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ABSTRACT   

 Theories of speech perception, like most theories, have tended to be qualitative rather 

than quantitative. Progress in the field requires sufficiently detailed experiments and results to 

allow the development and testing of quantitative models. To meet this goal, we are establishing a 

data warehouse to provide a comprehensive but user-friendly database from speech perception 

experiments. The experiments involve several independent variables that are orthogonally varied 

in factorial or expanded factorial designs. In addition to the database, we will provide an easy-to-

use application that will allow investigators to formulate and test different models in a variety of 

testing procedures. The goal of the data warehouse is to initiate the accumulation and 

dissemination of experimental results and formal model testing that will advance our 

understanding of speech perception and its relationship to other forms of pattern recognition. 



Most extant theories of speech perception are stated in verbal rather than quantitative 

form. Although no one can deny that a qualitative fact is more informative than a quantitative 

one, qualitative theories are not usually sufficiently precise to be distinguished from one another. 

Another limitation of qualitative theories is that very different theories, when formalized, can be 

found to make very similar predictions. Formalization of theoretical ideas is an important step in 

the development of a scientific discipline. In addition, formalization also leads to insights about 

the nature of the experimental data required to test and distinguish among theoretical alternatives. 

Given that some quantitative refinement of the theories is usually necessary to create a chance for 

falsification and strong inference (Platt, 1964; Popper, 1959), an essential strategy for research is 

to quantify and test a family of specific models that represent the extant theories and also other 

reasonable alternatives (Massaro, 1987, 1998b).  

Our goal is to provide a comprehensive but user-friendly warehouse of data from speech 

perception experiments in order to make the results available to the scientific community and to 

stimulate model development and testing. The database will include a broad range of 

experimental conditions, results from several languages, performance at several developmental 

and life-span periods, individuals who are hard of hearing, and conditions that include several 

modalities (auditory speech, visual speech, and gesture) and contextual variables (phonological, 

lexical, and sentential constraints. This warehouse will provide results that must be accounted for 

by any viable theory of speech perception and should make possible both qualitative and 

quantitative tests of models of speech perception.  

In addition to the data warehouse, we will provide an easy-to-use application that will 

allow investigators to formulate and test different models against a broad range of results. This 

goal should also facilitate the development of new quantitative models of speech perception and 

their tests against robust and meaningful experimental results. This enterprise should advance the 

field significantly and help achieve a better understanding of how persons so easily understand 



one another by using many different sources of information present during the communicative 

exchange. 

Research has also shown that model testing requires a fairly elaborate set of experimental 

conditions, with several independent variables, precise control and manipulation of the 

experimental stimuli, and a large number of observations from each participant (Massaro, 1998a, 

1998b). Experiments with just a few conditions underdetermine a unique explanation. Analyses 

and tests of individual participant’s results are necessary because data averaged across subjects 

might distort the actual individual outcomes. For example, averaging a set of different nonlinear 

outcomes will tend to make the average results more linear (Massaro & Cohen, 1993). 

Notwithstanding the caveat of averaging results across individuals, some of the seminal 

databases are average data for a specific group (such as those who are hard of hearing) because 

these data have proven to be informative, and should lead to new research in which data from 

individual participants can be analyzed. 

To further substantiate the model testing, Bayesian selection techniques as well as RMSD 

goodness-of-fit criteria are used in the evaluation of extant models.  

We now discuss one domain of inquiry that will be in the data warehouse in order to 

illustrate the logic of the experimental paradigm and the model development and testing. 

 

Auditory/Visual Speech Perception 

Some of the research in the data warehouse involves the contribution of visible 

information in face-to-face communication and how it is combined with auditory information in 

bimodal speech perception. The experimental research methodology utilizes a strong-inference 

strategy of hypothesis testing, independent manipulations of multiple sources of information, and 

the testing of mathematical models against the results of individual participants. Synthetic speech 

allows the auditory and visual signals to be manipulated directly, an experimental feature central 



to the study of psychophysics and perception. In addition, expanded factorial designs are used to 

provide the most powerful test of quantitative models of perceptual recognition (Massaro, 1998).  

Expanded factorial designs are used to study how auditory speech and visual speech are 

processed alone and in combination, and under different degrees of ambiguity. Experiments have 

clarified the classic McGurk effect, assessed the contribution of segment frequency in the 

language, and the psychophysical properties of the auditory and visual speech. Experiments have 

also contrasted the influence of visible speech with the influence from written text. The results 

can be used to address how these two sources of information are integrated with auditory speech.  

 

The Data Warehouse 

Table 1 gives a summary description of the planned databases to be included in the 

resource sharing application hosted by the Perceptual Science Laboratory. Each set of results will 

be linked to an electronic version of the original experimental report so that the details will be 

readily available. As can be seen in Table 1, the proposed database will include a wide variety of 

experimental results from several different laboratories and time periods. The database will 

include a broad range of experimental conditions, results from several languages, performance at 

several developmental and life-span periods, individuals who are hard of hearing, and conditions 

that include several modalities (auditory speech, visual speech, and gesture) and contextual 

variables (phonological, lexical, and sentential constraints). We will format the databases so that 

they can be easily accessed and analyzed using common tools such as Excel, SPSS, and MatLab. 

As an example of the nature of the data, we describe a typical experiment involving the 

independent variation of auditory and visual speech in an expanded factorial design. 

 

Typical Experiment: Varying the Ambiguity of the Speech Modalities 

An informative manipulation in speech perception research is to systematically vary the 

ambiguity of each of the source of information in terms of how much it resembles each syllable. 



