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Summary. The present research strategy utilizes factorial de- 
signs, functional measurement, testing of mathematical mod- 
els and strong inference in the study of letter perception. To 
test the viability of this framework, subjects judged a number 
of ambiguous letters, varying between Q and G, in both a 
rating and discrete choice task. The letters were created by 
varying features of openness in the oval and the obliqueness of 
the straight line. Experimental and theoretical tests on the 
results indicate that multiple sources of featural information 
simultaneously contribute to the perception of letters. The 
features provide continuous rather than discrete information 
to an integration process and the evaluation of the information 
provided by one feature is independent of the nature of the 
other features. The integration process results in the least 
ambiguous letter feature contributing the most to the percep- 
tual judgment. A fuzzy logical model developed in other do- 
mains, such as speech perception, provides a good description 
of exactly these phenomena. 

Introduction 

Although scientists have been engaged in reading-related re- 
search for a century or so, we have yet to formulate fundamen- 
tal laws about reading. We have learned, though, that word 
recognition is a fundamental component of reading and learn- 
ing to read. Studies of reading ability, eye movements, nam- 
ing, and lexical decision tasks establish the importance of word 
recognition in reading (Just & Carpenter, 1980; Carrithers & 
Bever, 1984; Gough, 1984; Perfetti, Goldman, & Hogaboam, 
1979). Not only is word recognition fundamental to reading, 
but letter recognition is the basis of word recognition. Higher 
order perceptual cues, such as context and overall word shape, 
cannot account for word recognition; there is good evidence 
that word recognition is mediated by the resolution of the 
letters composing a word (Gough, 1984; Massaro, t984; Paap, 
Newsome, & Noel, 1984). 

Our perspective, then is that understanding the processes 
involved in letter recognition is crucial to our understanding of 
word recognition and ultimately reading. Traditionally, re- 
searchers have taken two approaches to the study of letter 
recognition. One method is to examine the pattern of errors 
that subjects make when they identify letters (Bouma, 1971; 
Cattell, 1886; Loomis, 1982). To induce a reader to make 
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errors, letter stimuli are degraded by presenting them for a 
short duration or at a great distance. The responses of the 
subjects are entered into a confusion matrix which indicates 
the identification given to each letter stimulus. For example, 
subjects might be given the set of 26 lowercase letters in Eng- 
lish and they respond with one of the 26 alternatives on each 
trial. These results are then used to distinguish among various 
descriptions of the properties of the letters. The goal has been 
to find the smallest set of properties that best describes the 
responses. The most popular method of data analysis in this 
domain has been multidimensional scaling (Gilmore, Hersh, 
CaramazZa, & Friffin, 1979; Townsend, 1971). Although the 
relative similarity of the letters might be described, one limita- 
tion of this general method is that the nature of the psycholog- 
ical processes can not be determined. 

The second method of study, the approach that we take in 
this paper, involves the systematic manipulation of the proper- 
ties of letters. Subjects identify letters modified in systematic 
ways, and their responses are used to test quantitative models 
of the identification process (Oden, 1979; Naus & Shillman, 
1976). An important distinction must be made between the 
visual characteristics of the letters that are manipulated in the 
experiment and the visual features that the readers actually 
utilize in the identification of the letters (Massaro & Schmul- 
ler, 1975, p. 209). Letters can be described by an almost end- 
less number of characteristics or properties (Palmer, 1978) and 
only a small set of these will be psychologically real. Thus, 
manipulation of a particular characteristic does not insure that 
it is a feature that is utilized in letter recognition (Cheng & 
Pachella, 1984). Which visual characteristics are features is a 
psychological question. 

According to the model developed here, the wide variety of 
objects (features, letters, and words) in reading are recognized 
in accordance with a general pattern recognition algorithm 
(Massaro, 1979; Oden, 1979; Oden & Massaro, 1978). The 
model postulates three operations: featural evaluation, fea- 
tural integration, and classification. Continuously valued fea- 
tures are evaluated, integrated with respect to prototype repre- 
sentations, and a classification decision is made on the basis of 
the relative goodness of match of the stimulus information 
with the relevant prototype. The model is called a fuzzy logical 
model of perception; the concept of fuzzy logic has been dis- 
cussed by Goguen (1969), Oden (1977), and Zadeh (1965). 
How it is used in the model has been described by Oden and 
Massaro (1978) and Massaro and Cohen (1983a). 

Featural evaluation assumes that the features functional in 
letter recognition are continuous rather than discrete. In addi- 
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tion, the evaluation of each feature proceeds independently of 
the properties of the other features. Using the continuous 
truth values of fuzzy logic as a metric, featural evaluation is 
conceptualized as providing truth values, t(x), representing the 
degree to which each relevant feature is present. The features 
are defined by prototype descriptions of the letters which are 
stored in memory. All of the features of a letter are evaluated 
with respect to  the degree to which the features support the 
various letter alternatives, such as a Q or a G. 

