
Speech recognition and sensory integration: a 240-year-old theorem 
helps explain how people and machines can integrate auditory and 
visual information to understand speech.

by Dominic W. Massaro and David G. Stork

The capacity of the brain to combine sensory information has perplexed scientists who have 
spent valuable research time trying to understand how people integrate sensory information in 
speech perception. In some cases, the human nervous system learns to represent the signals as 
independent prior to sensory integration. Since learning is imperative to achieving expert pattern 
integration, it is easier for a system to learn the appropriate contingencies.
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Consider what goes through your mind when you attempt 
to identify an apple’s variety - Granny Smith, Golden 
Delicious, Mcintosh or Fuji, for example. You see the 
apple’s shape and color, feel its weight and the 
smoothness of the skin, hear the snap as you take a bite, 
feel the firmness and texture in your mouth, and, of 
course, savor the taste and smell. Any one of these clues 
taken alone might prove insufficient for classifying the 
apple. But together, matched with your past experience of 
each variety, they enable you to accurately classify the 
apple.

In this decision you may deliberately combine the input 
from several senses, but in many cases, the brain 
automatically combines sensory information. How can the 
brain bring together information from such diverse senses 
to permit accurate categorization? For that matter, how do 
we bring together information sources within a single 
sensory modality, such as the visual perception of surface 
texture and of color? What strategies have evolved in the 
human brain to solve this "sensory integration" problem, 
what can we learn from studying this solution, and how 
can we apply such lessons to designing and programming 
machines that categorize from perceptual input?

One of us (Massaro) has worked for many years on 
understanding how people integrate sensory information in 
speech perception, especially when lipreading is a source 
of information; the other (Stork) has been building 
lipreading machines that can decode speech. In such 
machines, the designer must specify the method for 
integrating visual and acoustic information. Despite the 
difference in our disciplines, we have found a satisfying 
convergence of results that has led us to the identification 
of a law of human information processing as well as to the 
creation of a new class of accurate automatic 
speech-recognition systems. Both results rely on the same 
240-year-old theorem in statistics used widely for 
prediction in science.

Human beings are social animals, and despite the 

onslaught of advances in telecommunications - from the 
telegraph to the Internet - we prefer our messages 
embodied with a view of our correspondent, as in the 
recent technology called videoconferencing. The image of 
a talker’s face provides not only a window into her 
emotions and motivations, but also important information 
used in understanding speech. People with normal hearing 
and sight use both modalities to understand speech, 
although we are generally not aware of the visual 
component. For example, when you have difficulty 
understanding speech in a very noisy room, you will do 
better by watching the speaker’s face more closely. Some 
people claim they can understand the dialogue on TV 
better with their glasses on. Research suggests that, 
whenever possible, people use and integrate both sight 
and sound for speech recognition.

The contributions of sight and sound become more 
obvious when people must use only one modality. Children 
blind from birth seem to have greater difficulty learning 
certain subtle distinctions in acoustic speech than sighted 
children, and highly skilled lipreaders can understand 
much of the speech in a movie - even in a silent movie. 
The deaf watch the whole face - mouth, tongue, teeth, jaw, 
even eyebrows - to aid understanding, hence the more 
comprehensive term "speechreading."

The McGurk Effect

The most striking demonstration of the combined (bimodal) 
nature of speech understanding appeared by accident. 
Harry McGurk, a senior developmental psychologist at the 
University of Surrey in England, and his research assistant 
John MacDonald were studying how infants perceive 
speech during different periods of development. For 
example, they placed a videotape of a mother talking in 
one location while the sound of her voice played in 
another. For some reason, they asked their recording 
technician to create a videotape with the audio syllable 
"ba" dubbed onto a visual "ga." When they played the 
tape, McGurk and MacDonald perceived "da." Confusion 
reigned until they realized that "da" resulted from a quirk in 
human perception, not an error on the technician’s part. 
After testing children and adults with the dubbed tape, the 
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psychologists reported this phenomenon in a 1976 paper 
humorously titled "Hearing Lips and Seeing Voices," a 
landmark in the field of human sensory integration. This 
audio-visual illusion has become known as the McGurk 
effect or McGurk illusion.

