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For many years psychological studies of the learning process have used
a simulated medical diagnosis task in which symptom configurations are
probabilistically related to diseases. Participants are given a set of
symptoms and asked to indicate which disease is present, and feedback
is given on each trial. We enrich this standard laboratory task in four dif-
ferent ways. First, the symptoms have four possible values (low, medium
low, medium high, and high) rather than just two. Second, symptom
configurations are generated from an expanded factorial design rather
than a simple factorial design. Third, subjects are asked to make a con-
tinuous judgment indicating their confidence in the diagnosis, rather than
simply a binary judgment. Fourth, cumulated performance scores, payoffs,
and the availability of a historical summary of the outcomes are varied in
order to assess how these treatments modulate performance. These
enrichments provide a broader data set and more challenging tests of the
models.

Using 123 subjects each in 480 trials, we compare five existing learning
models plus several variants, including the well-known Bayesian, fuzzy
logic, connectionist, exemplar, and ALCOVE models. We find that the
subjects do learn to distinguish the symptom configurations, that subjects
are quite heterogeneous in their response to the task, and that only a
small part of the variation across subjects arises from the differences in
treatments. The most striking finding is that the model that best predicts
subjects' behavior is a simple Bayesian model with a single fitted
parameter for prior precision to capture individual differences. We use
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rolling regression techniques to elucidate the behavior of this model over
time and find some evidence of over-response to current stimuli. � 1998

Academic Press

INTRODUCTION

How humans learn persists as one of the most challenging puzzles facing social
scientists. Some eminent scientists such as Chomsky and Fodor argue that the laws
underlying learning are highly domain specific. How we learn language may not
resemble how we learn mathematics. Altogether different processes may govern
learning environmental contingencies such as the likelihood of morning fog in
Santa Cruz given morning fog the previous day, or learning strategic interactions
such as an entrepeneurs' decisions on how to position their products. But recently
the domain specificity even of language learning has been empirically challenged
(e.g., Pullum, 1996).

We conjecture that domain independent laws will be found for learning processes.
Evidence for this conjecture comes from domain independent laws in other fields of
inquiry. Important examples include Weber's law, Gestalt laws of organization in
both visual and auditory modalities, and Shepard's (1987) law of generalization
(Massaro, in press). Within the field of learning, regularities across domains can be
described by the law of effect (or time on task), massed versus spaced practice, and
the power law of learning. These successes encourage attempts to uncover trial-to-
trial learning and decision rules that will apply across a broad range of information
domains.

Our conjecture might appear overly optimistic and naive without making a
crucial distinction between information and information processing. Information
refers to what the stimulus input means to the perceiver. Different domains will
necessarily involve different stimuli and these different stimuli make available
different content and experience to different individual perceivers. Information pro-
cessing, on the other hand, refers to the general learning and decision operations
postulated by a model, and it could be identical across domains. It is, of course, an
empirical question whether domains differ with respect to just information or also
differ with respect to information processing.

In this paper we offer some empirical evidence. We collect five of the most promi-
nent existing models of the learning process, adapt them to a common task, and
compare their ability to predict the choices over 480 trials of each of our 123 sub-
jects. The models include Bayesian statistical decision (the normative or optimal
model) and several descriptive models including the fuzzy logic model of perception
(FLMP), a neural network or connectionist model (CMP), an exemplar model,
and a simple version of the ALCOVE model. We also consider several variants
including a simple reinforcement model in the style of Roth and Erev (1995).

The task, an expanded version of medical diagnosis, is chosen with three conflict-
ing goals in mind. First, to give all the models a fair chance, we want the task to
resemble the simple tasks for which the models were developed and that have been
used in previous empirical literature on learning. Second, we want the task to
challenge subjects' learning capacities so we can observe the process over many
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periods. Third, we want a varied task that resembles interesting domains outside
the lab so we can begin to address the issue of domain specificity.

Our medical diagnosis task, like its predecessors in the literature, tests isolated
individual subjects in many trials. In each trial, the subject sees a set of symptoms,
is asked to indicate which disease is present, and then is told the actual disease. The
object of learning is the stochastic relation between symptoms and diseases. Thus
the task resembles important and nontrivial domains outside the laboratory. We
enrich the standard laboratory task in four different ways. First, the symptoms have
four possible values (low, medium low, medium high, and high) rather than just
two. Second, we present each symptom level separately as well as each combination
of symptom levels. Third, subjects are asked to make a continuous judgment
indicating their confidence in the diagnosis, rather than simply a binary judgment.
Fourth, cumulated performance scores, payoffs, and access to an historical sum-
mary of the outcomes are varied in order to assess how these treatments modulate
performance. We believe that the enrichments provide subjects with a suitable
learning challenge and provide researchers with a broader and sharper data set for
evaluating the competing models.

Continuous judgements are the focus of our data analysis because they allow us
to observe trial-by-trial learning for individual subjects. The individual trial-to-trial
data in most previous research consists of binary choices which must be averaged
across subjects to become comparable to the probabilistic predictions of learning
models. Such data cannot account for individual differences in information (as
defined above) and thus cannot address the key question of whether individual sub-
jects also differ in information processing. Thus our data allow us to investigate
whether some subjects are better described by one model (say, CMP) and other
subjects by another learning model (say, exemplar).

Another methodological point worth mentioning is that our data analysis relies
mainly on least squares fits to the data and compares squared forecast error across
competing models. Moreover we use the quadratic scoring rule in some treatments
to rate subjects' continuous judgements. Selten (1996) offers an axiomatic justifica-
tion of these conventions and points out some shortcomings of the currently more
popular maximum likelihood techniques in the present context of probabilistic
prediction.

We find that subjects do learn to distinguish the symptom configurations, that
subjects are quite heterogeneous in their response to the task, and that only a small
part of the variation across subjects arises from the differences in access to history
and score. The most striking finding is that the model that best predicts subjects'
behavior is a simple Bayesian model with a single fitted parameter for prior preci-
sion to capture individual differences. We use recent rolling regression techniques to
elucidate the behavior of this model over time and find some evidence of over-
response to the current symptoms.

The work presented here builds on three related papers. Friedman, Massaro,
Kitzis and Cohen (1995, henceforth denoted FMKC95) tests competing learning
models in a simple medical diagnosis task with binary choice only. The concluding
discussion explains the need for enhanced experiments with continuous choices and
fits of models to individual subjects. Friedman and Massaro (1997, henceforth
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denoted FM97) describes the current data set in more detail and tests competing
models of decision stage, but does not examine learning behavior or the other
stages of information processing. Kelley and Friedman (1998, henceforth KF98)
studies a related learning task (called orange juice futures prediction) and intro-
duces the rolling regression techniques we use in the last part of the results section.
We also build on many published papers by other investigators which we cite when
we present the medical diagnosis task and the models.

