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Infﬁ:ence of Stimulus and Context in Perception
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Empirical results from both reading and speech perception indicate that snn}—
ulus and context information have independent influences on perceptual recogni-
tion. Massaro (1989) argued that these data are inconsistent with an interactive
activation and competition (IAC) model (McClelland & Rumelhart, 1981), and
consistent with the fuzzy logical model of perception (FLMP) (Massaro, 1979;
1989). McClelland (1991) then modified the interactive activation model to be
stochastic rather than deterministic and to use a best one wins (BOW) decision
rule, allowing it to predict independent influences of stimulus and context. When
tested against real data, however, the network proposed by McClelland and ex-
tended by us gives a poorer description of actual empirical results than the FLMP.
To account for the dynamics of information processing, the SIAC model, an
interactive model based on the Boltzmann machine, and the FLMP are formulated
to make quantitative predictions of performance as a function of processing time.

It is shown that the dynamic FLMP provides a better description of the time
course of perceptual processing than does interactive activation. The SIAC and
Boltzmann models have difficulty predicting 1) context effects given little pro-
cessing time and 2) a strong stimulus influence given substantial processing time.
Finally, we demonstrate that the FLMP predicts that context can improve the
accuracy of performance, in addition to providing a bias to respond with the
alternative supported by context. In summary, there is now both empirical and
theoretical evidence in favor of the FLMP over SIAC models of pattern recogni-
tion. We therefore argue that interactive activation is both less consistent with
empirical results and not necessary to describe the joint influence of stimulus and
" context in language perception. © 1991 Academic Press, Inc.

INTRODUCTION

Psychologists have long been intrigued with the finding that context
appears to influence perception. The same stimulus information in differ-
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ent contexts can produce different perceptual events. In reading, Cattell
(1886) demonstrated that readers could recognize more letters when they
formed words than when they were randomly sequenced. In speech per-
ception, studies showed that a sentence context facilitated recognition of
a spoken word (Bagley, 1900). A recent example of a context effect in
psycholinguistic research is the influence of phonological constraints in
speech perception (Massaro, 1989). Each test stimulus was a consonant
cluster syllable beginning with one of the three consonants Ipl, It/, or Is/
followed by a glide consonant ranging (in five levels) from /I/ to /rl, fol-
lowed by the vowel /i/. There were 15 test stimuli created from the fac-
torial combination of the three initial-consonant contexts times the five
levels of the glide consonant. Subjects who were instructed to listen to
each test syllable and to respond whether they heard /I/ or v/, were in-
fluenced by both the glide consonant and the context.

Two models of these phonological context effects are the fuzzy logical
model of perception (FLMP) (Massaro, 1989) and the TRACE model
(Elman & McClelland, 1986; McClelland & Elman, 1986). Both models
provide a detailed description of the integration of top-down and bottom-
up sources of information in speech perception. These two models share
a variety of processing assumptions and make highly similar predictions.
They are information-processing models and assume some perceptual
processing followed by decision. Continuous, not just categorical, infor-
mation is available during perceptual processing and at the decision stage.
Both the original interactive activation and competition (IAC) models and
the FLMP assumed decision rule based on the relative goodness of
match. These similarities and others (Massaro, 1987, 1988; Massaro &
Cohen, 1987; McClelland, 1991) are responsible for similar predictions in
most situations. Thus, differentiating between the models requires a fine-
grained analysis of experiments specifically aimed at testing between the
models.

It is important to analyze both performance and models of performance
in terms of stages—sequential algorithms or equations specifying process-
ing between stimulus input and response output (Massaro & Friedman,
1990). Even if they are only implicit, models of pattern recognition nec-
essarily distinguish between evaluation of the available sources of infor-
mation and integration of these sources. In the TRACE model, bottom-up
stimulus information is evaluated at the feature level, whereas the pho-
neme level allows for the integration of information from the feature level
and the word level. Consider recognition of the glide in a stop-consonant
glide syllable, such as /pli/. The acoustic information about the stop is
evaluated at the featural level and activates phonemes and words in mem-
ory. The same is true for the glide. These two activation processes over-
lap in time and interact with one another. Most importantly, the featural
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information (degree of activation) passed on to integration at the phoneme
level changes with the consonant context. Similarly, the top-down acti-
vation due to context depends on the featural information from the glide.
That is, in the TRACE model, the evaluation (representation) of each
source of information is influenced by the processing of the other source
of information. The acoustic information about the glide is evaluated
differently at the featural level as a function of the nature of the initial
consonant and its processing and vice versa. ,

Using a signal detection framework, Massaro (1989) demonstrated that
the TRACE model predicts sensitivity differences in the phonological
constraints experiment—rather than just bias differences. In TRACE,
context influences the discriminability of the stimulus information spec-
ifying or representing the glide consonant. The discrimination of two
adjacent levels along the /li/-/ri/ continuum differs for different contexts.
In Massaro’s experiment, the effect of phonological context turned out to
be only a biasing effect rather than an effect on sensitivity, thus contra-
dicting the predictions of the TRACE model. On the other hand, the
results were well-described by a fuzzy logical model of perception
(FLMP)—whose distinguishing feature (relative to TRACE) is indepen-
dence of stimulus information and context at the evaluation stage of pro-
cessing. When analyzed in the signal detection framework, the FLMP
correctly predicts that context in the phonological constraints experiment
should influence only bias and not sensitivity.

Note on Bias versus Sensitivity Effects

Although the signal detection framework is valuable, it can be some-
what misleading to describe the possible outcomes of an identification
task as sensitivity and bias. Strictly speaking, sensitivity is used here to
refer to the representation of the stimulus featural information, not to any
arbitrary measure of performance. Bias is used to describe any influence
of context that does not result from a change in the representation of the
featural information about the glide. Interactive activation predicts that
the initial-consonant context influences the representation of the featural
information about the glide whereas the FLMP does not (Massaro, 1989).
Both models can predict that an additional source of information can
influence performance, such as making it more orderly and accurate.

According to the FLMP, the effects of stimulus information and con-
text are symmetrical. Context can bias the response to stimulus informa-
tion or stimulus information can bias the response to context. This mutual
influence or bias is more apparent in McClelland’s (1991, Fig. 4) plots of
the z-score transformations of the percentage judgments than in Massa-
ro’s (1989) plots of z-score differences along the stimulus continuum.
Thus, it is just as accurate to describe the influence of stimulus informa-
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tion on the effect of context as a bias effect as it is to use bias to describe
the influence of context on the effect of stimulus information.

In the FLMP, stimulus information and context function as two inde-
pendent sources of information at evaluation. Each biases the response
given in the presence of the other source of information. However, as will
be illustrated in the derivation of the FLMP, two sources of information
can be more informative than just one. In this manner, the FLMP also
predicts sensitivity effects at the outcome of the integration of the two
sources of information. That is, the combination of stimulus information
and context can produce more accurate performance than produced by
either source presented alone.

Revised Interactive Activation Models

McClelland (1991) placed the blame for TRACE’s failure to predict
Massaro’s results on the decision stage of the model rather than on in-
teractive activation during the evaluation stage. By adding noise to the
input or to its processing, and by assuming a decision rule of choosing the
response alternative corresponding to the most active phoneme unit, the
predictions of a new stochastic IAC (SIAC) model and TRACE were
brought into line with a biasing effect of context. Thus, the new TRACE
appeared to be consistent with the empirical observations (and the pre-
dictions of the FLMP). According to McClelland, while TRACE and the
FLMP are equally able to capture the observed data, TRACE and inter-
active activation models in general are to be preferred because they ac-
count for the increase in accuracy given context, the mutual influence of
the multiple parts (source of information) of a pattern, and the dynamics

‘of information processing, whereas the FLMP does not. We dispute these

claims in the present paper.

At this point, we should emphasize our agreement with McClelland’s
acknowledgment that the critical point is the falsification of interactivity
itself—bidirectional propagation of information—rather than just some
specific model implementing it. If the assumption of interactivity is falsi-
fied, ‘‘the whole idea that perception involves a bidirectional flow of
information would be ruled out’ (McClelland, 1991, p. 3). Even so, the
investigator is limited to testing various implementations of interactive
activation models—a daunting task given the intensive computation that
is required. When several implementations are shown to be inadequate,
however, doubt begins to be cast on the underlying theory, at least until
its proponents uncover an adequate version.

McClelland (1991) appears to take the following tack in his modification
of the interactive activation model. Given the empirical results showing
the independence of bottom-up and top-down information in z-score
transformations of the percentage of identification judgments, the qﬁes-
tion is whether IAC models predict similar functions. He observes how
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'the nonlinear activation process and interactive activation violate‘ t.hlS
prediction when a relative goodness rule (RGR) is used at the decision
stage. Since independence is the correct rc.?sult, he deyeloped a new al-
gorithm to produce it. Making the interactive processing stochastic and
using a best one wins (BOW) decision rule was sqﬂiclent for the new
model to simulate the pattern of data predicted by independence of top
down and bottom-up information. These properties of the new _moc!el,
however, cancel any unique effects produced by the interactive agtlvatlon
algorithm (Massaro & Cohen, 1989). Thus, the new SIAC model is able to
make independence predictions even though the processing produced by
the interactive activation algorithm is fundamentally nonindependent at
the evaluation stage of processing. Moreover, although McClelland ar-
gues that the interactive processing is valuable for predicting the time
course of processing, he has not demonstrated:-this for the new interactive
activation model by actually fitting it to experimental results.

We accept McClelland’s demonstration that SIAC models can now
produce the asymptotic pattern of data predicted by independence. How-
ever, we question whether the proposed SIAC network can easily de-
scribe actual empirical results. In the present paper, we test the new
SIAC model using several different data sets. In the first section, we
compare its asymptotic predictions with those of the FLMP, using the
results of a phonological experiment by Massaro and Cohen (1983). We
find that the empirical tests of the SIAC models require immense com-
puter resources and time and, in several instances, provide less adequate
descriptions of the results than does the more parsimonious FLMP. The
FLMP consistently produces a better fit than a variety of SIAC models.
We also compare the asymptotic activations predicted by the SIAC model
to the corresponding truth values predicted by the FLMP. We contrast
the nonlinearity of the SIAC activations with the linear truth values of the
FLMP, and explain why the nonlinear activations are problematic. In the
second section, we extend the SIAC mode! and the FLMP to describe the
dynamics of perceptual processing and contrast their predictions for data
from a backward masking experiment by Massaro (1979). The FLMP
describes the time course of processing more accurately than a corre-
sponding SIAC model. A model based on the Boltzmann machine was
also tested because McClelland (1991) proved that this model predicts
independence at equilibrium. We have found, however, that the Boltz-
mann machine fails to predict the dynamics of information processing, in
much the same way as SIAC models. In the final section, we show that
the FLMP also predicts the word superiority effect and the dynamics of
context effects in a Reicher-Wheeler task.

PREDICTING ASYMPTOTIC BEHAVIOR
Different traditions have emerged in computer simulations and mathe-
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matical models. Given a closed mathematical expression for a model, it is
straightforward to test it against actual results by deriving quantitative
predictions using parameter estimation. In simulations of models without
closed expressions, as in the SIAC model, fitting the model to actual
results is not carried out because it would be difficult and tedious. Con-
sistent with the simulation approach, McClelland demonstrated that a
SIAC model could predict response functions with similar shapes to those
observed in experimentation. At the level of simulation, therefore, both
the SIAC and the FLMP are qualitatively consistent with the independent
influences of stimulus information and context. Nevertheless, the two
models might not be equally descriptive of actual empirical results; this
can only be determined by quantitative comparisons against real data. In
this section, we use model fitting techniques to test the two models
against results showing top-down effects of phonological constraints.

The ““new’’ data that we will now consider came from a study inves-
tigating the role of phonological constraints in speech perception (Mas-
saro & Cohen, 1983). Relative to the Massaro (1989) experiment, Massaro
and Cohen (1983) tested a larger number of experimental conditions and
recorded more observations per condition. The results should, therefore,
provide more sensitive and reliable tests among the models. In Experi-
ment 2 of that article we presented subjects with CCV syllables with the
first consonant being /p/, /t/, /s/, or /v/, the second consonant being one of
seven glides equally spaced on a continuum between /I/ and /r/, and with
the vowel /i/. The glide was changed from /I/ to /r/ by changing its initial
third formant (F;) frequency from high to low. Seven subjects from an
introductory psychology class were each presented with each of the 28
possible experimental conditions (4 context times 7 glide) 40 times in four
sessions run over a two-day period. Subjects made their responses by
pressing one of eight buttons combining context and glide identifications,
but we will concern ourselves mainly with the data pertaining to glide
identification, except to note that subjects were 95% correct in context
identification. Readers are referred to the original paper for further details
of the stimuli and procedures. Figure 1 shows the proportion of observed
/r/ identifications for the 28 experimental conditions averaged over the
seven subjects. The effects of context and glide level were highly signif-
icant, with each independent variable having its largest effect when the
other was most ambiguous.