Featural integration involves the integration of the truth 
values of the features with respect to the prototype representa- 
tions. A prototype defines a percept or concept in terms of an 
arbitrarily complex fuzzy logical proposition. For  example, a 
letter prototype would represent the conjunction of the visual 
features defining the letter. The integration operation consists 
of replacing the respective features of each prototype with 
their corresponding truth values from featural evaluation of 
the relevant test letter. The conjunction of these truth values 
determines to what degree each prototype is realized in the 
test letter. The outcome of featural integration consists of a 
goodness-of-match value for each prototype. 

During pattern classification, the merit of each relevant pro- 
totype is evaluated relative to the summed merits of all rele- 
vant prototypes. The relative goodness of a prototype gives the 
proportion of times it is selected as a response or its judged 
magnitude. This decision process is similar to Luce's (1959) 
choice rule which is based on the relative strengths of the 
alternatives in the candidate set. In pandemonium-like terms 
(Selfridge, 1959), we might say that it is not how loud some 
demon is shouting but rather the relative loudness of that 
demon in the crowd of relevant demons. The likelihood of Q 
identification would be equal to the goodness-of-match values 
to the alternative Q relative to the sum of the goodness-of- 
match values for all of the relevant alternatives. 

Factorial designs 

Our method of studY of perceptual recognition utilizes fac- 
torial designs that manipulate independently multiple char- 
acteristics of the letters. Consider, for example, how a range of 
letters between G and Q can be created when the obliqueness 
of a line and the openness of the gap in the letter Q are varied 
across seven levels each (Figure 1). Seven levels of openness 
are created by removing 0, 2, 3, 4, 7, 9, and 10 points from the 
oval of the capital letter Q. Similarly, the obliqueness of the 

~-. F, i"~ r :  r"~ ~q r~ i i : . 

i I ~ ' I ' i ~ I i 
tO- :~- ~-._,-~- LT LT k_T KT 

~ ~" r ~ n n o., r-- 

F [-" f-~ F-'., N r',. F~ 
L'7" I ~  ~_, k.~ L, ~ L'f L_'¢ 

r "  ¢-" (-h ,--5 r ~  ( - -  ffh 
L ~  i ' i ' I ! i i 

i r "  " ~  ( h ,  N F'-~ ( 

F P i "~ 3q r'~ p., n 
, ' I I 

Fig. 1. The 49 Q/G test letters created by varying obliqueness of the 
line (row) and the openness of the gap in the oval (columns) 

line varies between the horizontal and 10.8, 20.9, 28.9, 37.9, 
50.7, 60.9 degrees of obliqueness measured from the horizon- 
tal. The resultant 49 test letters are presented to subjects in 
randomized order and repeatedly for their identification as G 
or Q. Two dependent measures are the identification judg- 
ments and the reaction times (RTs) of these judgments. In 
addition to requiring discrete judgments, subjects are asked to 
rate each letter along a continuum between G and Q. 

This paradigm can provide information about the nature of 
letter identification. We demonstrate that it can be used to 
address not only which visual characteristics are functional 
visual features, but also a variety of other questions, which are 
considered below. Before doing so, we present an overview of 
the experimental method used in the present studies. 

General method 

Stimuli were presented on a display screen (Tektronix 604) 
using a digital to analog converter. All  experimental events 
and data collection were controlled by a PDP-11134a com- 
puter. 

The Q/G stimuli Figure 1 were presented to subjects by 
plotting the points of a test letter in a 80 by 240 grid on a 
display screen. When presented on the display, each test letter 
was about 0.22 inches wide and 0.47 high. Given a viewing 
distance of about 24 inches, the visual angle was 0.53 degrees 
for the width and 1.12 degrees for the height of the test letter. 
The test letters were plotted so that its center corresponded 
with the center of the display screen. The intensity of the 
display was set at a comfortable viewing level. 

In all of the present experiments each trial began with the 
presentation of a fixation point for 500 ms on a display screen. 
A test letter immediately followed the fixation point. The 
length of the display was either 200 or 400 ms with the duration 
remaining constant within a particular experiment. After  the 
stimulus presentation, the subjects made an identification or 
rating judgment of the letter. The next trial began 1 s after all 
subjects had responded. Up to four subjects could be tested 
simultaneously in separate sound attenuated rooms. The in- 
candescent lighting in the rooms was dimmed to allow better 
viewing of the displays. 

Subjects judged the test letters by using a discrete judgment 
or a continuous rating task. In the discrete judgment task, 
subjects were instructed to indicate whether the test letter 
presented on each trial was a Q or a G by pressing the appro- 
priately labeled key on the computer terminal keyboard. For 
the rating task, subjects rated the "Q-ness"-"G-ness" of a test 
letter from the Q/G continuum by using a rating scale display- 
ed on the computer terminal monitor. The scale was a straight 
horizontal line made up of 50 divisions. The left end of the 
scale was labeled "Q" and the right end "G". Subjects were 
able to move a pointer along the scale but were not told that 
the scale had 50 divisions. The pointer was represented as a 
black box on the rating scale and subjects manipulated the 
pointer using left and right arrow keys on the terminal key- 
board. In the rating session subjects were instructed to "... tell 
us where the test letter falls on the scale from Q to G by 
moving the pointer on the screen in front of you ... we want 
you to use the whole Q-G scale, not just the two endpoints and 
middle, for example. For the letters you will see in this study, 
you should use the entire scale and all of the points in it." In 
both tasks, subjects were told that the test letters were present- 
ed in random order, with no patterns for them to guess. 



