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COMMENTS

The Paradigm and the Fuzzy Logical Model of Perception
Are Alive and Well

Dominic W. Massaro and Michael M. Cohen

Cutting, Bruno, Brady, and Moore (1992) criticized the paradigm for inquiry and the fuzzy logical
model of perception (FLMP) presented in Massaro (1988a). In this reply to their remarks, it is
shown that (a) the properties of the paradigm are ideal for inquiry; (b) models are best tested
against the results of individual subjects and not average group data; (c) model fitting and analysis
of variance do not give contradictory results; (d) the FLMP can be proven false and does not have
a superpower to predict a plethora of functions or to absorb random variability; and (e) various
extraneous characteristics of a model, such as equation length, cannot account for the success of
the FLMP. On the other hand, the empirical findings of Cutting et al. give important new
propetties of pattern recognition. Finally, Cutting’s theory of directed perception is compared with

the FLMP.

Cutting, Bruno, Brady, and Moore (1992) questioned the
value of the fuzzy logical model of perception (FLMP).
Their claim that the good fit of the FLMP is not necessarily
because of ability “in capturing psychological process” (p.
364). However, we believe that there are some fundamental
errors in their analyses and arguments. Our reply shows that
(a) the properties of our paradigm are ideal for inquiry; (b)
models are best tested against the results of individual sub-
jects and not group data; (c) model fitting and analysis of
variance (ANOVA) do not give contradictory results; (d) the
FLMP can be proven false and does not have a superpower
to absorb random variability; and (e) various extraneous
characteristics of a model, such as equation length, cannot
account for the success of the model. We consider each of
these points in separate sections of the article after we
summarize our paradigm and the FLMP. We also discuss the
importance of the new empirical findings of Cutting et al.
and contrast Cutting’s theory of directed perception with the
FLMP. Readers familiar with our work can proceed to the
section Individual Versus Group Analyses.

The Paradigm and the FLMP

Within the framework of the FLMP, perceptual events are
processed in accordance with a general algorithm, regard-
less of the modality or particular nature of the patterns
(Massaro, 1987; Oden, 1981, 1984). As shown in Figure 1,
the model consists of three operations: feature evaluation,
feature integration, and decision. The sensory systems trans-
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duce the physical event and make available various sources
of information called features. These continuously valued
features are evaluated, integrated, and matched against pro-
totype descriptions in memory, and an identification deci-
sion is made on the basis of the relative goodness of match
of the stimulus information with the relevant prototype
descriptions.

During feature evaluation, the features of the stimulus are
evaluated in terms of prototypes that are generated for the
task at hand. For each feature and for each prototype, feature
evaluation provides information about the degree to which
the feature in the signal matches the corresponding feature
value of the prototype. During the second operation of the
model, called feature integration, the features (actually the
degrees of matches) corresponding to each prototype are
combined (or conjoined in logical terms). The outcome of
feature integration consists of the degree to which each
prototype matches the stimulus. The third operation is de-
cision. During this stage, the merit of each relevant proto-
type is evaluated relative to the sum of the merits of all
relevant prototypes. This relative goodness of match gives
the proportion of times the stimulus is identified as an
instance of the prototype or a rating judgment indicating the
degree to which the stimulus matches the category. A strong
prediction of the FLMP is that the contribution of one
source of information to performance increases with in-
creases in the ambiguity of the other available sources of
information.

Individual Versus Group Analyses

Replicating Massaro’s (1988a) analyses, Cutting et al.
(1992) found that model tests based on individual data did
not discriminate between the FLMP and an additive model
of perception (AMP). In contrast to the FLMP, the AMP
predicts that the contribution of one source of information to
performance is independent of the ambiguity of the other
sources of information. However, considering the individual
fits of all 44 subjects across three experiments, the FLMP
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Figure 1. Schematic representation of the three operations in-

volved in perceptual recognition. (The sources of information are
represented by uppercase letters. Auditory information is repre-
sented by A;, and visual information is represented by V,. The
evaluation process transforms these sources of information into
psychological values [indicated by lowercase letters a; and vl
These sources are then integrated to give an overall degree of
support for a given alternative p;;. The decision operation maps this
value into some response, such as a discrete function or a rating,
R;;.)

did show a slight edge that approached statistical signifi-
cance. When the models were fitted to the group data,
determined by taking the average of the individual subjects,
the AMP gave a better fit than the FLMP (see Cutting et al.,
p. 373, Table 4). Thus, there appears to be some discrepancy
between the individual and group fits.

