forgotten,
from the facts ignored? This is an especially acute problem when
molar characteristics of behavior (e.g., response rate over a time
period) are direct functions of molar characteristics of the en-
vironment (e.g., reinforcement rate over a corresponding peri-
od). Instead, Anderson quite sensibly observes such activities as
book borrowings from libraries and access to computer files.
These interesting data are examples of memory processes (with
entirely overt costs and benefits) but Anderson uses them as
analogies to a completely different memory process, an occult
one, going on in a person's head.

Anderson shows that people's behavior in cognitive laborato-
ries may be derived from their behavior in libraries (assuming
that the predictability of Phenomena 1-3 from the library and
computer access data is not based merely on the statistical
properties of the group data usually obtained in cognitive
studies). This discovery is no inconsiderable accomplishment in
itself. But I question whether the postulation of an internal
library-like process (a library in the mind) is a necessary inter-
mediate step.

Ignoring that intermediate step, Anderson might have noted
that the correspondence between people in the library and
people in the cognitive laboratory extends even to a pigeon in a
Skinner box; Phenomena 1 and 2 exemplify generalized match-
ing (Baum 1974); Phenomenon 3 is straightforward temporal
discrimination, Phenomena 4 and 5 correspond to those dis-
covered by Rescorla, Jenkins and Gibbon (Gibbon 1986) in the
control of behavior (A) by conditional and discriminative stimuli
(i's). The present article is some evidence that (as I have always
suspected) these phenomena are fundamentally economic in
nature.

The same sort of comments apply to categorization, in-
ference, and problem solving. As with memory, these processes
are easily definable as purely overt behavioral processes. Skin-
ner notwithstanding, there is no need to stop using mental
terms when talking about behavior. The relation between men-
tal events and physiological events may be characterized as one
between patterns of overt behavior and underlying physiology
rather than (or as well as) between computer flow diagrams and
underlying physiology (Rachlin 1989). The data Anderson uses
to construct his models are (necessarily) behavioral and the
conclusions apply not only to cognitive studies of humans but
also to ethological and operant studies. Anderson's insistence
that yet-to-be-discovered internal cognitive mechanisms will
also work that way cannot of course be disproven but is, so far,
gratuitous.

The demonstration that, given environmental constraints as
they are, people process information as efficiently as possible
(i.e., that they extract reinforcement efficiently from a varying
environment) would be a great contribution to behavioral psy-
chology. I think Anderson thinks this is what his research does
show. I just wish he'd say it directly.

Rational analysis will not throw off
the yoke of the precision-importance
trade-off function

Wolfgang Schwarz
Freie Universitat Berlin, Psychologisches Institut, D-1000 Berlin 33,
Germany

In cognitive psychology it is generally recognized that the
importance (or scope) of a theory on the one hand and the
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precision of its formulation (and thus the degree to which it is
testable) on the other hand are inversely related. A successful
theoretical approach will be uniformly superior to its com-
petitors, that is, for any given precision, its importance will be
greater.

"Why not both - precision and importance?" - to me, this
seems to be Anderson's basic motivation for his "rational analy-
sis" of cognition. To this end he has borrowed some approved
elements (such as sequential decision-making or process-ori-
ented stochastic modeling) from precise, but narrow paradig-
matic approaches and used them to represent human memory
on a large scale. As always, his presentation is alluringly many-
sided, impressively far-reaching, and enviably well written. I do
not think, however, that Anderson's rational analysis throws off'
the yoke of the precision/importance trade-off (PIT) function.
Rather, I find his arguments about cognitive adaptation and
optimization stimulating from a substantive point of view, but
relatively inaccurate with regard to theory formulation and
testability.

A first significant hint in this direction is Anderson's complete
omission of the two books - and large parts of their contents -
which essentially define the current state of the art of psycholog-
ical modeling, namely Townsend and Ashby (1983) and Luce
(1986).

A second point is that most of Anderson's formal representa-
tions are only qualitative statements, with no precise model-
theoretical background. To give just the simplest example: On
page 13 of his classical treatise, Feller (1968) admonishes us
never to "speak of probabilities except in relation to a given
sample space." Anderson (sect. 2, para. 2) repeatedly uses
rather complex joint probability measures like P{A, HA, Q}.
What exactly is the sample space associated with these mea-
sures? From my point of view (e.g., Schwarz 1989; 1990), this
omission is not just technical carelessness - rather, it points to
the principal problem that such things as "historic factors" and
"sets of cues" (sect. 2, para. 5-6) are simply too complex to be
useful for the definition of a formal measurable set on which
probability statements can be based. The exact relation of
Equation 2 to the developments in sections 3-5 or, in fact, to
any observable event is not clear to me: Precisely how does the
subject use the odds defined on the left side of Equation 2? Also,
it is well known (e.g., Chow & Schechner 1985) that Anderson's
(Equation 1) one-step look-ahead decision rule will not neces-
sarily be optimal under a lot of very plausible conditions. That
the need probability P(A) is monotonically related to the latency
and probability of recall should ideally not be a "basic assump-
tion" (sect. 2, para. 2), but rather a consequence of a given
model.

Bayesian analysis (sect. 2, para. 4) is based on first (and purely
formal) probabilistic principles; it goes nowhere beyond "con-
ventional" probabilistic analysis, to which it properly belongs as
a useful corollary; and by itself it does not constitute any
substantive insight (cf. Feller's, 1968, p. 124, penetrating "Note
on Bayes's Rule"). Actual applications require additional as-
sumptions about the specific representation and retrieval pro-
cesses involved in a given task.

Thus, Anderson and Anderson & Milson (1989) elaborate on
a stochastic theory of storage and retrieval processes from
Burrell (1980), which is precisely the kind of modeling (e.g.,
queueing theory, hazard rate) that we lack in cognitive psychol-
ogy. Indeed, how much we actually lack it is perhaps best
illustrated by Anderson and Milson's (1989, pp. 705; 718) sur-
prising "discovery" that the mean of a posterior density of a rate
parameter behaves for all practical purposes like a probability -
all the more surprising as Anderson and Milson (Equation 2, p.
704) are concerned with likelihood ratios anyway, which may in
general exceed 1, not only for densities, but also for "true"
probabilities.

The information-retrieval model considered by Anderson
(sect. 2.1) corresponds to the often-used library metaphor and is

evidently plausible. A problem here is that there are many
stochastic process models which are no less plausible - a quick
glance through (e.g.) the Journal of Applied Probability invites
us to compare human memory not only to a library, but also to
proofreading (Chow & Schechner 1985), oil exploration
(Benkherouf & Bather 1988), the selection of the best secretary
(Petraccelli 1981), and so on - activities that all bear some
structural similarity to fundamental memory functions. What
we really need is a general and formal methodology to compare
competing models and to identify their critical and relevant
parts. Excellent examples are the works of Townsend and
Vorberg on the identifiability of serial versus parallel processing
(Townsend 1971; Vorberg 1977) or on general continuous-time
Markov accounts of memory (Vorberg & Ulrich 1987).

Exploring the behavior of a model by simulation (target
article, sect. 1.2, para. 11; Anderson & Milson 1989), though
occasionally informative at an early stage, tends to produce an
unsuitable overconfidence in our understanding of the simulat-
ed model and it often introduces an unpleasant degree of
subjectivism, favoring parameter settings that are purely ad hoc
(Anderson & Milson 1989, p. 707) and not leading to a sound and
established estimational and hence evaluative procedure. Also,
simulation may lead to a premature abandonment of efforts to
derive closed-form analytic expressions. For example, models
very similar to Anderson's (sect. 2.1) "augmented Burrell
model" have been (or can be) solved analytically. In contrast,
the general "multinomial" approach to the modeling of cog-
nitive processes recently introduced in an exceptionally clear
and important article by Riefer & Batchelder (1988) offers a
general theoretical frame in which it is possible to formulate,
estimate, and evaluate most current approaches to cognition
(including, for instance, Anderson's rational analysis of problem
solving, sect. 5) in an explicit and rigorous way.

the nonapplicability of a rational analysis
human cognition

Eldar Shafir
Department of Psychology, Princeton University, Princeton, NJ 08544
Electronic mail: elclar@clarity.princeton.edu

People are complex organisms who interact with their environ-
ment in diverse ways. Like other animals, we are very good at
certain of these interactions, and less impressive at others. How
good animals are at particular tasks depends on many things,
among them the structure of their environment and the nature
of their mental apparatus. Anderson urges us to "take seriously
the idea that there is a reason for the way the mind is." He then
suggests the reason: "Behavior is optimized to the structure of
the environment." Although most people would find the first
suggestion unobjectionable, the second is less convincing. After
all, there is a reason for the way telephones are, and the human
spinal cord, and international borders, and all these are proba-
bly not optimized to the structure of the environment.