Since the models are widely known but the task has novel elements, we begin in
the next section by describing the experiment. Then we adapt the competing learn-
ing models to our task and present the results.

EXPERIMENT

Gluck and Bower (1988) and several other authors surveyed in FMKC95
investigate a medical diagnosis task in which each subject is presented in each trial
with a ``medical chart'' s=s1 s2 } } } sn of up to n=4 binary symptoms. For example,
s1=1 might indicate a sore throat and s3=0 might indicate the absence of dizzy
spells. The subject responds to each chart (or symptom configuration) by stating
which of two diseases a patient has. Then the subject is told the actual disease.

The medical diagnosis task is very simple in that all stimuli si and all responses
d are binary variables, coded here as 0 or 1. But with one or more symptoms
presented the task is nontrivial for two reasons. First, all trials are training trials in
that the subject always receives feedback (the actual value of d ) and the subject has
no initial knowledge of the relation between d and the given s. Second, the rela-
tionship between the symptoms and the disease is stochastic, so the subject some-
times will be misled. For example, the subject may pick the less likely disease and
turn out to be correct on that trial, or pick the more likely disease and turn out
to be incorrect.

The current research extends the previous experimental task in four different
ways. First, our two symptoms can assume any of four values (low, medium low,
medium high, and high), rather than just two values. Second, stimulus combina-
tions are generated by an expanded factorial design rather than a simple factorial
design. As will be explained below, we have 24 symptom configurations, rather than
16. Third, subjects are asked to make a continuous judgment indicating their con-
fidence in the diagnosis, rather than simply a binary (disease A or disease B) judg-
ment. Fourth, we alter the environment by varying the Score and History treat-
ments described below. These elaborations of the previous procedure provide a
richer data set as well as much more challenging tests of the models.

Subjects

A total of 123 undergraduates from the University of California at Santa Cruz
participated in this experiment as an option to fulfill a class requirement. One third
of these subjects also received pay for their participation��two of the six treatment
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cells in the experiment involved the distribution of pay based on individual perfor-
mance. Individual earnings during the experiment ranged from 5 to 17 dollars, with
a mean of 813.63. The entire experimental procedure was approximately two hours
in length. Written instructions are available on request.

Apparatus

Subjects were placed in sound dampened isolated testing rooms and responded
to a computer program written in C++ run on Power Macintosh 7500�100
computers with full color monitors. Subjects viewed stimuli on the monitor and
responded by clicking the mouse on various icons in the display. Figure 1 provides
examples of the monitor displays.

Procedure

Participants were told that they would be diagnosing a series of fictitious patients
based on medical charts, which consisted of values on the symptoms of temperature
and blood pressure (sometimes with one symptom missing). They were told that
this was a learning experiment in which the goal was to learn the associations
between symptoms and diseases. It was explained that the experiment reflected the
real-life fact that the relationship between particular symptoms and a specific dis-
ease is sometimes weak or strong but never entirely certain. Subjects were informed
that the experiment was designed to be difficult (especially in the beginning), that
they could expect to make mistakes, and that the presentation order of the diseases
was random.

Stimuli

Each trial began with the presentation of the symptom values on the left side of
the monitor display. As can be seen in Fig. 1A, the symptom values were displayed
using two thermometer icons labeled temperature and blood pressure. Each ther-
mometer was partially filled in red to indicate the symptom level: low, medium low,
medium high, or high. For example, a 1�4 filled thermometer represented low, and
a 3�4 filled thermometer represented medium-high temperature or blood pressure.
Also present on the monitor were icons representing the two possible diseases:
Autochus and Burlosis. In some conditions, subjects had access at this point to pre-
vious case histories, as explained below. The subject then made a binary choice of
which disease he�she believed that the current patient possessed by clicking the
mouse on the appropriate icon. A continuous response was then collected in the
form of a confidence rating entered by using the mouse to move a slide bar as in
Fig. 1C. After collecting both responses the program revealed which of the two dis-
eases the patient turned out to have by highlighting the appropriate icon, e.g.,
Burlosis in Fig. 1C. In some conditions a score (explained below) was presented at
this point. When ready, the subject would advance to the next trial via another
mouse click.
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Expanded Factorial Design

Table 1 presents the expanded design used in our experiment. As in a single fac-
tor design, each of the symptoms is presented unimodally, for a total of 4+4=8
symptoms. As in the factorial design, each of the four temperature symptoms is

FIG. 1. Medical diagnosis screens: (A) basic screen; (B) history screen; (C) score screen.
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FIG. 1��Continued

combined with each of the four blood pressure symptoms for another 16 symptom
configurations. Thus there are a total of 24 configurations.

The experimental session for each subject consisted of 480 trials. Table 1 shows
that the number of observations for the different symptom configurations ranged
from 11 to 33, with 18 of the 24 having between 16 and 26 observations. These fre-
quencies were determined by the conditionally independent symptom likelihoods
listed in Table 2. The same randomized presentation order of stimuli was used for

TABLE 1

Expanded Factorial Design:
Instances of Disease (A, B) by Symptom Configuration

Blood Pressure

Medium Medium
Temperature High high low Low None

High 3,8 10,5 19,2 32,1 16,4
Medium high 2,16 7,10 14,5 24,2 12,8
Medium low 2,24 5,14 10,7 16,2 8,12

Low 1,32 2,19 5,10 8,3 4,16
None 2,20 6,12 12,6 20,2

Note. The first entry in the top row, for example, means that there were 3 cases of

Autochus (disease A) and 8 cases of Burlosis (disease B) in medical charts showing High

Temperature and High Blood Pressure; the last entry in the top row indicates 20 charts (16A
and 4B) with no blood pressure reported and High Temperature.
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TABLE 2

Objective Likelihoods

p(Temperature | Disease) p(Blood pressure | Disease)

Symptom level A B Log odds A B Log odds

High 0.4 0.1 1.39 0.05 0.5 &2.30
Medium high 0.3 0.2 0.41 0.15 0.3 &0.69
Medium low 0.2 0.3 &0.41 0.3 0.15 0.69

Low 0.1 0.4 &1.39 0.5 0.05 2.30

Note. The underlying likelihoods used to generate the medical charts. For example, when

a chart for a patient with disease A shows temperature, it reports a High level with probabil-

ity 0.4. With disease B the corresponding probability is 0.1, and the log-odds are

ln(0.4�0.1)=1.39.

all subjects. The experiment was participant-paced. Subjects were told this fact and
also that all previous subjects had finished in less than the two allotted hours. (This
information helped limit subjects' tendency to hurry through the experiment, espe-
cially towards the end.) The experiment was broken into three blocks of 160 trials
and subjects were permitted five-minute breaks between blocks.

