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Connectionism offers a challenge to current information-processing descriptions of lin- 
guistic performance. Upon examination, however, models with the connectionist frame- 
work are found to be wrong in important respects or are too powerful to be meaningful. The 
following observations support these claims. The assumption of interactive activation (i.e.. 
two-way connections between units) of specific connectionist models is shown to be both 
unnecessary and inconsistent with empirical results. Connectionist models with hidden 
units are demonstrated to be too powerful: they can simulate different types of results that 
are generated by different process models. Given the power of connectionist models with 
hidden units, they can describe results with unrealistic assumptions about the psychophys- 
ical relationships that are functional in the task. Connectionist models with hidden units are 
limited in theoretical value without postulating something like sequential stages of pro- 
cessing in which some categorization occurs before response selection. Notwithstanding 
these limitations, it is noted that other important properties of connectionism are to be 
found in existing process models of pattern recognition. ‘( IYXX .Acadrmic Pre\\. Inc. 

The present issue of this journal is de- 
voted to research carried out within a sup- 
posedly new paradigm of psychological 
functioning. This issue is only one source 
of information among many that document 
the impact of what I refer to as connec- 
tionism. It is difficult for me to assess 
whether our science has previously wit- 
nessed such an apparent revolution. I see it 
as a revolution not only because so many 
investigators are adopting its program, but 
also because the question whether there is 
any worthwhile alternative has been pro- 
posed more than once. Perhaps Watson’s 
(1913) call to behaviorism and Neisser’s 
(1967) book had similar impact, but sheer 
numbers appear to be on the side of con- 
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nectionism. My tack is criticize this valu- 
able movement to reveal some fundamental 
limitations in the approach. Only by cor- 
recting these shortcomings will connec- 
tionism have the potential for a positive 
contribution to empirical and theoretical 
psychology. The methods and goals of psy- 
chological inquiry have not changed and 
our task remains as difficult as ever. 

Before departing on this adventure, it is 
important to acknowledge that not only are 
there differences in our concept of connec- 
tionism, but also that the concept itself 
must be fuzzily defined. Some view con- 
nectionism as a unique enterprise; others 
view it as spanning a continuum from 
models of the interactive activation variety 
to those used in backpropagation. Even 
others believe that interactive activation 
models are prototypical information-pro- 
cessing models, whereas backpropagation 
are prototypically connectionist. Like 
Wittgenstein’s concept of games, there is 
no critical defining (necessary or sufficient) 
property of connectionism. We are limited 
to instances of connectionism and specific 
connectionist assumptions that can be eval- 
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uated. Thus, my criticism will address spe- 
cific connectionist models and assump- 
tions. Advocates of connectionism might, 
therefore, claim that the criticisms do not 
address the validity of the connectionist 
approach. However, the specific models 
and assumptions appear to be prototypi- 
tally connectionist, and their demise offers 
a strong challenge to the validity of the cur- 
rent connectionist paradigm. 

TESTINGTHE INTERACTIVE 
ACTIVATION ASSUMPTION 

Central to the framework of connec- 
tionism is the assumption of high intercon- 
nectivity among the processing units. This 
assumption contrasts with the relative 
modularity assumed by some information- 
processing models (Palmer & Kimchi, 
1986) and the extreme modularity assumed 
by some other researchers (Fodor, 1983). 
Connectionist models are constructed of 
units at different levels. All knowledge is 
contained in the connections among the 
units and the operations that map the input 
into the output. The units interact with one 
another via connections among the units. 

Interactive Activation Model of 
Word Perception 

The interactive activation model of word 
perception was designed to account for 
context effects in word perception 
(McClelland & Rumelhart, 1981) and was 
extended to account for other phenomena 
(Rumelhart & McClelland, 1982). The 
model postulates three levels of units: fea- 
tures, letters, and words. Features activate 
letters that are consistent with the features 
and inhibit letters that are inconsistent; 
letters activate consistent words and inhibit 
inconsistent words; and most importantly, 
words activate consistent letters. It has 
been known since the time of Cattell that a 
letter is more accurately recognized in the 
context of a word than in context of 
random letters. Interactive activation ex- 
plains this word advantage in terms of in- 
teractive facilitation from the word level to 

the letter level. What is important for our 
purposes is that top-down activation from 
the word to letter level is necessary for ex- 
plaining the word advantage. Thus, inter- 
active activation might be considered to be 
the backbone of the model, which is why 
the question of the necessity of interactive 
activation seems fundamental. Rather than 
attempting direct tests of this assumption, 
however, previous research has been pri- 
marily limited to whether a model with in- 
teractive activation could account for 
various phenomena. 

In 1979, I examined whether there was 
evidence for a two-way interaction be- 
tween the letter and word level in visual 
word perception. To anticipate the results, 
there was no evidence for two-way interac- 
tive activation between letter and word 
levels (Massaro, 1979). The experiment 
factorially combined six levels of letter in- 
formation with four levels of orthographic 
context. The letter information was manip- 
ulated by varying how much a test letter 
looked like a c or an e by extending the 
horizontal bar different amounts from right 
to left. To the extent that the bar is long, 
there is good visual information for an e 
and poor visual information for a c. There 
were six different test letters, varying from 
a clear c to a clear e. 

Orthographic context was manipulated 
by varying the orthographic context to ei- 
ther favor one or the other letter or to be 
neutral, Consider the letter presented as 
the first letter in the context -oh Only c is 
orthographically admissible in this context 
since these three consecutive vowels eoi 
violate English orthography. Only e is ad- 
missible in the context -dit since the initial 
cluster cd is an inadmissible English pat- 
tern. Given these constraints, the context 
-oin favors c, whereas the context -dir 
favors e. The contexts -tsa and -ast can be 
considered to favor neither e or c. The first 
remains an inadmissible context whether e 
or c is present, and the second is ortho- 
graphically admissible for both e and c. 
Appropriate contexts were constructed so 
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that the test letter could be presented at 
each of the four letter positions in each of 
the four types of context. 

The test string was displayed for 30 ms 
followed by a blank interstimulus interval 
that lasted between 5 and 210 ms. This in- 
terval was followed by a 30-ms masking 
stimulus composed of random letter fea- 
tures. The subject was asked to indicate 
whether an e or c was present in the test 
display. Subjects were instructed to make 
the best choice on the basis of what they 
saw. 

Figure 1 gives the observed interaction 
of bar length and orthographic context 
across the four masking intervals. The 
probability of an e response increased with 
increases in the bar length of the critical 
letter. The results also show a gradual reso- 
lution of the critical letter with increases in 
processing time before onset of the mask: 
the curves across bar length are steeper 
with longer masking intervals. An e identi- 
fication was more probable for the context 
in which e but not c was orthographically 

admissible than for the context in which c 
but not e was admissible. The two neutral 
contexts were intermediate and did not 
differ from one another. This context effect 
was larger at the more ambiguous levels of 
the bar length of the test letter. Context 
also had a larger impact on identification of 
the test letter at the two extremes of the 
letter continuum to the extent the masking 
interval was short. These two results are 
consistent with the general finding that the 
contribution of context is larger with am- 
biguous than unambiguous bottom-up 
sources of information. The results were 
described in terms of the integration of 
context and letter information as two irzde- 
pendent sources of information. The quan- 
titative results were predicted by a fuzzy 
logical model of perception (FLMP) that 
had been successfully applied in other do- 
mains, such as speech perception and sen- 
tence interpretation (Oden, 1978; Oden & 
Massaro. 1978). What is important for our 
purposes is that the FLMP assumes that 
the top-down influence from the word 
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FIG. I. Observed (points) and predicted (lines) probability of an e identification response as a func- 
tion of the bar length of the test letter (stimulus value), the orthographic context, and the masking 
interval before the onset of the mask. The context NA = neither e nor c admissible, BA = both 
admissible, CA = c admissible, and EA = e admissible (results from Massaro, 1979). The predictions 
are given by the FLMF? 
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level does not modify the letter-level infor- 
mation. 