In all tasks, subjects participated in a familiarization session 
and two experimental sessions lasting about 20-25 min with a 
five minute break between sessions. In the familiarization ses- 
sion, the Q/G stimuli were presented twice in random order so 
that the subjects could gain some sense of the range of differ- 
ences among the test letters. Each experimental session began 
with 20 practice trials which were not included in the analyses. 

Within each experimental session, the Q/G test letters were 
presented in 6 blocks of 49 experimental trials. Within each 
block, stimuli were sampled without replacement from the 49 
levels of the Q/G continuum. Subjects completed 628 trials 
consisting of 40 practice judgments and 12 judgments for each 
of the 49 test letters across the two experimental sessions. 

Three separate experiments were performed using the 
above method. In one experiment, nine subjects judged with 
the discrete choice task stimuli presented for 400 ms. In a 
second study we had three subjects use a discrete choice task 
to judge the test letters presented for 200 ms. Finally in a third 
experiment six subjects participated in the rating task in which 
the test letters were presented for 200 ms. We use these experi- 
ments to test the issues in perceptual recognition described in 
the next section. 

Binary contrasts 

Our research strategy follows the tenets of falsification and 
strong inference (Platt, 1964; Popper, 1959) in that binary 
oppositions are constructed and tested. In addition, we look 
for converging operations or converging results from a variety 
of experimental paradigms and behaviors (Garner,  Hake,  & 
Eriksen, 1956). The binary contrasts consist of alternative theo- 
retical descriptions of psychological phenomena. The tests are 
constructed so that the results will be consistent with one 
theory and inconsistent with the other. Before the experiment, 
each theory has an equal opportunity to explain the results; the 
outcome of the experiments determines the winner. The dissec- 
tion of psychological phenomena within the framework of bin- 
ary oppositions, combined with the tools of information inte- 
gration (Anderson, 1981, 1982) and mathematical-model test- 
ing, not only illuminates the phenomenon of letter recognition 
itself but also more general problems of perception and pat- 
tern recognition. 

The explicit tests of fundamental questions also make ap- 
parent the implicit assumptions inherent in much of the cur- 
rent empirical and theoretical research. For  example, most 
experimental tests assume that people process multiple fea- 
tures to make a perceptual judgment of a letter. This assump- 
tion bypasses a fundamental issue in visual pattern recogni- 
tion: whether readers utilize all the featural information avail- 
able or use only one critical feature when making their judg- 
ments (Oden, 1979; Massaro, 1979, 1985). By designing our 
experiments to address these issues, we not only examine how 
readers use visual information to recognize a letter but we also 
determine whether readers use more than one source of the 
available information when making perceptual judgments. 

The binary oppositions to be considered in this paper are 
arranged hierarchically (Figure 2). In some cases, the question 
at one level is dependent on the answers to questions at higher 
levels. The template versus multiple features contrast deter- 
mines the number of information sources available: a template 
model argues that a letter makes available only a single in- 
formation source whereas a feature model argues for many 
sources of information. If readers have available multiple 
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Fig. 2. An illustration of the binary oppositions central to the domain 
of letter recognition 

sources of information about a given letter, then it is necessary 
to determine whether readers use one or many features out of 
the pool of available features when making perceptual judg- 
ments. We formulate this question in terms of integration 
versus nonintegration. The categorical versus continuous con- 
trast determines whether the sources of information (e.g., fea- 
tures) are continuous or discrete. The nature of one source of 
information might depend on the nature of other sources and 
this issue is examined in terms of the dependence or indepen- 
dence of the sources of information. Finally, if features are 
integrated, we ask whether they are integrated in an additive 
or multiplicative fashion (Anderson, 1981, 1982). We now 
discuss the experimental tests of these issues. 

Templates versus multiple features 

The first question asks whether there are multiple sources or 
just a single source of information in letter recognition. By 
source of information we mean some property of the letter that 
is functional in letter recognition. This question is reminiscent 
of the traditional contrast between templates and features 
(Massaro & Schmuller, 1975; Neisser, 1967). 

A template theory assumes that a reader uses a single source 
of information when identifying a letter pattern, that is the 
letter pattern itself. According to the template theory, a rea- 
der does not analyze a letter into component parts, but per- 
ceives it as a whole. To recognize the letter, a reader must 
compare the sensory experience of a test letter against tem- 
plates, or psychological representations of letters in the percep- 
tual system (Selfridge & Neisser, 1960; Gibson, 1963). The 
identity of a test letter is the name of the template that best 
matches the test letter. The template model, however, does 
not consider that the letter pattern might be represented to the 
perceptual system in terms of its constituent parts, as many 
studies on pattern recognition suggest (Palmer, 1975; Pomer- 
antz & Garner,  1973). 