Cutting et al. (1992) also computed difference scores for
each subject and carried out an ANOVA on these scores. The
difference score is the difference in ratings given n and n —
I sources of information supporting depth. If integration
were additive, as assumed by the AMP, there should be no
difference among the difference scores. The analysis indi-
cated a significant difference and, therefore, this ANOVA
provides evidence against the AMP.

Cutting et al. (1992) were concerned because the model
fits to the average group data and the ANOVA on the dif-
ference scores did not appear to be in complete agreement
on the question of the nature of the integration process. They
concluded that *“. . .with respect to the additive model and
FLMP, the cluster of results is inconsistent” (p. 374). To
help resolve this discrepancy, they studied the two models’
ability to predict different functions and random variability.

We comment on this analysis in the section Superpower of
FLMP. First, it is important to note, however, that there is no
meaningful discrepancy between (a) the ANOVA on the
difference scores and (b) model fits of individual subjects.
Both of these analyses provide some evidence against ad-
ditive integration. An apparent discrepancy is observed only
when group averages are considered meaningful. We pro-
pose and support the hypothesis that average group results
are not necessarily valid. If the meaningfulness of the av-
erage group results is rejected, there is no inconsistency in
Cutting et al.’s results.

Cutting et al. (1992) were misled by group results. They
noted a larger variability in the individual than in the group
data and interpreted the group functions as more meaningful
than the those from individuals. “First, when one model may
have a moderate advantage over another (such as FLMP
compared with the additive model), it may use that advan-
tage in its fits to data of individuals but not of groups” (p.
380). It is well known, however, that a group function might
not correspond to any of the individual functions making up
the group. For this reason, previous investigators (Sidman,
1952) and recent textbooks (Massaro, 1989a) have cau-
tioned against the use of group functions. We trust that
Cutting et al. agree that our charge is to describe individual
behavior and not an average score that does not necessarily
exist in any real person. Although there are many examples
of the sins of averaging in the literature, we illustrate how
averaging the results across individuals can distort the re-
sults in favor of the AMP. Individual functions conforming
to the FLMP predictions, when averaged together, might
give a function that is more consistent with the AMP
predictions.

To illustrate the dangers of averaging across subjects, we
have done for the AMP and the FLMP what previous in-
vestigators have demonstrated for all-or-none and incremen-
tal models of learning. Individuals who learn in an all-or-
none manner, when averaged together, can give results
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Figure 2. Simulated fuzzy logical model of perception data (points) and predicted additive model
of perception fits (lines). (The four sections give the individual results for 4 pseudo-subjects as a
function of factors A and B. P|[DA]| = probability of identifying stimuli as /da/.)
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predicted by the incremental model. In our analysis, we
generated 4 ideal FLMP subjects performing in a factorial
design with two independent variables, A and B, with seven
levels per factor. The individual results are shown as the
points in Figure 2. The individual results and the mean
group results were fit by both the FLMP and AMP, using the
parameter estimation program STEPIT (Chandler, 1969).
Table 1 gives the root mean squared deviation (RMSD)
values and the parameter values for the fit of the FLMP to
the results. As expected, the FLMP gave almost a perfect
description of the individual results, but the fit of the group
results was significantly poorer, with an RMSD of 0.02254.
The predictions of the FLMP are nonlinear, and averaging
several FLMP subjects will not necessarily give an ideal
FLMP subject. The fit of the AMP to these same results gave
a very different outcome. Table 2 gives the RMSD values
and the parameter values for the fit of the AMP to the
results. In contrast to the fit of the FLMP, the AMP gave a
poor description of the individual subjects (mean RMSD =
0.070) and a much better description of the group mean
(RMSD = 0.00440). Figure 2 gives the predictions of the
AMP for the 4 different FLMP subjects. As the figure
shows, the AMP gives a poor description of the individual
results. Figure 3 gives the fit of the FLMP and AMP models
to the mean group data. The fit of the AMP to the group
mean was 5 times better than the fit of the FLMP even
though the AMP gave a very poor fit of each of the indi-
vidual subjects. As Figure 3 shows, the group mean of
FLMP subjects can resemble the predictions of the AMP.
Thus, Cutting et al. (1992) were not justified in using the
AMP’s fit of the group data as evidence for additive inte-
gration. Although they concluded that “the modeling results
of the group mean data favored the additive model” (p. 374),
our demonstration reveals that their conclusion is not valid.

It is also important to note that averaging across different
individuals who give ideal AMP results can never give
results that are more accurately described by the FLMP.
Averaging AMP results will always give ideal AMP results
and will necessarily be more poorly fit by the FLMP than

the AMP. A good fit of the FLMP to group results is mean-
ingful, whereas a good fit of the AMP is not. Thus, previous
good fits of the FLMP to group results (e.g., Massaro, 1987,
Chapters 2 and 9) are still meaningful.