In the archetypal example of the McGurk effect, the brain 
seems to simply combine sound and sight. The auditory 
perception of the front consonant in "ba" (vocal tract 
closed at the lips) and the visual perception of the back 
consonant in "ga" (closure at the back of the throat) yield 
an integrated perception of the middle consonant: "da" 
(closure behind the alveolar ridge). But the McGurk effect 
shows up in more than just single syllables. If you make a 
videotape with the audio nonsense sentence "My bab pop 
me poo brive," dubbed onto the video nonsense sentence 
"My gag kok me koo grive," most viewers perceive "My 
dad taught me to drive." Experimental subjects generally 
cannot decode the video by itself. Given only the audio, 
they clearly hear "My bab pop me poo brive." Any model of 
sensory integration in human beings must explain such 
rich and robust McGurk phenomena.

Although these demonstrations seem surprising at first, a 
simple principle explains the McGurk effect. Perceivers 
tend to interpret an event in a way that is most consistent 
with all the sensory information - in speechreading, both 
sight and sound. The syllable "ba" sounds somewhat 
similar to "da." Analogously, visual "ga" looks quite like 
visual "da." Visual "ga," on the other hand, does not fit with 
auditory "ba," so "ba" would not be a good interpretation of 
the speech event. Visual "da" matches both the auditory 
and visual inputs reasonably and therefore wins the 
competition for the best interpretation. Similar processes 
operate in the sentence example, with the added 
dimension that subjects tend to think about the meaning of 
a sentence.

Speech segments - such as the b in the syllable "bi" - 
consist of several features that assist us in distinguishing 
one segment from the other. The voicing of some 
segments proves essentially impossible to see but fairly 
easy to hear. For example, "bi" and "pi" are visually 
indistinguishable. (They belong to the same "viseme" 
class, so-called by analogy to acoustical "phonemes.") 
Nevertheless, "bi" and "pi" are easily distinguished 
acoustically using a feature called voice onset time - the 
delay between the initial burst sound and the onset of 
vibration of vocal folds. The voice onset time in "pi" is 
noticeably longer than in "bi."

The segments "mi" and "ni" sound quite similar; listeners 

frequently confuse them, especially in noisy locations. "Mi" 
and "ni" have the same voicing and nasality (extra 
resonances from the nasal cavity), differing only in where 
the speaker closes the focal tract with the lips or tongue or 
teeth, the place of articulation. Nevertheless, those 
utterances are particularly easy to distinguish by sight - in 
"mi" the lips close at onset, whereas in "ni" they do not. 
One of the key properties of bimodal speech to emerge 
from such analysis is that of complementarity: Features 
that are hardest to distinguish acoustically are the easiest 
to distinguish visually, and vice versa. The sensory 
integration of auditory and visual information in speech 
perception and the complementarity between these 
modalities shows clearly in experiments that independently 
vary auditory and visual information.

Varying Two Inputs

To study bimodal speech perception we usually vary 
independently two sources of information. We decorrelate 
the two modalities with experiments using a so-called 
expanded factorial design.

The grid in Figure 4 illustrates the design used in one 
study in which we presented four auditory syllables in 
combinations with each of four visible syllables. In 
addition, we presented each of the syllables unimodally. 
Each participant (human or machine) identified separately 
just the auditory syllables, just the visible syllables, and all 
combinations of the auditory and visual syllables. We 
dubbed the auditory syllable onto the visual syllable to 
maintain the temporal alignment found in the natural 
syllable. This type of study can determine how the 
separate sources of information combine to achieve 
speech perception. This experimental design provides a 
strong test of sensory integration because it examines 
both unimodal and bimodal conditions. Any explanation of 
how the brain integrates sensory information must 
describe the relationship between unimodal and bimodal 
performance.

The four syllables differ primarily in place of articulation 
and nasality. The syllables "bi" and "mi" are articulated in 
the same place in the front of the mouth, making any 
difference difficult to see. Similarly, "di" and "ni" are both 
said with an open mouth. Differences in place of 
articulation are easy to see but difficult to hear, for 
example, compare "mi" and "ni." Nasality, on the other 
hand, is easy to hear but hard to see, an example of 
complementarity. The nasality associated with "mi" makes 
this syllable easily distinguished from "bi." Similarly, 
nasality makes it easy to distinguish "ni" and "di," both of 
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which require the tongue to touch the palate. Diagrams 
that show the probability of each category response for a 
particular input utterance, called perceptual confusion 
matrices, best reveal the complementary nature of bimodal 
speech recognition.