Although he acknowledges in passing the "problematical"
nature of evolutionary considerations, Anderson then goes on to
explore "how much explanatory power can be achieved in the
case of human cognition." This, as others have argued before, is
pure speculation, which we may never be able to investigate
properly (see Lewontin, 1990, for an excellent discussion). For
one thing, the forces of natural selection come into play only
when there is difference in the probability of survival and
reproduction. And it is not at all obvious that the presence or
absence of some detail in cognitive function will have a signifi-
cant influence on reproductive rates. Furthermore, even if
there are differences in reproductive rates, those differences
cannot be the cause of evolution unless they are transfered
genetically. And it is not clear that our particular ways of solving
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problems, for example, are genetically determined, as is only
emphasized by Anderson's insistence on the shaping role of the
environment.

Given that the optimizing nature of behavior is not immedi-
ately obvious, nor entailed by evolutionary theory, it makes
most sense to consider some empirical evidence that sheds light
on the issues. In fact, a large amount of evidence has been
collected that indicates less than optimal behavior in many
situations. Let us touch on the issues of mental effort, local
versus global optimization, and problem specification, all of
which figure prominently in the target article.

According to Anderson, one of the key predictors of human
performance in a rational theory is the cost of mental effort. But
numerous studies of behavior indicate that people are often
willing to expend more mental effort on heuristics that are in fact
less ideal for the task at hand. For example, Kahneman and
Tversky (1984) show that people who are about to pay $15 for a
calculator are more willing to drive to another store to buy the
calculator for $5 less than is a second group of people who are
about to buy a calculator for $125. Although the full account of
this behavior is beyond our present purpose (for a discussion,
see Kahneman & Tversky 1984; Shafir et al. 1989; Thaler 1980),
suffice it to note that, in this and other problems of its kind,
people deviate from the standard rational theory of consumer
behavior by working harder to evaluate gains and losses in
relative rather than absolute terms. By basing their decision on
the same $5 difference rather than the ratio it forms of the total
price, subjects would save on mental effort and conform with the
rational model, and this is what they do not do. In a similar vein,
when asked to estimate the likelihood that a totally uninfor-
mative description of a person is of an engineer, subjects use the
more effortful representativeness heuristic, rather than simply
relying on the base rates that are given and that would lead to a
normatively more adequate response (Kahneman & Tversky
1973). Although in Anderson's rational analysis "cognitive per-
formance maximizes the difference between the expected gain
and cost of mental effort,' subjects in the experiments above do
not seem confined to such considerations.

Anderson argues that whereas local optimality is normally
achieved, global optimality is sometimes foregone for reasons
such as limited memory. But a number of studies show that the
discrepancy between local and global strategies really is not so
easy to resolve. Redelmeier and Tversky (1990; see also Slovic et
al. 1978), for example, asked hundreds of clinicians to make
treatment choices pertaining either to a single patient or to a
group of comparable patients. The clinicians weighted certain
criteria (such as personal concerns of the patient and cost
effectiveness) differently in the two cases and, as a result,
exhibited different preferences between treatments. They pre-
ferred one treatment when dealing (locally) with one patient,
and the other treatment when contemplating (globally) the
entire group. Although their local and global preferences are
clearly discrepant, it is not at all clear that one is "right" and the
other "wrong": It may just be that we give relatively more
weight to the human dimension when patients are in our office,
and less when we contemplate the finances of a public health
policy. Although not licensed by Anderson's rational approach,
conflicting local and global strategies may just be a natural
outcome of the way we process information.

A precise description of the environment is a critical part of
the rational theory. Work on "framing" has shown, however,
that the same description of an environment leads to different
behaviors when framed differently. Thus, when asked to choose
between two alternative treatments of a disease, people prefer
one treatment if the outcomes are framed in terms of lives lost,
and the other treatment if the problem is framed in terms of lives
saved (see Kahneman & Tversky 1984; McNeil et al. 1982). Such
violations of "description-invariance" as well as of "procedure
invariance" (where people express discrepant preferences de-
pending on the particular elicitation procedure that is used; see

Slovic et al., 1982, for a discussion) have now been documented
in numerous domains, in hypothetical as well as real world
situations, with both high and low stakes, and both with and
without monetary incentives. These behaviors are not going to
go away, and they do not seem to point us in the same direction
as Anderson's conclusion "that many of the major characteristics
of human cognition can be explained as an optimal response, in a
Bayesian sense, to the informational structure in the world."

The rationality of causal inference

Thomas R. Shultz
Department of Psychology, McGill University, Montreal, Quebec H3A 1B1,
Canada
Electronic mail: ints@musicb.mcgill.ca

Rational analysis could be viewed as an attempt to rise above
some of the major debates in contemporary cognitive science
concerning the best mechanistic explanations of cognition. It
does this by showing that a wide variety of cognitive phenomena
are optimal responses to goal satisfaction in particular environ-
ments given certain minimal computational limitations.

The breadth of intended coverage for rational analysis is
impressive. At the current rate of application, we may soon be
asking whether it qualifies as a candidate for a unified theory of
cognition. One reason the approach seems so general is that it
operates at a more abstract level than the more mechanistic
candidates for unified theories.

Although Anderson admits that ordinary humans do not
explicitly undertake Bayesian computation, he claims that ra-
tional analysis can easily be converted into plausible reasoning
mechanisms. It is doubtful, however, that the constraints sup-
plied by rational analysis are sufficient to favor particular mecha-
nisms. Much current debate centers around the fact that a fair
number of distinct algorithms account for many of the phe-
nomena listed by Anderson. Rational analysis will satisfy re-
searchers used to mechanistic accounts only insofar as it supplies
sufficient mechanistic constraints.

One of the four main areas of application in the target article is
causal inference, an area that optimizes my own interest and
expertise. Anderson specifies his analysis of causal inference in
two concise Bayesian equations (9 and 10). As with many
Bayesian analyses, it is difficult to understand how the proba-
bilities on the right sides of these equations are any more
fundamental than those on the left sides. For example, in
Equation 10, the probability of a rule applying in the presence of
cues seems no less fundamental than the probability of the cues
if the rule did apply. What evidence would support Anderson's
view that the reverse is true? What sort of reasoning mechanism
would conform to this arrangement of conditional probabilities?

Anderson makes a very useful point when he argues that cues
to causality depend on underlying causal models (cf. Doyle,
1989, for a more elaborated version of this). He applies this
notion a bit too narrowly, however. For example, in Phe-
nomenon 15, Anderson argues that similarity is used when the
subject holds a causal model specifying that a cause transfers
part of itself to the effect, as in coloring phenomena. But we have
found that similarity is also used in contexts of number and size
(Shultz & Ravinsky 1.977). These cases too could be understood
as using similarity only when it conforms to a causal model, but
this would require a somewhat wider range of underlying causal
models.

Anderson stresses that in a rational analysis the goal of causal
inference is to predict future events. But causal inference
traditionally involves explanation and planning as well as predic-
tion. People may be interested in explaining an event by finding
its cause even if the need for predicting the event never arises.
Once causal relations are known, they can also be used in the

BEHAVIORAL AND BRAIN SCIENCES (1991) 14:3 503



Commentary/Anderson: Is human cognition adaptive?

construction of plans to satisfy goals. As Anderson (1990) real-
izes, this brings us into the related realm of problem solving. My
point is that an unwarranted theoretical emphasis on prediction
leads to the unfortunate theoretical neglect of explanation and
planning.

Indeed, the only experiment Anderson reports here in much
detail (Phenomenon 14, temporal and spatial contiguity) is one
that involves explanation (or attribution, as it is more commonly
known). Phenomena 13 (contingency) and 15 (similarity) also
involve causal attribution rather than prediction. With respect
to Phenomenon 16 (generalization), Anderson (1990) does pre-
sent some new and interesting experiments on prediction, but It
seems to me that the goals for causal inference ought to include
explanation at least, and probably planning, as well.

Phenomenon 16, that a causal law generalizes to objects of the
same category, seems obvious from many perspectives and so is
not a unique prediction of a Bayesian analysis. It is not a well
studied problem, and Anderson's efforts may stimulate more
research.

Phenomenon 13, ignoring joint nonoccurence information in
contingency analysis, could likewise be explained by people's
tendency to avoid negative information, presumably because of
its complexity (Schustack & Steinberg 1981), or to ignore
nonevents, presumably because they cannot ordinarily be de-
tected. Anderson's Bayesian explanation of this phenomenon
appears to work less well than the foregoing explanations, first,
because it has subjects assuming the causal relation they are
trying to detect, and second, because It contradicts the well
documented tendency of people to ignore prior probabilities
(Tversky & Kahneman 1980). The tendency to ignore priors
could bode ill for any account that postulates Bayesian
mechanisms.

The fact that many of these phenomena have various mecha-
nistic explanations Is symptomatic of the fact that a rational
analysis under-constrains mechanistic accounts. Although it
may always be possible to design probability values that conform
both to Bayesian formulas and to behavioral data, the exercise Is
not terribly satisfying unless it distinguishes a mechanistic
account. If the mechanistic account turns out to involve com-
putations on probabilities, then it behooves the researcher to
use behavioral data to constrain the choice of probabilities more
directly, rather than using probabilities that simply make the
equation fit the data to be explained.