Cutting et al. (1992) observed that “In general, group data
are smooth, individual data are more noisy” (p. 380). How-
ever, this finding has little to do with individuals and groups
and is simply a function of the number of observations per
data point. The law of large numbers states that variance
decreases with increases in the number of observations. One
can also obtain smooth curves for individuals if the number
of observations is increased. We illustrate this fact along
with several other new observations in the next section.

Superpower of FLMP

A potentially devastating charge of Cutting et al. (1992) is
that the FLMP cannot be proven false. Somehow the FLMP
seems capable of predicting a plethora of functions and also
has the magic power to absorb random noise. We criticize
their demonstrations, logic, and interpretations in Fitting
Functions and Fitting Random Data. In this section, we
directly address the issue of falsifiability—what Massaro
(1988b) called superpower. Cutting et al. stated “Because
FLMP fits random noise better than the additive model, it
will be at an advantage in the noisier, individual compari-
sons” (p. 380).

To provide an empirical test of whether the FLMP absorbs
random variability and the AMP does not, we evaluated the
goodness of fit of these models as a function of the number
of observations per data point. Cutting et al. (1992) ap-
peared to attribute the better fit of the AMP to the group
results to the fact that the group results are less variable.
However, group results are not necessarily less variable than
the results of individual subjects. The total number of ob-
servations per data point is important in both cases. (In the
previous section, we showed that the group results can be
misleading and do not necessarily reflect the performance of
any subject making up the group.) We expect the goodness

Table 1
RMSD Values and Parameter Values for the Fit of the FLMP to the Results of 4 Hypothetical FLMP Subjects
Level
Subject RMSD Factor 1 2 3 4 5 6 7
1 0.00004 A 21561 .60488 .84155 95199 99525 99918 99990
B 22990 35312 .38466 40482 74289 80591 .80829
2 0.00009 A .00010 00010 .09889 26973 54000 81336 99912
B 31545 31550 31550 .39578 66618 74701 74704
3 0.00002 A .05385 05386 05387 05950 07938 17492 41827
B .00010 00010 .00010 .14305 52742 76663 .93840
4 0.00007 A 54170 54191 54211 62394 68055 69266 .69296
B .00010 18253 47261 .79009 79012 97266 99990
G 0.02254 A 23448 .31559 40479 49999 59523 68490 .76488
B 23501 .31488 40480 49987 59567 68478 .76501
I 0.00006 A 20281 30019 .38411 47629 .57380 67003 77756
B 13639 21281 29322 43343 .68165 82305 .87341
Note. G refers to the fit of the mean group results, whereas I corresponds to the mean of the individual subject fits. The two factors in

the factorial design, A and B, have seven levels each. RMSD = root mean squared deviation; FLMP = fuzzy logical model of perception.



118 COMMENTS

Table 2
RMSD Values and Parameter Values for the Fit of the AMP to the Results of 4 Hypothetical FLMP Subjects
Level
Subject RMSD Factor 1 2 3 4 5 6 7
1 0.08546 A .02000 34723 .55401 67191 .72489 72995 73097
B 15152 20792 22022 .22780 34271 36591 .36683
2 0.08384 A .00010 .00010 06959 .24362 47822 .72892 94261
B .00010 .00010 .00010 .00010 10544 .14386 .14387
3 0.08442 A .00010 .00010 .00010 .00010 .00010 07086 18110
B .00010 .00010 .00010 ..00010 .10243 .24657 .55418
4 0.02830 A .00010 .00010 .00010 02577 04982 .05505 05516
B .00010 .24332 .56425 .82915 .82917 95571 97340
G 0.00440 A .00010 .08193 16511 24842 33173 41516 49643
B .00337 .08495 .16826 25136 33512 41819 49975
I 0.07051 A .00507 08688 .15595 .23535 31326 .39619 47746
B 03796 11286 19617 26429 34494 .42801 .50957
Note. G refers to the fit of the mean group results, whereas I corresponds to the mean of the individual subject fits. The two factors in

the factorial design, A and B, have seven levels each. RMSD = root mean squared deviation; AMP = additive model of perception; FLMP

= fuzzy logical model of perception.