The confusion matrix in Figure 5 shows that subjects 
sometimes confused "bi" and "di," which sound similar, 
when they received only auditory input. But adding visual 
information made the syllables easy to distinguish because 
of the difference in lip closure. The opposite holds as well: 
Subjects confuse the consonants "bi" and "mi" when they 
are presented solely visually, but rarely confuse these 
consonants in a bimodal presentation. In unimodal 
presentations, acoustic recognition is more accurate than 
visual among hearing subjects who have not been trained 
in lipreading.

Complementarity

These perceptual-confusion matrices reveal 
complementarity of the auditory and visual components of 
speech. Not only do audible and visible speech provide 
two independent sources of information, but each also 
provides strong information where the other is weak. No 
fundamental theory describes the evolution of 
complementarity in bimodal speech. We can say only that 
informative acoustic information arises in visually 
inaccessible regions of the vocal tract (such as the vocal 
folds and glottis) whereas acoustically challenging 
information (such as place of articulation) correlates with 
visually obvious features such as lip closure or tongue 
placement.

Complementarity confers two important research benefits. 
First, it increases speechreading’s value as a system in 
which to probe the general properties of sensory 
integration in human beings. The bimodal effects are most 
pronounced when both modes are fallible for some 
features, but one mode is accurate while the other is not. 
Second, complementarity is especially welcome in 
automated speechreading systems because the visual 
information improves recognition of those utterances most 
difficult for current acoustic recognition systems to 
discriminate. Furthermore, strong formal similarities 
appear between bimodal speech and electronic 
communication systems in which signals in one channel 
help to eliminate the effects of noise or transmission errors 
in the other channel (paired error-correcting codes).

The results of experiments producing confusion matrices 
help determine exactly how sensory integration takes 

place, or whether it takes place at all. The two sources 
may not be integrated for distinguishing a particular 
feature. Instead one source may serve to recognize one 
feature and the other source to recognize the other 
feature. McGurk and MacDonald (1976) took this stand in 
their first publication of the illusion, claiming that visual 
input informed the perception of place of articulation, and 
auditory information dominated the perception of voicing.

But this conclusion is amenable to testing. If the visual 
modality dominates the perception of place of articulation, 
then inconsistent auditory information should not confuse 
subjects when they attempt to recognize syllables that 
differ visually but sound similar. Visual "di" paired with 
auditory "bi" should be no more difficult to distinguish than 
visual "di" paired with auditory "di." However, experiments 
show that the dominant modality for a given feature does 
not entirely dominate the judgments. For example, the 
likelihood of a subject perceiving "di" given visual "di" 
paired with auditory "di" was significantly larger in 
experiments than the likelihood of a "di" judgment given 
visual "di" paired with auditory "bi." Other results in Figure 
6 follow the same pattern.

Such evidence demonstrates convincingly that human 
brains do integrate information, but how? And can we 
program speechreading machines to do the same?

How People Do It

The experiments described above provide an impressive 
demonstration of the brain’s integration of auditory and 
visual data in recognizing speech patterns. To fully 
understand this integration and to use that understanding 
to build speechreading machines requires a model of how 
the integration takes place. Investigators in several fields 
have tested many models against experimental results like 
these, and, perhaps surprisingly, a clear victor emerges. 
Even more impressive, the winning model is 
mathematically identical to a proposal more than 200 
years old. The English amateur mathematician Reverend 
Thomas Bayes wrote his theorem in 1761, the year of his 
death. Published posthumously, the Bayes theorem could 
fairly be considered the foundation of much of the 
predictive ability of the sciences, finding use in a wide 
range of topics from medical diagnosis to predicting 
weather to putting a spacecraft in orbit.

Simply put, Bayes’s theorem offers a way to statistically 
quantify the probability of one hypothesis among several 
being true, and to update that probability as new data 
come in. Simple statistical problems - coin flips or dice 
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rolling, for example - yield to probability analysis based on 
counting. Bayes’s theorem applies to problems in which 
scientists cannot count frequencies or repeat trials.

For example, this winter the authors - and many other 
central Californians - suffered from rains, floods and power 
outages caused by El Nino. Earlier in the summer of 1997, 
forecasters warned of the high likelihood of an extremely 
wet winter. They based this prediction on several 
observations, such as the warmer-than-usual ocean 
currents and air-temperature patterns in various parts of 
the world. Forecasters combined all of these observations 
using the simple recipe proposed by Bayes to arrive at 
their prediction.

In speechreading, each time a brain decodes visual and 
auditory information to make a decision, it must choose 
between several competing hypotheses to answer the 
question "What is the syllable I heard and saw?" We 
choose a syllable with a high likelihood of being the right 
one based on the available visual and auditory data.