So far, Anderson provides no clear analysis of the time course
of causal knowledge. Is novel behavior typically as optimal as
well-practiced behavior? Eventually, this may get cashed out in
terms of the progressive refinement of prior probabilities, but It
would have been interesting to see this done on some well
known developmental phenomena.

Anderson Identifies all of his causal Inference phenomena
(13-16) as having previously been characterized as irrational. It
is extremely useful to show how such phenomena can be alter-
natively described as rational under differing assumptions. An-
derson could well have included research by Kuhn (1989) on the
errors people make in using the covariation heuristic in causal
reasoning.

how does the brain think? (or wasn't
the question?)

Steven L. Small
Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15261
Electronic mail: sis@dsl.pitt.edu

Introduction, Anderson describes a way to analyze cognition In
terms of human behaviors that are optimized to particular
features of the external environment. He refers to the method as
"rational analysis"; I refer to the underlying principle as either

the "adaptation" or "optimization" assumption. Using rational
analysis, he investigates several aspects of human cognition. I
believe that the formal statement of the adaptation assumption
adds a useful perspective to our thinking about cognition, but
that the formal application of the method in rational analysis
does not explain the kinds of things that need explaining.

Adaptation and cognitive science. Human cognition is as
likely a priori to be adaptive as other human brain processes,
such as regulating blood pressure or seeing in color. That it can
be shown to be adaptive is interesting, but does not lead to an
understanding of how it works. Cognitive scientists have always
operated under some form of the optimization assumption, yet
they believed that their mission was to explain not how the
behaviors were optimized, but how the mind actually produced
the behaviors. Similarly, cognitive neuroscientists focus on the
phylogenetic and ontogenetlc development of the brain and
how the resulting brain structures lead to cognitive behavior.

Definitions and theory application. Anderson begins by stating
that the goal of cognitive science is to predict the "output of
human cognition." After presenting his method of analysis of
cognitive behavior, he applies It to four areas In cognition. A
number of questions can be raised about the definition and the
areas chosen for analysis.

First, cognitive behaviors are not exclusively "outputs"; in
fact, many of the tasks studied by cognitive scientists, such as
reading (Just & Carpenter 1980), listening to music, under-
standing visual scenes (Marr & Poggio 1977), and inventing new
scientific theories (Langley et al. 1983), cannot readily be
described as outputs. But there Is no doubt that they are
cognitive tasks.

Second, four aspects of cognition were chosen for an analysis
according to the adaptive theory: (a) recall memory; (b) categori-
zation; (c) causal inference; and (d) problem solving. These tasks
have something in common that makes them easily analyzed In
terms of optimization; they are (generally) conscious, symbolic
(prepositional), and controlled processes.

Third, the data best applied to the optimization theory also
have idiosyncrasies in common: They come from carefully con-
trolled studies of goal-directed, rewarded, rational, preposi-
tional behaviors. Anderson thus provides an Interesting account
of some statistical regularities of certain conscious goal-directed
behaviors. Although this might be useful as a descriptive theory,
it does not help in uncovering the explanatory theory sought by
a majority of researchers.

By defining cognition in a narrow way, excluding automatic
aspects of visual and linguistic processing, for example, some of
these objections can be averted. It is undesirable, however, to
restrict the notion of cognition In this way, as it excludes some of
the best understood aspects of overall behaviors that are univer-
sally considered cognitive. To continue the previous examples,
the understanding of spoken language or of visual scenes re-
quires both so-called "low level" and "high level" cognitive
abilities. The Interdependence of such processing "levels" re-
quires their coordinated consideration in the development of
cognitive theories.

Neuroscience. Although some cognitive researchers are re-
luctant to include basic neurobiological concepts in the develop-
ment of cognitive theories, there is Increasing Interest in using
data from neurobiology to constrain theory construction in
cognitive science. The two sides of this coin are (a) the use of
basic neuroscientific data from researchers in anatomy, phys-
iology, and pharmacology; and (b) the consideration of clinical
neuroscientific data (from neurology and psychiatry) about
people with obviously abnormal cognitive systems and specific
neurobiological defects. Must cognitive scientists restrict them-
selves to the brain as a black box? The optimization assumption
side-steps the entire Issue of how the mind/brain works, but that
is In fact the main issue for a large proportion of cognitive
scientists.

In this regard, do maladaptive and pathological cognitive
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behaviors need explanation in a theory of cognition? My view is
that they do, and that instead of assuming adaptation, one
should make the mechanisms of adaptation one of the principal
foci of inquiry. There are constraints on cognitive behavior
within the brain that are at least as important as those in the
environment. A brain lesion in the left inferior frontal gyrus
(Broca 1861) or a deficiency of dopamine in the prefrontal cortex
(Meltzer & Stahl 1976) can lead to tremendous changes in
cognitive behavior. Aphasia, disinhibition, auditory and visual
hallucinations, self-mutilation, stuttering, and dyslexia are all
cognitive behaviors, they all need to be explained by a cognitive
theory and are best understood in terms of internal mechanisms
rather than adaptations to the external environment. In fact, the
combination of basic neurochemical research and the failure of
clinical techniques based on external adaptation has led clinical
psychiatry to drop the adaptation assumption as an explanatory
tool in favor of internal, mechanistic (pharmacological)
explanations.

Connectionist modelling and David Man. Anderson describes
a connectionist network that he suggests represents an "al-
gorithmic level" description of (part of) his "computational
level" conception, thus relating his proposal to the levels of
theory construction postulated by David Marr (1982). Like
many others, Anderson assumes an independence of Marr's
levels, which may not be correct. I share the view advocated by
some that there is a fundamental inseparability (a mutual inter-
dependence) among these levels: One cannot know the correct
theory without paying attention from the outset to the al-
gorithmic and implementational aspects, as they themselves
provide interactive constraints on the theory construction.

The architecture and processing of the connectionist network
constitute the real theory: it is not a better theory than any other
network architecture unless it better meets known processing
constraints. Learning the regularities in the environment faster
does not make the theory better, unless the character of this
learning models human learning more accurately. Likewise,
learning in an asymptotic fashion is only interesting if that is how
people do it. Any network should learn some regularities of the
environment faster when given some initial knowledge
(Rumelhart & McClelland 1986). Anderson's arguments about
his network ignore the fact that (except for models of learning
per se) it is the acquired (internal) representations, and not
details about the learning, that constitute the most interesting
aspect of network models.

Conclusion. Anderson demonstrates formally that conscious
recall memory, categorization, causation, and symbolic prob-
lem solving can be viewed as optimized (adapted) behaviors in
response to inherent aspects of the external environment. That
the functions of the human organism represent (in part) adapta-
tions to the milieu exterieur has been widely held for over a
century (Bernard 1865). The question for cognitive science is
not whether cognition is adaptive - it is - or even which are the
optimized aspects of the environment. The question is how the
brain performs this adaptation, both developmentally and in
everyday cognitive activities. Until we know something about
this, we do not know anything about cognition.

A Bayesian theory of thought

Howard Smokier
Department of Philosophy, University of Colorado, Boulder, CO 80309

Anderson's work is quite interesting to one of a philosophical
bent. Not only does he deal with a number of mental processes
that are of interest to philosophers but he attempts to explain
them under the rubric of a Bayesian theory.

Most philosophers consider the Bayesian model of expected
utility the unique normative one for judging conscious human

action and belief as rational. From their perspective the work of
psychologists, even if it were to show that a significant propor-
tion of human beings did not act consciously as if they were
Bayesian maximizers, would not be of any significance. It would
only reveal the fact that many of them already believe: that the
majority of people are rational only at times, if at all.

From their perspective, it is encouraging that Anderson's
work points in a direction opposite to the one indicated by the
work of so many other psychologists. But this work is in no sense
of real importance to philosophers. The program for naturalizing
epistemology - of making the theoretical results of sciences,
including the social sciences, bear on philosophical problems -
is undercut in most cases by the distinction between the nor-
mative and the empirical. Psychological explanations of catego-
rization, causal inference, and problem solving, on this philo-
sophical view, provide a basis for normative prescriptions for
belief or action. If the project of naturalizing epistemology is to
succeed, some fresh thinking must be forthcoming on this
subject; I wonder what suggestions Anderson might have.