of fit of any reasonably accurate model to improve with
increases in the number of observations per data point.
Given their conclusions about the smoothness of group
relative to individual functions, Cutting et al. (1992) would
seem to predict that the advantage of the FLMP over the
AMP would decrease as the number of observations per data
point is increased. On the other hand, we predict that the
goodness of fit of the FLMP (and any reasonably accurate
model) should improve with increases in the number of
observations. To test between these predictions, we tested
the models against the results of an experiment (Massaro,
Tzusaki, Cohen, Gesi, & Heredia, in press) on bimodal
speech perception. An expanded factorial design was used
to manipulate auditory and visual information in a speech

perception task. The novel design illustrated in Figure 4
provides a unique method to address the issues of evaluation
and integration of audible and visible information in speech
perception. In this experiment, five levels of audible speech
varying between /ba/ and /da/ were crossed with five levels
of visible speech varying between the same alternatives.
The presentation of the auditory synthetic speech was syn-
chronized with the visible speech for the bimodal stimulus
presentations. The audible and visible speech also were
presented alone, giving a total of 25 + 5 + 5 = 35 indepen-
dent stimulus conditions.

All of the test stimuli were recorded on videotape for
presentation during the experiment. Six unique test blocks
were recorded with the 35 unique test items presented in
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Figure 3. Simulated fuzzy logical model of perception (FLMP) average group data (points) and
predicted FLMP (left panel) and additive model of perception (AMP; right panel) fits (lines) as a
function of arbitrary factors A and B. (Average group data are from the 4 simulated FLMP
pseudo-subjects shown in Figure 2. P[DA] = probability of identifying stimuli as /da/.)
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Figure 4. Expansion of a typical factorial design to include auditory and visual conditions pre-
sented alone. (The five levels along the auditory and visible continua represent auditory and visible
speech syllables varying in equal physical steps between /ba/ and /da/.)

each block. Twenty-one college students were tested in the
experiment. Subjects were instructed to listen and to watch
the speaker and to identify the syllable as either /ba/ or /da/
during a 3-s response interval. Each of the 35 possible
stimuli were presented a total of 24 times during four ses-
sions, with six observations per stimulus condition in each
session.

Figure 5 shows the mean proportion of identifications
across subjects. The identification judgments changed sys-
tematically with changes in the audible and visible
sources of information. The likelihood of a /da/ identifica-
tion increased as the auditory speech changed from /ba/
to /da/ and changed analogously for the visible speech.
Each source had a similar effect in the bimodal conditions
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Figure 5. Proportion of /da/ identifications for the auditory-alone (left panel), the factorial
auditory—visual (center panel), and the visual-alone (right panel) conditions as a function of the five
levels of the synthetic auditory and visual speech varying between /ba/ and /da/. (Results from the
21 English speakers in Massaro, Tsuzaki, Cohen, Gesi, & Heredia, in press. P[DA] = probability of

identifying stimuli as /da/.)
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relative to the corresponding unimodal condition. In addi-
tion, the influence of one source of information was greatest
when the other source was ambiguous.

As mentioned in the description of this study, the subjects
were tested in four sessions of six blocks of 35 trials in each
block. We were interested in the goodness of fit of the
models as a function of the number of observations per data
point. Therefore, we tested the models with 6, 12, and 24
observations per data point. For each subject, there were
seven sets of data. Four sets had 6 observations per data
point, two sets had 12 observations, and one set had 24
observations. These sets were created by simply pooling the
observations across the appropriate number of trials. The
FLMP and AMP were fitted to the results. An RMSD value
was determined for each subject at each of the three condi-
tions. An ANOVA was carried out on these RMSD values
with number of observations and model as two independent
variables. Figure 6 shows the obtained RMSD values for the
FLMP and AMP fits as a function of the number of obser-
vations. The FLMP gave a significantly better fit than the
AMP, F(1, 20) = 1,126, p < .001, and the goodness of fit of
both models improved with increases in the number of
observations, F(2, 40) = 19, p < .001. There was no inter-
action between these variables, F(2, 40) = 0.037, p = .96.
Given that the goodness of fit improved with increases in
the number of observations, Cutting et al. would have to
predict that the advantage of the FLMP over the AMP
should have been larger with fewer observations and a
poorer overall fit. However, this was not the case, and this
result casts doubt on Cutting et al.’s premise that the FLMP
absorbs random variability.

One might question why the fit of the AMP improved
with increases in the number of observations if the AMP is
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Figure 6. The average root mean squared deviation (RMSD)
values of the fit of the fuzzy logical model of perception (FLMP)
and additive model perception (AMP) to results based on 24, 12,
or 6 observations per condition to the 21 English speakers in
Massaro, Tsuzaki, Cohen, & Gesi, Heredia (in press).

indeed the wrong model. The answer is that the AMP is not
completely wrong. For example, it correctly predicts that
the functions across the auditory and visual speech should
be monotonic. Increased variability decreases the likelihood
of observing this monotonicity. However, the AMP gives a
consistently poorer fit than the FLMP because it fails to
predict the quantitative interaction between the auditory and
visual speech. The empirical results indicate that the con-
tribution of one source is largest when the other source is
ambiguous.