When we recognize speech, we evaluate and then 
integrate sounds and sights, which provides a 
psychological value indicating the degree to which 
available data support a particular hypothesis - for 
example, should the brain categorize the perceived 
syllable as "bi" or "di?" Next, a decision-making process 
called a relative-goodness-of-match rule applies. This 
compares the "score" for one syllable against the 
combined scores for all others. This rule predicts that the 
probability of a particular syllable being the correct one, 
given certain auditory and visual input, equals the total 
support for a particular syllable divided by the sum of the 
goodness-of-match values of all alternative syllables.

We can apply the Bayes theorem to speech data 
integration with a bit of simple notation. The probability that 
a perceived syllable falls into a speech category (c) given 
the acoustic evidence (A) is denoted P(c [where] A). We 
can state this probability in terms of the acoustic evidence 
given the category, the probability P(A [where] c), the 
probability of the category c, and the sum of the 
probabilities of observing all possible categories - in this 
case the total probability of finding the acoustic evidence 
A:

P(c [where] A) = P(A [where] c)P(c)/[sum.sub.A]

Exactly the same logic holds for the probability of a 
category c given the visual evidence V:

P(c [where] V) = P(V [where] c)P(c)/[sum.sub.v]

The desired probability given evidence from both 
modalities, P(c [where] A & V), also arises from Bayes’s 
theorem. If A and V are conditionally independent that is, if 
P(A & V [where] c) = P(A [where] c) P(V [where] c) - 
Bayes’s theorem can yield the optimal sensory-integration 
scheme:

P(c [where] A) = P(c [where] V)P(c)/[sum.sub.AV]

Assigning a perceived syllable to a category can be seen 
as a pattern-recognition process. Most 
pattern-classification techniques employ a statistical 
method called discriminant functions, which take an input 
pattern and assign to each candidate category a numerical 
value or score. The perceived pattern can then be 
assigned to the category with the highest score. A Bayes 
discriminant function insures the minimum classification 
error. For the most accurate classification overall, such 
discriminant functions should relate simply to the 
probability that the input pattern fits the category in 
question. The problem of sensory integration comes down 
to specifying the appropriate bimodal discriminant function 
from the component ones, that is, computing P(c [where] A 
& V) based on P(c [where] A) and P(c [where] V). This is 
precisely what Bayes’s theorem accomplishes.

More than Math

Mathematics alone cannot describe behavior. We find it 
valuable to couch the mathematical description as a set of 
operations taking the perceiver from the test stimulus to 
the interpretive response. The model, called a fuzzy-logical 
model of perception, relies on the assumptions that 
perceiving speech is fundamentally a pattern-recognition 
problem and that signals correspond to probabilities. 
Within this framework, speech-pattern processing occurs 
in three stages: feature evaluation, feature integration and 
decision. These stages take place in succession, but also 
overlap in time.

These processes make use of prototypes stored in 
long-term memory. Source prototypes and input are then 
integrated to give an overall degree of support, s, for a 
given decision. (Did I perceive "bi" or "di?") Finally, the 
decision operation maps the outputs of integration into 
some response alternative, R. The response can take the 
form of a discrete decision or a rating of the likelihood of 
the alternative.

The inner ear transduces spoken language, making 
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available to the brain a set of primitive characteristics, 
called sensory cues or features. As members of a linguistic 
community, we store in memory knowledge about what 
segments of speech occur in our language. Memory stores 
each segment as a prototype defined in terms of its ideal 
cues. When we receive some spoken language, we can 
compare its features to each prototype stored in memory.

In contrast to most models of speech perception, we 
assume the features provide continuous rather than 
discrete information. In this case, we can say that a 
particular feature fits a particular prototype to some degree 
on a continuous scale. The fit can also be interpreted as a 
subjective probability. The integration process combines 
the information from each feature to give an overall degree 
of fit to each prototype. Finally, the decision process 
makes some judgment based on the relative fit with the 
relevant prototypes.

The integration stage uses mathematics similar to 
Bayesian analysis. For example, consider the speech 
category "di." Physical input is transformed to a 
psychological value indicating the degree to which 
available speech data support the hypothesis that the 
correct category is "di." If one labels the auditory and 
visual values for support of prototype category "di" a and v, 
respectively, then the integrated total support, s("di"), for 
the alternative "di" would be given by the product of a and 
v: s("di") = a x v.