Psychologists like Anderson have explored the theoretical,
possibility that rationality functions as a maximizing and there-
fore adaptive process in human beings, making an explicit
analogy with the evolution of biological traits. But as others have
pointed out, many maximizing processes are not conscious and
the irony In Anderson's studies seems to be that even some of
the conscious processes he studies are treated as If they were
unconscious. Consider a conscious process explained in terms of
nonconscious mechanisms: In his application of an optimizing
model to causal Inference, Anderson treats it as if it were
unconscious, as if one could make a causal judgement without
knowing anything about the meaning of the representations that
allow such a judgement to be made. I concede that there are
aspects of all conscious processes that are not conscious, but, in
principle, should a conscious process be explained almost com-
pletely as the outcome of a preconscious or unconscious op-
timization? Some element of following a rule must surely be
present if the notion of inferring is to remain true to the intuition
that it involves conscious patterns of mental activity. Otherwise
this leads without justification to a form of reductionism that Is
contrary to our Intuitions about what it Is to think rationally.
Some unspecified mechanism is being assumed without further
warrant. [See also Searle: "Consciousness, Explanatory Inver-
sion and Cognitive Science" BBS 13(4) 1990.]

Another problem is that the specification of costs/benefits
that allows for the operation of the optimizing mechanism is only
metaphoric. What does it mean that the cost of making a causal
inference affects the formation of a hypothesis? I do not grasp
the underlying mechanism.

Rationality and irrationality:
StISI fighting words

Paul Snow
Department of Computer Science, Plymouth State College, Plymouth, NH
03264
Electronic mail: paulsnow@oz.plymouth.edu

Cohen (198.1) occasioned a debate in these pages about ra-
tionality. He wished especially to rebut the idea that research
into how humans perform deductive and probabilistic inference
had "bleak implications for human rationality" (p. 317).
Kyburg's (1983) BBS paper and the resulting commentaries
freshened that debate, emphasizing domains of reasoning gen-
erally similar to Cohen's. Professor Anderson, In the current
target article, looks for rationality in four specific cognitive
domains.

Ironically, some of Anderson's explanations depend on sub-
jects' proper handling of base rates (or prior probabilities).
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Cohen, on the other hand, was concerned with explaining
subjects' apparent failures to use base rates properly (as in the
famous "cab color" inference problem, pp. 328-29).

Of Anderson's four cognitive domains, three involve com-
monplace, learnable, and purposeful behaviors: classification,
causal inference, and planning. If the environment affords any
strategies for these tasks that frequently produce respectable
results at low computational cost, then research of the sort
described by Anderson would seem to have a high a priori
prospect of success.

People will presumably do something when asked by experi-
menters to perform in these task domains. It is plausible that
what the subjects might choose to do would involve some trade-
off between effort and efficacy.

A search for a descriptive model of those subjects' trade-offs,
like the one outlined in Table 1 of the target article, would thus
seem to have bright prospects. There are plenty of degrees of
freedom available to model makers. What shall we designate as
the measure of success or of cost? Which environmental con-
straints shall we recognize in the model? Which simplifying
assumptions shall we adopt?

Success in coming up with a model seems unsurprising. Lack
of potential surprise, rather than criticism about iterative hy-
pothesis refinement that Anderson easily deflects, dilutes the
evidence's probative power; for as probabilists (Polya 1954) and
nonprobabilists (Shackle 1949) alike remind us, we learn little
from unsurprising events. That is, our prior beliefs about the
rationality of human cognition are apt to be unchanged by
modeling success that was never much in doubt in the first
place.

The properties of memory are presumably not as open to
subjects' choices as the other behaviors. Yet, here too, the
modeler's jacket is generously cut. We find in the conclusions of
the target article yet another degree of freedom: Which "com-
ponents" of the "cognitive system" are to be modeled as locally
optimal? (By the way, in the example task of phone number
recall discussed in the conclusion, might not the "cognitive
system" learn a few mnemonic tricks if remembering phone
numbers were important enough?)

And yet, of 21 phenomena studied by Anderson, only seven
are accompanied by a remark that suggests that other workers
interpret the phenomenon as evidence of irrationality. In the
other 14, the rational analysis illuminates issues other than the
"big question": Is cognition adaptive?

In the three phenomena cited in connection with the "history
factor" of memory, a beautiful, nonobvious similarity is estab-
lished among diverse engineering problems of designing infor-
mation-retrieval systems. The six categorization phenomena
support a critique of existing research in the field: a misplaced
(in Anderson's view) preoccupation with predicting category
labels. Phenomenon 16 links results from the causal inference
and the categorization models to suggest new hypotheses for
investigation. The final four phenomena support principled
criticism of the kinds of tasks often studied in the planning and
problem-solving literature.

In addition, for all four domains, Anderson motivates in-
teresting Bayesian models of how to approach a task. Quite apart
from whether or not people are "rational," these models are
surely interesting in themselves, and useful to the artificial
intelligence enterprise, among others.

Anderson's rational perspective, then, is a successful point of
departure for science. Existing interpretations of experiments
are challenged, new hypotheses are suggested for further ex-
perimentation, and similarities are disclosed among problems
that otherwise appear distinct. A powerful general-purpose
modeling tool, Bayesian analysis, is artfully adapted to specific
applications.

Does the worth of Anderson's perspective depend much on
whether or not human cognition is really rational? It had better

not, since on the evidence of the Cohen & Kyburg commentary,
the experimental record is equivocal. People don't even always
agree on what being rational means.

As a springboard for successful science, the opposing perspec-
tive is fruitful, too. Systematic inquiry into how behavior de-
parts from selected normative accounts of rational behavior has
been a fertile source of inspiration for hypotheses (in the work of
Kahneman & Tversky, 1979, for instance) and cognitive en-
gineering design (such as the extensive work in the non-
probabilistic management of uncertainty surveyed by Prade
1985).

Big questions fascinate us; for many scientists, interest in such
matters is surely part of the explanation of how they came to be
scientists in the first place. Having a suspicion about how the
answer will turn out can be a strong motivating force. We all
know good scientists whose work is informed by deeply held
religious convictions, and other good scientists whose belief in a
universe without any hint of the supernatural is just as strong.

If science is roomy enough for both views on that particular
big question, then surely rationalists and their critics can both
be accommodated. Professor Anderson succeeds in demonstrat-
ing that his beliefs are respectable. On the other hand, it is
probably too much to hope that science will resolve the ra-
tionality question, any more than it will settle questions of
religion. There is other work to be done, on questions that are
smaller, but whose answers are more nearly within our cog-
nitive grasp.

Computational resourees d@
constrain feehawior

John K= Tsotsos1

Department of Computer Science, University of Toronto, Toronto, Ontario
M5S 1A4, Canada
Electronic mail: tsotsos@ai.toronto.edu

Anderson says: "A rational approach encourages us to inquire
about the structure of our actual environment and to design an
algorithm optimal for it rather than to design algorithms which
would only be optimal in some bizarre world." The rational
world Anderson proposes is as bizarre as the approaches he is
criticizing. Behavior is not only a function of environment;
behavior develops as a satisficing function constrained by en-
vironmental conditions as well as computational resources (and
perhaps other things). In fact, given our current understanding,
the limits on computation imposed by our brains may play the
largest role in shaping behavior.

Anderson says that in his work he has yet to find computa-
tional limitations posing danger to his scheme. Unfortunately, I
don't think he has looked hard enough. The combinatorial
problems are very apparent, and in fact in most (if not all) natural
problems, optimal solutions are computationally intractable in
any implementation, machine or neural. A few examples are in
order.

(1) Vision
Unbounded visual search, using a passive sensor sys-

tem is HP-complete (Tsotsos 1989; 1990a)
Unbounded visual search, using an active sensor sys-

tem is NP-complete (Tsotsos, submitted)
Polyhedral line-labelling is NP-complete (Kirousis &

Papadimitriou 1985)
(2) Reasoning

Finding the optimal satisficing strategy for simple and-
or graphs is NP-hard (This refers to the task of
deciding which operator to use to reduce a goal to its
subgoals.) (Greiner 1990).

Finding the best explanation for a class of independent
problems using probability theory (and several other
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forms of abduction) is NP-hard (Bylander et al. 1989).
Abductive reasoning for all but the simplest theories is

NP-complete (Selman & Levesque 1989).
Many forms of default reasoning are NP-hard (Kautz &

Selman, in press; Selman & Kautz 1990).
Many of the strategies for defeasible inheritance in

taxonomic hierarchies are intractable (Selman &
Levesque 1989).

(3) Neural networks
For directed Hopfield nets, determining whether a

stable configuration can be found is NP-complete
(Godbeer 1987).

This listing only scratches the surface of the literature on the
topic; there are many more examples. As should be clear, the
problem-solving type of task, where a sequence of actions is
required as opposed to single actions, is not the only one that has
a combinatorial nature, as Anderson claims. Neither are the
problems above obscure and isolated; rather, they are quite
broad and natural. All "interesting" intelligent problems appear
to be susceptible to combinatorial explosion. It is important to
stress, however, that the examples given above do not by
themselves "prove" that these problems or cognition in general
are computationally intractable. They simply constitute evi-
dence that the computational issues are real and may place
severe constraints on algorithms proposed for the problems of
cognition.

What does a computer scientist do when confronted with such
a potentially intractable problem? A variety of approaches are
possible.