SIAC Model with Input Noise

We begin with the SIAC model with noise added to the stimulus inputs.
The network we used, shown in Fig. 2, assumes three layers of units:
Target, Context, and Word. All units within the Context layer are bidi-
rectionally connected to all units within the Word layer. Similarly, all
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F1c. 1. Observed probability of an r response as a function of the glide F, onset level and
context (after Massaro & Cohen, Experiment 2, 1983).

units within the Target layer are bidirectionally connected to all units
within the Word layer. This network is identical to that used by McClel-
land (1991, Fig. 5), except that an additional context unit for /vl is added.
In Fig. 2, only the excitatory connections (which are bidirectional be-
tween each pair of units) are shown. Within each layer, each unit sends
inhibitory connections to all other units. Given a stimulus presentation,
external inputs, ext;, are applied to the Context and Target units. External
inputs are values representing the stimulus input to the respective units.
These units pass on activation to units in the Word layer, which in turn

woro \

/

) AR

FiG. 2. Network used in the simulation of the IAC model applied to the phonological
constraints experiment of Massaro and Cohen (1983). The inhibitory connections between
units within the word, context, and target levels are not shown in the network.
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pass on activation back to the Context and Target units. Processing con-
tinues in this manner for a number of cycles. Note that there are no word
units for /vl/ or /vr/, because no words with these consonant clusters in
initial position occur in English.

The formal algorithm of the SIAC model is as follows (McClelland &
Rumelhart, 1988). Initially, for each unit, i, its activation, act,, is set to the
resting level, rest. Then, on each computational cycle of the model for
each unit, i, the excitatory input, exc; and inhibitory input, inh;, are
computed from the product of the sending units and path weights as
follows:

exc; = 2 max(0,wy) X max(0,act)) (1
J

inh; = 2 min(0,w;) X max(0,act)) (2)
J

where w;; is the weight from unit j to unit i. All weights w;; are either +1
or —1, so that Eq. 1 adds up all the activations on positive pathways and
Eq. 2 adds up all the activations on negative pathways. Activations less
than 0 are ignored in these summations. Next, for each unit, i, the
summed net input, net; is computed from the weighted sum of exc;, inh;,
and external inputs, ext;:

net; = a X exc; + y X inh; + estr X ext; 3)

where « is the weight on excitatory connections, vy is the weight on in-
hibitory connections, and estr is the weight on external inputs. Next, the
change of activation for each unit for the upcoming cycle, Aact;, is com-
puted as:

if net; > 0, Aact;

net{M — act) — decay(act; — rest) 4
if net; < 0, Aact;

netf{act; — m) — decay(act; — rest) 5)

where M is the maximum allowed activation, m is the minimum allowed
activation, and decay is the rate at which each unit returns to resting
state. Then each acy; is adjusted by adding Aact;:

act; = act; + Aact; (6)

Finally, each act; is adjusted, if necessary, to remain in the interval m
to M:

if act; > M, act, = M @)
m ®

McClelland (1991) used the SIAC model with the following set of control

if act; < m, act;
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parameters: estr = .1, 0 = .1,y = .1, decay = I, M =1, m= -2,
and rest = .1. In the network, the effects of stimulus and context are
combined via the units in the word layer. The activations of Word units
are fed back to the Target and Context units, changing their activations in
a manner that reflects the activations of both Target and Context units. In
this manner, the joint effect of Target and Context are represented in the
activations of units in both the Target and Context layers. The activations
of the R and L Target units after 60 cycles of processing were used as
inputs to the BOW decision rule.

The SIAC model was fit to the observed data using the program
STEPIT (Chandler, 1969). Fits were obtained for the seven individual
subjects. A model is represented to the analysis program STEPIT as a set
of prediction equations or an algorithm for generating the model’s pre-
dictions. In both cases, the model has a set of unknown parameters.
These free parameters are first set at some starting value and a set of
predictions is made with these values. A measure of goodness of fit is
computed. Then the parameters are changed and another set of predic-
tions and another measure of goodness of fit are computed. By comparing
the measures of goodness of fit, iteratively adjusting the parameters of the
model, and using a modified direct search technique, STEPIT minimizes
the sum of squared deviations between the observed and predicted val-
ues. Thus, STEPIT finds the set of parameter values which allow the
model to predict the observed data most closely.

For the SIAC model, the estimated parameters were four external ac-
tivation values for the four possible contexts and seven external activa-
tions for the /r/ target. Following McClelland (1991), only the external
activation for the node corresponding to the actual context was made
nonzero, and the L Target unit received an activation value which was the
additive complement of that received by the R Target unit. This gives a
total of 11 parameters. In our preliminary fits of the model, several other
parameters of the model (estr, alpha, gamma, and decay) were set to .1
and the standard deviation of the input noise used was set to .14142, since
these were the values assumed by McClelland (1991).

McClelland (1991) used 10,000 simulated trials in his simulation of the
SIAC model under a given set of input conditions (i.e., a given level along
the /r/-/l/ continuum and a given context). Although this assumption is
reasonable for determining asymptotic predictions, it is difficult to imple-
ment and somewhat unrealistic when the model is applied to experimental
results. It is difficult to implement because 10,000 simulated trials require
an immense amount of computer time and this number of simulated trials
must be carried out for each set of parameters during the parameter
estimation process. A large number of simulated trials is also somewhat
unrealistic because subjects in Massaro and Cohen’s (1983) Experiment 2
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were tested for just 40 trials per condition. In terms of the SIAC model,
eagh subject had just 40 opportunities to sample the activations of the
units associated with each response alternative under each experimental
condition. Because we might expect the goodness of the fit of the pre-
dicted results to differ depending on the number of observations, it is
reasonable to allow the SIAC model the same number of trials to compare
with the observed results. We will, however, also explore how the models
behave as the number of simulated trials is varied.

‘The computation of the model predictions began by setting the 28 pre-
d!c_ted probabilities of /r/ response given the 7 glide times 4 context con-
ditions to 0 and resetting the random number generator. Then for each of
tl.xe 28 experimental conditions, 40 simulated trials occurred. On each
simulated trial, random deviates from a normal (Gaussian) distribution
computed by the Box-Muller method (Press, Flannery, Teukolsky, &
Vetterling, 1988) with a standard deviation of .14142 were added to each
of the current pair of external input parameters (for context and target).
Then the IAC algorithm (McClelland & Rumelhart, 1988) was run to
compute the target activations after 60 time cycles. If the final activation
of the /r/ target node was greater than or equal to the final activation of the
I/ target node, then 1/40 was added to the predicted probability of an /r/
response. In order for the parameter estimation routine to operate prop-
erly and converge on an optimal fit of the results, it was necessary to
em.ploy the same sequence of random numbers on each overall compu-
tation run. (If this had not been done, the parameter values would not
have a reliable effect on the predictions, and STEPIT would spuriously
accept or reject parameter value modifications.) This allowed STEPIT to
make reliable adjustments in the parameter values, even though noise was
being added to the input.

The central IAC subroutine from McClelland and Rumelhart (1988) was
recoded in FORTRAN (f77) for use with STEPIT. For the tests of models
with fixed SIAC parameters, we were able to speed up the lengthy pa-
rarpeter search process by precomputing the IAC activations and then
using a table lookup technique with two-dimensional interpolation. To
coqstruct a lookup table for each of the four contexts, we computed the
activation after 60 cycles for 101 possible context activation values going

from —.5to 1.5 in steps of .02 each combined with 101 possible /r/ target

a_ctivation values going from —.5 to 1.5 in steps of .02. Given the activa-
tions of the target and the context, the nearest activation values could be
fpund in the table and interpolation would give a very close approxima-
tnon] of the directly computed activations predicted by the IAC model at 60
cycles.

Several hundred adjustments to the set of parameter values (calls to
STEPIT) were needed to maximize the goodness-of-fit of the 11-
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parameter SIAC model (assuming 40 trials) to each subject. On a SUN-
3/50 with 17.1-MHz-68881 floating point, this model took 269.8 cpu sec-
onds per subject to run compared to 3.7 cpu seconds per subject for the
regular FLMP—74 times slower. The best fitting parameter values for the
simple SIAC model are given in Table 1. These parameter values require
some explanation. The parameter values for the glide reflect the amount
of activation of the R target unit. The activation of the L target unit is one
minus this value. The parameter value for the context reflects the amount
of activation of the specified context unit when that context was pre-
sented; all other context units had activation zero. In addition, the
amount of activation of a context unit must be considered with respect to
the network in Fig. 2. The same activation has different consequences
depending on which context unit is activated. Thus, a .5 activation of the
context unit P has a very different outcome than a .5 activation of S. The
target units L and R are activated equally given activation of P, whereas
only the target unit L received activation given activation of S.

Figure 3 shows the observed and predicted results for three typical
subjects. The root mean squared deviation (RMSD) values between the
observed and predicted data for individual subject fits and the average of
the individual subject fits are given in the first line of Table 2. Given the
relatively poor fit of the model (.1113 average RMSD), two additional
models were fit in order to determine if increasing the number of free
parameters would bring the model into line with the results. In a 12-
parameter model, an additional parameter was estimated for the standard
deviation of the normal noise added to the inputs. Given the large number
of iterations required by the model, the parameters from the 11-parameter
model were used as starting values for these parameters in the search.
The standard deviation of the noise was permitted to vary between 0 and
1. As can be seen in Table 2, this model yielded a small improvement in
the fit (average RMSD of .0987), with an average standard deviation

TABLE 1
Best-Fitting Parameters from Simple SIAC Model with 40 Simulated Trials for the
Results of the Massaro and Cohen (1983) Experiment 2

Glide Context
Subject L R P T S v
1 2600 2900 .3200 .4100 .5300 .9500 .9500 .5000 7400 5000 .5000

3323 4008 4894 5217 .6533 8123 9500 .5000 .5 104 9500 .5000
4070 5300 .5900 6122 .7466 .9200 .9500 .5000 .5000 .9800  .5000
0500 0350 2600 4211 .6082 .6572 .6823 .5000 .9800 .8568  .5000
0500 .0B00 .0S00 .4670 .7190 .9500 .9500 .5000 .5000 5582 .5000
3149 3500 4421 .5488 7170 .9500 .9500 .5000 .5000 5300 5000
3800 3762 4363 5508 .6489 .9500 .9500 .5000 .9800 9800  .5000

Average 2563 2946 .3697 .5045  .6604 8842 9118 5000 .6729 .7650 .5000
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typical sub_]ec?s as a function of the glide F; onset level and context (after Massaro and
Cohen, Experiment 2, 1983). Predictions are for the SIAC model.

parameter at .1263. A full-blown SIAC model was fit to the results by
allowing the four control parameters of the IAC process (estr, alpha,
gamma, and decay) to be additional free parameters for the minimization
search. Because these parameters varied, the SIAC results were directly
computed rather than using the table lookup method. This 16-parameter
model yielded essentially no improvement, with an average RMSD of
.0939 (see Table 2).