An opposing view to the template approach is to assume 
that multiple sources of information are available, for ex- 
ample, a minimum set of common geometric components of 
letters, such as vertical bars and curved lines, that allow people 
to discriminate among all the letters of an alphabet (Bouma, 
1971; Oden,  1979). To recognize a letter, a reader compares 
the letter features obtained from a physical letter pattern 
against the knowledge of what distinctive features represent 
the letter. Traditionally, distinctive features were assumed to 
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provide only binary information: the presence or absence of a 
physical subpattern of a character. Current thought assumes 
that features provide information about the degree to which 
they match a particular letter alternative (Naus & Shillman, 
1976; Massaro, 1979; Oden, 1979). 

We performed a qualitative test of the template versus mul- 
tiple feature contrast. We had three subjects classify as Q or G 
the test letters from Figure 1 using the method described in the 
factorial section. Three subjects judged each of the 49 test 
letters, presented with a 200 ms duration, 12 times each. We 
calculated each subject's probability of responding Q for each 
test letter by dividing the number of times a test letter was 
identified as Q by 12. 

According to the template model, changes in the probability 
of identifying a letter as Q should be based on the similarity of 
the shape of a test letter to a Q template. The template model 
is not sensitive to openness as a separate feature that distin- 
guishes Q from other letters; for example, it just considers 
openness as part of the overall shape of the character. When 
we alter the shape of the test letter by changing openness, the 
template model predicts that the overall perceived similarity of 
the test letter to a Q template should change independently of 
the shape of the rest of the pattern. Therefore, changes in 
openness should have the same effect on the similarity of a test 
letter to a Q template regardless of the changes in the oblique- 
ness of the line of the character. A test of this prediction would 
be to examine whether or not there is an interaction between 
the independent variables of obliqueness and openness. An 
interaction would indicate that changing the shape of one part 
of the test letter is not independent of changes in other part of 
the test letter. On the other hand, a lack of an interaction 
would be consistent with the template model. 

Figure 3 plots the average probability of Q responses from 
the discrete choice experiment. The changes in the probability 
of responding Q appear to be based on changes in both the 
obliqueness and openness dimensions. In addition, the bow- 
shaped curves in Figure 3 indicate that obliqueness contributed 
more to Q judgment probabilities when openness was ambig- 
uous and vice versa. An A N O V A  with subjects, obliqueness 
and openness as factors revealed a significant interaction be- 
tween obliqueness and openness, F(36,72) = 15.47, P < 0.01. 
The bow-shaped curves together with a significant interaction 
provides strong support for the idea that subjects use multiple 
sources of information when judging the test letter. The sys- 
tematic change in the Q identification probabilities indicates 
that changes in one part of a test letter pattern change the 
influence of other parts of the pattern. Clearly, multiple 
sources of information are used in making the perceptual judg- 
ments. 

Integration versus nonintegration 

Given multiple sources of information, an important question 
is whether these sources are integrated or combined in the 
letter recognition process. It is possible that multiple sources 
are functional but that only a single source is used during a 
given presentation of the letter. 

The idea of only a single source of information being func- 
tional during a given presentation can be represented by a 
model that assumes that a subject can only evaluate one letter 
feature on any given trial in order to make a perceptual judg- 
ment. Consider the Q/G matrix illustrated in Figure 1 in which 
each test letter is formed by a factorial combination of the 
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Fig. 3. Average percentage of Q identifications for three subjects as a 
function of openness and obliqueness 

features of openness and obliqueness. Subjects identify these 
test letters as G and Q. The results allow us to test between the 
fuzzy logical model and the single feature model. The fuzzy 
logical model assumes that both the dimensions of obliqueness 
and openness are evaluated. The single feature model assumes 
that only one dimension or the other is evaluated given a test 
letter. We will now describe how the fuzzy logical and single 
feature models can fit the results of a Q/G identification experi- 
ment. 

Fuzzy logical model. Given a test letter, the featural evalua- 
tion stage determines the degree to which the Q and G alterna- 
tives are supported by the visual information. Using fuzzy 
truth values, a value between zero and one is assigned to the 
obliqueness and openness dimensions, indicating the degree to 
which these features support the G and Q alternatives. 

The features values of openness and obliqueness are then 
integrated by the Q and G prototypes. The prototypes are 
defined by: 

Q: Not Open Oval & Oblique Line 
G: Open Oval & Horizontal (Not Oblique) Line 
Given a prototype's independent specifications for the obli- 

queness and openness features, the value of one feature can- 
not change the value of the other feature at the prototype 
matching stage. Using the definition of fuzzy negation as 1 
minus the feature value (Oden, 1977) we can represent the 
prototypes in terms of openness and obliqueness. 