(1) Develop an algorithm that is fast enough for small prob-
lems, but would take too long with larger problems. This
approach is often used when the anticipated problems are small.

(2) Develop a fast algorithm that solves a special case of the
problem, but does not solve the general problem. This approach
is often used when the special case is of practical importance.

(3) Develop an algorithm that quickly solves a large propor-
tion of the cases that come up in practice, but in the worst case
may run for a long time. This approach is often used when the
problems occurring in practice tend to have special features that
can be exploited to speed up the computation.

(4) For an optimization problem, develop an algorithm which
always runs quickly but produces an answer that is not neces-
sarily optimal. Sometimes a worst case bound can be obtained
on how much the answer produced may differ from the op-
timum, so that a reasonably close answer is assured. This is an
area of active research, with suboptimal algorithms for a variety
of important problems being developed and analyzed.

(5) Use natural parameters to guide the search for approxi-
mate algorithms. There are a number of ways a problem can be
exponential. Consider the natural parameters of a problem
rather than a constructed problem length and first attempt to
reduce the exponential effect of the largest valued parameters.

NP-completeness effectively eliminates the possibility of de-
veloping a totally satisfactory algorithm. Once a problem is seen
to be NP-complete, it is appropriate to direct efforts towards a
more achievable goal. In most cases, a direct understanding of
the size of the problems of interest and the size of the processing
machinery is of tremendous help in determining which are the
appropriate approximations. Could evolution have discovered
this through millennia of experimentation?

It would be an extreme and untenable position to claim that
behavior is made up of a large number of side-effects due to
approximations; however, how much of our behavior can be
legitimately put into this class? This is currently unknown and
seems to me an interesting question for further study.

NOTE
1. The author is also affiliated with the Canadian Institute for Ad-

vanced Research.

Human and nonhuman systems are adaptiwe
in a different sense

lamas Zetenyi
Department of General Psychology, L Eotvos University, H-1378
Budapest, Pf.4, Hungary

In recent treatments of conceptual phenomena by cognitive
science, three levels of analysis have been distinguished: a
computational, algorithmic and an implementational level (see
Marr 1982). In his target article Anderson undertakes to per-
form all three.

Anderson argues that if we describe the statistical structure of
the environment, we can predict human cognition, which is
supposed to be an optimal response to it, and is therefore
adaptive.

He attempts to support the above claim by analyzing the
behavior of nonhuman information-retrieval systems such as
libraries or computer data bases. The results of the analysis of
these systems are indeed correctly predicted by the carefully
selected list of phenomena. What we need is an algorithm to
represent the possible transformations between input and out-
put. Bayesian theory is undoubtedly suitable for this purpose, so
If we try to implement the resulting algorithm into another
physical system, namely a connectionist(like) network, It is
likely to run without a single error message.

What I find problematic in this Is the claim that the memory
functions of a nonhuman information-retrieval system can be
plausibly extended to human memory. In spite of the cases
provided by Anderson I wonder whether the algorithm can be
implemented into human cognition.

Libraries and psychological experiments are indeed similar to
each other in some respect. They have a limited set of items to
handle. There are similar tasks too: A book or an item of a
nonsense trigram list must be remembered upon request. It is
true in both cases that memory performance will increase with
practice and decrease with duration; and frequency also has an
effect on it.

But let us assume that items in a library or files in a data-base
are not independent entities; they communicate just as they do
in cartoons. They can retrieve certain ideas, form categories,
make decisions, and solve problems without any assistance. If
this were the case, their behavior would indeed be similar to
that of humans. This is the type of performance we call
cognitive.

Nonhuman information-retrieval systems, as far as I know,
never make changes in the entire material without human
assistance. Subjects in a psychology experiment try to answer
according to the instructions provided by the experimenter.
Nevertheless, they show a strong tendency to retrieve items
which are not included in the list. The types of errors are
covered in detail by textbooks on human memory. Retrieving
out-of-list items is excluded in the case of nonhuman systems.
For example, we will not find on a library shelf a monk copying
some codex, although these two are commonly associated with
the concept "book" in memory. Similarly, it does not happen
that a volume not satisfied with Its borrowing index changes the
color of its cover. It does not occur, either, that two different
files of a data-base exchange strings without assistance. Books
have never moved to certain places because they decided to
form a new club (categorization), or because they found the shelf
wet (reasoning). These would be instances of adaptation; these
answers are certainly optimal with respect to environmental
circumstances by some standard. The basic structure of a library
or data-base will not change over time, so there is room for
rational analysis. In contrast, a human retrieval system is an ever
changing "environment."

Note that there is something strange in the argumentation
above, namely, personification. I have personified the book or
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the computer data-base file; I assumed a book was able to do
something without any outer force. I think Anderson makes the
same mistake. He personifies the library or data-base system in
order to help explanation; then he forgets that the example is a
mere metaphor, and takes it seriously.

My point is that the computational conditions and algorithm
established for a particular system may not be valid for a
different system. Furthermore, this may only become obvious
after we have attempted to implement it. That is, I do not think
rational theory in its present form is suitable to answer the
question of whether or not human cognition is adaptive.

USore on rational analysis

John R. Anderson
Department of Psychology, Carnegie Mellon University, Pittsburgh, PA
15213
Electronic mall: anderson@psy.cmu.edu

One thing you can count on in writing a BBS article is that
there will be a wide range of points made in the commen-
taries. Indeed, this is the principal motivation for writing
such an article - to gain new perspectives on one's
research. Many of the comments I had not anticipated.
One thing I had anticipated was the wide range of
opinions about the plausibility of the optimization of
cognition. Some thought it was obvious that cognition had
to be highly adapted and others thought it highly im-
plausible. This suggests that it is a profitable issue to
pursue.

My approach has been to try to understand the adap-
tiveness of certain areas of human cognition that are close
to my research interests in problem solving and learning.
Many of the commentaries are cast at this empirical level.
Some of the commentators discuss various empirical
analyses in the target article; others point to more phe-
nomena in defense of cognitive rationality; still others
point to phenomena that contradict rationality. This re-
sponse will first go through these three categories of
comments. Then it will consider the more theoretical
points that were made about the role of mechanism in a
rational analysis, and close with a discussion of meth-
odological points.

Memory. Both Becker and Zetenyi question whether the
environment to which the model is optimized is really the
one that humans face. There is certainly reason for raising
this question about the original work of Anderson and
Milson (1989) that was based on library borrowings and
file accesses. However, we have found similar statistics in
true sources of information available to humans such as
New York Times headlines. Becker wonders whether it
isn't the human mind that is determining the structure of
domains like word use in the New York Times rather than
the reverse, which is the claim of the rational analysis.
This is an interesting hypothesis but it does not stand up
to detailed scrutiny. For example, when there were a
spate of articles on the Challenger accident it certainly
was not human memory that caused the Challenger to

explode. It is also known (Simon 1955) that a wide range of
domains show the same general statistics as word usage.
This includes the frequency with which animals of various
species appear in the environment. Again, it seems im-
plausible to claim that our memories control what animals
we run into. The correct model of these regularities is like
Burrell's (1980), which identifies the abstract features
that unite these diverse domains.

Becker claims that the assumptions underlying the
memory analysis are vague. This is to confuse generality
and abstractness with vagueness. The assumptions are
just cast at a very general level so that they might describe
many systems. To be sure, systems can be found that do
not satisfy them, but they do cast a wide net. I am not sure
I understand all of Becker's specific assertions and ques-
tions about the memory assumptions but Anderson and
Milson (1989) did produce running simulation models
that reproduced data. So there is no problem with pre™
ciseness of specification and no apparent difficulty with
the accuracy of the predictions.

Scliwarz takes issue with some of the technical devel-
opments in Anderson and Milson (1989), criticizing us for
mathematical infelicities as well as for providing simula-
tions rather than closed-form solutions. On the first
charge, I plead guilty and with each succeeding year I see
how to make the mathematical points both more elegant
and easier to understand. With respect to the second
charge, however, computer solutions are the wave of the
future in Bayesian applications (e.g., Gelfand & Smith
1990; Tanner & Wong 1987; Tierney & Kadane 1986). In
the past, Bayesian applications have been limited by the
need for closed-form solutions. One can now investigate
more directly the nature of optimum decisions under
reasonable sets of assumptions rather than artificially
constrained assumptions.

Zetenyi raises the question of whether one can produce
intrusion errors in nonhuman systems. Such errors are a
legend in computer-based information retrieval systems
(Salton & McGill 1983). It is true that the Anderson and
Milson model does not really give any careful analysis of
intrusion errors in human memory. That would require
further analysis of the process that decides whether a
retrieved memory satisfied the information-retrieval
goal.