Treatments

A 2 by 3 factorial between subjects treatment scheme was used, with 20 subjects
in each cell. (Attendance fluctuations gave us 2 extra subjects in one cell and 1 extra
in another.) The evidence treatment had two conditions, History and No History,
and the payoff treatment had three conditions, Pay+Score, Score, and None, as
explained below.

The History condition gave subjects the option on each trial, before making their
response, to view a chart of relevant cases previously encountered. If selected by
clicking the ``previous cases'' icon, the chart stayed on the screen until the subject
finished viewing it and clicked an ``OK'' icon. The chart displayed the number of
previous patients with each disease that had possessed the symptom levels present
in the current patient, as in Fig. 1B. Subjects in the No History condition had no
access to such a chart.

Some treatments involved the computation of a score calculated in each trial
from the continuous response c # [0, 1] and the actual disease d=1 (Autochus) or
d=0 (Burlosis) using the quadratic scoring rule S(c, d )=A&B(c&d )2 with A=80
and B=280. The maximum possible score on a trial (correct binary response with
complete confidence, so c=d=0 or 1) was A=80 points. The lowest possible score
(incorrect binary response, with complete confidence so |c&d |=1) was
A&B=negative 200 points. A ``Not at All'' confident answer, coded c=0.5, always
resulted in A&0.25B=10 points. For comparative purposes, subjects were also
told the ``expert'' score, which would be earned by an ideal statistician familiar with
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Table 2, as discussed in the Results section below. MF97 has a more complete dis-
cussion of the quadratic scoring rule.

In the Score and Pay+Score conditions, following each trial the screen presented
the subject's score on that trial and the cumulative score to that point of the experi-
ment as in Fig. 1C. Subjects in the Pay+Score condition were also paid 1 dollar
per 1000 points at the end of the experiment. The payment procedures were
explained at the beginning of the experiment. In the None condition, no scores were
presented, and no pay was given or discussed.

MODELS

It will be useful to present the competing models of learning within an analytic
framework that can clearly distinguish information from information processing.
The framework, developed more fully in Massaro and Friedman (1990), is
illustrated in Fig. 2. It assumes that learning modifies the first stage of information
processing, evaluation of evidence, and that evaluated information from various
sources (e.g., separate symptoms) is then integrated and passed to the final stage,
decision. Thus evaluation in our medical diagnosis task must be described for the
eight possible single symptom values, denoted k=1, 2, 3, 4 respectively for low,
medium low, medium high, and high temperature and denoted k=5, 6, 7, 8 respec-
tively for low, medium low, medium high, and high blood pressure. Then for each
competing model we describe integration, decision and learning in response to feed-
back each trial.

FIG. 2. Schematic representation of the stages of information processing. The evaluation stage trans-
forms the symptom values (indicated by upper-case letters) into psychological values (indicated by
lower-case letters). The integration stage takes the output of the evaluation stage and combines or
integrates the psychological values to give an overall value for each of the relevant alternatives. The deci-
sion stage maps these values into some response, such as a discrete decision or rating. Learning from
feedback modifies the evaluation stage.
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Bayesian Model

The Bayesian model is normative (or optimal or unboundedly rational) in that
it assumes no loss of information or biases introduced by irrelevant information.
The basic version of the model, explained more fully in FMKC95, assumes that
subjects process information as if they were Bayesian statisticians with initially dif-
fuse priors. An extension allows individual subjects to hold initial beliefs about the
relative disease frequencies.

Feature evaluation in the Bayesian model responds to the observed symptom and
disease frequencies. Let NkA and NkB be the frequencies of diseases A and B respec-
tively when symptom k is present. The evaluation of feature k is simply the
likelihood ratio rk=NkA�NkB for k=1, ..., 8. The base ratio ro=NA�NB is also rele-
vant; it is the overall frequency NA of disease A relative to the overall frequency NB

of disease B, irrespective of symptoms.
Learning is implicit in the Bayesian model of feature evaluation. If the feedback

on the current trial is disease A, then for each of the current symptoms k the
numerator of rk (and the numerator of ro) increments by 1. The other numerators
and all denominators remain unchanged on that trial. On the other hand, if the
current feedback is disease B, then the denominators of rk (and ro) each increments
by 1 for the current symptoms k, the other denominators and all numerators
remain unchanged.

Information integration is described by the well-known Bayes formula. It can be
conveniently expressed in ratio (or odds) form as

P[d=A | s]
P[d=B | s]

=
P[s | d=A]
P[s | d=B]

P[d=A]
P[d=B]

(1)

The verbal statement of (1) is that the posterior odds are equal to the likelihood
ratio times the prior odds. But the prior odds (P[d=A])�(P[d=B]) are simply ro ,
and (since symptoms are conditionally independent) the likelihood ratio
(P[s | d=A])�(P[s | d=B]) simply the product of the rk for the symptoms k pre-
sent at that trial.

The formula can be written compactly using the indicator functions Ik (st)=1 if
symptom k is present on trial t, and Ik (st)=0 otherwise. Recall that k=1 to 4 codes
temperature and k=5 to 8 codes blood pressure. Hence in each two symptom trial
of the current experiment we have Ik=1 for exactly two values of k, one less than
or equal to 4 and the other greater than 4. In single symptom trials, we have only
one indicator value at 1 and seven at 0. (By contrast, in previous medical diagnosis
experiments with up to four binary symptoms, we have up to four values of k with
Ik=1.) The notation is convenient because rk

Ik is just rk when symptom k is present
and is 1 otherwise. Thus, writing the posterior odds given symptoms s as Y(s),
Eq. (1) becomes

Y(s)=ro `
8

k=1

rIk(s)
k . (2)
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Taking logs and writing the log-odds ratio as y(s)=ln(Y(s)), we obtain a linear
version of Bayes formula

y(s)=ln ro+ :
8

k=1

Ik (s) ln rk . (3)

Probabilities can be recovered in the usual fashion from the odds or log-odds ratio.
For example, the posterior probability given symptom configuration s is p(s)=
S( y(s)), where S is the standard sigmoid (or logistic) function S( y)=(1+e&y)&1.

Decision stage can be modelled very simply. The continuous response (rating)
can be assumed to be the posterior probability, and the binary choice can be
assumed to match the posteriori probability or to be simply the more likely disease.
More complex models of noisy decision can also be considered, as in FM97; we will
touch on them briefly in the concluding discussion.