The interactive activation model also 
predicts an effect of orthographic context, 
by assuming interactive activation between 
the units at the word and letter level. Pre- 
sentation of -dir supposedly activates the 
word edit, and this activation feeds down 
from the word and activates its letters. Al- 
though the test letter in the display might 
have been somewhat ambiguous, the con- 
text can decrease the letter’s ambiguity be- 
cause -dit results in activation of the letter 
e at the letter level. A nonword context 
(-~a) would be expected to produce very 
little activation from the word level to the 
letter level. In this case, the nonword con- 
text would not contribute to the discrimina- 
bility between two adjacent letters along 
the letter continuum. The orthographic 
context (-as?) supporting both e and c 
would produce activation from the word 
level for both e and c’ at the letter level. 
This interpretation of interactive activation 
leads to the prediction that the ortho- 
graphic context should have large effects 
on the discriminability of adjacent letters 
along the letter continuum. 

Taking a signal detection perspective, we 
can describe the information being trans- 
mitted by the test letter. One measure of 
information is the degree to which the per- 
ceiver discriminates two adjacent letters 
along the test letter continuum (Massaro, 
1979). The percentage of classification 
judgments of two adjacent letters along the 
letter continuum can be transformed into a 
measure of discriminability called, d’, be- 
tween the adjacent letters. The important 
assumption underlying this analysis is that 
this d’ measure represents the relative acti- 
vation of the e and c letter units in the in- 
teractive activation model. Using this mea- 
sure, it is possible to test for d’ differences 
independently of the actual effect of con- 
text on the overall likelihood of responding 
e or c. 

The left panel of Fig. 2 gives the ob- 
served cumulative d’ values across the 

stimulus continuum as a function of the 
four orthographic contexts. The d’ values 
are different for the four contexts. There 
was no effect of context on the discrimina- 
bility between adjacent letters along the 
letter continuum. Within the perspective of 
this analysis, the results indicate that the 
bottom-up activation of the letter was not 
modified by orthographic context, contrary 
to the expectation from interactive activa- 
tion. Interactive activation predicts that the 
word context modifies the discriminability 
between adjacent letters along the con- 
tinuum, relative to the nonword context. 
Consider processing of the test letter in 
terms of the interactive activation model. If 
an e is presented, bottom-up activation 
activates words consistent with e and in- 
hibits inconsistent words. When e is pre- 
sented in -dir, top-down activation from 
the word edit activates e. When e is pre- 
sented in the context -sta there is very little 
top-down activation from the word to 
letter level. Thus, there is a large difference 
in the relative activation of the e and c 
letter nodes in the word than nonword con- 
text. The relative activation of e and c at 
the letter level determines the discrimina- 
bility between the two test letters. Given 
that the relative activation of e and c differs 
for the word and nonword contexts, then 
their discriminability should also differ. 
The d’ for the word context should be 
greater than the d’ for the nonword con- 
text. Given that there were no differences 
in discriminability as a function of ortho- 
graphic context, there is no evidence for 
interactive activation. 

To illustrate that the data analysis was 
sensitive to variables that influence letter 
discriminability, the d’ analysis was re- 
peated as a function of masking interval. 
The right panel of Fig. 2 shows that dis- 
criminability of the letters along the letter 
continuum increases dramatically with in- 
creases in the processing time before the 
onset of the masking stimulus. Thus, the 
analysis does show changes in letter dis- 
criminability with masking interval, but 
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STIULJLUS VALUE STIMULUS VALUE 

FIG. 2. Left: Cumulative d’ values for the e-c continuum. as a function of the orthographic con- 
text. The context NA = neither c nor c admissible. BA = both admissible, CA = c admissible, and 
EA = e admissible (results from Massaro. 1979). Right: Cumulative d’ values for the +-c continuum. 
as a function of the blank interval between the test word and the masking stimulus. 

none with orthographic context. Hence, 
the analysis cannot simply be considered 
insensitive. Identical results were found in 
a replication using an n to h continuum and 
different orthographic contexts (Massaro, 
1979). If this analysis is valid, it provides a 
straightforward disconfirmation of the cen- 
tral assumption of the interactive activation 
model of written word perception. It illus- 
trates for me that demonstrating the ade- 
quacy of a model is not as productive as 
testing its fundamental assumptions within 
the spirit of falsification. 

Interactive Activation Model oj 
Speech Perception 

The TRACE model of speech perception 
(McClelland & Elman, 1986) is a connec- 
tionist model in which information pro- 
cessing occurs through excitatory and in- 
hibitory interactions among a large number 
of simple processing units. Three levels or 
sizes of units are used in TRACE: feature, 
phoneme, and word. Features activate 
phonemes which activate words, and acti- 
vation of some units at a particular level in- 
hibits other units at the same level. TRACE 
maintains the important assumption of in- 

teractive activation that activation of 
higher-order units activates their lower- 
order units; for example, activation of the 
/b/ phoneme activates the features that are 
consistent with that phoneme. For several 
phenomena, the predictions of TRACE are 
quantitatively similar to those of the 
FLMP. However, the interactive-activation 
assumption of top-down influence causes 
the two models to make very different pre- 
dictions about categorical perception. 
Strictly speaking, perception is said to be 
categorical if the subject can discriminate 
stimuli between, but not within, speech 
categories. As described in Massaro 
(1987b. Chapter 4, Section 8). categoriza- 
tion in the FLMP occurs as a consequence 
of pattern classification and not at the fea- 
tural evaluation or integration operations. 
As in the previous explanation of word per- 
ception, higher-order levels influence the 
decision without modifying lower levels. 
The TRACE model produces categorical- 
like behavior at the sensory (featural) level 
rather than at simply the decision stage. In 
this model, a stimulus pattern is presented 
and activation of the corresponding fea- 
tures sends more excitation to some 
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phoneme units than to others. Given the 
assumption of feedback from the phoneme 
to the feature level, the activation of a par- 
ticular phoneme feeds down and activates 
the features corresponding to that phoneme 
(McClelland & Elman, 1986, p. 47). This 
effect of feedback produces enhanced sen- 
sitivity around a category boundary, ex- 
actly as predicted by categorical percep- 
tion. 

The issue of categorical perception has 
been almost synonymous with speech per- 
ception research, and cannot be done jus- 
tice here. However, we have learned some- 
thing about where in the processing se- 
quence categorization arises. There are 
several recipes for obtaining “categorical 
perception” results, but none of these can 
be taken as convincing evidence for inter- 
active activation (Hary & Massaro, 1982; 
Massaro, 1987b). One recipe is to use a 
stimulus continuum that is irregular in 
terms of the psychophysical relationship 
between physical changes along the stim- 
ulus continuum and sensory/perceptual 
changes. One example is a /bat-/da/ con- 
tinuum in which /ba/ has rising formant 
transitions and /da/ has falling transitions. 
Discrimination of adjacent stimuli along the 
continuum most likely would be irregular 
because some pairs would be more discri- 
minable than others. Specifically, we might 
expect enhanced discrimination between a 
stimulus with falling transitions and a stim- 
ulus with rising transitions. The reason is 
that the direction of change provides addi- 
tional psychophysical information relative 
to the case in which two adjacent stimuli 
differ only in the absolute values of the for- 
mants, and not in the direction of change. 
What is important for TRACE is that en- 
hanced discrimination at the point along 
the continuum having a change in direction 
of the transitions in no way depends on 
having interconnected feature and 
phoneme levels. The enhanced discrimina- 
tion is also found for monkeys, who do not 
have these levels (Kuhl & Padden, 1983). 

The second recipe for categorical per- 

ception is to have discrimination perfor- 
mance depend on an abstract context-sen- 
sitive code rather than a high-quality sen- 
sory-trace code. Thus, discrimination tests 
that make great demands on auditory 
memory tend to produce categorical per- 
ception results. Similarly, different seg- 
ments produce different degrees of categor- 
ical perception results because their audi- 
tory representations differ in quality. 
Steady-state vowels produce a high-quality 
auditory memory and, therefore, do not 
give categorical results. Stop consonants, 
on the other hand, have poor-quality mem- 
ories and give categorical results. The dif- 
ferential contribution of abstract and audi- 
tory memory is an important factor in pro- 
ducing categorical results. As in the recipe 
involving irregularities along the stimulus 
continuum, this recipe in no way depends 
on the interactive activation assumed by 
TRACE. The conclusion being advanced 
here is that these two recipes are the only 
contributions to categorical perception re- 
sults. 