Categorization. The rational model of categorization also
received a number of comments. Although he provides a
nice summary of the categorization model, Corter ques-
tions some of the specifics. First, he criticizes the cou-
pling parameter, c, as an arbitrary free parameter. He
might well question some of the other parameters in the
model as well. These are typically set to be what are
standards for noninformative priors in the Bayesian liter-
ature, so they might not seem to be free parameters. In an
adapted system, all these parameters, including c, should
be set to reflect their true values in the environment. This
means that the use of noninformative priors for the
others, and of parameter estimation for c, are temporary
holding patterns until we can do the environmental
studies to determine what values these should have. This
is what is so powerful about a rational analysis - the
parameters have meaning in the external world. In the
case of c, this refers to how often two objects we encoun-
ter are members of the same species. We are now
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beginning to study published sources like the Audubon
Society's annual Christmas bird count to get an estimate
of this quantity.

Corter and Gigereezer also question the assumptions
that categories are disjoint and that features are indepen-
dent within categories. Again, these are assumptions that
we can begin to seriously explore in the environment. For
example, we have been studying how well our categoriza-
tion model applies to the various machine-learning data
bases that describe aspects of the environment (Anderson
& Matessa, submitted). The disjoint assumption seems to
be working in domains as diverse as predicting diseases
and classifying irises. The independence assumption re-
quires some more elaborate comment. It should be un-
derstood that the assumption is not that features are
independent globally but that they are independent only
within a category. Thus, there is nothing problematical
about Corter's bird example. Also, it is not the case, as
Gigerenzer implies, that the categorical model makes it
hard to capture dependence among features. In fact, it
creates separate categories specifically to capture such
dependences and, as Anderson and Matessa report, the
model has great success in utilizing such dependencies
for prediction.

Nonetheless, there is evidence for within-category
dependence as well. For example, in applying the model
to the classical iris data base of Fisher (1936) we find that
within specific species of irises there is a correlation
between sepal length, sepal width, petal length, and
petal width. This is presumably produced because we are
measuring four quantities that reflect one overall genetic
trait of size. Similarly, we would expect length of left and
right arms to be correlated in humans. Thus, the problem
is that even if the "true" features are independent, the
measurements we record for classification may not be. Of
course, none of this causes difficulties for the general
proposal of optimal categorization. Rather, it simply
means that we need to change our model of the environ-
ment. Note also that this is not a case of changing the
model of the environment to fit the behavioral data but
rather changing it to fit the environment. The rational
theory of human categorization is a function of the correct
theory of the environment.

Dickinson wonders about whether the iterative catego-
rization algorithm reflects a simplifying assumption for
purposes of prediction or whether it is taken as a serious
claim about a limitation on human categorization. It did
start out as a simplifying assumption to allow us to make
approximate estimates of the ideal quantity. However,
the more I have worked with it, the more I have become
convinced that it is a fundamental property of human
categorization and in fact optimal given the assumption
that there is a cost associated with each hypothesis consid-
ered. Right now I have no proof of optimality, but the
human data do show a key feature predicted by the
iterative algorithm and not the ideal: As discussed in
Anderson (1990), the categories that human subjects form
depend on the order in which they study the instances.

Causal Inference. The treatment of causal inference also
came in for some comment. Schultz asks about the co-
herence of the overall analysis. His remark about equa-
tion 10 that "the probability of a rule applying in the
presence of cues seems no less fundamental than the

probability of cues if the rule did apply" corresponds
precisely to my sentiments about the matter. Equation 10
is a rather awkward attempt to cast the basic Bayesian
insight that one's posterior confidence in a cause occur-
ring should be a combination of one's prior confidence
that the rule exists and how well the current situation fits
the rule. Perhaps a better way to cast it would be in terms
of an odds ratio formula:

P(i\C)Conji)
' Con(i) " P(i)

Here P(i\C)/P(i\C) is the posterior confidence,
Con(i)/Con(i) is the prior confidence, and either
P(C\i)IP(C) or P(i\C)/P(i) are measures of how well the
cues and the cause match up.1 P(C\i)/P(C) is a measure of
how much more probable the cues become over their
base frequency when the cause is operative and P(ijC)/P(i)
is a measure of how much more probable the cause is over
base frequency when the cues are present. Both ratios are
equivalent measures of how well the cues match the
rules. Cast in this form the relationship shows that P(i\C)
and P(C\i) can be thought of symmetrically. It better
reflects my own sense of what is going on and perhaps also
Shultz's.

Shultz argues that human's demonstrated neglect of
prior probabilities bodes poorly for a number of our
treatments, including the analysis of 2 X 2 contingency
tables. However, as argued in Anderson (1990), these
examples of neglecting the base rate actually reflect a
neglect of the stated probabilities and not of the experi-
enced proportions. People are in fact very sensitive to
experienced frequencies, as demonstrated in many do-
mains, including causal reasoning.

Shultz also points to a major incompleteness in the
rational treatment of causal inference which is that there
is no analysis of the development of the causal models
which underlie causal inference. When does the knowl-
edge develop that allows the differential analysis of the
situations in Figure 1? And can its development be given
a rational analysis? I wish I knew.

Smokier questions the treatment of causal inference as
unconscious. [See also Searle: "Consciousness, Explana-
tory Inversion, and Cognitive Science" BBS 13(4) 1990;
Velmans: "Is Human Information Processing Con-
scious?" BBS 14(4) 1991; and Dennett & Kinsbourne:
"Time and the Observer: The Where and When of
Consciousness in the Brain" BBS 15(2) 1992.] Rational
analysis has no commitments on the issue of con-
sciousness; it is concerned with constraints on the sys-
tem's output whether conscious or not. I have actually
been struck by demonstrations such as the classic ones of
Michotte (1946) in which causal inference does seem
automatic and unconscious. I suspect, however, that in
other cases it is quite reflective. A virtue of the current
approach is that it allows us to analyze both situations in
terms of constraints on output. This emphasis on output
leads to the focus on prediction to which both Smokier
and Shultz object. The analysis of the attribution with
respect to Figure 1 derives from a predictive analysis.
The basic assumption is that unpredictable things will
appear causally anomalous. It is possible, as Shultz sug-
gests, that we will have to treat attribution and prediction
differently. It is hard to identify what the adaptive func-
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tion of causal attribution might be if it is not in service of
prediction. With respect to Shultz's request that one
extend causal inference to planning: I think that is a major
accomplishment of my rational analysis of problem
solving.

I appreciate Geissler's equation for fitting the data in
Figure 2 and I think I understand most of it. Its point
seems to be that since the same parametric form of
equation fits the two situations, it is not that subjects are
adopting the optimal model in both cases. This is not the
only equation that can fit the data; I think different ones
can be produced for the two cases of causal attribution
which are justified by the different physical models. (This
will be further developed in later publications.)

More rational domains. I have certainly not exhausted the
domains where rationality can be demonstrated, and a
number of commentators have added examples of their
own: Faetino & Sfolarz-Fantieo show that given ade-
quate information subjects will not adopt a maximizing
strategy when it is nonoptimal. Massaro & Friedman
point out that human pattern recognition appears to be
optimal, as we would expect of such a deeply entrenched
cognitive function. Massaro & Friedman even point to an
adaptive treatment of the bothersome Linda-is-a-feminist
example.

irrational domains? Next we come to the question of
whether there are domains of cognition where humans
behave irrationally. Baron, Evans, Faefieo & Stolarz-
Fantino, Massaro & Friedman, Shafir, and Snow all
raise this as central points in their commentaries. They all
agree in pointing to the psychological domain of judg-
ment and decision making as the place to show human
irrationality. A number of the phenomena they mention
were addressed in Anderson (1990) but the topic deserves
some more discussion here. Before responding to some of
the more specific points it is worthwhile to make three
general points relevant to all of the commentaries.

(1) As noted by Evans, there are two senses of the term
"rational." One refers to cognition that involves what may
be called "rational thought," where this is defined by
some normative model. This is not the sense of the term
in a rational analysis. Here, the term is used in the
economist's sense, which is that the output of the system
is optimal and no claim is made about the mental pro-
cesses by which this output is computed. These two
senses need not be congruent; in particular, cognitive
processes which are judged irrational by some normative
model might still lead to the right behavior.

Many of the purported demonstrations of irrationality
pertain to the first sense of the term. It is no accident that
these studies tend to come from domains of judgment and
decision making where such normative models, often of
dubious applicability, abound. [See Cohen: "Can Human
Irrationality Be Demonstrated" BBS 4(3) 1981; and
Kyburg: "Rational Belief BBS 6(2) 1983.]

Anderson (1990) enumerates some of the ways in which
rationality in the first sense might not be rationality in the
second sense. The central point is that we cannot know
whether a behavior in the laboratory is adaptive in the
second sense by applying a priori normative criteria. The
only way to decide is to determine what the consequences
of that behavior are in the real world (Funder 1987). A

person may choose to do something for the wrong reason
but it is possible that this will turn out to lead to the best
consequences. It is an empirical question not a logical
one, whether an action leads to good or bad conse-
quences. My favorite example involves demonstrations
that subjects do not pay attention to stated base rates: A
minimal condition for this to be irrational is that the stated
probabilities be veridical in the real world. Stated proba-
bilities are definitely not veridical in the real world. For
example, it was only a few years ago that we were told that
there was a 1 in 100 chance of developing full blown AIDS
if one tested positive for the HIV virus. It is also interest-
ing that, in contrast to stated probabilities, categorization
and causal inference task performance shows consider-
able sensitivity to the base rates with which the categories
and causes are experienced.