Q: (1 - Openness) & Obliqueness 
G: Openness & (1 - Obliqueness) 
The integration of the features defining each prototype can 

be represented by the product of the feature values (Massaro 
& Oden, 1980; Oden, 1979; Oden & Massaro, 1978). In this 
case, the goodness of a Q or G alternative can be represented 
by: 

G(Q) = (1- t (Openness) )  x t(Obliqueness) (1) 
G(G) = t(Openness) × (1- t (Obliqueness))  (2) 

where G 0 represents the goodness of match of a test letter to 
the Q and G alternatives and t 0  is a function that determines 
the truth value of a particular feature: the degree to which a 
gap is open or a straight line is oblique. 

If Q and G are the only valid response alternatives, the 
pattern classification operation determines their relative merit 
leading to the prediction: 

P(Q) = G(Q)/ (G(Q)  + G(G))  (3) 
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where P(Q) is the predicted probability of a Q response to a 
particular test letter shown in Figure 1. 

Single feature model. This model assumes that the subject 
evaluates either the obliqueness or openness dimensions of a 
test letter but not both on a given trial. If a subject had to 
decide whether a test letter was a Q or a G, the subject would 
evaluate the obliqueness feature with probability w and the 
openness feature with probability l-w. Identification perform- 
ance is pedicted to be a weighted average of these two kinds of 
trials. The probability that a subject would respond Q is: 

P(Q) = w p(oblique) + (l-w) (1-p(open)) (4) 
where w is the probability that a given feature will be selected 
on each trial, and p(oblique) and p(open) are the probabilities 
that a subject will respond Q when evaluating only the oblique- 
ness or openness feature, respectively. 

Nine subjects saw each test letter (Figure 1) for 400 ms 12 
times in random order. On each trial they labeled the test 
letter as a Q or a G, and the probability of a Q response for 
each test letter was the dependent variable. Given that the Q 
and G identifications sum to one, P(Q) for each test letter 
completely represents the identification judgments. Thus we 
have 49 independent observations to describe the 49 test let- 
ters. 

Both the single feature and the fuzzy logical model were fit 
to the data of the individual subjects using the computer pro- 
gram STEPIT (Chandler, 1969). A model is defined in STEP- 
IT as prediction equations that contain a set of unknown pa- 
rameters. STEPIT minimizes the deviations between the ob- 
served and predicted values of the models by iteratively adjust- 
ing the parameters of the equations. Root mean square devia- 
tion (RMSD) values determined the overall goodness of fit of 
the alternative models. This value is the square root of the 
mean of the squared deviations between the predicted and 
observed values. The smaller the RMSD value, the better the 
fit of the model. 

Fourteen parameters are necessary to fit the fuzzy logical 
model to 49 data points: seven parameters for each level of 
obliqueness and openness. The parameters represent the de- 
gree to which the obliqueness and openness features match the 
Q alternative. Equations 1, 2, and 3 were then used to predict 
the probability of a Q response to a given letter. 

Fifteen parameters were used to fit the single feature model, 
represented by Equation 4, to the data. One parameter  esti- 
mates the probability that the subject would say Q for a given 
level of obliqueness or openness, resulting in a total of 14 
parameters, one for each of the 7 levels of the 2 stimulus 
dimensions. One parameter  estimates the probability that the 
oblique feature is selected on a given trial (see Equation 4). 

Table 1 presents the RMSD values for each subject. The 
RMSDs for the single feature model range from 0.08 to 0.23. 

Table 1. The root mean square deviations between observed and pre- 
dicted values given by the models for the discrete judgment task 

Subject Single Feature Fuzzy Logical 

1 0.2347 0.0346 
2 0.0820 0.0637 
3 0.1422 0.0973 
4 0.1983 0.0444 
5 0.2102 0.0312 
6 0.2241 0.0543 
7 0.2290 0.0487 
8 0.2142 0.0284 
9 0.1917 0.0369 

In contrast, the RMSDs for the fuzzy logical model range 
from 0.03 to 0.10. Thus, the quantitative model tests of the 
individual subject data indicate that the multiple feature model 
did much better in accounting for the variance in the data. 

The average predicted versus observed Q probabilities for 
the fuzzy logical and the single feature model are illustrated in 
Figures 4 and 5. The lines in the figure represent the predicted 
values. Figures 4 clearly shows the poor match between the 
observed data and the predictions given by the single feature 
model. The predictions cannot capture the statistical inter- 
action between the two independent variables. In contrast, the 
predictions o f the  fuzzy logical model give a much better match 
to the observed data, as seen in Figure 5. The shape of the 
curves in the prediction lines do very well in capturing the 
trends in the data. 

Evidence for the integration of featural information in letter 
perception comes from fit of the fuzzy logical and single fea- 
ture models. The single feature model assumes that subject use 
only one information source in order to make a particular 
perceptual judgment. However,  the superior fit of the fuzzy 
logical model indicates that subjects not only use multiple 
sources of information, but they also integrate this information 
from multiple sources every time they make a perceptual judg- 
ment. 