Given the possibility that the model’s optimal parameter values might
change when more parameters are added and that the values found for the
11-parameter model forced the predictions of the SIAC models with more
parameters to a local minimum, we tested the 16-parameter model with a
new set of starting values and a different random seed. Although the
parameter values and predictions differed slightly, an ANOVA on the
RMSD values indicated that there was no improvement in the goodness of
ﬁztzgaverage RMSD of .0999) for the seven subjects, F(1,6) = 1.83,p =

The number of simulated trials was equated with the number in the
actual experiment, and a small number of trials might not give a truly
rc?presentative sampling from the noise distribution. This might be espe-
cially true given the necessarily repetitive use of the same random se-
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TABLE 2
The RMSD Values for the Fit of the Individual Subjects and the Average of the
Individual Subject Fits for the FLMP and SIAC Models Fit to the Results of Massaro
and Cohen (1983) Experiment 2

Model NP NT S1 S2 S3 S4 S5 S6 S7 AVE
0251 .0546

FLMP 11 0307 .0484 0896  .0419 .0306 .1162 .
FLMP 1 40 0206 .0537 .0896  .0409 0259  .1062  .0259  .0518
FLMP i1 300 .0312  .0484 0902  .0451 0344 1132 .0250  .0554
FLMP 1 1000 0309 .0505  .0871 0410 0273 1170 .0254  .0542
1113

11 40 0634 1177 1327  .0489 1381 1293 1487

g;::g 11 300 .0477  .1083 1228 0572 0912 1167 1546  .0998
SIAC 11 1000 .0462 .1055 .1218  .0527  .0900  .1218  .1543  .0989
SIAC 11 10000  .0465  .1050  .1261 0562  .0954 1205  .1554  .1007
0852 .0987

SIAC 12 40 .0528 .1173  .1191 0489 1381 1293
SIAC 12 300 .0433 1064  .1087  .0533  .0922 1152 0817  .0858
SIAC 12 1000 0429  .0985 .1036  .0489  .0912  .1207 .0765  .0832
SIAC 12 10000  .0433  .0959  .1051 0492  .0961 1173 0795  .0838
852  .0939

SIAC 16 40 .0520 .1117  .1191 0480  .1121 1293 .0

SIAC-INT 16 40 .0502 .0813 .0976  .0561 1013 11220 .0417  .0786

quence in the simulation during the parameter estimation process. Per-
haps the luck of the draw might be particularly favorable or unfavorable
to a model? The use of a larger number of trials should reveal whether the
poor fit of the SIAC model could be due to this potential problem. On the
other hand, there could be substantive limitations in the model indepen-
dent of the number of simulated trials used during the model test.

Accordingly, we also tested the 11- and 12-parameter models with 390,
1000, and 10,000 simulated trials. The simulations were also started with
the same random seed in each iteration of the STEPIT fit. Even with this
constraint the 10,000 trial fit took about 35 cpu hours per subject on a
SUN-3/60 with 20.5 MHz 68881 floating point. Some small improvement
was seen in the fits; the RMSDs are given in Table 2. Overall, the RMSD
of fit for the 11-parameter model changed from .1113 to .0998 for 300 trials
to .0989 for 1000 trials, and .1007 for 10,000 trials. For the 12-parameter
model, the overall RMSD decreased from .0987 to .0858 for 300 trials to
.0832 for 1000 trials, and slightly increased to .0838 for 10,000 trials. To
summarize, we do see a small improvement in the fit with a larger number
of trials, but note a severely diminished return for our effort above 300
trials or so. Most importantly, the rather poor fit of the SIAC model
cannot be blamed on sampling variability given a small number of simu-
lated trials.

SIAC Model with Intrinsic Noise

Up to this point, the SIAC model tests have assumed variability added
to the inputs. Processing itself is deterministic. A second type of SIAC
model proposed by McClelland assumes variability added at each pro-
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cessing cycle. We shall call this model the stochastic IAC-Intrinsic Noise
(SIAC-INT) model. Given the possibility that this type of model would
give a better description of actual results, we tested this model against the
results in the same manner. The computation of the SIAC-INT model is
similar to that for the prior SIAC except that noise is not added to the
external inputs directly but rather is added to the activation of each of the

nodes at each step. Equation 9 represents this version of the model and
replaces the prior Eq. 3.

net; = o X exc; + y X inh; + estr X ext; + gsd X RN )]

where RN is a normally distributed random noise value and gsd, the
Gaussian standard deviation, controls the magnitude of the noise contri-
bution. Rather than using the instantaneous target activations for a BOW
decision, running average activations were computed, as in McClelland
(in press), according to the formula

ract, = N act, + (1 — Nract,_, (10)

where ract, is the running average activation at time ¢, act, is the activa-
tion at time ¢, ract,_, is the running average activation at time ¢ — 1, and
A (set to .05 in current simulations) controls the degree of averaging. A
third feature of our SIAC-INT simulations was that the external inputs
could cover a wider range (at the suggestion of McClelland, personal
communication). We allowed these values to range from —.5t0 1.5. A
16-parameter SIAC-INT model (estimating the same parameters as the
16-parameter SIAC model) was fit, yielding a mean RMSD of .0786, a
nonsignificant improvement [F(1,6) = 5.251, p = .060] over the 16-
parameter SIAC model. Table 3 gives the best-fitting parameter values for
the model.

We now describe and test an alternative to interactive activation, one
we believe is more predictive and parsimonious.

Fuzzy Logical Model of Perception

A critical assumption of the application of the FLMP in the phonolog-
ical constraints study is that the featural information from the glide and
the phonological context provide independent sources of information.
Even with this constraint, however, it is important to demonstrate that
adding context can improve performance—not just change bias—relative
to the case in which only stimulus information is presented. Consider our
identification task in which a set of seven syllables along a /li/~/ri/ con-
tinuum were factorially combined with four different initial consonant
contexts /p/, /t/, /s/, or /v/. We assume that subjects adopt the prototypes
R and L in the task, and evaluate and integrate the two sources of infor-
mation with respect to these prototypes. The stimulus featural informa-
tion in the glide i supporting the R prototype can be represented by the



TABLE 3 .
Best-Fitting Parameters from 16-Parameter SIAC-INT Model with 40 Simulated Trials for the Results of the Massaro and Cohen (1983) Experiment 2

Control

Context

Glide

v decay gsd

a
.1633

.1900

.1822

estr
.0547
.1300
.1002
1300
.1300

.1000

\'%
.5000
.5000
.5000
.5000
.5000
.5000

L
.2300

.3923

Subject

.0385

.1000
.1000
.1000
.0993

.1300
.1385
1169
.1196

1300 .0948

1171

.7040

5254

4100
.4700
4700
.5000
.5000
.5000

.4700

4743

9500
9200
9500

.9500
.6823

.8753

.5576

3502 4245
.6628

.4986

2816

1414

.9800
.9800
.8568
.7682

5324

.4008
.5324
.0350
.0800
.3339
.3878
.2931

2
3

.0857

.5900
.8900
.0500
.5600
.9800

.6142

.8534  .9950

.6882
4211

.6110

.2600

.0500
.4421

.4356
.0500
.0500
3149
3816
.2

572

.1208
.1414

.1576

6272

.6082

.1000
.1000

.1088
.1012

.9500
.9800
.9500

9118

.9500
.9800

9500

.6350
.8070

4670
5788
.5395
5216

.1120

.0445

.1009

.0970

.1831

7300
9200

.8503

6
7

.1330
1627

.5000  .0985

.5000

.6416

.4693

.0978

.1140

.1062

9039

.3830 .6808

649

Average
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truth value f;, and (1 — f) specifies the stimulus support for L. The value
¢; represents how much context j supports the prototype R, and the de-
gree to which the phonological context supports the prototype L is in-
dexed by (1 — ¢). Truth values index the degree of support of each source
of information for each alternative. These values range between 0 and 1
reflecting no support to complete support, with .5 corresponding to a
neutral support in a two-alternative task.

Given two independent sources of information, the total degree of
match with the prototypes R and L is determined by integrating these two
sources. Following Goguen (1969), feature integration involves a multi-
plicative combination of two truth values (Oden & Massaro, 1978). There-

fore, the degree of match to R and L for a given syllable can be repre-
sented by

R=fxc (11)
L=0-)x1-c¢ (12)

The decision operation maps these outcomes of integration into re-
sponses by way of a relative goodness rule (RGR) (Luce, 1959, 1963;
Massaro & Friedman, 1990; Shepard, 1957). The probability of an /r/
response given test stimulus S is predicted to be

Jicj
fo+ A=A -0 (13)

In fitting our experimental data to the FLMP model there are—as with
the simple SIAC model—11 parameters. These include four parameters
giving the r-ness of the context ¢; and seven parameters giving the r-ness
of the glide f;. The best fitting parameter values for the FLMP model are
given in Table 4. The parameter values fiand ¢; correspond to the amount
of support for the alternative /r/ given the level of glide and context,

P(rlS,J) =

TABLE 4
Best-Fitting Parameters for the Ordinary FLMP for the Results of the Massaro and
Cohen (1983) Experiment 2

Glide Context
Subject L R P T S v
1 -0177 0437 0753 1794 5369 .9905 .9991 .4502 .9307 1471 6417
2 1430 2536 4064 5088 .8523 9862 9909 .7835 7529 0725 4730
3 0754 2227 5937 9558  .9906 .9990 .9999 .7395 9617 0192 9215
4 -0031 0107 .0896 .3434 8476 9545 9780 .3522 8199  .0488  .4932
5 0016 .0200 .0991 .3453 .8888 .9877 9998 8140 2596 .2084 5802
6 0606 .1103 2372 .6704 .9677 9997 9997 .6570 8617 .0776 .6019
7 0009 0065 .0596 .3806 .9668 .9999 .9999 9449 9999 0129 6622
Average .0432 .0954 2230 4834 8644 9882 9953 6773 7981 .0838 .6248
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respectively. Figure 4 shows the close agreement of the olzserved and
predicted results of the FLMP model for the same three subjec.ts shown
in Fig. 3. The average of the RMSDs of fits of t.he seven subjects was
.0546. Table 2 gives the RMSDs for individual subjects and the average of
the individual fits. . _ '

To be fair to the SIAC model, which is a simulation over a given
number of trials, we evaluated a simulation version of th-e FLMP model
which also used Eq. 13 as a basis for its predictions. This 11-parar¥1eter
model, which started with the parameter estimates ffom the ordm'flry
FLMP, ran a series of 40 simulated trials for each conditloq. On each trial,
a uniformly distributed random number was generated. If it was less than
or equal to P(r|S;), as computed by Eq. 13, then the simulation P(r|S;)
was incremented by 1/40. The random sequence was restz?rted at the
beginning of the prediction calculation of each set of rt?sults with the same
seed as used in the SIAC model fit. On a SUN-3/50 with !7. 1-MHz-68881
floating point, this model took 55.7 cpu seconds per subject to run com-
pared to 3.7 cpu seconds per subject for the regular FLMP—21 times
slower. Table 2 gives the individual and mean RMSDs for the moqel ﬁt.
The overall fit of this model was .0518, actually a small (but nonsignifi-
cant) improvement over the ordinary FLMP. Decreasing the number of
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GLIDE
FiG. 4. Observed (points) and predicted (lines) probability of an r response for three
typical subjects as a function of the glide F; onset level and context (after Massaro and
Cohen, Experiment 2, 1983). Predictions are for the ordinary FLMP.
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trials can in some cases increase rather than decrease the goodness-of-fit
of a model. This can occur when the number of trials is equivalent to the
number actually used in the experiment. The granularity of the prediction,
at 1/40, now exactly corresponds to the possible observed values, allow-
ing predictions which were only nearby to migrate to the actual observed
values. As with the SIAC model, we also evaluated the simulation FLMP
with greater numbers of trials. The fits for each subject are given in Table
2. As can be seen, the mean fits for 300 trials (RMSD = .0554), 1000 trials
(RMSD = .0542), and 10,000 trials (RMSD = .0546) were essentially the
same as for the ordinary FLMP.

Using ANOV As, the RMSD:s from the 11-parameter, 40-trial simulation
FLMP model were compared with the RMSDs from the SIAC 40 trial
models. All four SIAC models—the 11-parameter [F(1,6) = 13.093,p =
-011], the 12-parameter [F(1,6) = 12.633, p = .012], the 16-parameter
[F(1,6) = 17.091, p = .007], and the 16-parameter SIAC-INT [F(1,6) =
9.709, p = .020] models—provided an inferior fit relative to that of the
simulation FLMP. As can be seen by the RMSD values and the mismatch
between the observations and predictions in Fig. 3, the SIAC model can-
not describe these results as accurately as the FLMP.

The parameter values in Tables 1 and 3 show one possible reason why
the SIAC model fit the results more poorly than the FLMP. The param-
eter values for the /p/ and /v/ context did not move from .5 for the specific
architecture of the SIAC model shown in Fig. 2. As pointed out by
Stephen Kitzis (personal communication) and McClelland (personal com-
munication), the network shown in Fig. 2 has two limitations. First, the
/vl context does not activate any units in the word layer and cannot
support one target alternative more than the other, having only an inhib-
itory effect within the context layer. Second, the /p/ context must support
/r/ as much as /I/ because the /p/ context unit is connected to a word unit
containing /r/ and a word unit containing /l/. Thus, it seems likely that the
poor fit of the SIAC models relative to the FLMP is due at least in part to
the limitations of the network developed by McClelland (1991) and ex-
tended by us. An architecture is required that would allow free parame-
ters for the /p/ and /v/ contexts. An obvious network to achieve this
flexibility is to add word units /vl/, /vr/, /st/, and /tl/ to the word level in
Fig. 2, for a total of 14 nodes, using 16 parameters. For this model, the
connection weights between a word unit and appropriate context and
target units would be free parameters rather than fixed at one. However,
this model requires an immense amount of cpu time to test against actual
results. The test of a single subject required over 100 hours of computa-
tion. In another paper (Cohen & Massaro, in press), we develop a new
simpler six-node network that brings the asymptotic predictions of a
SIAC model very close to those of the FLMP. This network was used for
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modeling the integration of multiple sources of featural information in
letter perception. In the network, complementary information supporting
the letters “Q”’ or “‘G”’ is represented in three layers of two nodes each
(angle features, gap features, and memory). The activation used to gen-
erate a response is taken from the outputs of the nodes at the memory
layer.