(2) We have to factor in computational costs before
deciding what is and is not rational. A perfect game of
chess is the rational behavior given the rules of chess but
it is clearly impossible given the impossibility of search-
ing the whole game tree in real time. More will be said
about mechanism in a later section.

(3) Finally, there clearly has to be something irrational
in human behavior by the adaptive definition. No one can
look at our current predicament - with huge stockpiles of
nuclear weapons and so forth - and say that all human
behavior Is currently adaptive in the biological sense. It is
quite a different matter, however, ascertaining where the
difficulty lies. I am torn among three types of explana-
tions. The first Is that our behavior Is adaptive for an
environment other than the one we find ourselves in.
This may be an explanation of the problems brought on by
modern technology. In the target article I also adopted
this as an explanation for some of the nonoptimal behavior
associated with the matching law. A second explanation is
that, while many of our basic cognitive functions are
optimized from their own myopic view of the world, the
system as a whole might not be optimized. This may
either be because It Is too expensive computationally to
achieve such global coordination or because we simply
have this failure to optimize globally as a weakness. A
third explanation Is that our cognitive machinery may just
have some nonoptimalities. I view the absence of an
adequate short term buffer as a prime candidate for such a
nonoptimality. The rational analysis of memory con-
cerned what would be optimal In the absence of such a
buffer. As noted in the target article, rational analysis
asks what Is optimal given certain constraints. It is in-
teresting to the extent that these constraints are few and
simple.

Baron's commentary is a nice presentation of some of
the issues Involved In deciding rationality. Just as he finds
himself half agreeing with me, I find myself half agreeing
with him. For reasons enumerated above, I do not agree
that most of the experiments he cites adequately establish
the conditions to demonstrate irrationality in the adaptive
sense. A brief comment is needed on his questioning the
measure of adaptation in number of offspring: I am not
advancing this equation as a moral imperative, only as an
acknowledgement of the underlying mechanism that is
supposed to produce evolutionary optimization. There
may be better personal arguments for optimizing money,
the happiness of oneself and others, or any other goal. It is
just that these goals do not produce optimization of the
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species. (Of course, there are serious questions about just
how much optimization of the species even this
produces.)

Evans raises the question of how the system can per-
form the complex computations required to determine
the optimal behavior. He also provides the answer: The
system can have stored the solutions to these problems
based on personal or evolutionary experience.

It is not reasonable to go through every purported
example of irrationality cited in the commentaries, but it
is worthwhile to address a couple - discussions of others
can be found in Anderson (1990). Faetlno & Stolarz-
Fantieo and Massaro & Friedman both bring up Kahn-
eman and Tversky's feminist bank teller as an example of
irrational behavior. The basic result is that people think
representative conjunctions of events are more probable
than any of the the components being conjoined. Al-
though I do not claim to have any insights into the
phenomenon, nor do I want to deny its importance, it
seems a paradigm case of a frequently cited example that
is irrelevant to the thesis of rationality as developed here.
What does the verbal exercise of assigning probability
values have to do with adaptive behavior? People may
assign a higher probability to Becker's winning a tennis
tournament than to his winning a particular match in the
tournament but I haven't heard of any betting establish-
ment getting customers to take poorer odds on the con-
junction than the individual events.

As a second example of a behavior that might seem to
be of more direct adaptive significance, consider the
Kahneman and Tversky (1984) example cited by Shafir
where people are more willing to drive to a store to save
$5 on a $15 calculator than on a $125 calculator. As an
aside, I note that this experiment did not actually require
subjects to drive but rather took hypothetical verbal
responses, but let us assume that the result actually
reflects what people will do. Although this is an inconsis-
tency, it is far from obvious it is maladaptive. Is it
maladaptive to drive for the $5 savings in the $15 case? Or
is it maladaptive not to drive for $5 savings in the $125
case? I assume it is not clear to the reader whether either
decision is right or wrong since it is not clear whether $5 is
worth the drive. Inconsistent choices among decisions
that do not have a clear consequence cannot have mal-
adaptive consequences. As discussed in Anderson (1990)
at length, this seems characteristic of all the demonstra-
tions of an effect of "framing" on choice (these effects
occur when there is not a choice that is clearly correct).
This is not to say that this research is not important; it is
just irrelevant to rationality of cognition in the sense of
rational analysis.

Mechanism and rational analysis. Rational analysis is
offered as a theoretical approach to cognition that con-
trasts with the typical mechanistic approaches of cog-
nitive science. However, as noted in the target article, it
does require some assumptions about mechanism to
establish the costs and define the constraints under which
optimization takes place. The relationship between
mechanism and rational analysis came in for considerable
comment. I did not recognize any single recurrent
theme, but there were a number of useful points:

Agarwal asserts that in engineering, any attempt to
understand behavior that did not start with mechanism

Response/Anderson: Is human cognition adaptive?

would be dismissed. Yet there are many successful efforts
to understand behavior in natural systems that do start
from the environment and largely ignore mechanism
(Stephens & Krebs 1986). So perhaps we have a dif-
ference between disciplines. Part of the reason may be
that evolution has had a lot longer to optimize the mecha-
nisms than engineers have had. Also, modeling random
number generation is not one of the tasks that psychol-
ogists find themselves called upon to perform. Note,
however, that I am not "ignoring the nature and history of
the system" as Agarwal suggests. The history of the
system is the central story in my analyses. The nature of
the system is downplayed but not ignored.

Campbell & Bickarcl argue that the analysis depends
on a lot of assumptions in the ACT* theory about how
knowledge is encoded. Their discussion about "en-
codingism" raises enough issues to constitute an article in
itself, but for present purposes it is enough to note that
their basic premise seems to be off the mark. The rational
analysis, while it does implicitly assume some things from
ACT*, does not require anything like the detail of com-
mitment to ACT* representational assumptions these
commentators imply. Indeed, one of the motivations for
the rational analysis was to retreat from the representa-
tional assumptions in ACT*. Elsewhere (Anderson 1978;
1987) I have discussed my dissatisfaction with these
representational assumptions. My problems with repre-
sentation are problems of identifiability, not with the
problem Campbell & Bickard raise. It is unclear whether
there is anything in the rational analysis which would be
inconsistent with their alternative proposal of "interac-
tive representation."

Holyoak notes that choices about how to represent an
event can determine what the predictions are. In particu-
lar, predictions of the memory, categorization, and causal
models are subject to how the events are decomposed
into elements or features. Note that such decomposition
assumptions are very weak relative to the detail of the
ACT* representational assumptions. I suspect that they
are less vulnerable to problems of identifiability. Evi-
dence for this lies in Holyoak's observation that dif-
ferences in representational choices at this level have
natural behavioral consequences - specifically, you can-
not predict features you do not represent.

Such weak representational assumptions exemplify
what I would like to find throughout with respect to
mechanism. It is not that I have some aversion to assump-
tions of mechanism. It is rather that I have never been
totally comfortable about mechanistic assumptions that
suffer identifiability problems. What I would like to do is
to find a level of mechanistic abstraction that does not
have this difficulty. Thus, I do not agree with Massaro &
Friedman that process assumptions such as "it costs
something to consider a memory" have identifiability
problems within a rational framework. That is to say, I do
not think that, given a fixed environmental model, one
can get the same predictions by optimizing within some
alternative mechanistic assumptions that deny the exis-
tence of a cost associated with considering a memory. I
have no proof of this conjecture and it would only take a
single counter-example to prove me wrong. However,
my belief is that rational analysis encourages a level of
abstraction in mechanistic assumption that avoids identi-
fiability problems. [See also Schoemaker: "The Quest for
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Optimality: A Positive Heuristic of Science?" BBS 14(2)
1991.]

In a somewhat different vein, Godfrey-Smith, Macti-
lin, and Smokier all complain about the use of internal
costs as vague and pale in comparison to external costs.
Internal costs are quite undeniable, however, and poten-
tially quite dramatic. The perfect example is searching
the chess game tree to find the best move. No one can do
this, no matter what external reward hangs on their chess
play - there are just not enough seconds in the universe,
let alone a lifetime. In this situation, the internal costs can
be overwhelming. Chess is not an isolated example.
Whenever we are dealing with the knowledge built up in
a lifetime (as we are in memory, categorization, causal
inference, and problem solving), the costs of exhaustively
considering the implications of that knowledge must be
overwhelming and we can be sure any optimal system
would pay serious heed to the costs of combing through
this knowledge base. It is true that the rational analysis
does not go into great detail about how these internal
costs make themselves felt, but I consider such abstrac-
tion a virtue.