The FLMP is deterministic at the feature evaluation and
integration stages and becomes stochastic at the decision
stage (Massaro & Friedman, 1990). The variability at the
decision stage is due to the relative goodness rule (RGR), in
which the probability of a response is equal to the merit of
that alternative relative to the sum of the merits of all
relevant alternatives. For example, given an RGR value of
.8, that alternative is chosen .8 of the time. A strong predic-
tion of the model is that the observed variability should be
equal to that expected on the basis of simple binomial
variance. Thus, the FLMP not only predicts probability but
also predicts that its expected variability should decrease
with increases in the number of observations. It is possible
to determine the expected binomial variability as a function
of the number of observations. With this measure of vari-
ability we can ask if the fit of a model is poorer than what
would be expected from binomial variability. One way to
determine the expected variability is to generate simulated
results of the models based on the parameters of the models
determined in the tests of the models.

To determine the expected variability predicted by the
FLMP as a function of the number of observations, the
following simulations were carried out. Using the parameter
values from the fit of the FLMP to the results of the Massaro
et al. (in press) study (with 24 observations per data point),
we generated the 35 predicted response probabilities for
each of the 21 subjects. Using these predictions, we gener-
ated 50 simulated subjects from the predictions of each real
subject. The FLMP predicts the probability of a /da/ or /ba/
response at each experimental condition based on the out-
come of the RGR in the model. For example, the prediction
for a /da/ response might be .876 for a given condition. The
prediction for a /ba/ response would be the additive com-
plement, or .124. For the simulated subject, a uniform ran-
dom number between 0 and 1 was drawn. If the number was
less than or equal to .876, then the simulated response would
be a /da/. If the number was greater than .876 then the
simulated response would be a /ba/. This computation was
carried for each of the 35 data points with 6, 12, 24, 48, 96,
and 192 simulated trials. Fifty simulated subjects were cre-
ated for each of the 21 real subjects.

Figure 7 gives the expected average RMSD values of the
fit of the FLMP and AMP to simulated results based on the
predictions of the FLMP as a function of the number of
observations per data point. An ANOVA was carried out on
the RMSD values with model and number of observations
as factors. All significant differences were for p < .001. As
Figure 7 shows, the fit of both models improved with in-
creases in the number of observations per data point. The
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Figure 7. The expected average root mean squared deviation
(RMSD) values of the fit of the fuzzy logical model of perception
(FLMP) and additive model of perception (AMP) to simulated
results based on the predictions of the FLMP as a function of the
number of observations per data point. (The predictions were gen-
erated for 1,050 hypothetical subjects based on the parameter
values obtained from the fit of the FLMP to the 21 English speak-
ers in Massaro, Tsuzaki, Cohen, Gesi, & Heredia, in press. Fifty
hypothetical subjects were generated for each of the 21 sets of
parameters.)

FLMP gave a significantly better fit, and the advantage of
the FLMP increased with increases in the number of obser-
vations per mean.

These results can be compared with the RMSD values
from the observed results in Figure 6. The RMSDs from the
observed data are of roughly the same order of magnitude as
the RMSDs from the simulated data. In both real data and
simulated data, the fit of the FLMP improved with increases
in the number of observations per data point. The fit of the
AMP also improved but leveled off at an RMSD of about
0.167.

We expected and found that observed variability (as mea-
sured by the RMSD values) would be somewhat greater
than the predicted binomial variability. For the real data, the
RMSD values for the FLMP were 0.0787, 0.0631, and
0.0530 for 6, 12, and 24 observations, respectively. For the
simulated data, the RMSD values for the FLMP were
0.0704, 0.0510, and 0.0364 for 6, 12, and 24 observations,
respectively. One reason the observed RMSDs might be
slightly larger than the predicted RMSDs is that the param-
eter values might fluctuate somewhat over the course of the
experiment. That is, the support of one source of informa-
tion for a given alternative might be slightly different in one
block of trials than in another block. The fit of the model, of
course, assumes that the parameter values are constant
across all blocks of trials. Some variability in the parameter
values across trial blocks is consistent with the observation
that the difference between the observed and simulated

RMSDs increased somewhat with increases in the number
of observations. We might expect that the parameter
values to be less stable across as the number of trial blocks
increases.