In conclusion, we accept that SIAC models with a BOW decision rule
can predict results consistent with the independence of stimulus informa-
tion and context. What is important to remember, however, is that the
independence prediction is not directly due to interactive activation. In
fact, the independence prediction appears to occur in spite of it. In other
work, we have demonstrated that the independence prediction always
occurs regardless of the underlying activation functions if noise is added
before or during perceptual processing and a BOW decision rule is used
(Massaro & Cohen, 1989). McClelland’s (1991) modification of the IAC
model allows the predictions of the model to no longer be constrained by
the underlying activation functions. The prediction of the SIAC models,
therefore, cannot be taken as direct evidence for the interactive process-
ing assumed by the models. This outcome is particularly disturbing be-
cause connectionist models are claimed to account for the microstructure
of cognition. Even though we devised a network to account for the ob-
served results, we argue for the FLMP on the basis of parsimony. Rela-
tive to the FLMP, the SIAC models require a larger number of parameters
that must be set at some arbitrary values or estimated from the observed
results. In the next section, the nature of the interactive activation in
SIAC models is examined more closely in order to gain some insight into
the underlying processing that is assumed and how it compares to other
noninteractive models such as the FLMP.

Outcome of Evaluation and Integration Processes

Following the logic of Massaro and Friedman (1990), it is helpful if not
essential to analyze perceptual recognition in terms of three stages of
information processing: evaluation, integration, and decision. Evaluation
is defined as the analysis of each source of information. Integration com-
bines the outputs made available by the evaluation process. Decision
maps the outcome of either evaluation or integration into a response. This
framework was used to describe a feed forward network model (Massaro
& Friedman, 1990) and to describe a SIAC model (Cohen & Massaro, in
press). In contrast to feedforward models, there is an apparent blurring
between evaluation and integration in the SIAC model. In the SIAC
model, there is activation of the Target (phoneme) and Context units by
external inputs (see Fig. 2). These lower-level activations are fed forward
to a layer of Word units, which are also connected in top-down fashion to

STIMULUS AND CONTEXT IN PERCEPTION 577

some units at the lower layer. Processing continues through a sequence of
time steps (cycles) in which each unit updates its activation value by
summing the weighted activations of all units feeding into the unit (Mc-
Clelland, in press, Equation 1). Given interactive activation, the repre-
sentation of a unit at the Target layer might be influenced by context,
because the unit also integrates information from the layer of Word units.
This is what we mean by nonindependence.

In the three-stage framework used by Massaro and Friedman (1990),
the activations of the target units get mapped into a response by way of a
decision process. Decision consists of either a relative goodness rule
(RGR) in the original model or a best one wins (BOW) in the revised
model. The RGR predicts that the probability of a response is equal to the
goodness of match of the alternative relative to the sum of the goodness
of match values of all relevant alternatives in the task. The BOW decision
rule always chooses the alternative corresponding to the target unit with
the highest activation. Before analyzing the activations and the predic-
tions of the SIAC models in this framework, however, it is worthwhile to
analyze the FLMP because its predictions were viewed as a benchmark
for McClelland’s revision of the SIAC model.

In the FLMP, evaluation makes available a continuous truth value
representing each source of information. Integration involves a multipli-
cative combination of these truth values with respect to prototype defi-
nitions of the response alternatives. The outcome of integration gives
goodness-of-match values with each of the alternative prototypes. Figure
5 shows these values for the FLMP, applied to the phonological con-
straints study, as a function of feature values varying between 0 and 1 in
steps of .05 for three different context values supporting /r/: .25, .5, and
.75. As can be seen in the figure, the goodness-of-match values change
linearly with a linear change in target feature values. The rate of change
depends on the context. The context value can be seen directly when the
input feature value is .5—completely ambiguous or neutral. With a com-
pletely neutral context /p/, the goodness-of-match to the alternative /t/ is
equal to one-half of the input feature value. With the context /s/, the
goodness-of-match with alternative /I/ is .75 times the input feature value
whereas the goodness-of-match with alternative /r/ is (1 — .75) = .25
times the input feature value.

We stress that since activation is the currency of SIAC models, it is the
changes in activation that are important, not simply the probability of a
response. McClelland (1991) did not present any activation functions of
the SIAC model—only the predicted response functions given an RGR or
BOW decision were computed. This omission seems particularly para-
doxical because network models putatively illuminate the microstructure
of processing and do not simply predict stimulus-response functions. It
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FiG. 5. Truth (Goodness-of-match) values for the R and L units, resulting from the inte-

gration of the two sources of information feature value and context (CNTX) according to the
FLMP.

should be valuable to generate and analyze the asymptotic activation
functions of SIAC models.

Figure 6 plots the activation values for the predictions of the simple
SIAC model and network used by McClelland (1991). These activation
values correspond to those of the /r/ and /I/ units after 60 cycles through
the network. The context feature value was normally 0 and set to .5 when
the corresponding context was present. The target feature value was var-
ied between 0 and 1 in steps of .05. By looking at these activations and
contrasting them with the analogous truth values of the FLMP, we can
better observe the consequences of the interactive algorithm. Although
the SIAC model is an interactive and potentially complex system, its
predicted activation functions are fairly easy to understand. The figure
shows that the activation is not a linear function of the feature value. The
nonlinearity has two components. First, there is the sharpening of each
activation curve at the crossover point of the /l/ and /r/ curves for a given
context. Second, the rate of change in activation as a function of a con-
stant change in feature value is greater when the context and feature value
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Fi1G. 6. Activation values for the R and L units, resulting from the integration of the two
sources of information feature value and context (CNTX), according to the SIAC model.

are inconsistent with one another than when they are consistent with one
another. That is, the rate of change is greater when the parameter values
of the two sources of information favor different responses. These two
forms of nonlinearity appear to be direct consequences of the combina-
tion of inhibitory connections within a layer of units and two-way con-
nections between units embedded in different layers.

It might be valuable to compare the outcome of the SIAC model in Fig.
6 with that of the FLMP in Fig. 5. In the FLMP, the difference between
adjacent levels of the feature value is constant for a given context. Given
the context /s/, the difference between features values .3 and .4 is equal to
the difference between .6 and .7. The activations of the SIAC model
shown in Fig. 6, on the other hand, indicate that the difference between
.3 and .4 is significantly larger than the difference between .6 and .7.
Given the context /s/, the difference between .3 and .4 on the /r/ side of the
feature continuum is larger than the difference between .6 and .7 on the /I/
side of the continuum. More generally for the IAC model, the difference
between two adjacent feature values is larger on the side of the feature
continuum that conflicts with the context information. The RGR pre-
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serves this difference in the response predictions, as demonstrated in
Massaro (1989) and McClelland (1991). The BOW decision rule with noise
added to the inputs or their processing, on the other hand, cancels out this
difference. Thus the predicted responses no longer reflect the activation
functions; they only transmit information about the location of the cross-
over of the activations of the /I/ and /r/ units (Massaro & Cohen, 1989).

Interactive activation networks differ from simple feedforward net-
works because they have two-way connections between units. If the units
are taken to represent sources of information, then SIAC models do not
maintain a single feed-forward flow through the processes of evaluation,
integration, and decision. The reason is that integration feeds back to
evaluation and changes the outcome of evaluation. Although noise added
to the inputs or at each processing cycle and a BOW decision rule allow
the classic result of independence to be simulated at asymptote, it is
important to acknowledge the nonlinearity of the underlying activations.
Therefore, the SIAC model will have difficulty in predicting the classic
result when a BOW decision cannot be used. For example, the SIAC
model would have difficulty predicting the classic result—independence
of stimulus information and context—when subjects rate the degree to
which the stimulus is /lI/ or /r/. In the next sections, we extend the contrast
between the SIAC models and FLMP to results on the dynamics of per-
ceptual processing.

PREDICTING DYNAMIC BEHAVIOR

One of the attractions of SIAC is that it putatively accounts for the
dynamics of perception. Thus, it is important to contrast the SIAC and
the FLMP in this domain. McClelland (1991) concluded that the SIAC is
to be preferred because it and not the FLMP can account for the dynam-
ics of perception. Our tests of these models, however, indicate otherwise.

The Dynamic FLMP

Although the FLMP has not been tested directly against results on the
time course of perceptual processing, there is a natural extension of the
model when it is combined with another model of the time course of
processing (Massaro, 1970a, 1975a). This model has received support in a
backward recognition masking (BRM) task. In the backward masking
paradigm, a brief target stimulus is presented followed after a variable
interstimulus interval (ISI) by a second stimulus (the mask).

Consider the three masking functions shown in Fig. 7, representing the
performance of three different young adults in the first study of auditory
backward recognition masking (Massaro, 1970b). The two test alterna-
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F1G. 7. Observed (points) and predicted (lines) recognition accuracy (measured in d') as
a function of the interstimulus interval (ISI) between the test and masking tones (after
Massaro, 1970a).

tives were brief tones (20 ms) differing in frequency and the subjects
identified the test tone as high or low in pitch. The curves are plotted in
d’' values to eliminate any large contribution of decision bias and to pro-
vide a measure of performance that can be justified in terms of a formal
description of the processes involved. The d’ measure can be conceptu-
alized as the distance between means of two distributions of events cor-
responding to the two different types of test trials. The masking function
reflects changes in this distance as a function of processing time before
the onset of the masking tone.

The backward masking results have been explained within the frame-
work of a model of auditory information processing in which the target
sound is transduced by the listener’s sensory system and stored in a
preperceptual auditory store which briefly holds a single auditory event
(Massaro, 1972, 1975a). Perceptual processing of the sound involves re-
solving the features of the sound to produce a synthesized representation
of some segment. A second sound replaces the first in the preperceptual
auditory store and terminates any further reliable processing of the first
sound. Because of the transient nature of preperceptual memory, and
backward masking when a second sound occurs before resolution of the
first sound is complete, the duration of preperceptual memory as well as
the rate of processing places a limit on how much can be perceived.
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The amount of time that the target information is available in preper-
ceptual memory can be carefully controlled by manipulating the duration
of the ISI. The accuracy of target identification increases as ISI lengthens
(Massaro, 1970b). The rate of the improvement reflects the rate at which
the stimulus information is processed. Performance typically asymptotes
at an ISI of roughly 250 ms and this interval is believed to reflect the
duration of the preperceptual auditory store (Cowan, 1984; Kallman &
Massaro, 1983). That is, the mask no longer affects performance because
the preperceptual trace is no longer available for processing.

According to the theory, subjects have continuous information about
the test stimulus and this information accumulates gradually with the
processing time available before the onset of the mask. Perceptual rec-
ognition cannot be considered to be all-or-none or accurate-inaccurate at
any time during the processing interval. Given noise in the system, how-
ever, identification accuracy is probabilistic and increases systematically
with increases in processing time. Analogous to the RGR, responses can
be considered to be probabilistic because subjects match their response
probabilities to the relative goodness of match of the response alterna-
tives. The masking stimulus serves to terminate any additional processing
of the test, but it does not work retroactively. Masking does not reduce
the amount of processing that has occurred before the occurrence of the
mask; it can only preclude further processing. It is important to distin-
guish between the potential information given unlimited processing time
and the rate of reaching that level of information. Increasing the discrim-
inability between the test alternatives should increase the asymptote but
not necessarily the rate of the masking function.

The functions of d’ in Fig. 7 can be described accurately by a negatively

accelerated exponential growth function of processing time,

d =a(l —e % (14)

The parameter « is the asymptote of the function and 6 is the rate of
growth to the asymptote. The function can be conceptualized as repre-
senting a process that resolves some fixed proportion of the potential
information that remains to be resolved per unit of time. The same incre-
ment in processing time results in a larger absolute improvement in per-
formance early relative to late in the processing interval.