There is indeed something special about external cost
and reward and in this sense the rational analysis of
problem solving is critical. The considerations about
memory, categorization, and causal inference all have the
goal of getting successful problem-solving behavior
where all these mounting internal costs get paid back with
some reward. Again, I prefer to think of such external
rewards abstractly in terms of utility. Rachlin is wrong in
claiming that we need some observable quantity like
money. An abstract quantity like utility can be given a
rigorous analysis (e.g., DeGroot 1970).

Chandrasekarae is interested in what constraints a
rational analysis may impose on mechanism. He argues
that it only implies constraints on the content and not on
the structure of the mechanism. I am inclined to agree,
and see the classification net as just the realization of a
particular content given the constraint of a connectionist
net. The rational analysis specified the content, not the
use of the net. I also agree with Schultz that rational
analysis underconstrains mechanistic accounts, but this is
not necessarily a liability.

Tsotsos is a computer scientist who seems to be making
a claim that is opposite to Chaedrasekarae's. He claims
that there are all kinds of mechanistic constraints on
optimization. An inspection of his list, however, reveals
that these limitations are very general and would apply to
a large variety of machines. For example, going to con-
nectionist systems would offer no help here. Rather, his
computational limits are constraints imposed by the log-
ical content of the problem. I can only assume that
Tsotsos has misunderstood my point, as I find myself
quite in agreement with his. I did not deny that computa-
tional limitations pose a problem; rather, I said assump-
tions about mechanism (e.g., serial versus parallel pro-
cessing) have not determined the predictions of the
theory. With respect to his remarks about how NP-
completeness can have a dramatic effect, the rational
theory of categorization is a response to what I suspect is
an NP-complete problem. Again, discussions of al-
gorithms at this level of abstraction is more comfortable
than the excessive specificity that has dominated cog-

nitive science. As a final comment, Tsotsos's examples are
all counters to Holyoak's claim that different assumptions
about mechanism can change what is difficult.

Small asserts that an enterprise in cognitive science is
to be judged by whether it leads us to understand mecha-
nism. Here I simply disagree. One should be willing to
take insight from wherever it comes. Small argues that
cognitive scientists are not just interested in outputs of
cognition and then cites a number of examples. His
notion of output is very different from mine because I
would consider all his examples as studies of the output of
the cognitive system. How is interpreting a scene differ-
ent from retrieving a memory in this respect? In both
cases we are studying the output of an internal process
and in both cases an adaptionist approach would analyze
this process in terms of its ultimate contribution to exter-
nal adaptation.

Small further claims that a rational analysis cannot
explain maladaptive and pathological behaviors produced
by lesions or neurochemical imbalance. Those, he ar-
gues, are data that require mechanistic explanations. I
agree that pathology cannot be given a useful adaptionist
explanation. This was never the goal of a rational analysis.
Neuroscience is the way to go there. I have also claimed
(Anderson 1978; 1987) that neuroscience offers the pros-
pect of avoiding the identifiability problems that haunt
behavioral data. However, the rate of progress by the
neural route seems slow and behavioral data are fascinat-
ing in their own right.

Methodology. Finally there are the commentaries con-
cerned with various aspects of the theoretical methodo-
logy:

Snow wonders about the strength of my tests of the
rationality thesis. He thinks the tasks were made for a
rational analysis and the assumption of local optimization
allows a convenient escape hatch should things get diffi-
cult. All I can do in response is to point to the commen-
taries which were impressed by the range of data that the
model fit. Snow also concludes that issues of optimization
may be unresolvable. All I can say is that I hope not, and
time will tell.

Massaro & Friedman suggest that gathering more data
may eliminate identifiability problems, but, as developed
at length in Anderson (1990), as long as we restrict
ourselves to behavioral data, no amount of data will
eliminate these problems.

Godfrey-Smith takes issue with my refusal to commit
myself to the biological processes by which the optimality
is generated. In his view, such an analysis is not explana-
tory. In my view, this is a paradigm case of the arbitrary
use of the term "explanatory": To think one could estab-
lish to everyone's satisfaction that these cognitive func-
tions were optimized to the environment and then have
such an amazing result simply shrugged off as not "ex-
planatory"! To be sure, it would be better to have a
detailed analysis of the genesis of this optimization. Per-
haps when we better determine where optimization ex-
ists and what form it takes we can begin to explore the
question of its genesis. Trying to reconstruct the evolu-
tion of our cognitive faculties is extremely difficult and
perhaps impossible. This should not stop us from trying to
determine whether they have reached optimal form. [See
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also Clark: "Modeling Behavioral Adaptation" BBS 14(1)
1991.]

GIgerenzer and Hastie & Hammond comment on the
similarities and differences between this program and
that of Brunswik. I think the similarities are quite strong
and am inclined to agree with Hastie & Hammond's
assessment that rational analysis is quite in keeping with
the spirit of Branswik's work. They are a little bothered
(and Gigerenzer is very much bothered) by the difference
between the linear regression methodology associated
with Brunswik and the Bayesian statistical inference I
used. The differences are more apparent than real, how-
ever. First, general linear models have a very coherent
development within the Bayesian framework (Box & Tiao
1973). Bayesian methodology was chosen because it is
designed to determine optimal decisions under uncer-
tainty. As noted in my comments under categorization,
the Bayesian models do not require independence to
work, nor does the rational model of categorization pro-
duce independence. A possible difference between ration-
al analysis and Brunswik's analysis is the potential role a
Bayesian model allows for priors. If one had only weak pri-
ors then Bayesian analysis would proceed indistinguish-
ably from conventional linear regression. However, in the
presence of strong priors the conclusions can be quite dif-
ferent. Another difference is that rational analysis places
no premium on representative design; it only requires that
when you design an experiment you do not delude yourself
into believing it is representative of the world.

My view of the priors in the Bayesian model is that they
incorporate the experience from the evolutionary and
personal history of the individual. Thus, if the system has
a prior that a new species of mammal will be brown this is
basically a reflection of frequency in experience. The basis
of the model is hence more frequentist than one might
assume. Indeed, one might consider my application of
Bayesian models to exemplify a methodology known as
"empirical Bayes" which some Bayesians dismiss as not
truly Bayesian (Lee 1989). Although it uses the tools of
Bayesian analysis, it is not committed to interpreting the
probabilities as subjective. I use Bayesian methods for
their technical virtues; I do not feel prepared to judge the
statistical debates that separate the Bayesians and fre-
quentists. I think this places in a somewhat different light
the comments of Gregsoe, Schwarz9 and Smokier, which
are addressed at the Bayesian aspects of my work.

With respect to Cregson's comments, it is worth em-
phasizing again that I regard the question of how people
process stated probabilities as totally irrelevant to the
question of whether their cognitive system can be under-
stood as responding optimally in a Bayesian sense to
experienced probabilities. Thus, the evidence about the
non-Bayesian character of probability judgments is irrele-
vant. One may or may not be able to give a rational
analysis of these probability judgments. To do so would
require specifying the goal people are trying to optimize
in making these judgments, the relevant statistical struc-
ture of the environment in which they make these judg-
ments, and the potential computational costs. Such an
analysis would apparently be very different from typical
normative analyses of probability judgments: People's
goals are surely not to appear as good Bayesians; stated
probabilities cannot be taken at face value in the real

world, and there are surely some significant computa-
tional costs.

Schwarz's comments on the probability developments
are those of an unrepentant frequentist. There is much
more to Bayesian analysis than he suggests. Specifically,
in contrast to his quote from Feller (1968), one can speak
of probabilities without specifying a sample space. As to
whether I am a frequentist or a Bayesian, I leave that for
the future to decide.

In a rather different vein, de Sousa's comments on
actually pinning down the relevant structure of the en-
vironment identify some important issues. He points out
that the environment in which an individual finds itself is
somewhat a function of the individual - because only
certain parts can be sensed, because only certain aspects
are relevant, and because we in part design our environ-
ment. This does not introduce circularity into the project
but it could certainly make it quite a bit more difficult.
Whether or not it actually does remains to be seen.
Contrary to de Sousa, I regard our treatment of the
environment as an analytic success that has avoided such
pitfalls.

I would like to conclude this Response with a final word
on Rachlin's curious commentary, in which he seems to
be asking me to admit to being a behaviorist and throw off
my mentalist shackles. I have always felt that something
was lost when the cognitive revolution abandoned behav-
iorism; my work on rational analysis can be viewed as an
attempt to recover that. In doing this, however, I do not
want to lose the cognitive insight that there is a mind
between the environment and behavior. What I am
trying to do is to regain the insight that the mind exists to
support adaptive behavior.

NOTE
1. This formula is only an approximation because it involves

replacing P(C\i) with P(C). The argument is that the base
probability of the cues C does not change much when we
conditionalize on the nonapplicability of a single rule i.
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