Finally, as in Bayesian analysis, a decision operation 
follows that requires that, in this case, P("di" [where] A & 
V) be determined. The fuzzy-logical model of perception 
follows a decision-making process called a 
relative-goodness rule. According to this rule, the 
probability of a particular categorization is assumed to be 
equal to the relative goodness-ofmatch. Mathematically, 
P("di" [where] A & V) is equal to the total support (s) for 
"di" divided by the sum of the goodness-ofmatch values of 
all alternatives - just as in Bayesian analysis the multiplied 
probabilities are divided by the sum of all of the alternative 
probabilities.

How Machines Can Do It

It is easy to imagine the eyes and ears of a speechreading 
machine: a video camera and a microphone. Programming 
a brain, however, poses a larger problem. As in other 
kinds of computerized pattern recognition, speechreading 
machines must preprocess the raw sensor signals to 
extract features, and then analyze them to yield the 
syllable category. For audio, the computer must 

electronically filter the signal from the microphone, and 
break it down into component frequency bands. Other 
acoustic preprocessing might involve finding the overall 
loudness at each moment, detecting the presence of 
relatively repetitive tones (associated with voicing) and so 
forth. Because the visual components of speechreading 
systems are most novel, we shall not dwell on acoustic 
processing.

Video signals must first be broken into picture elements, or 
pixels. The first stages in processing the video signal 
include locating the face, mouth and chin. Our system 
locates the face by comparing the image of a talker to a 
"background" image taken when the talker is not present. 
Any changed pixels become candidates for further 
analysis. Next, the computer compares the color of each of 
these changed pixels to a sort of "universal skin color." It 
turns out that if you ignore the overall lightness, skin color 
is remarkably similar throughout the world - from Nigeria to 
China to Sweden. Pixels whose color closely matches this 
universal skin color remain as possible face pixels.

Because we are looking for a head, the program fits an 
oval surrounding the remaining candidate pixels, and 
considers the darkest pixels toward the top of the oval to 
be eyes. Some simple triangulation from these eye 
positions as well as the detection of motion (by standard 
"optic flow" techniques from computer vision) gives an 
excellent estimate of the position of the mouth. Once the 
computer finds the mouth, it fits a computer model called a 
"deformable lip template" to the image in each successive 
video frame [ILLUSTRATION FOR FIGURE 9 OMITTED]. 
The four arcs making up the template arise from several 
parameters, whose numerical values are adjusted until the 
template matches the lip shape in the video image. The 
final values of the parameters, determined for each video 
frame, make up the features used for visual classification.

The parameters governing the shape of the template, in 
particular the curvatures and separations of the 
component arcs, provide features used by the computer to 
determine the visual features of syllables. Some lip 
features, such as the tilt and overall position in the frame, 
carry no linguistic information and are used only for 
tracking lip location.

Other image-processing techniques give the position of the 
jaw and the visibility of the tongue, both of which are also 
used for recognition.

Crosstalk, or Not?
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The schematic in Figure 8 shows audio and video clearly 
separated until the signals reach the computer speech 
integrator. But in people, might these systems interact 
before reaching the integration areas of the brain? Many 
investigators have argued that crosstalk occurs between 
visual and auditory modalities, and the most popular 
neural-network model, called interactive activation, 
assumes crosstalk. However, ample evidence suggests 
very little crosstalk takes place in human brains. Signals 
from the eye and ear pass through several independent 
stages of neural processing before they come together in 
the parietal region of the brain. Furthermore, the 
fuzzy-logical model of perception, which assumes no 
crosstalk, accurately describes human performance. Thus, 
we will concentrate here on a particular form of sensory 
integration in machines that is easy to implement without 
crosstalk. Without crosstalk, the overall system functions 
as two component recognizers, each of which takes the 
input and computes a discriminant function, a single 
numerical probability score, for each candidate syllable 
category. The winning category is the one with the largest 
discriminant function.

Since our primary concern is with sensory integration, we 
shall not describe the details of the calculation of the 
discriminant functions in each subsystem except to say 
that we use statistical models used extensively in speech 
and speechreading research (such as hidden Markov 
models, named after Russian mathematician Andrei A. 
Markov) and neural networks, which have figured 
prominently in acoustic speech recognition for many years. 
Some fascinating challenges remain, however, related to 
the difference in overall speed of signal variation in audio 
and visual information.