A reasonable assumption is that feature evaluation would follow the
same negatively accelerating growth function found in backward recog-
nition masking tasks. Early in featural evaluation, the perceiver would
have some information about each feature (dimension), but the informa-
tion would not be sufficient to inform the perceiver about the identity of
the stimulus. Integration of the separate features (dimensions) would be
updated continuously as the featural information is being evaluated. Sim-
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ilarly, decision (and thus response selection) could occur at any time after
the stimulus presentation. For example, a response could be initiated
before sufficient information is accumulated—as might occur in speed-
accuracy experiments.

Following the theoretical analysis of backward masking, a masking
stimulus would terminate any additional processing of the test stimulus.
While the masking function given in Eq. 14 represents the time course of
only a single feature’s evaluation, this dynamic model can be combined
with the FLLMP to describe how multiple sources of information are eval-
uated and integrated over time. There is evidence for the parallel evalu-
ation of multiple sources of information in the BRM task. Moore and
Massaro (1973), for example, asked subjects to identify both loudness and
timbre in the BRM task. On each trial, the subject was cued to identify
either the loudness (loud or soft), the timbre (dull or sharp), or both of
these dimensions of the test tone. Typical backward masking functions
were found under each of the attention conditions. In addition, the sub-
jects were able to identify the two dimensions of the test tone (loudness
and timbre) about as accurately as one.

Although we illustrate the three stages—evaluation, integration, and
decision—as discrete, in reality they would operate continuously. Eval-
uation of a source of information would follow Eq. 14. The truth value T,
of a source of information x supporting a given alternative A changes over
time ¢ toward some asymptotic value a from an ambiguous initial value
(.5). This change can be described as the sum of a negatively accelerated
transition from 0 to the asymptotic stimulus value o and a negatively
accelerated transition from the initial value .5 going to 0.

T () = a(l — e7 %) + 5. (15)

The output from evaluation would be fed continuously to the integration
process—which would operate in the same manner as assumed in the
FLMP. Integration would be fed forward to decision which would com-
pute the relative goodness of match of the alternatives. Given the concern
with the dynamics of processing, an additional process must be imple-
mented. This process would determine when a subject would actually
initiate a response in the task. In most identification tasks with unlimited
response time, it seems reasonable to assume that the subject waits until
evaluation of the sources of information is near asymptote. With limited
processing time, the decision system would initiate a response when no
additional information is being accumulated. Thus, the decision system
could maintain some running memory of the change in relative goodness
values, and if this change is less than some minimum in a given time
period, then a response could be initiated. In tasks with speeded re-
sponses, the decision system would simply initiate a response at-the re-
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quired time based on the relative goodness values at that time. We now
test this dynamic FLMP against empirical results.

Context Effects and Backward Masking

In an experiment reported by Massaro (1979), a reader was asked to
read lowercase letter strings with an ambiguous test letter between ¢ and
e. It is possible to gradually transform the c into an e by extending the
horizontal bar. The interpretation of the ambiguous letter differs in the
different letter strings. To the extent the bar is long, there is good visual
information for an e and poor visual information for a ¢c. Now consider the
letter presented as the first letter in the context -oin and the context -dit.
Only c is orthographically admissible in the first context since the three
consecutive vowels eoi violate English orthography. Only e is admissible
in the second context since the initial cluster cd is an inadmissible English
pattern. In this case, the context -oin favors c, whereas the context -dir
favors e. The context -tsa and -ast can be considered to favor neither e
nor c. The first remains an inadmissible context whether e or c is present,
and the second is orthographically admissible for both e and c.

The experiment factorially combined six levels of visual information
with these four levels of orthographic context, giving a total of 24 exper-
imental conditions. The bar length of the letter took on six values going
from a prototypical ¢ to a prototypical e. The test letter was presented at
each of the four letter positions in each of the four contexts. The test
string was presented for a short duration followed after some short inter-
val by a masking stimulus composed of random letter features. Subjects
were instructed to identify the test letter on the basis of what they saw.
The results of the experimental test are shown in Fig. 8. As can be seen
in the figure, both the test letter and the context influenced performance
in the expected direction. Further, the effect of context is larger for the
more ambiguous test letters along the stimulus continuum.

This study also evaluated context effects as a function of processing
time controlled by backward masking. The test stimulus was presented
for 30 ms. Four masking interstimulus intervals (5, 40, 95, or 210 ms) were
tested in that task at each of the other experimental conditions. The points
in Fig. 10 show the probability of an e response as a function of the bar
length of the test letter and the four contexts at each of the four masking
intervals. Each point represents data from 176 trials (16 observations from
each of 11 subjects). As can be seen in the figure, performance was more
chaotic at the short masking intervals. That is, less processing time leads
to less orderly behavior—as expected from research on the time course of
perceptual processing. Even for unambiguous test letters, subjects did not
make consistent identification judgments at short masking intervals. Ac-
cording to perceptual processing theory, there was not sufficient time for
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F1G. 8. Probability of e identifications as a function of the stimulus value (bar length) of
the test letter and the orthographic context (after Massaro, 1979).

feature evaluation and integration to take place before the onset of the
masking stimulus.

Both the test letter and the context influenced performance at all mask-
ing intervals. The effect of test letter was attenuated at the short relative
to the long processing time. That is, the identification functions covered
a larger range across the e—c continuum with increases in processing time.
Context has a significant effect at all masking intervals. In fact, the con-
text effect was larger for the unambiguous test letters at the short than at
the longer masking intervals. This result follows naturally from the trade-
off between stimulus information and context in the FLMP. Context has
a smaller influence to the extent the stimulus information is unambiguous.

Given the four masking intervals in the task it is possible to describe
performance in terms of the change in featural information F and ortho-
graphic context C across the four masking intervals. Implementing Eq. 15
for both context and featural information, the change in featural informa-
tion can be described by

F=oagl — e ® + 5% (16)
and the change in contextual information C by

C=oc(l —e ™) + 5% MY
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for the processing time ¢ (the sum of the masking interval and the 30-ms
stimulus duration).

In fitting the FLMP to the group data, 11 parameters were used: six og;
values for the six levels going from ¢ to e, four o values for the four
contexts, and one additional parameter for 6. Figque 9 shows how the
predicted feature values (left panel) and context values (right panel)
changed with processing time. The points in Fig. 9 give the predicted
values that are inserted in the integration and decision algorithm for each
of the 96 conditions. The predicted probability of an e response is there-
fore computed in an analogous fashion to Eq. 13 in the phonological
constraints experiment. Figure 10 gives the predictions of the FLMP
(lines) along with the observed (points) data. The RMSD between the
observed and predicted points was .0501. Table 5 gives the parameter
values for the fit of the model.

As in the fit of the phonological constraints data, we evaluated a sim-
ulation version of the FLMP model. This model, also using 11 parame-
ters, started with the parameter estimates from the ordinary FLMP, and
ran a series of 176 simulated trials for each condition. On each trial, a
uniformly distributed random number was generated. If it was less than or
equal to the probability of an e response as predicted by the FLMP, then
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F1G. 9. The development with processing time of feature values supporting alternative e
for the dynamic FLMP model. The left panel shows the stimulus feature value as a function
of processing time with e—c level (LEV) as the curve parameter. The right panel shows the
context feature value as a function of processing time with orthographic context (CTX) as
the curve parameter.
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F1G. 10. Observed (points) and predicted (lines) probability of e identifications as a func-
tion of the bar length of the test letter, the orthographic context, and the processing interval
between the onset of the test stimulus and the onset of the masking stimulus for the dynamic
FLMP model (results after Massaro, 1979).

the simulation predicted P(e/S ;) was incremented by 1/176. The overall fit
of this model was .0561, a small decrement in the goodness of fit relative
to the ordinary FLMP.

We also fit a variety of SIAC models to the data. The topology of the
SIAC network used was the same as that for the phonological constraints
experiment discussed above and shown in Fig. 2. The new network,
shown in Fig. 11, differs only in the labels attached to the units. In this
case, the word units labelled EAB (E admissible both) and CAB (C ad-
missible both) correspond to /pr/ and /pl/. The word units labelled EAO (E
admissible only) and CAO (C admissible only) correspond to /tr/ and /sV/.
The simplest model requires 11 parameters: six e target value inputs (with
the ¢ target receiving the additive complement), four context inputs (with
the nonselected contexts set to 0), and a parameter 6 which multiplica-
tively translates processing time (in ms) into the number of cycles used in
the SIAC process. As assumed in the fit of the dynamic FLMP, a rea-
sonable assumption is that the mask would terminate further processing
of the test—an assumption compatible with Rumelhart and McClelland’s
(1982) implementation of the original IAC model. As with the initial pho-
nological constraints SIAC model, the SIAC control parameters estr,
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TABLE 5
Best-Fitting Parameters for FLMP, SIAC, and Boltzmann Models for the Resuits of Massaro (1979)
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FiG. 11. Network used in the simulation of the IAC model applied to the experiment of
Massaro (1979). The inhibitory connections between units within the word, context, and
target levels are not shown in the network.

alpha, gamma, and decay were set to .1 and the standard deviation of the
input noise used was set to .14142, all following McClelland (in press).

For each of the 96 experimental conditions, 176 simulation trials were
run by adding normal noise samples to both the Target and Context input
values. For each of the simulated trials, a BOW decision was made on the
final target activations; if the activation of the e Target node was greater
than that for ¢ Target node, then the probability of an e response was
incremented by 1/176. The RMSD obtained for this model was .1135,
about twice that found for the dynamic simulation FLMP. Figure 12
shows the fit of the 11-parameter SIAC model to the masking data. A
second, 12-parameter SIAC model was run (starting with the parameters
of the 11-parameter model) which included the standard deviation of the
noise as a parameter. No improvement was seen in the RMSD with a final
RMSD value of .1132. As is apparent in the figure, this SIAC model does
not predict a context effect at short processing times. This result follows
from the fact that interactive activation, as implemented with the four
control parameters set at .1, requires more than two or three cycles before
the effects of top-down information on bottom-up representations are
apparent.

Finally, a full-blown SIAC model was fit to the results by allowing the
four control parameters of the SIAC process (estr, alpha, gamma, and
decay) to be additional free parameters for the minimization search. This
model took a very long time to run, given the large number of SIAC
computation cycles needed during most of the fit: four context conditions,
times 258.5 cycles (35 + 70 + 125 + 240 ms times 8 = .55) for the four
processing durations, times six stimulus values, times 176 simulated tri-
als, gives about 1,000,000 SIAC cycles for each complete set of predic-
tions given a set of 16-parameter values. Each of the 674-parameter esti-
mating iterations of the model took about 90 cpu minutes on a SUN-3/180
with 16.2 MHz 68881 floating point for a total of over a thousand hours of
computation—about 6 weeks time. Figure 13 shows the final fit of the
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FiG. 12. Observed (points) and predicted (lines) probability of e identifications as a func-
tion of the bar length of the test letter, the orthographic context, and the processing interval
between the onset of the test stimulus and the onset of the masking stimulus for the 11-
parameter SIAC model (results after Massaro, 1979).

16-parameter SIAC model to the masking data, which had an RMSD of
-0953, a slight improvement over the 11- and 12-parameter models, but
still inferior to the FLMP. A comparable 16-parameter SIAC-INT model
was also fit to the data and provided a fit with an RMSD of .0688. Figure
14 shows the final fit of this model. Table 5 gives the parameter values for
each of the SIAC models of the masking experiment.

Given that the FLMP, SIAC, and SIAC-INT models are being fit to a
single set of group data, it is not possible to use replications over subjects
to give a statistical test between the models. An alternate statistical test
between models is discussed at the end of the next section.

Boltzmann Machine Model

McClelland (1991) has shown that at equilibrium or ‘‘asymptotically,”’
as he sometimes terms it, the Boltzmann machine network may be char-
acterized mathematically as the product of terms representing bias, con-
text, and stimulus information, and is thus equivalent to the classic FLMP
or Bayesian model. McClelland goes further by arguing that the Boltz-
mann Machine and SIAC models in general are to be preferred to the
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Fi1G. 13. Observed (points) and predicted (lines) probability of e identifications as a func-
tion of the bar length of the test letter, the orthographic context, and the processing interval
between the onset of the test stimulus and the onset of the masking stimulus for the 16-
parameter SIAC model (results after Massaro, 1979).