Implementation of the Bayesian model is quite direct. A version with no free (fit-
ted) parameters, called Bayes.0, begins in the first trial by setting all frequencies to
1, to avoid zero-divide problems. Thus at trial 1 we have NkA=NkB=NA=NB=1
for k=1, ..., 8. The model then calculates the likelihood ratios rk (all equal to 1 in
the first trial), plugs these values into Eq. (3) to produce y, and computes the
associated posterior probabilities by applying the sigmoid function to y. The
associated decisions, the predictions of model Bayes.0, are then recorded in a file.
If the symptoms are k=1 (low temperature) and k=6 (medium low blood
pressure) and the observed feedback is disease A then learning increments NA , N1A

and N6A to 2 while the other Ns remain at 1. The same procedure is applied in all
later trials. In each trial t, for t=1, ..., 480, the previous history provides ratios rkt

and rot , and the current symptom combination st is observed. The predicted
responses are computed from the logistic transform applied to Eq. (3) and the new
values of the rs are computed for trial t+1 by incrementing the appropriate Ns.

We also consider a Bayesian model with one free parameter to account for the
possibility that individual subjects hold initial beliefs more or less strongly. In this
version, called Bayes.1, we suppose that the initial counts NA and NB have the same
value n at the beginning of the first trial, and that the initial counts NkA=
NkB=n�2. For each fixed value of n, we update the Ns after every trial exactly as
in Bayes.0 and record the predictions for the entire sequence of trials. Then, using
the usual least squares criterion, we find the value of n that best fits a given subject's
actual continuous responses. The fitted parameter n measures the strength of a
symmetric prior belief that each likelihood ratio is 1.0. In Bayesian jargon, n is a
precision parameter for the symmetric prior. Note that larger n implies that beliefs
respond less sensitively to trial by trial feedback so learning is slower.

Fuzzy Logical Model of Perception

The fuzzy logical model of perception (FLMP) incorporates developments in
fuzzy logic (Zadeh, 1965), pattern recognition (Selfridge, 1959), and choice theory
(Luce, 1959) to provide a systematic account of perceptual judgment, decision making,
and learning. More flexible in several respects than the Bayesian model, the FLMP
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has been tested extensively in a wide variety of domains and has considerable
explanatory power in situations with multiple sources of information (Massaro,
1987, 1989, 1994, in press; Massaro 6 Friedman, 1990). A strong prediction of the
FLMP is that the contribution to performance of one source of information
increases when other available sources of information become more ambiguous.

The currency of the FLMP model is a truth value that can range from 0 or com-
pletely false to 1 or completely true. For example, a 0.3 truth value for the proposi-
tion ``a whale is a fish'' means that the proposition is true to degree 0.3; i.e., there
is a moderate degree of similarity between whales and fish. It is psychologically dif-
ferent from a probability. An objective 0.3 probability that ``a whale is a fish'' would
mean that 3 out of 10 whales are fish. A subjective 0.3 probability would mean that
a bet (that a whale is a fish) with 7 to 3 odds is fair. Neither of these probabilistic
interpretations works because a whale is never a fish.

Feature evaluation in FLMP for the medical diagnosis task produces a truth
value (or ``feature value'') denoted fk for the statement ``the disease is A'' when
symptom k is present. The truth value of the complementary statement ``the disease
is B'' is denoted gk . Independently of the symptoms the statement ``d=A'' has some
truth value denoted b, and the complementary statement has value b$. Thus there
are 8 fk and 8 gk for a total of 16 individual feature values.

The integration stage in FLMP combines the feature values to produce
integrated truth values, using the same multiplicative formula as in Bayes. That is,
even though the feature values are psychologically different from elementary condi-
tional probabilities, the integration stage treats them in an analogous fashion.
Specifically, the result of FLMP integration is a truth value for d=A of

f (s)=
b[>8

k=1 f Ik
k ]

b[>8
k=1 f Ik

k ]+b$[>8
k=1 gIk

k ]
. (4)

The truth value for the complementary proposition d=B is g(s)=1& f (s). Thus
the truth odds take the same form as Bayesian posterior odds:

Y(s)=b0[uI1
1 uI2

2 } } } uI8
8 ], (5)

where Y(s)= f (s)�g(s), b0=b�b$, and uk= fk �gk .
The decision stage for continuous choice again is the same as in the Bayesian

models: subjects simply report the final truth value as computed in Eq. (4). For
binary choice we impose the relative goodness rule (RGR) that the odds with which
subjects choose the diseases are given by Eq. (5); see FMKC95 for further discus-
sion of the RGR.

Since Eq. (2) is equivalent to (4) and (5), it might at first seem that, despite their
differing psychological roots, in practice the FLMP model is the same as the Bayes
model. But the models differ in the way they implement learning, the updating of
the feature values vkt= fk , gk and b0 from trial (t&1) to trial (t). Learning in the
FLMP is described by the general rule

vkt=vkt&1+*etIk (st). (6)
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Here * denotes the constant learning rate and et=dt& f (st) denotes the perceived
error, given the current feedback dt and the truth value f (st) of that disease assessed
using the current feature values for the current symptom configuration st .

The learning rule (6) has a long history and extensive literature, as documented
in FMKC95. Three points are worth emphasizing at this juncture. First, learning is
error-driven in that it occurs only to the extent that there is a nonzero perceived
error. By contrast, Bayesian learning takes place on every trial. Second, all features
(and the base odds) are learned at the same rate *. This is restrictive since in prac-
tice some features (or the base rate) might be learned faster than other features.
Third, the learning rate * is constant. By contrast, although Bayesian updating can
be expressed in a manner analagous to Eq. (6), the Bayesian learning rate * is not
constant over time but rather declines as 1�t; see Appendix of FMKC95 for a
derivation and discussion.

The basic implementation of FLMP analyzed below is called FLMP17.1 since it
has 17 internal parameters��the base odds b0 and the feature values fk and gk for
k=1, ..., 8��that are updated every trial via Eq. (6) using one free parameter. That
free parameter, the learning rate *, is estimated via ordinary least squares.

To check robustness, at one point we also estimate FLMP17.2, which has a
second free parameter, a learning decay rate called #. This version replaces * in
Eq. (6) by *t=*t&#. Thus #=0 corresponds to the constant learning rate in the
basic FLMP, #=1 corresponds roughly to the Bayesian decay rate, and inter-
mediate values of # indicate slower decay in the learning rate.