The AMP also introduces variability at the decision stage.
An analogous simulation was carried out for the AMP by
simulating hypothetical AMP subjects based on the param-
eter values of the fit of the AMP. Figure 8 gives the expected
mean RMSD values of the fit of the FLMP and AMP to
simulated results based on the predictions of the AMP as a
function of the number of observations per data point. Anal-
ogous to the FLMP analyses in Figure 7, the predictions for
the AMP were generated for 1,050 hypothetical subjects
based on the parameter values obtained from the fit of the
AMP to the 21 subjects in the Massaro et al. (in press) study.
Fifty hypothetical subjects were generated for each of the 21
sets of parameters. As Figure 8 shows, a very similar pattern
was obtained. The fit of both models improved with in-
creases in the number of observations per data point. The
AMP gave a significantly better fit, and the advantage of the
AMP increased with increases in the number of observa-
tions per mean. This analysis reveals that the FLMP and
AMP are identifiably different (Massaro & Friedman, 1990)
and that the models are best distinguished when tested
against individual subjects with a large number of observa-
tions per data point.

Massaro and Friedman (1990) aiready demonstrated that
the FLMP and AMP were distinguishable from one another.

MODEL
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Figure 8. The expected average root mean squared deviation
(RMSD) values of the fit of the fuzzy logical model of perception
(FLMP) and the additive model of perception (AMP) to simulated
results based on the predictions of the AMP as a function of the
number of observations per data point. (The predictions were gen-
erated for 1,050 hypothetical subjects based on the parameter
values obtained from the fit of the AMP to the 21 English speakers
in Massaro, Tsuzaki, Cohen, Gesi, & Heredia, in press. Fifty
hypothetical subjects were generated for each of the 21 sets of
parameters.)
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A comparison between the models requires that data gener-
ated by one model are fit by the predictions of the other
model, as carried out by Massaro (1987, 1988b). Neither
model is capable of describing the results of the other mod-
el. (It is true that the models are not identifiably different in
the middle range of the response scale. Both models predict
relatively additive results in the middle range of the re-
sponse scale. Thus additive results in the middle range can
be well described by the FLMP.) Thus, only data that give
extreme responses (close to 0 or 1) provide a strong test
between the two models. Perhaps one of the reasons that the
Cutting et al. (1992) depth judgments did not provide a clear
test between the models is that the results did not cover the
complete range of the scale.

Fitting Different Functions

Cutting et al. (1992) also compared the AMP and the
FLLMP in terms of their ability to predict changes in rated
depth as a function of the number of sources of information.
In their comparison, each source of information was as-
sumed to have the same effect as every other source. The
only variable of importance was, therefore, the number of
sources of information. Cutting et al. reduced the four-factor
design to an analysis of scale values plotted as a function of
0 through 4 sources of information. They generated hypo-
thetical functions describing how ratings change with addi-
tional sources of information. The functions were assumed
to be negatively accelerating, linear, or positively acceler-
ating, as illustrated in Figure 4 of Cutting et al. (p. 375). The
FLMP and AMP were then fit to these results. They found
that the FLMP gave a better description of a majority of
these functions relative to the AMP. Cutting et al. took this
outcome as an illustration of an inherent flexibility in the
FLMP not shared by the AMP.

Cutting et al. (1992) discovered that the FLMP gave a
better fit to more data sets than did the AMP. We agree
completely with this outcome because they simply gener-
ated data sets that were more consistent with the FLMP than
the AMP. As noted by Cutting et al., the AMP predicts that
the change in scale values should be a linear function of the
number of sources of information. Most of the functions that
they generated were clearly nonadditive and therefore were
better fit by the FLMP than the AMP. What Cutting et al.
failed to note, however, was that the FLMP also makes the
strong prediction that the change in scale values should be
a linear function of the number of sources of information if
the antilogistic transform of the scale values is taken. Most
of the nonlinear functions generated by Cutting et al. are
roughly linear when the antilogistic transform of the scale
values is taken. There are many other functions that would
have given poor fits of the FLMP and better fits of the AMP.
What Cutting et al. accomplished, as shown in their Figure
4 was to generate many functions that were consistent with
predictions of the FLMP and only a few functions that were
consistent with the predictions of the AMP. Thus, it should
not be surprising that the FLMP gave a better description.
We could easily perform an analogous exercise with differ-
ent functions and show an advantage for the AMP. Thus, this

analysis of Cutting et al. does not show that the FLMP
is superpowerful.