FLMP because they might be able to explain the dynamics of perceptual
processing. However, the fact that the Boltzmann machine can be shown
to be decomposable to a product form does not generalize to the larger
class of mathematically intractable stochastic interactive activation mod-
els. Moreover, even the Boltzmann Machine has not yet been shown to be
well-behaved over time and accurate in predicting data. We now consider
the dynamics of this model and compare it to a dynamic extension of the
FLMP.

Consider how a Boltzmann Machine network might be used to model
processing in a backward masking task. Because the mask probably ter-
minates processing of the stimulus, possibly before the network has
reached equilibrium, we need to know whether its output can be charac-
terized as ‘‘classic’” prior to that point. We carried out a number of
simulations to explore these possibilities using the standard network
shown in Fig. 11.

In the first simulation, we were interested in the case in which both the
stimulus inputs and the context supported the alternative e. The stimulus
input for e was set to .41 and the input for ¢ was set to —.41. The input
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Fic. 14. Observed (points) and predicted (lines) probability of e identifications as a func-
tion of the bar length of the test letter, the orthographic context, and the processing interval
between the onset of the test stimulus and the onset of the masking stimulus for the 16-
parameter SIAC-INT model (results after Massaro, 1979).

to the e context unit was set to 3 and inputs to the other context units were
set to 0. In contrast to the situation of consistent context and feature
inputs, during a simulation, the initial activation act; of each unit was set
to 0. During each cycle, the temperature was first set according to a
simulated annealing schedule which gradually decreased the temperature
of the units according to the negatively decelerating function given by the
equation

Temp(c) = Tye %~V (18)

where c is the number of computation cycles, T, is the starting tempera-
ture (set at .5), and 87 is the cooling rate (set at .12). Asynchronous
updates of randomly picked units were carried out: 1760 updates were
done during each cycle, resulting in about 176 updates for each of the 10
units (comparable to the 176 synchronous updates of the 10 units for the
SIAC models). For each update, the input net activation net; for unit i was
calculated to be:
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nunits
net; = istrength X |bias; + E wy X actjj + estrength X ext;, (19)
j=1

where istrength controls the contribution of the internal units, bias; is the
bias level of unit i, w; weights the inputs to unit i from unit j, and estrength
controls the contribution of the external input ext;. The activation act; was
computed according to the stochastic rule:

if R < logistic (net;, Temp), act; = 1, else act; = 0 (20)
where
. 1
logistic(x,Temp) = ————— 21n
1 + e Temp

and R is a uniformly distributed random number between 0 and 1. At the
end of each update, the network is analyzed to see whether: (1) neither
target e nor target c is on, (2) both target ¢ and target c are on, (3) only
target c is on, or (4) only target e is on. A tally is kept of how many times
out of the 1760 updates per cycle each of these four cases occurred.
Figure 15 shows the number of times out of 1760 each of these cases
occurred over 101 cycles of processing, leaving the context and stimulus
information on the entire time and with istrength = .6, estrength = .6,
and bias = 0. Following the simulated run, we computed the expected
proportion of e responses, p(e) as:

e only)
Sfle only) + flc only)

where flx) is the frequency of x, disregarding the cases in which neither or
both targets were on (as McClelland suggests), and setting p(e) to zero if
the denominator was zero. The function is shown by the solid line in Fig.
16 shows the p(e) value calculated from the number of cases shown in
Fig. 15.

In contrast to the situation of consistent context and feature inputs, a
second simulation was carried out with the same context information
supporting e (value 3), but with feature information supporting ¢ by re-
versing the values for e and ¢ (¢ = —.41; ¢ = .41). This is shown by the
dashed line in Fig. 16. We see that in this case the predicted proportion of
e responses first decreases and then suddenly increases dramatically.
This prediction seems to be due to propagation delay in the network. The
feature information arrives earlier at the target nodes than the context
information which is delayed in effect because it must be mediated by the

ple) = (22)
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F1G. 15. Number of cases of four target activation outcomes for the Boltzmann Machine
model over 101 cycles of activity with context supporting e (EA = 3) and feature informa-
tion (e = .41; ¢ = ~.41) supporting e.

words in memory. The degree to which this propagation-delay result oc-
curs will depend on the particular network topology, the network weights,
the cooling schedule, the input values, and the control parameters of the
Boltzmann process. However, the early activation of the presented letter
and later activation of the contextually appropriate alternative seems
endemic in models which assume top down effects on target nodes. Al-
though the reversal in Fig. 16 is probably counterfactual, a careful study
of dynamic processing results of individual subjects should show these
reversals if they occur. A relatively fine-grained study would be required,
because, as seen in Fig. 16, the reversal occurs for only a limited period
of time during processing and too widely spaced temporal conditions
might miss the effect.

A similar result can also be seen in the dynamics of the SIAC-INT
model. The two functions in Fig. 17 show the predicted proportion of e
responses over 176 simulated trials for the model with consistent and
conflicting context and feature information is presented. In the simulation
the following parameters were used: estr = .3, a = .3,y = .1, decay =
.1, gsd = 14142, A = .05, EA context = 3, and other contexts = 0. In
one function, the e input was .7 and the ¢ input was .3. As can be seen in
this function, the consistent context and feature information quickly drive
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FI1G. 16. Proportion of e responses for the Boltzmann Machine model over 101 cycles of
activity with context supporting e (EA = 3.) and feature information (¢ = .41; ¢ = — .41)

supporting e (solid line). Proportion of e responses for the for the Boltzmann Machine model
over 101 cycles of activity with context supporting e (EA = 3) and feature information (e
= —.41; ¢ = .41) supporting ¢ (dashed line).

the responses toward e. For the other function, the e input was .3 and the
c input was .7. In this case, the responses initially follow the feature
information which favors ¢, but after about 50 cycles, responses mostly
favor e.

We now consider how predictions by the Boltzmann model can be
tested against the data of the masking experiment. The extreme noisiness
of the predictions of the pure Boltzmann model might preclude a good fit
to the data and disallow evaluation of the degree to which the results prior
to equilibrium achieve the classic results (even in simulations with 10,000
asynchronous updates per cycle). To allow the model a better chance to
fit the data we made the additional assumption that the number of the four
possible outcomes given above are time averaged according to the for-
mula:

4, = )‘fi,r + 0 - )‘)af;',l-] (23)

where af; , is the averaged frequency of event type i at cycle ¢, derived
from the weighted average of the actual frequency f;. and the prior run-
ning average frequency af;,_,, controlled by the weight \. For the model
fits, A was set at .05. There were six parameters for the feature values for
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FiG. 17. Proportion of e responses for the SIAC-INT model over 101 cycles of activity
with context supporting e (EA = 3) and feature information (¢ = .7; ¢ = .3) supporting e
(solid line). Proportion of e responses for the SIAC-INT model over 101 cycles of activity
context supporting e (EA = 3) and feature information (¢ = .3; ¢ = .7) supporting c (dashed
line).

e in the possible range —3 to +3, with the ¢ feature values receiving the
negations of the e inputs, four parameters for context in the possible range
0 to +3 with the values for the nonselected contexts set at 0. Other free
parameters of the model were bias (—3 to +3), estr (0-1), and istr (0-1).
In addition, two parameters T, and 6, (both 0-1) controlled the cooling
schedule as given in Eq. 18. In the model fit, it was assumed that each
cycle represented 4 ms of processing time. This yielded 60 cycles for the
longest processing time, equivalent to what was used in the phonological
constraints SIAC fits. The model fits was carried out 1760 updates per
cycle, resulting in about 176 updates for each of the 10 nodes in the
network. This corresponds to the number of trials actually carried out in
the experiment and the number of simulated trials in the SIAC fits.

Figure 18 shows the predicted probability of e identifications as a func-
tion of the levels of context and feature for the four processing durations
for the Boltzmann model. The RMSD for the predictions of the model was
.0748. Table 5 gives the best fitting parameters for the model.

As mentioned previously, fitting-group data precludes carrying out the
usual ANOVA on RMSD with subjects as the random variable. Instead,
we use the Akaike Information Criterion (AIC) statistic to compare mod-
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FiG. 18. Predicted probability of e identifications as a function of the bar length of the test
letter, the orthographic context, and the processing interval between the onset of the test
stimulus and the onset of the masking stimulus for the Boltzmann model.

els (Akaike, 1974; Sakamoto, Ishiguro, & Kitagawa, 1986). This formal
theory takes into account the likelihood of a model fit and also the number
of parameters used by the model. When several models give an approx-
imately equally likely fit of the observed data, the AIC statistic would say
that we should choose the model with the fewest parameters. In this
sense, the inclusion of the number of parameters in computing the AIC
allows us to contrast different models with a varying number of free
parameters.

We note first of all that our model fits using STEPIT minimized the
squared deviations of the observed and predicted data which yields a
maximum likelihood fit; thus the likelihood of the obtained fit is the max-
imum likelihood. The general form for the exact likelihood (L) of this
obtained fit is given by the product of the multinomial distributions for
each stimulus condition:

> for)!
L=H (H—J;?XHH e
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where f,, is the observed frequency of response r to stimulus s and p,, is
the predicted proportion of response r to stimulus s. The log-likelihood
(LL) of the fit is given by:

LL = 2 [ln((Z ﬁ") ') - 2 In(f,)) + Eﬁrln(psr)]' (25)

The AIC statistic is computed as:
AIC = —2(maximum LL) + 2(number of parameters). (26)

Smaller AIC values are preferred. From the relationship between the AIC
quantity and entropy, if the difference in AICs between models is at least
1 or 2, then the difference is considered to be significant. If the difference
is much less than 1, then the models are equally good in describing the
data. Table 5 gives the LL and AIC values for each of the models. As can
be seen in the table, the AIC of the FLMP was 240 less than the AIC of
the SIAC-INT and 389 less than the AIC of the Boltzmann model and
therefore the latter models can be rejected in favor of the FLMP. The
dynamic predictions of the SIAC-INT and Boltzmann Machine were sig-
nificantly poorer than the dynamic FLMP.

The dynamic FLMP gave a good description of the results with the
assumption that the build-up of context occurs simultaneously with and at
the same rate as the build-up of stimulus information. To test these as-
sumptions directly, two expanded forms of the FLMP were tested: one
(FLMP-D) assumed that there was a delay in the build-up of context
information (delay time subtracted from context processing time), and the
other (FLMP-6) assumed that context occurred at a slower rate than
stimulus information (with different 8 values for feature and context in-
formation). These fits are presented in Table 5. Even though these two
models used an additional free parameter, their fits were not better than
the simple FLMP. Thus, we have strong evidence that, contrary to the
predictions of IAC models, the build-up of context and stimulus informa-
tion occur simultaneously and at the same rate. Table 5 also gives the fit
of a constrained FLMP model (FLMP-C) which was tested to see whether
the poor fit of the IAC models might be due to the fact that the NA and
BA contexts cannot differentially bias target activations. In the FLMP-C,
the context values for these two contexts were fixed at .5. As can be seen
in the table, the fit of this model was essentially equivalent to the ordinary
FLMP, and far superior to any of the IAC models.

To summarize this section, backward masking was used to provide
performance measures at different points during perceptual processing,
making it possible to observe how stimulus information and context in-
teract over time. The empirical results revealed that context can have a
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substantial influence even at very short processing intervals. In addition,
the relative contribution of stimulus information increased over process-
ing time. Both of these empirical results cannot be simultaneously pre-
dicted by the SIAC and Boltzmann models. An additional analysis was
carried out on the results of the e-c experiment to illustrate more directly
how the contribution of stimulus and context varies with processing time.
A stimulus effect was computed across the four levels of context by
subtracting the probability of an e response given the endpoint ¢ letter
from the probability of an e response given the endpoint e letter. Figure
19 shows that the observed size of the stimulus effect increased with
processing time. In the similar manner, a context effect was computed at
each processing interval by subtracting the probability of an e response
given the ¢ admissible context from the probability of an e response given
the e admissible context. As can be seen in Fig. 20, there was a substantial
context effect at short processing times and it remained relatively con-
stant with increases in processing time.

In the SIAC models, contextual information can become available only
after feedback from the evaluation of stimuius information. In order to
maximize the fit of these results, the 16-parameter SIAC model required
a very short time (1.82 ms) for each processing cycle. This allows the
model to predict a substantial context at short processing intervals (see
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processing time for the FLMP, 16-parameter SIAC, SIAC-INT, and Boltzmann models of
e~c masking data.