Continuous versus categorical perception 

An important issue in letter recognition is whether perception 
is categorical or continuous. Given that multiple features are 
integrated in perceptual recognition, one contrast is to con- 
sider whether featural information is continuous or cate- 
gorical. Categorical information implies that the perceptual 
system categorizes a feature such as obliqueness as either repre- 
sentative or not of the Q or G alternative before integration 
occurs. On the other hand, continuous information implies 
that the perceptual system evaluates and maintains the degree 
to which each feature matches Q or G for the integration 
process. Massaro and Cohen (1983b) formulated a categorical 
model and tested it against the continuous fuzzy logical model. 
The categorical model is mathematically equivalent to the sin- 
gle feature model formulated and tested in the previous sec- 
tion. It follows that a rejection of the single feature model also 
permits rejection of the categorical model and we can conclude 
that the featural information is continuous at the time of inte- 
gration. 

A second form of categorical perception requires considera- 
tion. In this model, the outcome of the integration process is 
categorical even though the featural information might have 
been continuous. That is, the information available for any 
judgment about letter identity is either categorical or continu- 
ous. A discriminating test at this level of the contrast is possi- 
ble by an analysis of the distribution of rating responses to 
repeated presentations of a stimulus event (Massaro & Cohen, 
1983a). Oden (1979) provided convincing evidence for continu- 
ous perception of letters in his original study of varying mul- 
tiple features in a factorial design. The single judgments of a 
given test letter could not be described by a categorical model 
but were well described by the same continuous model devel- 
oped here. 

Consider the Q/G continuum presented in Figure 1. Cate- 
gorical perception predicts that the ratings to repeated presen- 
tations of a test letter will come from two kinds of trials: those 
trials on which the test letter was identified as Q and those on 
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which the test letter was identified as G. Thus, categorical 
perception predicts that the distributions of ratings to a given 
test letter is a result of the two different Q/G letter categoriza- 
tions. If the categorical model accurately describes rating per- 
formance, then rating judgments should produce a bimodal 
distribution of ratings across the rating scale, one peak for 
each of the two letter categories. On the other hand, continu- 
ous perception predicts that the rating is based on continuous 
information representing the degree to which the test letter 
matches the letter alternatives. Hence, the distribution of rat- 
ings to a given test letter will result from a single kind of trial 
on which the perceiver has continuous information about the 
test letters, resulting in a unimodal rating distribution. 

To examine this prediction, six subjects rated the degree of 
Q-ness or G-ness in the letters in Figure 1. Each test letter was 
displayed for 200 ms and was rated 12 times each by six sub- 
jects. Figure 6 presents the distributions of ratings for a typical 
subject for a 3 x 3 subset of the 49 test letters of Figure 1. As 
can be seen in the figure, it is very difficult to see how these 
ratings could have resulted from a mixture of two different 
distributions; the ratings represent a unimodal distribution for 
each test letter. Supporting this observation, mathematical 
models embodying the categorical and continuous assumptions 
were formalized and fit to the distributions of ratings. The 
continuous model gave a better description than the cate- 
gorical model for each of the six subjects, even though the 
categorical model required almost twice as many free param- 
eters. Thus, we have evidence based on the distribution of 
ratings that the test letter is perceived continuously rather than 
categorically. 

A second test of the categorical/continuous contrast at the 
level of letter perception is to examine identification reaction 
times. The continuous model predicts that the reaction time 
for identification would depend on the degree to which the 
integrated featural information provides unambiguous support 
for a given letter category. Continuous information will vary in 
the degree to which the test letter is representative of a given 
letter alternative. Ambiguous information should increase 
identification reaction times relative to unambiguous featural 
information. Categorical perception of a letter either leads to a 
Q or a G without any index of ambiguity. The time that a given 
decision takes should remain the same regardless of the nature 
of the test letter. 

OPENNESS 6 OPENNESS 4 OPENNESS 2 12 1 2 ~  12~_~ 

i01  0 
Q G Q G Q F~ 

°J 
°a  ,:. o ~ °o 

Q G Q G Q G 

Fig. 6. Frequency distributions of ratings between Q and G of a typical 
subject to a 3 x 3 subset of the 49 test letters of Fig. 1. Obliqueness 
ranges from horizontal (level 1) to slant (level 7) and openness ranges 
from close (level 1) to open (level 7). The categorical model predicts 
that repeated ratings to a given test letter result from two distributions 
whereas the continuous model predicts that the ratings result from a 
single distribution 

We evaluated reaction times as a function of ambiguity to 
assess whether letter perception is continuous or categorical. 
We used the data from the experiment in which three subjects 
identified the 49 test letters (Figure 1) as Q or G. We then 
assumed that test letters judged as Q 50% of the time were the 
most ambiguous and the test letters judged as Q or G 100% of 
the time were the least ambiguous. An ambiguity value was 
computed by taking the absolute difference between P(Q) and 
0.5 and subtracting it from 1: 

A = 1-[P(O)-0.5[ (5) 
where P(Q) is the probability of a Q response. Figure 7 pre- 
sents a scatter plot of reaction times as a function of this 
ambiguity for the 49 Q/G test letters. The correlation between 
ambiguity and reaction time accounts for about 49% of the 
variance in the data. Therefore, there is good evidence that 
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Fig. 7. A scatter plot of average reaction times of 3 subjects as a function 
of ambiguity for the discrete judgments of the 49 test letters. The solid 
line represents the regression line for the correlation 

reaction times increase with increases in ambiguity as mea- 
sured by the likelihood of a given response. This result rejects 
the hypothesis of categorical letter perception and supports the 
claim that readers have continuous information about the test 
letter. 