Although we have discussed Bayes’s theorem above, are 
there other candidate models of integration that can 
explain our human data? One simple way sensory 
integration might take place is through competition 
between the channels, the chosen category depending 
solely on which channel has the highest probability, that is, 
P(c [where] A & V) = Max[P(c [where] A), P(c [where] V)]. 
This scheme, however, would fail to show an advantage of 
performance given the test item visual "di" paired with 
auditory "di" over the test item visual "di" paired with 
auditory "bi." Using the experimental results described 
above, we can immediately dismiss this as a model of 
human performance. This naive method, furthermore, 
leads to poor recognition in artificial speechreading 
systems, especially in noisy conditions where the acoustic 
information is unreliable.

Another alternative method for sensory integration, used in 
early speechreading machines, had the acoustic system 
present its top two candidate categories. Then the 
computer chose between these two based on their 
probabilities computed from the visual data. This method, 
however, cannot adequately explain the McGurk illusion 
and other experiments in people, and it too leads to poor 
performance in speechreading machines.

A Bayesian integration that assumes independence within 
each syllable category, but dependence between video 
and audio (class-conditional independence), most 
accurately predicts human performance [ILLUSTRATION 
FOR FIGURE 10 OMITTED]. If the audio and video 
representations possess class-conditional independence 
P(A & V [where] c) = P(A [where] c) P(V [where] c) - then 
Bayes’s theorem suggests that the integration method 
leading to optimal recognition is the discriminant function 
P(c) = P(c [where] A) P(c [where] V).

A Bayes Law?

Indeed, amid the infinite wealth of sensory integration 
methods, it is a bit surprising that one as simple as the 
Bayesian method (analogous to the fuzzy-logical model of 
perception in people) leads to such excellent performance 
in machines. Furthermore, Bayesian analysis can explain 
a wide range of human data - in speechreading and 
elsewhere. Of course, as in all psychological research, this 
and other empirical laws will be subject to fine (empirical) 
corrections, and may not apply in every foreseeable 
condition. This method applies to integration of three or 
more sources of information, and fits well experiments in a 
wide range of other domains, from the perception of 
emotional state based on the face and voice, to the 
judgment of linguistic interpretation based on grammatical 
and semantic information. It seems that this law of sensory 
integration might eventually gain the same status as some 
of the canonical laws in other realms of human information 
processing. Perhaps it will join the Weber-Fechner law, 
named for the discoveries of German scientists Ernst H. 
Weber and Gustav T. Fechner, who discovered the 
quantitative relation between stimulus and sensation 
nearly two centuries ago, or Ivan Pavlov’s classical 
conditioning, which showed how pairing neutral and 
non-neutral stimuli can induce a trained response to the 
neutral stimulus.

We are naturally drawn to speculate on the fundamental 
reasons for the success of this form of Bayesian sensory 
integration and its ultimate roots in conditional 
independence. In cases where widely divergent kinds of 

American Scientist May-June 1998 v86 n3 p236(9) Page 6

- Reprinted with permission. Additional copying is prohibited. - G A L E   G R O U P

Information Integrity



Speech recognition and sensory integration: a 240-year-old theorem 
helps explain how people and machines can integrate auditory and 
visual information to understand speech.
sensory information exist - the smell of an apple and the 
smoothness of its skin - we can expect class-conditional 
independence; we would not expect strong correlations 
between such representations. In other cases, where such 
correlations exist, the human nervous system may learn to 
re-represent the signals as independent, before sensory 
integration. Because learning is fundamental to achieving 
expert pattern recognition, the most valuable aspect of 
independent representation of the modality-specific signals 
may be that it makes it easier for a system to learn the 
appropriate contingencies. This theory leads to predictions 
in underlying neural processing, including learning, that 
may one day find support in neurophysiology.

Automatic speech recognition has proved notoriously 
difficult, and any method to improve its accuracy would be 
a most welcome step in the development of new 
technologies. The incorporation of video signal processing 
into speechreading systems yields significant improvement 
under noisy conditions and modest improvement in 
noise-free environments. Thus their greatest contribution 
may be to broaden the range of applicability of automatic 
speech recognition. Noise or multiple distracting talkers 
affect automated teller machines, noisy offices, airports or 
bus terminals and the cockpits of fighter planes, making 
these ideal places to apply automated speechreading. 
Automatic transcription of television news reports could be 
aided by speechreading, using the image and sound of the 
newscaster in the broadcast signal. In many cases video 
input is already available: security cameras at automatic 
teller machines and video cameras atop computer 
consoles for video mail and videoconferencing. With 
continued development of speechreading technology, we 
can hope to improve the accuracy of such important 
devices.
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