Fig. 20). Given this short time per cycle, however, the target unit activa-
tions become asymptotic too quickly and the observed increase in the
stimulus effect (shown in Fig. 19) with additional processing time cannot
be predicted. The SIAC-INT model maximized the goodness of fit with a
longer cycle time (4.44 ms), and is able to predict the increase in stimulus
effect with increases in processing time (see Fig. 19). However, Fig. 20
shows that context effects are not predicted at short processing intervals,
contrary to the observed results. The Boltzmann model with a cycle time
of 4 ms behaves like the SIAC-INT model. In the FLMP, contextual
information is evaluated simultaneously with stimulus information and
the model accurately describes the temporal course of these contributions
to performance (see Figs. 19 and 20).

The interpretation of the results in Figs. 19 and 20 requires some un-
derstanding of the relative nature of the stimulus effect and context effect.
Figures 19 and 20 give the observed stimulus and context effects, respec-
tively. However, the stimulus effect depends on the size of the context
effect and vice versa. The stimulus effect was 3 or 4 times larger than the
context effect, reflecting the fact that the stimulus letter was more influ-
ential than context letters. In addition, although the contribution of con-
text increased at the same rate as the contribution of stimulus, the latter
increased to a larger asymptote (see Fig. 9). These two results are re-
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sponsible for fact that the effect of context shown in Fig. 20 (and also Fig.
10) did not change much with increases in processing time. Although the
absolute contribution of context increases with increases in processing
time, as illustrated in Fig. 9, so does the larger absolute contribution of
stimulus information. In the FLMP, the contribution of one source of
information is small to the extent the contribution of another source of
information is large. Thus, the increase in the context effect is washed out
by the larger increase in stimulus effect.

WORD SUPERIORITY EFFECT (WSE)

Another prototypical example of a context effect in psychological re-
search has been dubbed the Word Superiority Effect or the WSE. A letter
in a word is better recognized than a letter in a nonword or even better
than a letter presented alone. Many theories have been proposed to ac-
count for this influence of context on word recognition (the latest by
Richman & Simon, 1989). In previous research, Massaro (1979) attempted
to classify all previous accounts of the WSE and to test among them. The
previous accounts could be classified as independence and nonindepen-
dence theories. This use of an independence property appears to be
equivalent to Ashby and Townsend’s (1986) later definition of perceptual
independence. In independence theories, context does not influence sen-
sory processing at the letter level. In nonindependence models, on the
other hand, context modifies sensory processing at the letter level. A
categorization of some existing theories helps clarify this taxonomic dis-
tinction. Nonindependence theories have taken a variety of forms. In one
class of theories, orthographic context (for familiarity) has been assumed
to influence a feature extraction stage. According to this view, the sen-
sory resolution of a letter should be better in familiar than in unfamiliar
letter strings. In another case of nonindependence theories, it is assumed
that higher-order units intervene in the processing sequence to change the
perceptual analyses which are employed. These models also predict that
orthographic context influences the sensory featural processing of the
letter string. In hypothesis-testing models, for example, nonindependence
arises because higher-order information actually directs the nature of the
featural analyses. Thus, hypothesis-testing models also predict that or-
thographic structure modifies featural analyses.

The SIAC model is also an example of a nonindependence theory,
because top-down connections from the word level to the letter level
allow context to modify the representation at the letter level. Although
the model can account for many of the existing results on the WSE, it is
important to stress that interactive activation is not necessary to account
for these results. The FLMP, for example, does so without interactive
activation. In the FLMP, context operates independently of featural anal-



602 MASSARO AND COHEN

ysis, simply by providing an additional source of information at the level
of primary recognition, which synthesizes a percept and passes it on to
synthesized visual memory (Massaro, 1984). McClelland (1991) claims
that the FLMP cannot predict an accuracy advantage for words in the
Reicher-Wheeler task and that some form of 1A is necessary to predict
such an effect. We prove below that the FLMP (without interactive ac-
tivation) does predict an accuracy advantage given two sources of infor-
mation relative to just one, and then demonstrate that the dynamic ex-
tension of the FLMP provides a good description of the time course for
the WSE, as measured by Massaro and Klitzke (1979).

Backward Masking and the WSE

Before applying the FLMP to Massaro and Klitzke’s (1979) results, it is
important to mention how performance in the Reicher-Wheeler task is
viewed (Thompson & Massaro, 1973; Massaro, 1975a). Visual informa-
tion and orthographic context are integrated during the perceptual pro-
cessing of a letter string, and the resulting percept is influenced by both
these sources of information. The Reicher-Wheeler control does not elim-
inate a possible influence of orthographic context during perception; the
control only precludes a postperceptual guessing advantage for words. As
an example, suppose we are interested in comparing a word WORD with
a test nonword ORWD. In both cases, the two test alternatives are D and
K for the fourth position. If the subject has no visual information about
the test string, he or she would have no advantage in the word relative to
the nonword condition. However, if a curved feature from the fourth
letter was derived from the visual information, then the candidates for this
position might be D, O, or Q. If the first three letters WOR were also
recognized in the test word, then orthographic context would eliminate
the candidates O and Q, leaving D as the only perceptual alternative.
Recognizing ORW in the nonword condition would not constrain the al-
ternatives for the fourth position, thus making perception of any of the
three alternatives equally likely. The advantage of words over nonwords
in the Reicher-Wheeler task results from this contextual difference.

McClelland (personal communication) questioned why orthographic
context is assumed to support the correct alternative in the implementa-
tion of the FLMP for the Reicher-Wheeler task. He is correct in observing
that the orthographic context also supports the incorrect test alternative.
However, the orthographic context does provide information against
other incorrect letter alternatives—as illustrated in the example in the
previous paragraph. Thus, the orthographic context can have a significant
influence on perceptual performance. Two sources of information can
lead to better performance than just one. If only the context is presented
or if only the visual information about the test letter is presented, no
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advantage of words over nonwords is predicted with a Reicher-Wheeler
control. Given both orthographic context and visual information, how-
ever, a word superiority effect is predicted in the Reicher-Wheeler task.

We now show that the dynamic FLMP not only predicts a WSE, it
predicts a subtle interaction among the WSE, backward masking, and
lateral masking. Johnston and McClelland (1973) found a WSE over let-
ters when the test display was followed by a mask, but not when no mask
was presented, and offered three possible explanations. Massaro (1975b)
explained this effect in terms of the tradeoff between the positive contri-
bution of orthographic context and the negative effect of lateral masking.
To test this explanation, Massaro and Klitzke (1979) employed four types
of display in the Reicher-Wheeler task: words, nonwords, letters, and
letters flanked by dollar signs. On each trial, one of these test displays
was presented followed by a masking display after one of seven stimulus
onset asynchronies (SOAs) or no mask was presented. Two choice alter-
natives were presented Y4 s after the test display as in the standard
Reicher-Wheeler control. The masking stimulus varied from trial to trial
and was composed of nonsense letters created by selecting random fea-
ture strokes from the letters of the alphabet.

The intensity of the test letters was varied throughout the experiment to
keep overall performance at 75% correct (with the constraint that each
condition was tested with the same intensity level). Given that subjects
get much better in the task over the course of the experiment, it was
necessary to continually lower the intensity of the test stimulus through-
out the experiment. Thus, although the intensity of the test and mask
were initially equated, the masking stimulus was significantly more in-
tense than the test stimulus during the major portion of the experiment.
(This difference in intensity becomes important in the application of the
models to the results.)

Six subjects were tested for 5 days, with the first day treated as prac-
tice. Half the subjects received seven experimental sessions and the other
half received eight. There were 56 or 64 observations per subject at each
of the 32 conditions (four contexts times eight masking intervals). For
group data analysis, the percentage correct judgments were pooled across
subjects giving a total of 360 observations per condition. The points in
Fig. 21 present the probability of a correct identification for the group as
a function of the test display and the SOA.

Massaro and Klitzke (1979) described the WSE and its change across
masking conditions using the negatively accelerating function, given by
Eq. 14. They showed how three variables interact: orthographic context,
processing time, and lateral masking. Given the lateral interference of
adjacent letters on each other, the sensory information in the word, non-
word, and letter-in-dollar-signs conditions must necessarily be less than
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Fi1G. 21. Observed probability (points) of correct identification of the test letter as a
function processing time for the letter alone (LET), word (WRD), nonword (NON), and
letter in dollar signs context (DOL) contexts. The lines are the predictions of the FLMP. The
left-most line gives the predictions for the word context, the middle line for the letter-alone
condition, and the right-most line for the nonword and letter-in-dollar signs contexts. Note
that both the observations and the predictions give a crossover between the word and
letter-alone conditions (results after Massaro and Klitzke, 1979).

the single-letter condition. Thus, the dynamic FLMP analysis follows that
given for the Massaro (1979) study with the further stipulation that the
asymptotic sensory information must necessarily be less in the word,
nonword, and letter-in-dollar-signs conditions relative to the single-letter
condition. Of course, the word condition still has the advantage of ortho-
graphic context, whereas the other three types of display do not. Lateral
masking and orthographic context must necessarily counteract each other
and only a quantitative model can be reasonably tested against the results.
To do so, we tested the FLMP.

In the FLMP model, given a test letter alone, only a single source of
information is evaluated, until the onset of the masking stimulus or until
its representation is no longer present in a preperceptual visual storage.
Given a test word, two sources of information are evaluated and inte-
grated over time until the onset of the masking stimulus or until the
representation of the test stimulus is no longer present in preperceptual
visual storage. Thus, the test word will tend to accumulate more infor-
mation over time than the test letter, and a WSE should be observed.
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The potential information that could be derived from the display given
unlimited processing time. must also necessarily differ for the letter and
word displays. Lateral masking, the mutual interference between adja-
cent letters in a display, serves to diminish the asymptotic information
available from the test letter in the word relative to the letter display.
Given that the masking stimulus was significantly more intense than the
test stimulus, it is reasonable to assume that the masking stimulus was
transduced by the visual pathways more quickly than was the test stim-
ulus and that the SOA probably overestimates the perceptual processing
time available before the onset of the masking stimulus. To account for
this effect in the fit of the dynamic FLMP, a dead time during which no
processing occurred was estimated and subtracted from the SOA. Given
that the shortest SOA was 38 ms, the estimated dead time was necessarily
less than this value.

The mathematical form of the FLMP model assumes, first of all, as-
ymptotic support for the correct letter given the feature information of the
letter, o;,,, and asymptotic support for the correct letter given context
information, a. In addition, we assume that asymptotic support for the
correct response letter in a word, nonword, or dollar sign context, a,.,,
is less than o, due to lateral masking. Following Eq. 17, these sources of
information at a particular processing time, F,,,, F,,,.;, and C develop with
processing time from an initial neutral value of .5 to their asymptotic
values, as given in Eq. 27-29.

Fler = (1,8,(1 - e‘O(l—ldmd)) + ,S(e_e(’_’dmd)) @7
Fund = Gl — €% ad) 4 5(¢ =%~ 1ucd) 28)
C=oadl —e” o — ld;ad)) + .5(e” 6 _z}.ldzud)) . 29)

where ¢ is processing time (SOA); t,.,4 is initial dead time; and 9 is the
rate of processing. The no mask condition resembles a masking condition
at a long SOA (in this case, we assumed an infinite SOA and it follows that
Fler = Qs Fwnd = Oynds and C = aC)'

We assume that the support for an incorrect letter is given by the
complement of its support for the correct letter. Thus, if x is the support
for a correct letter, 1 — x (written X) is the support for the incorrect letter.
On a given trial, for example, the possible letter responses allowed might
be “D’’ and “‘K,” with ““D"’ being the correct response. If we have a
word context, which supports both response alternatives, the support
given the correct alternative will be conjunction of the two sources C and
F,, .4 While the incorrect response will be supported by the conjunction of
C and F,,, ;. The other 24 letters of the alphabet, represented as a group
by the symbol X, will each be supported by the conjunction of C and F

wnd*

(We note parenthetically that this representation of the other 24-letters is
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only approximately true. If the first three letters are recognized as WOR,
for example, then some other letters—such as M—should also be sup-
ported by the word context. Similarly, some other letters may be sup-
ported by the letter feature information.) As in other applications of the
FLMP we will use multiplication to carry out conjunction. For the re-
mainder of the mathematical development, we will assume some typical
parameter values for the asymptotic case: oy, = F,, = .99, 0.0 = Foppa
= .95, a¢c = C = .7. Equations 30-32 then give the probabilities of
perceiving the correct response letter (), the incorrect letter (i), and any
of the other 24 letters (X).