In fact, categorical perception plays little 
or no role in speech perception. Language 
understanding requires categorical parti- 
tion but this does not mean that categorical 
perception leads to this partitioning (Mas- 
saro, 1987a). Although the perceiver must 
determine if the speaker was referring to a 
ball or a doll, for example, the perceptual 
system could have continuous information 
representing the degree to which each al- 
ternative is supported. In fact, there is a 
growing body of research demonstrating 
that perceivers do, in fact, have continuous 
information (see Repp, 1984, for a review). 
Previous research had failed to contrast the 
predictions of categorical perception with 
those of a model of continuous perception. 
Given this limitation, our research carried 
out direct quantitative tests between cate- 
gorical and continuous models of percep- 
tion (Massaro, 1987b). In one series of ex- 
periments, subjects were asked to classify 
speech events that independently varied 
along two dimensions. The identification 
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results were consistent with the assump- 
tion of continuous information along each 
of the two dimensions. A model based on 
categorical information along each dimen- 
sion gives a very poor description of the 
identification judgments. In a second series 
of experiments, subjects were asked to 
make repeated ratings of the degree to 
which a stimulus represents a speech cate- 
gory. The distribution of the rating judg- 
ments to a given stimulus was more ade- 
quately described by a continuous rather 
than a categorical model of perception. 

McClelland and Elman (1986) point out 
that the categorical output occurs only 
after some time in which interactive activa- 
tion has been taking place. Thus, very 
quick responses might reveal continuous 
information if the perceiver responds more 
quickly to the stimulus, as in same-dif- 
ferent judgments of the Pisoni and Tash 
(1974) study. On the other hand, reaction 
times (RTs) for identification responses are 
much slower and there should have been 
sufficient time for interactive interaction. 
Massaro and Cohen (1983), for example, 
found that RTs for the identification of bi- 
modal syllables averaged about 1000 ms. 
Thus, is seems unlikely that the new results 
supporting continuous rather than categor- 
ical perception are due to processing before 
interactive activation had a chance to take 
place. In vowel perception, listeners can 
make within category discriminations even 
in a task in which the stimuli are not spaced 
closely together in time. One reasonable 
explanation is that listeners have better au- 
ditory memory for vowels than for conso- 
nants (e.g., the second recipe noted ear- 
lier). According to interactive interaction, 
vowels should be perceived as categori- 
cally as consonants. 

Given the falsification of categorical per- 
ception, an important weakness in the 
TRACE model of speech perception has 
been documented. It appears that the 
TRACE model will have to be modified sig- 
nificantly because the evidence points to 
continuous rather than categorical percep- 

tion. This modification will not be easy to 
implement because of the large amount of 
activation assumed to exist from the 
phoneme level down to the feature level. It 
will be interesting to determine if the power 
of the TRACE model can be maintained 
without top-down activation of feature 
evaluation. 

CRITICISMS OF HIDDEN UNITS 

The purpose of this section is to illustrate 
how (I) connectionist models with hidden 
units are too powerful, (2) this superpower 
can camouflage the underlying psycho- 
physics, and (3) and hidden units can cam- 
ouflage intervening stages of processing. 
Good models should be falsitiable. How- 
ever, a single connectionist model can sim- 
ulate results that imply mutually exclusive 
psychological processes. Thus, results con- 
sistent with a connectionist model should 
not be taken as evidence for the model. 
Connectionist models are too powerful. 
One consequence is that the superpower of 
hidden units can retard the discovery of the 
information that a subject uses in a task. 
Superpowerful models perform adequately 
even with inappropriate assumptions about 
the information that is used. Finally, tasks 
that require relatively successive stages of 
processing can be simulated to some extent 
by hidden units. Specifically, a task that re- 
quires categorization and response selec- 
tion stages can be simulated with a layer of 
hidden units. This simulation is misleading 
because is seems to imply that the input 
units have almost immediate contact with 
the output units. In fact, input processing 
must usually occur for a significant period 
before information is made available to the 
output level. This superpower implies that 
our standard research strategies will not be 
sufficient. 

The simpliest connectionist models as- 
sume only input and output nodes. The 
stimulus world is mapped into the input 
nodes, the input nodes are connected to the 
output nodes, and the output nodes are 
mapped into the behavioral world. Minsky 
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and Papert (1969) pointed out some of the 
limitations of these connectionist models, 
namely, that these models cannot learn to 
partition events or objects into sets that are 
not linearly separable from one another. 
Given objects in a two-dimensional space, 
for example, the different sets to be catego- 
rized differently must be separable by a 
straight line. Given four objects with the 
values 00, 01, 10, and 11 along two dimen- 
sions, all partitionings are possible except 
00 and 11 mapped into one set and 01 and 
10 into another. It should be noted that the 
question whether linear separability is a 
limitation for psychological models is an 
empirical one. To overcome the limitations 
of linear separability, another layer of units 
must exist between the input and output 
layers. These hidden units are connected to 
both input and output nodes. 

Superpower of Hidden Units 

The present criticism of superpower ap- 
plies to connectionist models that have 
hidden units. As anticipated by Minsky and 
Papert (1969) in their critique of percep- 
trons (Rosenblatt, 1958), connectionist 
models with more than two layers of units 
might be too unconstrained to be informa- 
tive. Models of this type might be Turing 
equivalents that are capable of mimicking 
any computable function. As presently for- 
mulated, many of the connectionist models 
with two-way connections among different 
levels of units and connectivity among 
units at a given level appear to be too pow- 
erful. They might be capable of predicting 
not only observed results, but also results 
that do not occur (Massaro, 1986a). That 
is, some connectionist models might simu- 
late results that have not been observed in 
psychological investigations and results 
generated by incorrect process models of 
performance. 

To test whether a connectionist model 
with hidden units is too powerful, I exam- 
ined whether it could simulate data from 
different, mutually inconsistent processes. 
Three data sets were generated from three 

different process models. The data de- 
scribe the interaction of different sources 
of information in pattern recognition. The 
different assumptions made by the different 
process models are considered to be funda- 
mental to important issues in pattern recog- 
nition. If a connectionist model with hidden 
units can mimic the results of mutually in- 
compatible assumptions about pattern rec- 
ognition, then the model is too uncon- 
strained to address the issues addressed by 
the process models. 

The three data sets were produced by 
three different process models of percep- 
tual categorization. The first process model 
is the fuzzy logical model of perception-a 
model that has captured a variety of results 
across a broad range of perceptual and cog- 
nitive domains. The other two models are 
identical to the FLMP in all respects ex- 
cept for the integration rule used to conjoin 
the multiple sources of information. The 
second model assumes an additive combi- 
nation and the third assumes the minimiza- 
tion rule developed in fuzzy logic. These 
models were used to generate hypothetical 
data, which were then simulated by con- 
nectionist models with hidden units. The 
goal of these simulations is to test whether 
connectionist models with hidden units are 
too powerful. 

The three different process models are 
formulated within a general scheme of pat- 
tern recognition, whose major stages are il- 
lustrated in Fig. 3. All three models assume 
these three operations between presenta- 
tion of a pattern and its categorization, The 
sources of information are represented by 
uppercase letters, Xi and Yj. Each dimen- 
sion provides a feature value at feature 
evaluation. The evaluation process trans- 
forms each of these sources into psycho- 
logical values (indicated by lowercase 

Evaluation 

FIG. 3. Schematic representation of three opera- 
tions involved in perceptual recognition. 
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letters). Feature evaluation gives the de- 
gree to which a given dimension supports 
each test alternative. The three models 
differ with respect to the combination rule 
underlying feature integration: multiplica- 
tive, additive, and minimization. The clas- 
sification operation maps this value into 
some response, such as a discrete decision 
or a rating. 

To describe the three integration rules, 
some terminology is necessary. Consider 
three dimensions of information labeled X, 
Y, and Z; Xi corresponds to the ith level of 
the X dimension. Similarly, I$ and Z, cor- 
respond to the jth and kth levels of the Y 
and Z dimensions, respectively, A given 
stimulus composed of a single dimension 
would be labeled Xi, Yj, or Z,, and a given 
combination of these dimensions would be 
represented by XiYjZ,. The support for 
some alternative A by dimension Xi is given 
by the feature value xi, and analogously for 
dimensions rj and Z,. Feature integration 
combines the feature values to determine 
the total support for a given alternative. If 
.~i, Yj, and zk are the VdUeS supporting alter- 
native A, then the total support for the al- 
ternative A would be given by some combi- 
nation of Xi> Yj, and zk. The value A, repre- 
sents the total support given by xiyjzk. 