CMP

Connectionist models, also known as neural network models, have a central
place in the psychological and computer science literature on learning (e.g.,
Rosenblatt, 1958; Minsky 6 Papert, 1969, 1988; Rumelhart 6 McClelland, 1986).
We confine our attention to simple two layer feed-forward networks in which each
symptom k=1, ..., 8 defines an input node connected to the two output nodes
corresponding to diseases A and B. We also include a constant node (indexed as
0) to account for possible bias towards disease A or B in the absence of evidence.
Thus there are 18 connection weights to be learned, but standard normalizations
(e.g., that weights sum to 0 over connections leaving any given input node) reduce
the number of internal parameters to 9. The model can be summarized in terms of
log-odds y(s) given symptom configuration s by

y(s)=w0+ :
8

k=1

wk Ik (s) (7)

with the learning algorithm in (6) applied to the wks instead of the vk s. The deci-
sion rule is the same as in FLMP, applied to the output of (6) transformed (from
log odds to values in the range [0, 1]) by the standard sigmoid function
S( y)=1�(1+e&y). These conventions are quite standard (Rescorla 6 Wagner
(1972), Gluck 6 Bower (1988), Estes et al. (1989), 6 FMKC95).
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We refer below to this implementation as CMP9.1 since learning (specified by a
single free parameter, *) updates nine internal parameters, the connectionist weights
w0 , ..., w8 . Some variants are worth brief mention. One could use un-normalized
weights for connections to the symptom nodes (CMP17). By the same token, one
could reduce the 17 internal FLMP parameters to 9 by applying the learning
scheme (6) to the ratio rk= fk �gk instead of applying it separately to numerator
and denominator (FLMP9). As shown in FMKC95, one can absorb the base odds
(or zero node) parameter into the other 8 parameters in CMP9 or FLMP9,
producing models denoted CMP8 and FLMP8. Despite their very different psy-
chological underpinnings, the CMPx learning model is mathematically equivalent
to FLMPx (x=8, 9, 17) except that the learning algorithm (6) is applied to inter-
nal parameters w that correspond to logarithms of the internal FLMP parameters
v. Thus the CMP updating rule is multiplicative rather than additive. See Kivinen
and Warmuth (1995) for a theoretical justification for using multiplicative updates.

Other Reinforcement Learning Models

The models considered so far involve rather sophisticated integration of informa-
tion across symptoms. Perhaps subjects do not integrate the information but just
learn the disease association for each symptom configuration separately. The sim-
plest implementation of such reinforcement learning is to say for each of the 24
symptom configurations s a subject has propensities qAt (s) and qBt (s) for decisions
A and B at time t; that her continuous response (or probability of choosing A
in binary mode) is the relative propensity qAt (s)�(qAt (s)+qBt (s)), and that she
increments by the rule qDt+1 (s)=qDt (s)+aIDst for D=A, B, where a is a positive
constant and IDst is the indicator function which =1 if the symptom configuration
on trial t was D and the symptom configuration was s and which =0 otherwise.
Thus learning consists of incrementing by a the propensity for the observed
disease�symptom configuration, and the other 47 propensities are left unchanged.
Roth and Erev (1995) are influential recent advocates of this sort of reinforcement
learning, which embodies the classic ``law of effect'' and ``power law of practice.''

In our implementation, we set a=1 without loss of generality, so the propensities
are simply counts of disease occurrence by symptom configuration. (By contrast,
the Bayesian scheme involves counts of disease occurrence by individual symptom
levels, and integrates across the symptoms in a configuration.) Initial counts at t=1
are all set to 1 in the implementation RL.0 or are all set to a free parameter qo in
RL.1. Thus RL.0 and RL.1 parallel Bayes.0 and Bayes.1, but assume less
sophisticated integration of information across symptoms.

Exemplar models are versions of reinforcement learning that have previously
been applied to the medical diagnosis task (Estes et al., 1989; Medin, Altom,
Edelson, and Freko, 1982). Exemplar models store the complete symptom con-
figuration and the associated disease. At each trial, the exemplars in memory are
used to categorize the input. In our implementation of the Exemplar model, each
of the symptom configurations (here indexed j=1, ..., 24) has a weight Wj that
reflects the fraction of stored exemplars associated with disease A. Thus evaluation
stage is essentially the same here as in the RL models. Again like the RL models,
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the integration stage is bypassed because each symptom configuration is evaluated
separately. But decision and learning in our implementation of Exemplar are like
CMP, not like RL (or Bayes). The weight Wj assigned to the current symptom con-
figuration is transformed at decision stage using the sigmoid function. Thus the
predicted continuous response (and the predicted probability that the binary
response is disease A) is S(Wj)=1�(1+e&Wj).

Exemplar learning applies Eq. (6) to the weight Wj corresponding to the
symptom configuration observed in the current trial and leaves the other 23 weights
unchanged. The learning rate parameter * is fitted to the data in the usual fashion.
We refer to this model as Exemplar24.1 because a single learning parameter
operates on the 24 internal parameters.

A final model we consider is a hybrid of the exemplar and connectionist models
known as ALCOVE (Kruschke, 1992). Noted for its flexibility and good fits to a
variety of data, the model can be regarded as a three layer feed-forward network
with 24 connection weights. Our present implementation is essentially the same as
in FMKC95, which explains this relatively complex model. The conventions on all
stages of information processing (evaluation, integration and decision) and learning
are exactly the same as in the CMP model. Again we rely on ordinary least squares
to estimate a single free parameter *.

RESULTS

We present the results in three subsections. The first presents several summary
descriptions of learning by individual subject and by treatment condition. The
second compares the explanatory power of competing learning models. The third
develops some extensions of the Bayesian learning model.

Summary Statistics

The first question is whether subjects were able to distinguish among the
symptom configurations. Figure 3 presents some favorable evidence. For each of
the 24 symptom configurations, Fig. 3A takes the average continuous response over the
twenty subjects in the History�Score treatment cell and the first block of 240 trials,
and plots that average against the true posterior probability. The entries all lie
reasonably close to the diagonal; the correlation coefficient of average continuous
response and true probability is 0.944. The same subjects do even better in the
second block (trials 241�480); panel B shows that the correlation rises to 0.971.

Binary responses can be analyzed in a parallel manner since we are averaging
across trials within a block and across subjects within a treatment cell. Figure 3C
shows that the subjects' average binary choice in the first block lies further from the
diagonal than their average continuous choice, but (by the same token) they
reliably choose the more likely disease for almost all the symptom configurations.
An exception is symptom configuration J (low temperature and medium low blood
pressure): The actual choice frequency for disease A is almost 0.5, while the true
(Bayesian posterior) probability is 0.33. Figure 3D shows that the binary choices
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FIG. 3. Mean response by symptom configuration in score�history condition: (A) continuous
response - block 1; (B) continuous response - block 2; (C) binary response - block 1; (D) binary
response - block 2. Note. The list of symptom configurations appears below with the labels (A�X) used
in the scatter plots, the values (0=absent, 1=low, 2=med. low, etc.) of temperature (Temp) and blood
pressure (bp), the number of trials (n) and the true posterior Bayesian probabilities (Bay) over all trials.