The results of three types of studies provide converging 
evidence for continuous perception. Model tests of identifica- 
tion judgments give evidence for continuous featural informa- 
tion. The unimodal distribution of rating judgments indicates 
that subjects did not transform the visual information of the 
test character into a discrete category prior to their rating 
judgments. Finally, reaction times reveal that a given discrete 
decision is sensitive to the nature of the letter information 
leading to the decision. In light of the evidence for continuous 
perception from the rating task, we can conclude that the 
discrete judgment task required a categorical decision to a 
continuous percept. Therefore it is not surprising that a subject 
would require additional time to decide whether a test letter 
was a Q or a G to the extent that the visual information was 
ambiguous. In terms of signal detection theory, reaction times 
would increase with decreases between the test letter observa- 
tion and some criterion separating the Q and C categories 
along the Q/G perceptual dimension. 

Independent versus dependent evaluation of  information 
sources 

The fourth contrast has to do with the independence of the 
multiple sources of information in letter recognition. Are the 
sources of information treated independently in the letter rec- 
ognition process or is each source colored by the nature of the 
other sources that occur with it? 

One way of testing this contrast is to ask whether a model 
assuming independent evaluation of features provides an ade- 
quate account of letter perception. The hypothesis of depen- 
dence must predict a failure of any model assuming indepen- 
dence. Independence models assume that the information ob- 
tained along one source is independent of the information 
obtained along the other source. One such model is the fuzzy 
logical model. If the obliqueness and openness features were 
dependent,  the changes in openness would influence the 
amount of information transmitted by obliqueness. In contrast 

the fuzzy logical model assumes that these parameters are free 
to vary independently of each other. Since the fuzzy logical 
model can capture most of the variance in the data, as shown 
in a previous section, it seems nonparsimonious to assume that 
letter features are dependent.  Indeed, as demonstrated in oth- 
er domains (Oden, 1981; Massaro & Oden, 1980) the assump- 
tion of independence holds up well under many types of per- 
ceptual judgments. Therefore, it seems safe to conclude that 
features are treated independently. 

Another  test that might be done is to compare the identifica- 
tion reaction times of single features that compose the test 
letters to the identification reaction times of the test letters 
themselves. For example, subjects might be presented with the 
seven oblique line levels for Figure 1 and be asked to identify 
the lines as features consistent with the alternatives Q or G. 
Alternatively, subjects might judge openness of the oval pre- 
sented in isolation in the same fashion. The reaction times to 
the single features could then be compared to the reaction 
times of the features presented together. If the features are not 
independent,  then it should not be possible to account for the 
reaction times to a combination of the openness and oblique- 
ness features in terms of the reaction times to openness and 
obliqueness features presented alone. If the two dimensions 
are independent,  we might expect reaction times to a combina- 
tion of features to be somewhat faster than those to the single 
features, but the advantage should be completely accounted 
for by statistical facilitation (Gielen, Schmidt, & Van Den 
Heuvel, 1983; Raab, 1962). 

Additive versus multiplicative integration 

At this point in our research tree, we have good evidence that 
letter perception involves integrating multiple sources of in- 
dependent featural information. It is now important to deter- 
mine the nature of featural integration. Both additive and 
multiplicative integration rules are promising models of the 
featural integration stage. The additive rule (Anderson, 1981, 
1982) makes strong predictions about the average rating re- 
sponse in an integration task; if a subject rates a test letter that 
varies on two factors on an interval scale, then the plot of the 
ratings versus the factors should produce parallel lines. The 
additive rule assumes that the effect of each factor on percep- 
tual integration is the same regardless of the ambiguity of 
other factors. This rule is not optimal in that averaging an 
ambiguous source of information with an informative source 
will tend to neutralize the judgment relative to the informative 
source presented alone. In contrast, the multiplicative rule 
predicts American football-shaped curves when the average 
ratings are plotted in a two factor graph. The curves indicate 
that the least ambiguous source of information has the most 
impact in perceptual judgments. 

A test of the additive/multiplicative contrast was performed 
by utilizing the results of the rating experiment described 
above. The effectiveness of the models in accounting for the 
data can be seen by fitting additive and multiplicative models 
of the integration process to the rating results using the pro- 
gram STEPIT (Oden, 1979; Massaro, 1979). The multiplica- 
tive model of integration for the Q/G continuum is represented 
by Equations 1 and 2. Additive integration is given by: 

G(Q) = (1- t(openness)) + t(obliqueness) (6) 

G(G) = t(openness) + (1- t(obliqueness)) (7) 
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Fig. 8. Average Q ratings as a function of openness and obliqueness. 
The lines in the figure give the predictions of an additive integration 
rule 
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Fig. 9. Average Q ratings as a function of openness and obliqueness. 
The lines in the figure give the predictions of a multiplicative integra- 
tion rule 