For the multiplicative combination rule 
(which is assumed by the FLMP), total 
support for alternative A would be given by 
the product of the feature values: 

A, : .Ki X -“j X ik. 

For the minimization combination rule 
which is assumed in fuzzy logic (Zadeh, 
1965), total support for the alternative A 
would be given by the minimal value of the 
feature values: 

For the additive combination rule, total 
support for the alternative A would be 
given by the addition of the feature values: 

A, : Xi + 4; + Zk. 

The third stage of processing assumed by 

all three models is pattern classification, 
which gives the relative degree of support 
for each of the test alternatives. In this 
case, the probability of an A response given 
XjYjzk is 

P(AlXiYjZ,) = ~ , (I) 

where Aijk is given by one of the three com- 
bination rules and C is equal to the sum of 
the merit of all relevant alternatives. For 
each model, the merit of each relevant al- 
ternative is derived in the same manner as 
assumed for alternative A. 

Some readers might argue that the three 
integration rules are not all that different 
from one another and, therefore, little ef- 
fort should be invested in distinguishing 
among the models. More generally, how- 
ever, two process models of this type can 
represent highly incompatible assumptions 
about psychological function. For example. 
a model can be formalized based on the as- 
sumption of selective attention in which 
only a single source of information is used 
in the recognition of a test pattern. This 
model makes predictions similar to the ad- 
ditive model in that no statistical interac- 
tion is predicted (Massaro, 1985), and it 
contrasts sharply with the FLMP which as- 
sumes that all three sources of information 
influence the perceptual recognition of a 
given test pattern. Even readers who inter- 
pret the three integration rules as similar to 
one another will have to admit that the se- 
lective attention model is fundamentally 
different from an integration model. 

The data generated for the simulations 
were generated from an expanded three- 
factor design. The expanded design tests 
each of the three factors presented alone, 
as well as the factorial combination of all 
three factors. The design provides a more 
powerful database to assess models of 
human performance than standard factorial 
designs (Massaro, 1987b). There were 
seven levels of each of the three variables. 
Each process model predicts that the prob- 
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ability of a particular identification is some 
combination of unique parameter values 
associated with each of the levels of the 
three independent variables. All three pro- 
cess models assume that the parameter 
values are between zero and one. Predic- 
tions can therefore be made for each of the 
process models from the same set of pa- 
rameter values for each of the three vari- 
ables. 

The parameter values used in generating 
the predictions are given in Table 1. The 
predictions of the three models, given these 
parameter values, are given by the points in 
Figs. 4, 5, and 6, respectively. The left 
panel of each figure gives the observations 
for the interaction of variable Y and vari- 
able 2, when variable X is equal to 0.5. The 
right panel gives the three single-variable 
conditions. As can be seen in the figures 
each of the models makes a different pre- 
diction. Especially noticeable is the differ- 
ence between the adding combination rule 
and the other two models. The differences 
between the multiplicative integration rule 
and the minimization rule are also apparent 
in the form of the interaction between vari- 
able Y and variable 2. Before testing the 
connectionist model against these three re- 
sults, it is informative to evaluate how 
much the three different process models 
differ from one another. It is logically pos- 
sible that one process model can mimic the 
results of another, simply with a change in 
parameter values. To explore this issue, the 
three process models were fit to the three 
sets of results generated by these same pro- 
cess models. In all cases, 21 parameter 

TABLE 1 
ORIGINAL PARAMETER VALUES USED TO GENERATE 
THE PREDICTIONS OF THE THREE PROCESS MODELS 

IN THE EXPANDED FACTORIAL DESIGN 

Level 

Dimension 1 2 3 4 5 6 7 

X .010 .I00 .300 .500 .700 .900 .990 
Y .OOl .200 .400 .600 2300 ,970 .999 
Z .005 .170 .250 .750 .860 .940 .980 

values (3 variable x 7 levels for each vari- 
able) were estimated to minimize the differ- 
ences between the “observed” and pre- 
dicted data. The criterion of best fit was 
based on the root mean square deviation 
(RMSD) or the squared root of the average 
squared deviation between predicted and 
observed points. As can be seen in Table 2, 
the models can describe data consistent 
with their assumption, but cannot describe 
data generated by the other process 
models. The RMSD values for “incorrect” 
models are sufficiently large enough to 
warrant the belief that these process 
modles could be distinguished from one an- 
other in practice. 

A connectionist model with six hidden 
units was created using the framework 
given by Rumelhart, Hinton, and Williams 
(1986). A unique input node was assumed 
to be activated by each unique level of each 
of the three independent variables, giving a 
total of 3 x 7 = 21 input nodes. Table 3 
gives a schematic representation of this 
input architecture. A given stimulus was 
assumed to activate the nodes corre- 
sponding to the levels of the variables con- 
tained in the stimulus. Thus, a single node 
was activated for the single variable pre- 
sentations and three nodes were activated 
for the three-factor presentations. Activa- 
tion of a given node was assumed to pro- 
duce an output of one for that unit. Other- 
wise the output was zero. There were also 
two output units corresponding to the two 
hypothetical response alternatives in the 
task. With six hidden units, there are 21 x 

6 = 126 weights that must be determined to 
give the connection strengths between the 
input and hidden units. In addition, there 
are 6 x 2 = 12 weights connecting the 
hidden to the output units. Eight weights 
are necessary for the threshold units con- 
nected to the hidden and output units. This 
given a total of 146 weights to predict the 
364 experimental conditions. 

This connectionist model with six hidden 
units was fit to the predictions of each of 
the three process models. For each set of 
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FIG. 4. Data (points) generated by the additive process model and predictions (lines) of a connec- 
tionist model with six hidden units and the architecture given in Table 3. 

data, weights were determined to give the other minimization techniques based on 
best possible predictions of the data. The variants of Newton’s method make adjust- 
weights were determined by either back- ments in the parameter values based on a 
propagation (Rumelhart et al., 1986) or global index of goodness of lit. Backpropa- 
STEPIT (Chandler, 1969; Massaro, 1987b). gation, on the other hand, makes adjust- 
We have found that these two parameter ments in parameter values based on a local 
estimation techniques give similar fits of index of goodness of fit. As can be seen in 
data, even though they are substantially Table 4 and Figs. 4 through 6, the connec- 
different from one another. STEPIT and tionist model can give a good description of 
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FIG. 5. Data (points) generated by the multiplicative process model and predictions (lines) of a 
connectionist model with six hidden units and the architecture given in Table 3. 
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all three sets of data. A good description 
was defined as an RMSD of 1% which was 
also the terminating criterion in the actual 
fit of the connectionist models. Given these 
results, the model appears to be superpow- 
erful or capable of predicting three dif- 
ferent types of results that were predicted 
by three different process models. 

To show that the fit of the model is criti- 
cally dependent on the specific weights de- 
termined in training, the connectionist 
model with weights determined from the fit 
of the additive data was tested against the 
data generated by the other two process 
models. Carrying out this analysis for the 
three sets of weights and the three data sets 
gives nine independent tests. Table 4 shows 
that the weights are critical to achieve a 
good fit. The weights determined to maxi- 
mize the description of one set of data give 
a poor description of another set of data. 

An immediate reaction to my demonstra- 
tions might be that I am doing curve fitting 
whereas backpropagation is meant to do 
learning. The conclusions implicated by my 
analyses, therefore, cannot be extrapolated 
to studies of learning. My reply is that 
modeling learning and curve fitting are very 
similar in practice and a sharp distinction 

TABLE 2 
RMSDVALUES FORTHEFITOFTHETHREEPROCESS 
MODELSTOTHEDATAGENERATEDBYTHETHREE 

PR~~ESSMODELSINANEXPANDED 
THREE-FACTORDESIGN 

Data 

Model Add 

Add .oooo 
Mutt .0578 
Min .0713 

Mutt Min 

.2579 .2473 

.oooo .0651 

.1220 .oooo 

between the two is not possible. The 
teaching input or target activation in back- 
propagation is analogous to the observed 
data in curve fitting. In both cases, the goal 
is to minimize the deviations between two 
sets of values. The fact that backpropaga- 
tion has been used to learn on some 
training data and then tested on new test 
data is not a distinguishing characteristic; 
curve fitting can be carried out in a similar 
manner. Rather than be bogged down with 
this issue, however, allow me to frame the 
exercise as follows. Are there unique sets 
of weights that allow uniquely different 
data sets to be predicted by the same 
model? If there are, I take this as an in- 
stance of superpower because how the 
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Fro. 6. Data (points) generated by the minimization process model and predictions (lines) of a 
connectionist model with six hidden units and the architecture given in Table 3. 
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weights are determined is secondary. That 
is, without any strict a priori assumptions 
about learning in the situation of interest, 
the ingenious investigator will come up 
with a plausible learning history to justify 
the weights that are desired. 