CFppa 665
P = =
(chword) CF,y+CFoq+2CF,, .665+ .035 + .24 x .015
665
= o0 = %7 (30)
CF., 035
P(ilword) = __ = =.033 G1)
CF,y+CF, +24CF,, 1.060
24CF, 360
P(X\word) = = 340 (32)

CFyy+ CFoy+24CF,., 1.060

Each predicted probability is equal to the goodness-of-match of the cor-
rect alternative divided by the sum of the goodness-of-matches for the
correct alternative, the incorrect response alternative, and the other 24
letters of the alphabet.

In the case of a single-letter (lef) display, only the F,, information
influences performance, as given in Eqs. 33-35,

p Flet . .99 9
P(c|les) = - = = = 798 (33)
F,, + F,, + 24 F,, 99 + 01 + .24 1.24
F. .01 '
P(iller) = — = = .008 (34)
F,, + F,, + 24 F,, 1.24
2 Fy 24 |
P(X]let) = = .194 (35)

Fi + F, + 24F,, 124

Each predicted probability is equal to the goodness-of-match of the cor-
rect alternative divided by the sum of the goodness-of-matches for the
correct alternative, the incorrect alternative, and the other 24 letters of
the alphabet. .
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The model predicts equivalent results for the nonword (nw) and dollar
sign (ds) displays. For these two conditions, only the F .4 information
influences performance, as shown in Eqs. 36-38.

F.., 950
P(c|nw,ds) = — _ =
Fopg + Fopy + 24 F 950 + .050 + 1.200
950
= —— = 432 (36)
2.200
F. 050
P(ilnw,ds) = — — = = ,023 37
Fopg+ Foy + 24F, 2200
UF, 1.200
PX|nw,ds) = = = ,546 (38)

Foa + Fopy + 24F,— 2200

Equations 30-38 give the probability of perceiving the correct letter in
the different types of display. To predict performance in a task with the
Reicher-Wheeler control, an additional assumption is needed. Thompson
and Massaro (1973) found evidence for the assumption that subjects per-
ceive the display before consideration of the two test alternatives. If one
of the test alternatives agree with what they saw at that position, they
choose it. Otherwise they guess randomly between the two alternatives.
We make the same assumption in Eqs. 39-41. The equations give the
predictions for the proportion of correct responses, taking into account
guessing when one of the 24 other letters is perceived. In each of the three
equations, we assume that the correct alternative is always chosen from
the two response alternatives whenever the correct letter is perceived,
and is chosen half the time when one of the other 24 letters is perceived:

P(correctjword) =
P(clword) + .5 x P(X|word) = .627 + .5 x .340 = .797 (39)

P(correct|let) =
P(cllery + .5 x P(X|let) = .798 + .5 x .194 = .895 (40)

P(correctlnw v ds) =
P(clnw,ds) + .5 P(X|nw,ds) = .432 + .5 X .546 = .705 41)

As can be seen in these examples, two sources of information can lead
to better performance than just one. If the visual information about the
test letter is presented in a word or nonword context, an advantage for
words (.797) over nonwords (.705) is predicted. This prediction is consis-
tent with the results shown in Fig. 21. At asymptote for these parameter
values, the letter presented alone (.895) gives better performance-than a
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letter presented in a word (.797). This difference is consistent with the
observed results, as can be seen in Fig. 21. As we will see below, the
model also predicts a word advantage over single letters with a masking
stimulus at short SOAs, but not at long SOAs and when no mask is
presented.

The FLMP model was fit to both individual subject data and the group
data, weighted by the number of observations per subject. Table 6 gives
the best fitting parameter values and RMSD values for these fits. For the
fit of the FLMP for the group data, the dead time was estimated at 19 ms,
which is a reasonable value given the difference in intensity of the test
and masking displays. The values of the other four best-fitting parameters
of the dynamic FLMP model were: oy, = .9968, a,,,, = .9885, o, =
7323, and 6 = 37.99 (when time is measured in s). Although the feature
value F,,,, is only slightly smaller than F,,,, F,,,is 3.6 times larger than
F,,,. Therefore, F,,,, provides significantly more support for the incorrect
and other letters in the word, nonword, and dollar sign displays. The
RMSD of the fit was .0162. The lines in Fig. 21 give the predictions of the
FLMP when fit to the results. As can be seen in the figure, the dynamic
FLMP predicts the interaction between the WSE and SOA, without any
arbitrary assumptions. The assumption of two sources of information in
the word condition relative to just one in the letter condition is necessi-
tated by the model. The assumption that the presence of lateral masking
in the word condition but not the letter condition influences the potential
information of the test letter (o) is consistent with the literature on
visual information processing. These two constraints are responsible for
the variation in the WSE with differences in processing time in the
Reicher-Wheeler task.

Figure 21 also shows the observed (points) and predicted (lines) per-
formance in the nonword and letter-in-dollar-signs conditions. Perfor-
mance in these displays suffer because of lateral masking and do not

TABLE 6
Best-Fitting Parameters from FLMP Model for the Results of Massaro and Klitzke (1979)
Subject o a,, e 0 dead RMSD
1 .9976 .9938 .7640 37.79 .0158 .0458
2 .9974 9732 .6963 28.17 .0036 .0504
3 .9969 9913 .7805 30.55 .0019 .0425
4 .9955 .9923 .6994 40.53 0312 .0400
5 9978 .9842 6611 43.16 .0356 .0457
6 9979 .9927 .9088 50.00 .0230 0453
Group .9968 .9885 7323 37.99 .0189 .0162
Average .9968 .9884 .7326 37.60 .0182 .0450
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benefit from orthographic context. These results substantiate the predic-
tions of the word and letter displays because they were predicted using
the same free parameter values that were used to describe the letter and
word conditions.

The interaction of the WSE with SOA is an important result because it
reflects the interaction of a contextual (cognitive) influence with two sen-
sory influences (perceptual processing time and lateral masking). The
dynamic FLMP captures the observed results in a direct and parsimoni-
ous manner by accounting for the influences at the appropriate levels of
processing. The components of the FLMP reflect the contributions of
lateral masking, backward masking, and orthographic context. Massaro
and Klitzke (1979) replicated the results in a second experiment in which
the intensity of test display was adjusted to give an overall level of 75%
correct at each SOA across the four context conditions. As expected,
larger intensity values were necessary at shorter SOAs. In addition, a
WSE was observed at short SOAs and a letter advantage at long SOAs
and with no mask. The letter-in-dollar-signs and the nonword did not
differ from each other at all SOAs and with no mask. Thus, the interaction
of the WSE with processing time cannot simply be due to simply having
better overall performance at long SOAs.

In terms of how a SIAC model might work for these data, McClelland
and Rumelhart (1981) offered a different interpretation of the interaction
of the WSE and backward masking. They assumed that the nature of the
perceptual processing was the same for the mask and no-mask conditions.
However, the subject’s decision would be made at different times after
the onset of the displays. For the no-mask condition, the decision was
made after 50 cycles of processing, and the model predicted a 10% ad-
vantage of words over single letters. For the masking condition, the de-
cision was made after 15 cycles of processing, and a 15% WSE was
observed. This explanation incorrectly predicts a word advantage over a
letter when no mask is present and no differences between a single-letter
and letter-in-dollar-sign context. In addition, McClelland and Rumelhart
(1981) acknowledge that the assumption of different readout times for the
mask and no-mask conditions is reasonable only when these two condi-
tions are tested between different blocks of trials. In the Massaro and
Klitzke (1979) study, on the other hand, all of the masking conditions
were varied randomly within a block of trials. Thus, the original expla-
nation given by the IAC model will have to be drastically modified in
order to describe the quantitative results in Fig. 21. In addition, the SIAC
model should have difficulty predicting the dynamics of performance—as
it did in the e—c experiment.

Finally, it is necessary to address a potentially problematical result
found by Johnston (1978). He found no effect of lexical constraint in test
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words in the Reicher-Wheeler task, which appears to question the as-
sumption that the word context provides an additional source of informa-
tion. Analogous to Paap, Newsome, McDonald, and Schvaneveldt (1982),
we do not find Johnston’s results troublesome. He calculated lexical con-
straint based on complete knowledge of the three-letter context and no
knowledge of the fourth letter (e.g., the extent to which -hip constrains
s---versus the extent to which -ink constrains s---). This analysis might not
correlate with the actual constraints when only partial information about
the test and context letters is available. Paap et al. provide evidence that
the lexical constraints between Johnston’s high- and low-constraint words
do not differ when partial information is available at each letter position.
Paap et al. reanalyzed the results from the individual words in Johnston’s
experiment and found that lexical constraint had an effect when partial
information was accounted for. In addition, we believe that sublexical
constraints must be also included for a complete account of performance.

Retrospective

The theoretical and empirical analyses of SIAC models and the FLMP
!1ave informed several important issues in the description of how stimulus
information and context jointly determine perceptual recognition. The
empirical results support independent contributions of these two sources
of information. Interactive activation necessarily introduces nonindepen-
dence because of two-way excitatory connections among units in differ-
ent layers and inhibitory connections among units within a layer. This
nonindependence at the activation level can be neutralized at the decision
stage by a BOW decision rule. Thus, a SIAC model can be constructed to
generate hypothetical results that are consistent with an independence
prediction (McClelland, in press, Figs. 3, 6, and 8). When used with a
simple extension of McClelland’s network, this same model, however,
provides a significantly poorer description of actual empirical results than
that provided by the FLMP. The SIAC and SIAC-INT models gave a
significantly poorer fit to the phonological constraints experiment even
though they had 16 free parameters relative to just 11 for the FLMP (see
Table 2). Thus, SIAC models have not been shown to give an adequate
account of asymptotic performance.

Notwithstanding their poorer fit to asymptotic performance, there has
been a good reason to value interactive-activation accounts. An interac-
Five activation model is attractive because it specifies the dynamics of
}nformation processing that lead to asymptotic performance. Surpris-
3ngly, however, there have been few direct tests of dynamic predictions of
mte-ractive activation models. In most cases, predictions are generated by
letting the model run to asymptote (or to equilibrium in the case of Boltz-
mann machines). In fact, McClelland’s implementation of SIAC models is
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based on the assumption that processing occurs for a fixed number of
cycles and that a decision is made based on the activations at this time.
Thus, it is essential to test the SIAC models against performance mea-
sures of the dynamics of perceptual processing.

In the IAC word recognition model, the TRACE model, the network
proposed by McClelland (1991), and the networks tested in the present
research, several cycles of processing are necessary before top-down
activation can influence the representation of the target letter. As illus-
trated in Figs. 19 and 20, the 16-parameter SIAC model cannot predict the
dynamics of the stimulus influence when also predicting the context ef-
fect. Although the SIAC-INT and Boltzmann models are able to predict
the stimulus effect, they do so at the expense of failing to predict the
dynamic effect of context. The only model capable of predicting both the
stimulus effect and context effect with changes in processing time is the
FLMP, which requires five fewer parameters than these three interactive
activation models. Contrary to the interactive activation models, the
FLMP accurately predicts that the influence of context does not neces-
sarily lag behind the influence of stimulus information.

The present results illustrate how interactive activation fails to account
for the time course of the influence of context. Analogous results were
found by Ratcliff and McKoon (1981) in the study of retrieval of infor-
mation presented in text. They primed the test word with a word that was
either near or far from the test word in a propositional network structure.
They tested two assumptions of spreading activation. First, the amount of
spreading activation decreases with increases in the distance between the
words in the network and, second, it takes longer to spread to far than to
near words. Although more priming was found for near than for far
words, the facilitation due to priming began just as early for far as for near
words. The fact that far words are primed just as early as near words is
analogous to our finding that the contribution of top-down context occurs
just as early as the contribution of bottom-up sensory information. Rat-
cliff and McKoon use the analogy of the physics of light—its spread is
independent of its intensity. A similar analogy holds the sources of infor-
mation in reading because the influence of context follows the same time
course as the influence of stimulus information.

A strong context in the FLMP will not override a relatively weak stim-
ulus as it can in the SIAC and Boltzmann models. Given the assumption
of interactive activation, context can sometimes overwhelm stimulus in-
formation about the target as additional processing occurs (see Figs. 16
and 17). This prediction is contradicted by both phenomenological expe-
rience and experimental results. We are more likely to notice a misspell-
ing in a word to the extent we read it carefully. In experiments varying
target information, context, and processing time, stimulus effects are
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larger to the extent that the processing time is substantial (see Fig. 19).
These SIAC models cannot simultaneously predict the observed stimulus
and context effects with increasing processing time. We conclude that the
empirical and theoretical shortcomings of interactive activation are sub-
stantive enough to warrant caution in its use as a description of the joint
influence of stimulus and context in language processing.
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