Source Data

Label Temp bp n Bay

A 0 1 22 0.90909
B 0 2 18 0.66667
C 0 3 18 0.33333
D 0 4 22 0.09091
E 1 0 20 0.20000
F 2 0 20 0.40000
G 3 0 20 0.60000
H 4 0 20 0.80000
I 1 1 11 0.72727
J 1 2 15 0.33333
K 1 3 21 0.09524
L 1 4 33 0.03030
M 2 1 18 0.88889
N 2 2 17 0.58824
O 2 3 19 0.26316
P 2 4 26 0.07692
Q 3 1 26 0.92308
R 3 2 19 0.73684
S 3 3 17 0.41176
T 3 4 18 0.11111
U 4 1 33 0.96970
V 4 2 21 0.90476
W 4 3 15 0.66667
X 4 4 11 0.27273

343BROADENING THE TESTS OF LEARNING MODELS



are even more reliable by the second block, e.g., disease A is rarely chosen for
symptom configuration J.

The same general picture emerges for other subsets of subjects; the scatterplots
are suppressed to conserve space. Even in the first block, the average responses
indicate that subjects have already learned to interpret properly the more infor-
mative symptom configurations, and performance improves slightly in the second
block. Correlation coefficients ranged from 0.916 for binary response in the first
block of the History�Score+Pay cell to 0.981 for continuous response in the second
block of the History�Score+Pay cell.

Another summary description of learning success is the score earned by subjects.
Recall that we use the quadratic scoring rule S(c, d)=80&280(c&d )2, where c is
the subject's continuous response and d=0 (for B) or 1 (for A) is the actual disease
on that trial. This score is reported to subjects in four of the six treatment cells, and
can be computed ex post for subjects in the other two cells. A subject who reported
c=the true Bayesian posterior probability of disease A each trial would earn a total
score of 19599 in the 480 trial session. But this benchmark (sometimes referred to
as the ``expert score'') is unrealistic for subjects who have to learn the relation
between symptoms and diseases. An ideal learner who faithfully used the Bayes.0
model would earn a total score of 18330. By contrast, a subject who never learned
anything but chose the best constant response c=0.5 every trial (referred to below
as ``optimal ignorance'') would earn a score of 4800, and an omniscient but perverse
subject who always reported the wrong disease with complete confidence (c=1&d )
every trial would earn the theoretical minimum total score of &96, 000.

Figure 4 shows that the scores of our 123 subjects varied widely. The final score
was highly negative for one subject, but the majority of subjects received scores in
the 10,000 to 18,000 range. (The one aberrant subject is omitted from subsequent
analysis.) We observe some systematic differences by treatment conditions. The
mean final score across all of the subjects in the History conditions was 13325,
while the mean score for those subjects in the No History conditions was 12474.
The difference is significant according to an ANOVA test: F(2, 121)=4.71, p<0.05.
Mean final scores (collapsed across the the two levels of History) are 13088 in the
No Score condition, 12917 in the Score condition and 13978 in the Score+Pay
condition; but the effect of the score treatment is not significant: F(2, 116)=1.70,
p=0.188. Also, the interaction between Score and History was not significant: F(2, 116)
=0.92, p=0.40. We conclude that subjects generally did a fairly respectable job of
learning the relationship between symptoms and diseases, and learned faster with
the benefit of the History treatment.

Learning Model Fits

The main competing models we consider are Bayes (with 0 and with 1 fitted
parameter, n) and FLMP17, CMP9, Exemplar24, and Alcove24 (each with 1 fitted
parameter, *). We will also look at several variants of the models. The fits of all
models are trial-by-trial: Given the stimuli and diseases observed so far, the model
predicts the continuous response on the next trial. We choose free parameters
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FIG. 4. Distribution of subjects scores: (A) all history conditions; (B) all no history conditions.

separately for each subject to minimize the total squared prediction error or, equiv-
alently, the root mean squared deviation (RMSD).

Figure 5A shows that subjects varied in their resemblance to the ideal statistician
described in Bayes.0. One subject's RMSD was about 0.12, indicating that her con-
tinuous response typically was within 120 of this ideal. The modal RMSD was
about 0.16 and the vast majority of subjects had RMSDs less than 0.30 for Bayes.0.
By comparison, for the optimal ignorance benchmark, the average RMSD across
all subjects was 0.327 in block 1 and 0.358 in block 2. Figure 5B indicates relatively
good fits for the Bayes.1 model, with almost all subjects' RMSDs in the 0.10 to 0.30
range and median near 0.20. The fits of the other models in Figs. 5C�5F seem not
quite as good.

With the exception of Bayes.0 (which has no fitted parameters), the learning
models all show considerable dispersion in estimated learning rates across subjects.
Recall that the prior precision parameter n in Bayes.1 (and RL.1) is inversely
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FIG. 5. Distribution of RMSDs: (A) Bayes.0 model fits; (B) Bayes.1 model fits; (C) FLMP17.1
model fits; (D) CMP9.1 model fits; (E) Exemplar24.1 model fits; (F) Alcove24.1.

related to the learning rate. Figure 6B shows that the modal value is about 5, but
a scattering of subjects have fitted values up to 70 and about 8 subjects have values
exceeding 125, indicating very slow learning. In the other models, the fitted value
of * varies by an order of magnitude, typically from 0.01 to 0.1 in FLMP17.1, from
0.02 to 0.4 in CMP9.1, from 0.03 to 0.3 in Exemplar24.1, and from 0.1 to 1.0 in
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FIG. 6. Distribution of learning parameters: (A) Bayes.0; (B) Bayes.1; (C) FLMP17.1; (D) CMP9.1;
(E) Exemplar24.1; (F) Alcove24.1.

Alcove24.1. Larger estimated values of * are to be expected in the models that
bypass integration (Exemplar and Alcove) because they update their internal
parameters in fewer trials. The dispersion of parameter estimates across subjects,
however, is even greater than we expected.

Tables 3 and 4 report the main results of the learning model competition. Despite
the absence of free parameters, the normative Bayes.0 model has respectable fits
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TABLE 3

Continuous Response RMSD by Treatment

No history History

No Score No Score
Model NP score Score +pay score Score +pay All Subjects

1. Bayes 0 .2302 .2276 .2335 .2231 .1775 .1803 .2124
2. Bayes 1 .1791 .2049 .1952 .2016 .1680 .1580 .1847
3. FLM17 1 .1891 .2177 .2040 .2180 .1919 .1774 .1999
4. CMP9 1 .1886 .2182 .2034 .2183 .1926 .1762 .1998
5. Ex24 1 .1936 .2255 .2106 .2267 .2075 .1906 .2092
6. Alcove24 1 .1892 .2180 .2030 .2137 .1876 .1724 .1975
7. Bayes w�l rates 18 .1627 .1814 .1763 .1845 .1567 .1446 .1679
8. Ex24 w�l rates 25 .1543 .1736 .1692 .1790 .1547 .1432 .1626
9. RL 0 .2150 .2289 .2267 .2305 .2014 .1912 .2159

10. RL 1 .1899 .2206 .2071 .2190 .1959 .1812 .2025

Note. The models are described in the text. NP is the number of fitted (or ``free'')

parameters fitted for each subject to minimize squared prediction error over all 480 trials.