Table 2. The root mean square deviations between observed and pre- 
dicted values given by the models for the rating tasks 

Subject Additive Multiplicative 

1 0.0713 0.0363 
2 0.1639 0.0365 
3 0.0650 0.0507 
4 0.1036 0.0321 
5 0.0834 0.0420 
6 0.0502 0.0335 

We fit both models with 14 parameters, 1 parameter  for each 
level of the two features. The relative goodness rule given by 
the pattern classification operation (Equation 3) was then used 
to predict the rating judgments for both the additive and multi- 
plicative models for each subject. The solid lines in Figures 8 
and 9 illustrate the additive and multiplicative model fits aver- 
aged over subjects, respectively. The additive model (Figure 
8) predicts parallel lines which do a rather poor job in fitting 
the data points. The multiplicative model (Figure 9) with its 
bowed shaped predictions, does much better than the additive 
model. The RMSDs for the individual subjects are presented 
in Table 2. The RMSDs support the conclusion drawn from 
the figures: that the multiplicative model fits the individual 
subjects' ratings much better than the additive model. 

The results provide insight about the operation of percep- 
tual integration. The multiplicative model 's  superiority over 
the additive model suggests that perceptual integration acts in 
an optimal manner. The least ambiguous source of informa- 
tion will contribute the most to the rating judgment. 

AdditionaI findings 

In addition to addressing fundamental issues in letter recogni- 
tion, the present framework provides information about specif- 
ic properties of the processes involved. Consider what appears 
to be an asymmetry in the results shown in Figure 10. These 
results are identical to those in Figure 5, but the plot of the two 
independent variables has been interchanged to make the 
asymmetry more apparent. This asymmetry is most evident for 
the top two lines in the figure. When the oval is closed (open- 

ness level 7), the probability of a Q judgment is nearly 100% 
regardless of the obliqueness of the line. When the oval is open 
by only a small amount (openness level 6) the angle of the line 
has a very strong effect on the probability of responding Q. 
The asymmetry caused by oval closure might be explained by 
the poor quality-of-Xeroxing effect. The closed oval influences 
the reader 's  judgment much more than an open oval since 
poor copying (or poor vision) could have been responsible for 
the absence. In contrast, the closed oval is unlikely to result 
from poor copying (or poor vision). Thus, the reader will give 
more weight to the presence than the absence of the oval. In 
this case, weight corresponds to the feature value; presence of 
the oval will be more extreme than absence. Supporting this 
analysis, the parameter  value for least openness (level 7) is 
more extreme than for the most openness (level 1). Since oval 
presence is characteristic of a Q prototype and not a G proto- 
type (see Equations 1, and 2), a reader is more likely to see a 
closed oval character as Q regardless of the obliqueness of the 
line. 

Extensions 

Although we stressed the role of letter recognition in reading, 
we are capable of analyzing higher-order contributions within 
the framework developed here. The integration of continuous 
bottom-up sources of information in letter recognition is easily 
extended to include contributions from higher-order context 
(Massaro, 1979; Oden, 1984). Each component of higher- 
order context is treated simply as an additional source of infor- 
mation contributing to perceptual recognition. The results of a 
variety of studies are consistent with the independence of bot- 
tom-up and top-down sources. Some top-down source, such as 
lexical constraints does not modify the bottom-up sources; it 
simply adds an independent and continuous source of informa- 
tion to be integrated with the bottom-up source. The integra- 
tion of a top-down source and bottom-up source seems to 
follow the same multiplicative rule given by the fuzzy logical 
model for integrating two bottom-up sources (Massaro, 1979; 
Oden, 1984). The binary set of contrasts in Figure 2 can be 
read in terms of bottom-up and top-down sources. In this case, 
as in the case of visual features, the outcomes of the contrast 
go down the right side of the tree. 
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Conclus ion 

We have approached the problem of letter perception within 
the framework of falsification and strong inference. The binary 
contrasts have been successful in eliminating plausible and 
intuitive interpretations of letter perception. The methods of 
information integration and mathematical model testing ap- 
pear to be ideally suited for addressing the issues. The results 
also illuminate many aspects of the psychological processes 
involved. Readers appear to evaluate multiple letter features 
when making perceptual judgments. The evaluation of one 
feature seems to occur independently of the properties of the 
other features. This evaluation process makes available contin- 
uous information indicating the degree to which relevant alter- 
natives are supported. The integration process is not simply a 
compromising operation in that only mild support from each of 
the two features can be integrated to produce strong support 
for a letter alternative. 

The issues that we have addressed seem fundamental to 
developing a psychological understanding of letter recogni- 
tion. Perceiving letters is described within the context of a 
general theory of perceptual recognition. This theory provides 
a common metric for evaluating and integrating multiple 
sources of information in pattern classification. Future work 
will be necessary in order to explore variations within the 
context of each binary contrast. We can also expect other 
contrasts and theoretical alternatives to present themselves as 
our understanding of letter perception evolves. 
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