The procedure used in the present inves- 
tigation differs from that used in previous 
studies using connectionist models. In 
those studies, the parameter values are ei- 
ther crafted by hand (McClelland & Ru- 
melhart, 1981; McClelland & Elman, 1986) 
or derived from an initial session of 
learning to identify a set of patterns 
(McClelland & Rumelhart, 1985). An ob- 
vious criticism of the present work is that a 
connectionist model is revealed to be su- 
perpowerful only because the weights are 
being determined directly from the results 
being predicted. That is, we are estimating 
the weights from the same data that is 
being described, whereas one should deter- 
mine the weights without reference to the 
results being predicted. Given this proce- 
dure, one might argue that I cannot gener- 
alize from the negative conclusion reached 
in the present paper. However, my reply 
would be that there have been very few 
constraints on the handcrafting of the pa- 
rameters and on the learning conditions, 
and therefore it is not obvious that the 
present strategy is all that different from 
what has gone on previously. The main dif- 
ference is the criterion used for goodness- 
of-fit. The RMSD criterion has been used 
to seek a close quantitative fit, whereas 
previous tests of connectionist models 
have been concerned primarily with gener- 
ating qualitative results paralleling those of 
interest. 

The current endeavor might be modified 
slightly to resemble the earlier approaches 
by fitting new sets of data with the same 
weights. In this case, the question of in- 
terest is whether training on additive data 
will give accurate predictions to new sets of 
additive data, and so on. We might expect 
that the learning experience only has to be 
taylored to the test for the model to pro- 

TABLE 3 
INPUT NODE ACTIVATIONS AND ASXMUTED 

PARAMETER VALUES FOR EACH OF THE 
THREE VARIABLES, GWEN THE 
SEVEN-NODE ARCHITECTURE 

Input node 
activations Value X Value Y Value Z 

n 000000 .OlO .ool ,005 
clmclclun!J ,100 .2oO .I70 
c!Llm0000 ,300 .400 .250 
q cium0uu .500 .600 .750 
clu00mcln ,700 ,800 .860 
000017m0 ,900 .970 .940 
uucluunm 990 ,999 .980 

Note. Each level of each variable is assumed to ac- 
tivate one of the seven unique nodes associated with 
that variable. 

duce a good match to the results. To carry 
out this analysis, we took the weights de- 
rived in the fit of a particular data set, 
tested each model against the data set, and 
applied the connectionist model with these 
weights to the two-factor predictions of the 
three process models. We did not include 
the pairwise combinations of the three in- 
dependent variables in the original ex- 
panded factorial design. These two-factor 
combinations give 3 x 49 = 147 additional 
data points to be predicted by using the 
weights that were determined in fitting the 
original expanded factorial design. 

The connectionist model was tested 
against these new data using the weights 
derived in the original fit. With three sets of 
weights and three sets of two-factor data, 

TABLE 4 
RMSD VALUES FOR THE FIT OF A CONNECTIONIST 
MODEL WITH A SEVEN-NODE ARCHITECTURE AND 

SIX HIDDEN UNITS 

Data tested 

Data trained Add Mult Min 

Add .OlOO .2617 .2536 
Mult .2592 .Oloo .I408 
Min .2539 .1412 .Oloo 

Note. The data were generated by three different 
process models in an expanded factorial design. The 
network was trained on each of the three sets of data 
and tested on each of the three sets of data. 
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there are nine conditions. The superpower 
is maintained even though new weights 
were not estimated. Table 5 gives the 
RMSD values for the different conditions. 
As can be seen in the Table 5, the connec- 
tionist model with weights derived from the 
fit of additive data gave a good description 
of new two-factor data that were generated 
from the additive process model. Similar 
results were found for the other two data 
sets. The connectionist model does a good 
job describing a new set of data if the new 
set of data is consistent with the data that 
were originally used to train the connec- 
tionist system. 

In summary, a specific connectionist 
model with hidden units was shown to be 
superpowerful in a specific experimental 
situation because it could predict three dif- 
ferent types of results generated by three 
different process models. Good scientific 
inquiry dictates that we actively attempt to 
eliminate alternative models. Given the 
power of connectionism, however, the ob- 
served data often will not be sufficient to 
decide among alternative models. Luckily, 
there is another strategy that might be em- 
ployed beneficially. In this approach, only 
models with discriminating taste would be 
permitted to survive. Discriminating taste 
means that a model only predicts actual re- 
sults, not the universe of possible results. 
The investigator therefore addresses not 
only observed results but also a range of 
hypothetical results that do not necessarily 
occur. Collyer (1985) has made a similar 
point that although a more complex model 

TABLE 5 
RMSD VALUES FOR THE FIT OF A CONNECTIONIST 
MODEL WITH A SEVEN-NODE ARCHITECTURE AND 

SIX HIDDEN UNITS 

Add Mult Min 

.0317 .0150 .0358 

Note. The data were the two-variable combinations 
of an expanded three-factor design. The weights that 
were used were derived from the fit of the model to 
the data generated by three different process models 
in an expanded factorial design. 

might be more accurate than a less com- 
plex model, the more complex model 
should not necessarily be preferred. 

The three different process models were 
not superpowerful; each process model 
could not predict results generated by its 
competitors. Not all connectionist models 
are superpowerful; in fact, a two-layer con- 
nectionist model can be formulated to be 
mathematically equivalent to the FLMP in 
some situations (Massaro & Cohen, 1987). 
This connectionist model has discrimi- 
nating taste; it predicts the results of actual 
results, but not the results generated by 
other process models. 

Compromising Psychophysics 

Central to connectionist models is a fea- 
tural representation of the input, such as 
the Wickelphone representation in the 
verb-learning model (Rumelhart & McClel- 
land, 1986). A good description by the 
model is taken as support for both the 
model and the featural representation. 
However, the superpower of connectionist 
models with hidden units can mislead us 
about the validity of a given featural repre- 
sentation and hence about psychophysical 
relationships. Psychophysics refers to the 
relationship between a stimulus domain 
and a sensory/perceptual domain. As an 
example, the stimulus domain might be 
letters of the alphabet printed in a Helvet- 
ica type font and the psychological domain 
certain visual features that are functional in 
letter recognition. For purposes of the 
present demonstration, we define appro- 
priate and inappropriate featural represen- 
tations. In the appropriate representation, 
the features assumed by the connectionist 
model are equivalent to those used by the 
subject in the task. In the inappropriate 
representation, the features assumed by 
the connectionist model differ significantly 
from those used by the subject in the task. 

A falsifiable model should not behave 
equally well with appropriate and inappro- 
priate featural representations. To show the 
limitations of superpowerful models with 
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hidden units, I generated one featural rep- 
resentation that was appropriate and an- 
other featural representation that was inap- 
propriate. In the appropriate representa- 
tion, the active nodes were systematically 
related to the functional stimulus. Each in- 
dependent variable was designed to have a 
unidimensional relationship with the cate- 
gorization of the stimulus. We assume that 
there are nine features and adjacent stimuli 
would always have more features in 
common than nonadjacent stimuli. Thus, 
adjacent stimuli along the continuum would 
be most similar, and this similarity relation- 
ship was preserved in the nine-node repre- 
sentation, as illustrated in Table 6. Adja- 
cent stimuli shared two active nodes in 
common; stimuli separated by one stimulus 
shared one active node in common; and 
stimuli separated by two or more nodes 
had no active nodes in common. 

In the inappropriate representation, I de- 
signed an irregular relationship between 
the featural representation and the catego- 
rization of the stimulus, as illustrated in 
Table 7. As can be seen, adjacent stimuli 
sometimes have two, one, or no active 
nodes in common, and this is also true for 
nonadjacent stimuli. In this case, the fea- 
tural representation of the connectionist 
model actually violates the information that 
is being used by the subject. 