The twenty or more subjects were used in each of the six treatment conditions (History,

Score, etc.); there were 122 subjects in all. Table entries are (minimized) root mean squared

prediction error (RMSD) for each model in subjects' trial-by trial continuous response.

with RMSDs ranging from about 230 in the No History conditions down to
about 180 in the History conditions with Score. The main competitors did better,
but typically reduced the forecast error by only a few percentage points. Over all
subjects and trials, the average prediction error was about 210 in Bayes.0 and was
a bit under 200 given a single fitted learning parameter for each subject in the
CMP9, FLMP17, and Alcove24 models. The forecast error exceeded 200 for
Exemplar24 even with a free parameter. Bayes.1 was the top performer, with
RMSD averages as low as 160 in the History�Score+Pay cell.

We were surprised that the competing models offered so little improvement over
Bayes.0 and no improvement over Bayes.1, so we ran a number of robustness
checks. First we confirmed that changing the number of internal parameters (as
described in the previous section) made little difference in the CMP and FLMP fits.
We confirmed that adding a second learning parameter (the decay rate # in the
models using Eq. (6) or a prior asymmetry parameter in Bayes.1 and RL.1)
improved fits only very slightly, typically reducing RMSD by 0.001�0.005, and the
fitted values indicated that very few subjects exhibited rapid decay of the learning
rate or asymmetric priors. We considered logistic transforms of the choice data
using estimates reported in FM97, but found no consistent improvement in model
fits. At one stage of our research we also examined model fits using maximum
likelihood (ML) rather than least squares (LS) techniques, and found no notable
differences.

The last four rows of Table 3 report some of the more interesting robustness
checks. Perhaps different internal parameters are learned at different rates. Row 7
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TABLE 4

RMSD Comparisons all Subjects

Continuous response Binary response

Model NP First 60 First 240 Last 240 Last 60 All trials All trials

1. Bayes 0 .2625 .2269 .1948 .1949 .2124 .3184
2. Bayes 1 .1753 .1873 .1755 .1759 .1847 .3162
3. FLMP17 1 .1915 .2033 .1872 .1840 .1999 .3387
4. CMP9 1 .1917 .2036 .1882 .1844 .1998 .3400
5. Ex24 1 .2138 .2177 .1911 .1846 .2092 .3519
6. Alcove24 1 .1914 .1995 .1858 .1821 .1975 .3378

Note. The models are described in the text. NP is the number of fitted (or ``free'')

parameters fitted for each subject to minimize squared prediction error over the indicated set

of trials. Table entries are (minimized) root mean squared prediction error (RMSD) for each

model in subjects' trial-by-trial continuous and binary response.

allows each of the 16 likelihoods (of each level of each symptom given each disease)
in Bayes as well as the unconditional disease probability to have its own prior
precision. Row 8 allows each symptom configuration in Exemplar to have its own
learning rate and also allows for asymmetric prior beliefs. These rows indeed have
the lowest forecast errors, below 150 in the most favorable conditions. But given
the excessive number of free parameters, one should regard the entries as lower
bounds on forecast error in our data and not as the performance of serious
candidates to explain human learning. The reinforcement learning model RL.0 is
potentially a serious candidate but it only narrowly outperformed its counterpart
Bayes.0 in the noisier treatments and elsewhere had larger prediction error. Perfor-
mance improved with a fitted prior precision parameter, but RL.1 still was bested
in every condition by its Bayesian counterpart Bayes.1.

The averages in Table 3 might disguise diversity across subjects. We know from
Fig. 6 that subjects are quite diverse in their fitted parameters for a given model.
More importantly, one might ask whether different models (not just different
parameters) are needed to explain the learning processes of different subjects. To
explore this issue, for each of the five main contenders, we counted the number of
subjects for which it had the smallest RMSD. It turns out that Bayes.1 was the best
fit for 111 of 122 subjects; Exemplar24.1 for 5 subjects, Alcove24.1 for 3, FLMP17.1
for 2 and CMP9.1 for 1. The scattering of the 11 non-Bayesian winners seems
unrelated to the Score and History treatments.

The averages might also disguise diversity over time. Perhaps some models per-
form better in early periods when learning is rapid and not as well in later periods.
Table 4 reports the average performance over time of the main contenders. Indeed
we do see more separation between the contenders in earlier periods than in later
periods, but the main finding is reinforced: Bayes.1 provides the best explanation of
continuous choice in each time period as well as the best overall. The last column
shows that the prediction errors for all candidate models are substantially larger for
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average binary choice than for continuous choice, but that the relative performance
of Bayes.1 (and even Bayes.0) is quite good.

Bayesian Learning Curves

The Bayesian model's predictive success encouraged us to analyze more carefully
its trial-by-trial performance. Recall from Eq. (3) that the Bayesian relationship
between symptoms and disease takes a linear form in terms of log odds:

y(s)=ln ro+ :
8

k=1

Ik (s) ln rk .

We can observe the subject's learning process through a Bayesian lens by replacing
the left hand side y(s) of (3) by the log odds of the actual response, and estimating
the symptom coefficients over various time periods. Thus we construct the depend-
ent variable L(c)=ln[(c+0.01)�(1.01&c)], shifting the continuous choice c by
0.01 away from 0 and 1 to avoid taking the log of zero, and we take the symptom
indicators as explanatory variables. We estimate the rolling regression

L(ct)=;oT+ :
8

k=1

;kTIk (st)+=t (8)

over a moving window of 160 consecutive trials, incrementing the last trial T from
160 to 480. Effective learning is indicated by rapid convergence of the coefficient
estimates ;kT (as T increases) to the objective values ln rk listed in Table 2.
Obstacles to learning are suggested by slow convergence, convergence to some
other value, or divergence of the coefficient estimates. This empirical approach
embodies some of the theoretical ideas on learning in Marcet and Sargent (1989)
as explained in KF98.

Figure 7 presents two examples. The intercept coefficient ;oT is constrained to its
objective value 0 to reduce clutter and to improve statistical efficiency. The depend-
ent variable in Fig. 7A uses the continuous responses generated by the Bayes.0 nor-
mative model. All eight coefficient estimates indeed converge closely to the objective
values in the last third of the trials. Figure 7B uses the actual continuous choices
of a high-scoring subject. The coefficient estimates maintain essentially the same
ordering as the objective values, but the subject appears to overrespond to the more
informative symptoms (denoted k=5 and k=8 for low and high blood pressure)
and perhaps underresponds to the least informative symptoms. Other subjects
exhibit similar but noisier rolling regressions.