Firting Random Data

Cutting et al. (1992) claimed that the FLMP is good at
absorbing noise and fitting random data. They generated
1,000 sets of random data and fit them with the FLMP and
AMP. Cutting et al. used a sum of least squares (SOLS) as
an index of model fitting. The SOLS is equal to the RMSD
squared multiplied by the number of data points (16 in the
Cutting et al. study). The mean RMSD was 0.240 for the
FLLMP and 0.241 for the AMP. The FLMP showed a very
slight advantage over the AMP in the model fits (a differ-
ence of 0.008 in SOLS and 0.001 in RMSD). Their simu-
lations were interpreted to mean that the noisier the data, the
better the FLMP fares. However, this conclusion is unjus-
tified. Both models gave unacceptably large RMSDs to all
of the sets of random data. The FLMP does not fit random
data, as witnessed by the fact that the fits of the random data
were about 8 times poorer than the fits of real data. The
FLMP has never given such a poor description of actual
results taken to support the model. Thus, the simulations
with random noise are not relevant to the good performance
of the FLLMP. In fact, the simulations show that the FLMP is
not superpowerful because it does not give an acceptable
description of any possible result. It cannot give an adequate
description of random data.

Cutting et al. (1992) also found a negative correlation
(—.16) between the difference between the fits of the two
models and the SOLS (see Cutting et al., Figure 5, p. 376).
This is a small correlation, and it is difficult to predict the
direction and slope of the corresponding linear regression
line on the basis of only the observed points. We argue that
it is not reasonable to do a linear regression from the fit of
random data to the fit of real data. The RMSDs come from
two different types of data and, therefore, there is no reason
to expect a linear relationship across the RMSD values.
Small RMSDs only hold for real data, not random data, and
there is no justification for extrapolating from random to
real data. Just as we witnessed the sins of averaging results
across subjects, we note that it is equally dangerous to
extrapolate results from one domain to another, especially
when the domains might be unrelated to one another.

We replicated Cutting et al.’s (1992) findings on the fit of
the models to random data in a factorial design with two
factors and seven levels per factor. We wondered if the
results would differ for an expanded factorial design. As in
the Cutting et al. analysis, 1,000 random data sets were
generated and fitted by the FLMP and AMP. The FLMP
gave a better fit of 527 of the 1,000 data sets. The average
RMSD was only slightly smaller for the FLMP relative to
the AMP (0.25407 vs. 0.25463). As we said, we see no
significance in this small difference relative to the actual
RMSD values.

What is extremely interesting about fitting the FLMP and
the AMP to random data, however, is that their RMSDs are
very similar for the fit of any given data set relative to the
large range of RMSD values across the different data sets.
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The correlation between the fit of the FLMP and the fit of
the AMP was .971, accounting for over 94% of the variance.
This result appears to contradict Cutting et al.’s conclusion
that the FLMP absorbs variability relative to the AMP. The
FLMP is offended by variability in the same way as the
AMP. Random data take on a variety of forms, and what is
generally good for the FLMP is also good for the AMP and
vice versa. The FLMP does not have magical powers to fit
various sets of random data that cannot be fitted by the
AMP. Just the opposite must be the case. Very orderly data
with small amounts of variability are necessary to distin-
guish between the FLMP and the AMP.

In much of our previous research, we have contrasted the
FLMP with a weighted averaging model (WAM) or a cat-
egorical model of perception (CMP; Massaro, 1987, 1989b;
Massaro & Cohen, 1990). (It should be noted that Cutting et
al’s “full averaging model” is not a weighted averaging
model but an additive model with the additional constraint
that the parameters corresponding to the manipulated vari-
ables sum to 1.) The WAM and CMP are mathematically
identical with one another and also predict additivity as does
the AMP. However, the WAM and CMP have an additional
free parameter that allows a differential weighting of the
two sources of information. Thus, it should be worthwhile to
fit these models to random data and evaluate how they
compare with the FLMP. In this case, the FLMP had the
disadvantage. The WAM~CMP gave a better fit of 839 of
the 1,000 sets of random data. The average RMSD was also
smaller for the WAM—-CMP relative to the FLMP (0.24757
vs. 0.25407). Thus, the previous victories of the FLMP over
these models cannot have been the result of a magical
advantage of the FLMP to absorb random variability. The
FLMP has been a clear winner over models that should have
had the advantage according to the criteria of Cutting et al.

Equation Length and Other Magical Properties

Cutting et al. (1992) hypothesized that equation length
somehow accounts for the magical ability of the FLMP to fit
results. However, they must remember that correlation does
not imply causation. The curiously significant correlation
between Super Bowl outcomes and the economy does not
imply any causal link between the two. We have already
noted that the FLMP provided a somewhat better fit of the
44 individual subjects across the three experiments. The
FLMP is also the longer equation by Cutting et al.’s count.
Thus, it cannot be surprising that equation length will be
correlated with goodness of fit.