TABLE 6 
INPUT NODE ACTIVATIONS AND ASSOCIATED 

PARAMETER VALUES FOR EACH OF THE 
THREE VARIABLES, GIVEN AN APPROPRIATE 

NINE-NODE ARCHITECTURE 

Input node 
activations Value A Value B Value C 

n mm000000 ,010 a01 .005 
q mmmoonon .lOO .200 ,170 
q mmmonnn ,300 ,400 .250 
q oummmoon .500 .600 ,750 
q on0mmmuo ,700 .a00 ,860 
q nooomm8o .900 .970 .940 
00000ommm 290 .999 ,980 

Note. Each level of each variable is assumed to ac- 
tivate three of the nine unique nodes associated with 
that variable. 

Fifteen hidden units were chosen for the 
three-feature representation and six units 
for the nine-node representation to equate 
the number of weights (or free parameters) 
for the two models. The nine-node model 
with six hidden units has 182 weights, as 
does the three-node model with I5 hidden 
units. 

The learning history for these tests of the 
connectionist models might be expected to 
provide valuable information about the ad- 
equacy of the models. However, variables 
such as the number of trials to achieve a 
given goodness-of-fit criterion are highly 
dependent on the learning parameters. In 
addition, both backpropagation and 
STEPIT sometimes fail by settling into 
nonoptimal local minima. Given the com- 
puting power and time needed to test these 
models, it is not feasible to provide a de- 
tailed investigation of all of the contributing 
factors. Once again, we have to be content 
with the final fit that is achieved rather than 
how we achieved it. If an investigator is in- 
terested in models of learning, my belief is 
that they must be analyzed and tested 
against trial-by-trial data. 

The appropriate and inappropriate con- 
nectionist architectures were fit to the 
three sets of data generated by the three 
process models by estimating weights to 
minimize the RMSD. The predictions of 

TABLE 7 
INPUT NODE ACTIVATIONS AND ASSOCIATED 

PARAMETER VALUES FOR EACH OF THE 
THREE VARIABLES, GIVEN AN INAPPROPRIATE 

THREE-NODE ARCHITECTURE 

Input node 
activations ValueX Value Y Value 2 

- 
00M ,010 ,001 .005 
Elm0 ,100 ,200 ,170 
nma ,300 ,400 ,250 
n nu ,500 ,600 .750 
mna ,700 .8OU ,860 
mmu .900 .970 ,940 
mmm ,990 ,999 ,980 

Note. Each level of each variable is assumed to ac- 
tivate a unique configuration of the three nodes asso- 
ciated with that variable. 
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the FLMP, given the parameter values in 
Table 1, and representative simulations for 
the nine-node and three-node architectures 
are shown in Figs. 7 and 8, respectively. As 
can be seen in the figures, a model with 
hidden units with the inappropriate or ab- 
normal three-node representation does 
about as well as a model with the appro- 
priate nine-node representation. Given that 
adequate performance of a model is taken 
to provide evidence for both the model and 
the featural representation, we see that the 
superpower of models with hidden units 
can mislead us not only about the models 
themselves but also about the relevant psy- 
chophysics. As long as connectionist 
models are unconstrained and Turing 
equivalents in principle, research in the 
field will find it difficult to address funda- 
mental psychophysical questions. What are 
the features of letters and words actually 
used in reading? It does not really seem to 
matter for connectionist models. Nonverid- 
icality on the input side can be compen- 
sated for on the processing side. Adding 
more hidden units or allowing more con- 
nections among units could overcome defi- 
ciencies in representation on the input side. 

All things being equal, a more valid rep- 

resentation should give a better description 
of the results. To illustrate this point, the 
number of hidden units was reduced in the 
nine-node and three-node representations. 
Two hidden units were employed in the 
regular nine-node architecture and five 
hidden units were assumed for the irregular 
architecture. These models require roughly 
the same number of weights: 66 for the reg- 
ular and 62 for the irregular architectures. 
The regular architecture gave a better de- 
scription of the results than did the irreg- 
ular architecture, with RMSDs of .Ol and 
.04, respectively. This demonstration offers 
a procedure that might be valuable in 
testing different models and representa- 
tions. In general, investigations would gain 
in credibility if the preferred model gave a 
better fit than nonpreferred models with 
the same preferred representation, and if 
the preferred model gave significantly 
poorer fits with nonpreferred representa- 
tions. 

It is critical that connectionist models 
work out the psychophysics hand-in-hand 
with the information processing that 
occurs. I have argued elsewhere (Massaro, 
1987b) that both the frameworks of psy- 
chophysics (specifying the environmental 
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FIG. 7. Data (points) generated by the multiplicative process model and predictions (lines) of a 
connectionist model with six hidden units and the appropriate architecture given in Table 6. 
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FIG. 8. Data (points) generated by the multiplicative process model and predictions (lines) of a 
connectionist model with I5 hidden units and the inappropriate architecture given in Table 7. 

characteristics that are utilized by subjects) 
and information processing (specifying the 
processing that these characteristics un- 
dergo) are necessary for progress in the 
field. Apparently, connectionist models do 
not work out the psychophysics in any 
great detail. In fact, the claims that they 
make are often compromised because of 
the acknowledgment of the arbitrary nature 
of the psychophysics that they assume. As 
an example, in the TRACE model of 
McClelland and Elman (1986), they ac- 
knowledge that although the features, 
phonemes, and words levels were central 
to the predictions, these may not be the ac- 
tual units that are functional. They go on to 
state that their model is equally valid even 
if different units are, in fact, functional. 

Compromising Stages of Processing 

The superpower of connectionist models 
with hidden units can also camouflage the 
contribution of different stages of pro- 
cessing. As an example, consider two tasks 
involving the letters of the alphabet. In one 
task, subjects are asked to identify the 
letters and, in the other, they are asked to 
identify and pronounce the letters. In the 
first task, both the input and output repre- 

sentations could be in terms of visual fea- 
tures. In the second task, the input repre- 
sentations could be visual features but the 
output representations should be articula- 
tory ones. An information-processing anal- 
ysis of the second task would impute an 
additional stage of categorization before 
pronunciation is selected. Connectionist 
models, on the other hand, do not have in- 
tervening stages of processing, but simply a 
mapping between input and output. Within 
the connectionist framework, the two tasks 
differ in terms of the goodness of this 
input-output mapping. A “good” mapping 
refers to linearly separable data in which a 
linear discriminant function can achieve a 
correct mapping of inputs to output catego- 
ries. The output category can be deter- 
mined by a sum of weighted values on each 
of the elements of the input. The “bad” 
mapping does not have a solution in terms 
of a linear discriminant function. 

With respect to the two tasks involving 
letters, the identification task corresponds 
to a good mapping and the pronunciation 
task corresponds to a bad mapping. The 
mapping between input and output would 
be linearly separable for the identification 
task, but not for the pronunciation test. If 
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the input consists of visual features of the 
letters and the output consists of articula- 
tory features of the pronunciation, it is un- 
likely that the mapping between input and 
output would be linearly separable. For ex- 
ample, the letters c and o would have more 
similar input representations than the 
letters c and z. However, the output repre- 
sentations would be similar for c and z than 
for the letters c and o. Some intermediate 
categorization is necessarily involved to 
map visual properties of the letters to arti- 
culatory properties of the pronunciation. In 
experimental situations somewhat analo- 
gous to this example, Miller (1982) found 
that some type of categorization occurs be- 
fore input is mapped into output. 

The superpower of connectionist models 
with hidden units can camouflage the im- 
portant differences between the identifica- 
tion and pronunciation tasks. With enough 
hidden units, the two tasks can be de- 
scribed equally well with the same archi- 
tecture and the same input-output repre- 
sentations. To illustrate this thesis, I gener- 
ated a set of good data and a set of bad data 
in terms of input-output mappings. Table 8 
gives the input and output structures for 
the two mappings. Three input nodes are 
one or zero and one of the four output 
nodes is one. These data were fit with a 
two-layer connectionist model with no 
hidden units, as well as with models with 
hidden units. There were either 2, 5, or 10 
hidden units at a single hidden layer or 

TABLE 8 
INPUT NODE ACTIVATIONS AND ASSOCUTED 

RESPONSES GIVEN THE 
GOOD AND BAD CONFIGURATIONS 

Good Bad 

0001 0100 
0010 0010 
0001 oool 
1000 0001 
0100 0010 
0010 0100 
0100 1000 

there were two layers of 5 hidden units 
each. 