A more parsimonious representation (a direct analogue of the central equation in
KF98) is obtained by exploiting regularities in the objective log odds ratios
wk=ln rk . Recall from Table 2 that w1=&w4 r1.39 while w2=&w3 r0.41r

0.3w1 , and &w5=w8 r2.30 while &w6=w7 r0.69r0.3w8 . Hence essentially all of
the information embodied in the eight symptom indicators is captured in the two
variables x1 (s)=I1 (s)+0.3I2 (s)&0.3I3 (s)&I4 (s) for all levels of the first symptom
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FIG. 7. Rolling regressions for eight indicator variables: (A) Bayes.0 simulation; (B) subject *28.

(temperature) and x2 (s)=I5 (s)+0.3I6 (s)&0.3I7 (s)&I8 (s) for all levels of the
second symptom (blood pressure). The rolling regression

L(ct)=:oT+:1Tx1 (st)+:2T x2 (st)+=t (9)

estimated over the same windows ending at T=160�480 thus shows effective learn-
ing to the extent that the estimated coefficients :iT converge to the objective values
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:1 r1.4 and :2 r&2.3. Figure 8 presents the same two examples (again constrain-
ing the intercept to its objective value of 0). Here the Bayes.0 simulation finds the
objective values right away and hardly waivers. The high-scoring subject somewhat
overresponds. KF98 show that this subject is quite typical�on average subjects in
the same treatment cell (History with Score but no pay) overrespond to about the
same degree as in Fig. 8B.

FIG. 8. Rolling regressions for two composite symptom variables: (A) Bayes.0 simulation; (B) subject *28.
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DISCUSSION

Our results point to the following conclusions.

1. Subjects do learn in our broadened medical diagnosis task. Even during the
first half of the 480 trials they usually choose the more likely disease and their average
continuous response reflects fairly closely the true reliability of the symptom configura-
tions. They do even better in the second half of the trials.

2. Subjects are quite heterogeneous. Some of them earn much higher overall
scores than others in the task. Fitted learning rate coefficients vary widely across sub-
jects in each learning model. For example, the Bayes.1 model indicates that some sub-
jects hold strongly to initial beliefs and respond only slightly to the feedback in each
trial, while other subjects have weaker priors and respond much more strongly to
evidence in early trials.

3. Some of the variation across subjects comes from differences in experimental
treatments such as Score (whether or not a quadratic scoring rule is used to rate perfor-
mance trial by trial) and History (whether or not subjects have access to a summary of
symptoms and diseases seen in earlier trials). In a companion paper we found statisti-
cally significant impacts of the Score treatment, and in the present paper we find that
with the History treatment the subjects earned significantly higher average scores and
tended to behave more as predicted by the learning models. Nevertheless, it is clear that
subjects vary more within a given treatment than across treatments.

4. Although subjects differ in many ways, they appear to be remarkably similar
in the underlying way that they process information. We considered five quite different
learning models featured in the recent literature. Contrary to our expectations, the same
model accounts best for information processing in virtually all subjects. Again contrary
to the expectations of the majority of authors, the best predictor of our subjects'
behavior is Bayes.1, a normative model of optimal information processing with a single
free parameter to capture individual differences in prior information.

5. Even our best fitting model left unexplained considerable behavioral
variability, with prediction errors (RMSD) of 10 to 260 for most subjects. Using new
rolling regression techniques (borrowed from Kelley and Friedman, 1998) we found
that the systematic behavior of most subjects moved over time towards the normative
(optimal) value, but even at the end of the session, subjects still tended to overreact to
current evidence.

Many question remain open. Of course, the general issue of what sort of tasks favor
different competing learning models will remain active for many years. Nearer term, we
hope to see progress on two puzzles that remain in our work.

1. The Bayesian model (and also the RL model) has a learning rate that decays
as 1�t; the weight accorded new evidence deadlines proportionately to the accumulation
of old evidence. Yet allowing the learning rate to decline (at a faster or slower rate than
1�t) in the error based learning models such as FLMP17.2 did not much improve their
explanations of the data.

2. FM97 summarizes conservatism (or underconfidence) in terms of a logistic
parameter. A simple transformation of the continuous choice data based on fitted values
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of that parameter brings most subjects' averaged choices (across trials with a given
symptom configuration) closer to the objective posterior probabilities. Yet the transfor-
mation does not consistently improve the trial-by-trial fits of the learning models. We
suspect the apparent inconsistency may be related to overresponse to current
symptoms, but we are unsure of how best to model the combination of conservatism
and overresponse.

The findings on the predictive superiority of Bayes.1 must be interpreted with cau-
tion. For several decades, cognitive psychologists have constructed and tested all sorts
of non-Bayesian models precisely because of shortcomings in Bayesian model as a
description of human behavior. Edwards (1968) is a delightful survey of early results,
mostly for urn problems. For example, what is the probability that a sample of 8 red
and 4 blue balls is drawn from an urn that has 700 red balls rather than one with 700

blue balls? The Bayesian posterior probability (under the usual conventions) is 0.97 but
subjects' responses typically are in the 0.7 to 0.8 range, a bias called conservatism.
However, Edwards notes that the bias is greatly reduced in more ecological tasks (eg,
men's and women's heights, rather than two urns) and by training and experience. See
Camerer (1995) for a recent survey of cognitive biases.

With feedback in 480 trials and an ecologically interpretable task, our medical
diagnosis data should be expected to exhibit relatively small biases. Moreover, biases
are present in our data, including a form of conservatism reported in MF97 as well as
the persistent overreaction to current evidence mentioned in point 5 above. It just turns
out that the non-Bayesian descriptive models that we collected from the recent
literature don't capture the regularities in our data as effectively as Bayes.1. Many inter-
pretations of this fact are possible. One interpretation that we find attractive is that
human rationality is bounded and adaptive, and will resemble the normative Bayesian
model only to the extent that the environment encourages such adaptive behavior (e.g.,
Gigerenzer and Hoffrage, 1995).

The belief that learning is domain specific is widespread among psychologists, as we
noted in the introduction. A referee reminds us that some game theorists believe that,
even within the class of two player bimatrix games, different forms of learning take place
depending on whether the game is zero sum. We hope our results will encourage other
investigators to reconsider domain general learning. We found that the same model
predicted best across a fairly broad class of stochastic individual choice environments.
Our conjecture is that a broad adaptive model that specializes in our environments to
something resembling Bayes.1 will predict well across most interesting individual choice
environments as well as interactive game environments.
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