As pointed out earlier and elsewhere (Cohen & Massaro,
1992), the FLMP predicts additivity when the antilogistic
transform of the response probabilities is taken. It is per-
fectly reasonable to have both models predict these trans-
formed values. If equations of the FLMP and AMP are now
derived to predict these transformed values, the AMP will
necessarily be longer. Hence, equation length is to some
extent flexible and can have very little relevance to the
issues at stake. If the investigator desires a measure of
equation length for each model, then it seems fair to allow
each model to choose the optimal response measure. In this

case, the FLMP and AMP would have identical equation
lengths (for linear and logistic data, respectively), and a
direct comparison between them is justified.

New Findings

Although Cutting et al. (1992) focused their article on
methodological issues, their new empirical findings provide
valuable evidence concerning perception and pattern recog-
nition. They extended their depth-judgment task to include
two manipulations. First, the relative frequency of occur-
rence of the 16 stimuli was varied systematically. In most
experiments on pattern recognition and perceptual judg-
ment, the stimuli are presented an equal number of times. In
the real world, their probabilities usually differ significantly.
Thus, it is important to know whether the FLMP describes
these results as well as it does in'the case of equal proba-
bility. Second, a correlation between the sources of infor-
mation was introduced. As emphasized by Rosch (1978) and
others, in the study of natural categories, feature dimensions
tend to be correlated with one another. These correlations
are seldom introduced in our experiments on pattern recog-
nition. The FLMP and AMP assume that the different di-
mensions are evaluated independent of one another. It is
possible that this assumption does not hold when correla-
tions are built into the experimental stimuli. Thus, these two
experiments are important new tests of the models. Signif-
icantly poorer fits of the models to these results relative to
the previous experiment of Bruno and Cutting (1988) would
expose a serious limitation in the models. Based on the
model fits (Cutting et al., Table 4), the goodness of fit of the
models does not appear to differ across the three experi-
ments. An ANOVA of the RMSD values (shown in Table 4
in Cutting et al.), with three experiments and two models as
factors, indicated no significant effect of experiment or in-
teraction of experiment and model. Thus, the processes in-
volved in distance perception do not appear to change with
dramatic differences in stimulus probability and feature cor-
relations. These results increase our belief in the external
validity of the findings.

FLMP Versus Directed Perception

Cutting (e.g., 1986, 1991) favors a theoretical stance that
he calls directed perception. This theory is offered as an
alternative to both indirect and direct perception. Like the
FLMP, multiple sources of information are assumed to be
available. In contrast to the FLMP, however, all sources are
not always integrated. Sometimes some sources of informa-
tion are simply ignored, and only one or several are selected.
Additive integration is assumed when the sources are inte-
grated, with different sources receiving different weights.

There is one inconsistency in this theory, however. It is
assumed that perception occurs on the basis of multiple
sources of information, “each singly and completely speci-
fying what is to be perceived” (Cutting, 1991, p. 26). It is
not clear how Cutting is using complete specification in this
case. Consider the exocentric distance between the objects
in the Bruno and Cutting (1988) study. There were several
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picture cues specifying the distance between the objects.
However, the results clearly show that no one cue com-
pletely specified the distance. The reason is that the distance
that was perceived varied depending on the particular com-
bination of cues on a given trial. The objects were rated as
being farther apart when several picture cues specified some
distance between the objects relative to just one of these
cues specifying that distance.

Given that a cue might not always completely specify the
perceptual event, advocates of directed perception must
clarify the theoretical stance they intend to take. If one
accepts the fact that the integration of several cues specifies
a different perception from just one of these cues, then it
cannot be assumed that each cue completely specifies what
is to be perceived. If perception becomes more reliable and
accurate with the use of more cues, then a single cue does
not completely specify an event and is necessarily ambig-
uous (as described by Massaro, 1988a). In all other respects,
except for the integration algorithm, Cutting’s (1991) recent
version of directed perception resembles the FLMP. Cutting
(1991) made a distinction between ecological and functional
information stressed by Brunswik (1956) and emphasized
by Massaro (1985, 1987). He also adopted Brunswik’s idea
of functional equivalence, or the fact that two different
sources of stimulus information can have the same effect on
perception even though the sources are not equivalent.

In summary, the similarities between directed perception
and the FLMP far exceed their differences. The main point
of debate has to do with the integration rule. Although there
is some question about the rule for visual perception of
distance, no such ambiguity exists for other perceptual and
cognitive domains (Massaro, 1992). In addition, the results
of Dosher, Sperling, and Wurst (1986) provided evidence
against additive integration of stereopsis and proximity—
luminance covariance in the visual perception of three-di-
mensional structure. Their measures were transformed to Z
scores before being added, which makes this integration
roughly equivalent to that assumed by the FLMP (Massaro
& Friedman, 1990).
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