Table 9 shows that both the two-layer 
model and the models with hidden units lit 
the good data perfectly. For the bad data, 
only the models with 10 hidden units 
(whether in two hidden layers or one) could 
describe the mapping accurately. Solving 
the mapping for the bad data depends only 
on the number of hidden units (free param- 
eters) and does not seem to illuminate the 
relationship between input and output. The 
hidden units serve only to bypass the as- 
sumption of an intervening stage of pro- 
cessing in which the input is categorized 
before an output is selected. 

Categorization is a natural intervening 
process that is assumed in information pro- 
cessing but not in current connectionist 
models. For example, NETtalk (Sejnowski 
& Rosenberg, 1986) is a connectionist 
model aimed at translating written language 
into spoken language. It is only natural to 
expect that some intermediate categoriza- 
tion of the letters or words would neces- 
sarily occur between some input represen- 
tation of the written text and some output 
representation of the pronunciation. How- 
ever, this type of categorization is not 
easily implemented in the connectionist 
model, and falls on the shoulders of hidden 
units. Thus, NETtalk’s architects probably 
settled on letters rather than visual features 
as input because the number of hidden 
units to solve the mapping of visual fea- 

TABLE 9 
RMSD VALUES FOR THE FIT OF THE THREE PROCESS 

MODELS TO GOOD DATA THAT ARE LINEARLY 
SEPARABLE AND BAD DATA THAT 
ARE NOT LINEARLY SEPARABLE 

Data 

Model Good Bad 

Direct 0 .327 
2 hidden 0 .269 
5 hidden 0 .134 
5 x 5 hidden 0 0 
10 hidden 0 0 
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tures to pronunciation would have been 
prohibitive. On the other hand, visual fea- 
tures could have been used if some process 
of letter categorization intervened between 
the visual features and pronunciation. My 
belief is that connectionism will have to be- 
come more stage-like to solve input- 
output mappings in an informative manner. 

RELATIONSHIPOFCONNECTIONISTTO 
PROCESSMODELS 

A prototypical connectionist framework 
shares several fundamental properties with 
an information-processing model of pattern 
recognition, as instantiated in the FLMP 
(Massaro, 1986a, 1986b; Oden & Rueckl, 
1986). First, both frameworks assume mul- 
tivalued (continuous) rather than binary 
(discrete) representations; the fuzzy truth 
values of the FLMP are analogous to the 
continuous levels of activation and inhibi- 
tion of connectionist models. Second, both 
frameworks acknowledge the existence of 
multiple simultaneous constraints on 
human performance. Both frameworks 
provide an account of the evaluation and 
integration of multiple sources of informa- 
tion in pattern recognition. Third, there is 
the parallel assessment of multiple candi- 
dates or hypotheses at multiple levels in 
both models. Fourth, both frameworks 
provide a common metric for relating quali- 
tatively different sources of information. In 
the FLMP, each source of information is 
represented by fuzzy truth values repre- 
senting the degree to which alternative hy- 
potheses are supported. Activation levels 
of sets of units play the analogous role in 
connectionist models. Fifth, the automatic 
categorization of a novel instance can be 
accomplished in both frameworks. Finally, 
both frameworks conceptualize pattern 
recognition as finding the best fit between 
the relevant constraints and the pattern 
that is perceived. 

The close fit between the present frame- 
work and connectionism dictates an explo- 
ration of their similarities and differences. 

Although the two frameworks appear to 
agree on important theoretical criteria, the 
specific models to date differ in terms of 
the amount of connectivity in the system. 
The FLMP assumes no top-down influ- 
ences of a higher-level unit on activation of 
a lower-level unit and no inhibition among 
units at a given level. Connectionist 
models, such as the interactive activation 
models of written word recognition and 
speech perception, usually make both of 
these assumptions. The analyses presented 
earlier in this paper question these assump- 
tions in that they are either wrong or un- 
necessary. Analogous to models with 
hidden units, connectionist models with 
two-way connections among different 
levels of units and connectivity among 
units at a given level are too powerful. 
They are capable of predicting not only ob- 
served results but also results that do not 
occur (Massaro, 1986a). 

In a recent paper, we proved that a par- 
ticular two-layer connectionist model 
(CMP) is mathematically equivalent to the 
FLMP (Massaro & Cohen, 1987), in a situ- 
ation with two response alternatives. The 
two-layer connectionist model is limited to 
input and output units, with connections 
only from input to output. The FLMP spec- 
ifies evaluation of a source of information 
in terms of a truth value representing the 
degree to which an alternative is sup- 
ported. The integration of different sources 
of information is specified by the multipli- 
cation of the truth values. The CMP imple- 
ments evaluation and integration by activa- 
tions and inhibitions between an input layer 
of units and an output layer of units. Evalu- 
ation of a source of information corre- 
sponds to the activation along a single con- 
nection between an input unit and an 
output unit. Integration in the CMP corre- 
sponds to the sum of all the activations en- 
tering a given output unit, and transformed 
by the sigmoid squashing function. Both 
models assume that a decision is made on 
the basis of the relative goodness of match, 
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as dictated by Lute’s (1959) choice rule. 
The mathematical correspondence between 
the FLMP and CMP reveals that the two 
models, couched in different theoretical 
frameworks, can make identical predic- 
tions in practice. Furthermore, these pre- 
dictions are consistent with quantitative re- 
sults in several domains of pattern recogni- 
tion (Massaro, 1984a, 1984b, 1987b; Oden, 
1978, 1981). The similarity of a connec- 
tionist model without interactive activation 
or hidden units to the FLMP shows that 
process and connectionist models are not 
necessarily incompatible. 

RETROSPECTIVE 

My purpose in writing this paper is not to 
cast a pejorative view of connectionism, 
but to offer strategies for inquiry that 
would enhance its contribution to experi- 
mental and theoretical psychology. While 
completing this paper, I intercepted a very 
recent critique of cognitive neuropsy- 
chology written by Ellis (1987). This new 
domain of inquiry attempts to relate spe- 
cific cases of brain trauma to disruption or 
elimination of specific information-pro- 
cessing modules. His observations of the 
current state of the art in that field capture 
several of the themes of the present paper. 
He points out some trends in that field 
which could bring about its the second de- 
mise; analogously, I have criticized current 
strategies in connectionism that could lead 
to its second downfall. Ellis also argues 
against the apparent move toward a sepa- 
rate discipline apart from cognitive experi- 
mental psychology. I believe that it would 
be equally disastrous for connectionism to 
become a discipline of its own. 

Most research within connectionism has 
not yet addressed human performance in 
the manner described by my suggestions 
for good, scientific inquiry (Massaro, 
1986a). Tests of alternative models are not 
usually presented. The prototypical study 
involves presentation of a model that 
works with little discussion of what does 

not work and whether a simpler model 
would work as well. As a promising excep- 
tion, Golden (1986) contrasted two connec- 
tionist models of visual word perception. 
Golden’s (1986) model and Brown’s (1987) 
model are examples that the interactive ac- 
tivation model was much more powerful 
than necessary. Furthermore, history re- 
peats itself in that we do not know if the 
latter two models are too powerful also. In 
addition, seldom is a tine-grained analysis 
of the results performed. Usually, the per- 
formance of the model is compared to the 
performance of human subjects at only a 
qualitative level. 

In all cases, faced with these criticisms, 
one can see how they might be addressed 
in practice; however, it remains to be seen 
if investigators in the connectionist frame- 
work will modify their research strategy 
accordingly. Given the influence of connec- 
tionism on current endeavors in experi- 
mental psychology, we can expect to see 
much more rigorous study as experimental 
psychologists with years of good, scientific 
training do what they know best. When this 
occurs, my prediction is that connectionist 
models will become more like information- 
processing models. Superpowerful models 
will be discarded. The remaining class of 
models will not be able to predict at a fine- 
grain level the mapping of perception into 
action without fairly veridical psycho- 
physics and something like stages of pro- 
cessing. 

In summary, the information-processing 
paradigm will probably be shaped by some 
aspects of both modularity and connec- 
tionism. More importantly, we can now see 
that connectionism does not represent a 
Kuhnian paradigm shift (Kuhn, 1962; 
Schneider, 1987) because if follows natu- 
rally from the paradigm of information pro- 
cessing. Progress in psychological science, 
as in other sciences, is continuous and not 
catastrophic. There is no shortage of 
models of human performance, and neural 
constraints are not currently available to 
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reduce the number of alternatives. The 
more things change, the more they remain 
the same. Much work remains to be done. 

REFERENCES 

BROWN, G. D. A. (1987). Resolving inconsistency: A 
computational model of word naming. Journal of 
Memory and Language, 26, l-23. 

CHANDLER, J. P. (1969). Subroutine STEPIT-Finds 
local minima of a smooth function of several pa- 
rameters. Behavioral Science, 14, 81-82. 

COLLYER, C. E. (1985). Comparing strong and weak 
models by fitting them to computer-generated 
data. Perception and Psychophysics, 38, 
476-481. 

ELLIS, A. W. (1987). Intimations of modularity, or, the 
modelarity of mind: Doing cognitive neuropsy- 
chology without syndromes. In M. Coltheart, G. 
Sartori, & R. Job (Eds.), The cognitive neuropsy- 
chology of language (pp. 397-408. Hillsdale, NJ: 
Erlbaum. 

FODOR, J. A. (1983). Modularity of mind. Cambridge, 
MA: Bradford Books. 

GOLDEN, R. M. (1986). A developmental neural 
model of visual word perception. Cognitilse 
Science, 10, 241-276. 

HARY, J. M., & MASSARO, D. W. (1982). Categorical 
results do not imply categorical perception. Per- 
ception and Psychophysics, 32, 409-418. 

HULL, C. L. (1943). Principles of behavior. New 
York: Appleton-Century-Crofts. 

KUHN, T. S. (1962). The structure of scientific reuolu- 

tictns. Chicago: Univ. of Chicago. 
LUCE. R. D. (1959). Individual choice behavior. New 

York: Wiley. 
MASSARO, D. W. (1979). Letter information and or- 

thographic context in word perception. Journal of 

Experimental Psychology: Human Perception 
and Performance. 5, 595-609. 

MASSARO, D. W. (1984a). Building and testing models 
of reading processes. In P. D. Pearson (Ed.), 
Handbook of reading research (pp. 11 l-146). 
New York: Longman. 

MASSARO, D. W. (1984b). Time’s role for information, 
processing, and normalization. Annais ofthe News 
York Academy of Sciences, Timing and Time Per- 
ception, 423, 372-384. 

MASSARO, D. W. (1985). Attention and perception: 
An information-integration perspective. Acta Psy- 
chologica. 60, 211-243. 

MASSARO, D. W. (1986a November). Connectionist 
models of mind. Paper given at the Twenty-Sev- 
enth Annual Meeting of the Psychonomic Society, 
New Orleans. 

MASSARO, D. W. (1986b). The computer as a meta- 
phor for psychological inquiry: Considerations 

and recommendations. Behavior Research 
Methods, Instruments, & Computers, 18, 73-92. 

MASSARO, D. W. (1987a). Categorical partition: A 
fuzzy-logical model of speech perception. In S. 
Harnad (Ed.), Categorical perception (pp. 
254-283). New York: Cambridge Univ. Press. 

MASSARO, D. W. (1987b). Speech perception by cur 
and eye: A paradigm for psychokogica[ inquiry. 
Hillsdale. NJ: Erlbaum. 

MASSARO, D. W.. & COHEN, M. M. (1983). Evalua- 
tion and integration of visual and auditory infor- 
mation in speech perception. Journal of Experi- 

mental Psychology: Human Perception und Per- 
formance, 9, 753-771. 

MASSARO, D. W., & COHEN, M. M. (1987). Process 
and connectionist models of pattern recognition. 
Proceedings of the Ninth Annual Conference of 
the Cognitive Science Society (pp. 258-264). 
Hillsdale. NJ: Erlbaum. 

MASSARO, D. W.. & ODEN, G. C. (1980). Speech per- 
ception: A framework for research and theory. In 
N. J. Lass (Ed.). Speech and lunguuge: Advances 
in busic resec1rc.h and practice (Vol. 3. pp. 
129-165). New York: Academic Press. 

MCCLELLAND. J. L.. & ELMAN, J. L. (1986). The 
TRACE model of speech perception. Co,qnitir,e 

Psychology, 18, l-86. 
MCCLELLAND, J. L.. & RUMELHART. D. E. ( 1081). 

An interactive activation model of context effects 
in letter perception: Part I. An account of basic 
findings. Psychological Review, 88, 375-407. 

MCCLELLAND. J. L.. & RUMELHART. D. E. (1985). 
Distributed memory and the representation of 
general and specific information. Jourrzaf of E.:r- 
perimentol Psychology: General, 114, lS9- 188. 

MCCLELLAND, J. L.. & RUMELHART. D. E. (1986). 
Parullel distributed processing, Vol. 2: Psycho- 
10gI’cuI und biological models. Cambridge. MA: 
MIT Press. 

MCGURK. H.. & MACDONALD (1976). Hearing lips 
and seeing voices. Nuture(London), 264, 
746-748. 

MILLER, J. (1982). Discrete verus continuous stage 
models of human information processing: In 
search of partial output. Journal of Experimental 
Psychology: Human Percepfion und Pt>rfor- 
munce, 8, 273-296. 

MINSKY, M., & PAPERT, S. (1969). Perceptrons. Cam- 
bridge, MA: MIT Press. 

NEISSER, U. (1967). Cognitive psychology. New York: 
Appleton-Century-Crofts. 

ODEN. G. C. (1978). Semantic constraints and judged 
preference for interpretations of ambiguous sen- 
tences. Memory & Cognition, 6, 26-37. 

ODEN. G. C. (1981). A fuzzy propositional model of 
concept structure and use: A case study in object 
identification. In G. W. Lasker (Ed.), Applied 



234 DOMINIC W. MASSARO 

systems and cybernetics (Vol. VI, pp. 
2890-2897). Elmsford, NY: Pergamon. 

ODEN, G. C., & MASSARO, D. W. (1978). Integration 
of featural information in speech perception. Psy- 
chological Review, 85, 172-191. 

ODEN, G. C., & RUECKL, J. G. (1986, November). 
Taking language by the hand: Reading 
handwritten words. Paper given at the Twenty- 
Seventh Annual Meeting of the Psychonomic So- 
ciety, New Orleans. 

PALMER, S. E., & KIMCHI, R. (1986). The information 
processing approach to cognition. In E J. Knapp 
& L. C. Robertson (Eds.), Approaches to cogni- 
tion: Contrasts and controversies (pp. 37-77). 
Hillsdale, NJ: Erlbaum. 

REPP. B. H. (1984). Categorical perception: Issues, 
methods, findings. In N. J. Lass (Ed.), Speech 
and language: Advances in basic research and 
practice (Vol. 10, pp. 243-335). New York: Aca- 
demic Press. 

ROSENBLATT, E (1958). The perceptron: A probabi- 
listic model for information storage and organiza- 
tion in the brain. Psychological Review, 65, 
386-407. 

RUMELHART, D. E., HINTON, G. E., & WILLIAMS, 
R. J. (1986). Learning internal representations by 

error propagation. In D. E. Rumelhart & J. L. 
McClelland (Eds.), Parallel distributed pro- 
cessing: Vol. 1. Foundations. Cambridge, MA: 
MIT Press. 

RUMELHART, D. E., & MCCLELLAND, J. L. (1982). 
An interactive activation model of context effects 
in letter perception: Part 2. The contextual en- 
hancement effect and some tests and extensions 
of the model. Psychological Review, 89, 60-94. 

RUMELHART, D. E., & MCCLELLAND, J. L. (Eds.) 
(1986). Parallel distributed processing: Vol. 1. 
Foundations. Cambridge, MA: MIT Press. 

SCHNEIDER, W. (1987). Connectionism: Is it a para- 
digm shift for psychology? Behavior Research 
Methods, Instruments, & Computers, 19, 73-83. 

SEINOWSKI. T. J., & ROSENBERG, C. R. (1986). NET- 
talk: A parallel network that learns to read aloud. 
The Johns Hopkins University Electrical Engi- 
neering and Computer Science Technical Report, 
JHU/EECS-86/01. 

WATSON, J. B. (1913). Psychology as the behaviorist 
views it. Psychological Review, 20, 158-177. 

ZADEH, L. A. (1965). Fuzzy sets. Information and 
Control, 8, 338-353. 

(Received June 12, 1987) 
(Revision received November 2, 1987) 