Synthetic speech (or at least a systematic modification of natural speech) is necessary to 

implement this manipulation. In several experiments on bimodal speech perception, we used 

synthetic speech to cross five levels of audible speech varying between /ba/ and /da/ with five 

levels of visible speech varying between the same alternatives. We also included the unimodal 

test stimuli to implement the expanded factorial design, as shown in Figure 1.  

Prototypical Method. The properties of the auditory stimulus were varied to give an 

auditory continuum between the syllables /ba/ and /da/. In analogous fashion, properties of our 

animated face were varied to give a continuum between visual /ba/ and /da/. Five levels of 

audible speech varying between /ba/ and /da/ were crossed with five levels of visible speech 

varying between the same alternatives. In addition, the audible and visible speech also were 

presented alone for a total of 25 + 5 + 5 = 35 independent stimulus conditions. Six random 

sequences were determined by sampling the 35 conditions without replacement giving six 

different blocks of 35 trials. An experimental session consisted of these 6 blocks preceded by 6 

practice trials and with a short break between sessions. There were 4 sessions of testing for a total 

of 840 test trials (35 x 6 x 4). Thus there were 24 observations at each of the 35 unique 

experimental conditions. Participants were instructed to listen and to watch the speaker, and to 

identify the syllable as /ba/ or /da/. This experimental design was used with 82 participants and 

their results have served as a database for testing models of pattern recognition (Massaro, 1998b). 

Typical Results. A critical feature of our database will be to archive individual participant 

results, Average results across individuals can distort the underlying pattern given by each 

individual (Massaro & Cohen, 1993; Massaro, 1998). We call these results typical because they 

are highly representative of many different experiments of this type. The mean observed 

proportion of /da/ identifications was computed for each of the 82 participants for the 35 

unimodal and bimodal conditions. Figure 2 gives the results for a single participant who can be 

considered typical of the others in this task.  



The points in Figure 2 give the observed proportion of /da/ responses for the auditory 

alone, the bimodal, and the visual alone conditions as a function of the five levels of the synthetic 

auditory and visual speech varying between /ba/ and /da/. Notice that the columns of points are 

spread unevenly along the x-axis. The reason is that they are placed at a value corresponding the 

marginal probability of a /da/ judgment for each auditory level on the independent variable. This 

spacing reflects relative influence of adjacent levels of the auditory condition. 

The unimodal auditory curve (indicated by the solid circles) shows that the auditory 

speech had a large influence on the judgments. More generally, the degree of influence of this 

modality when presented alone would be indicated by the steepness of the response function. The 

unimodal visual condition is plotted at .5 (which is considered to be completely neutral) on the 

auditory scale. The influence of the visual speech when presented alone is indexed by the vertical 

spread among the five levels of the visual condition.   

The other points give performance for the bimodal conditions. This graphical analysis 

shows that both the auditory and the visual sources of information had a strong impact on the 

identification judgments. The likelihood of a /da/ identification increased as the auditory speech 

changed from /ba/ to /da/, and analogously for the visible speech. The curves across changes in 

the auditory variable are relatively steep and also spread out from on another with changes in the 

visual variable. By these criteria, both sources had a large influence in the bimodal conditions.  

Finally, the auditory and visual effects were not additive in the bimodal condition, as 

demonstrated by a significant auditory-visual interaction. The interaction is indexed by the 

change in the spread among the curves across changes in the auditory variable. This vertical 

spread between the curves is about four times greater in the middle than at the end of the auditory 

continuum. It means that the influence of one source of information is greatest when the other 

source is neutral or ambiguous. We now address how the two sources of information are used in 

perception.  

 



Evaluation of How Two Sources are Used.  

Of course, an important question is how the two sources of information are used in 

perceptual recognition. An analysis of several results informs this question. Figure 3 gives the 

results for another participant in the task. Three points are circled in the figure to highlight the 

conditions in which the second level of auditory information is paired with the fifth (/da/) level of 

visual information. When presented alone, P(/da/ | A2 ) is about .25 whereas P(/da/| V5 ) is about 

.8. When these two stimuli occur together, P(/da/| A2 V5) is about .6. This subset of results is 

consistent with just about any theoretical explanation; for example, one in which only a single 

source of information is used on a given trial. Similarly, a simple averaging of the audible and 

visible speech predicts this outcome. 

Other observations, however, allow us to reject these alternatives. Figure 4 gives the 

results for yet another participant in the task. Three points are circled in the figure to highlight the 

conditions in which the second level of auditory information is paired with the second level of 

visual information. Recall that in this forced-choice task, P(/ba/) is equal to one minus P(/da/). 

When presented alone, P(/ba/ | A3 ) and P(/ba/| V1 ) are both about .75. When these two stimuli 

occur together, P(/ba/| A3 V1) is about 9. This so-called super-additive result (the bimodal is more 

extreme than either unimodal response proportion) does not seem to be easily explained by either 

the use of a single modality or a simple averaging of the two sources. In order to evaluate 

theoretical alternatives, however, formal models must be proposed and tested against all of the 

results, not just selected conditions. The database will facilitate the formalization of competing 

models, which can be systematically tested against the results. We now turn to some important 

considerations in model development and testing. 

 

Testing a Model's Predictions 

One of the reasons that model testing is relatively rare in the speech perception field is that there 

are not easily accessible and usable techniques that the non-expert can use. We propose to remedy 



this situation by providing a user-friendly application that will allow investigators to test existing 

models against results in the library, formalize new models to test against these data, record a new 

model’s description of existing results, or add new results and models to the library. We will also 

allow different techniques for model testing, as well as providing a variety of measures of 

goodness of fit. We briefly consider each of these aspects of the data warehouse. 

There will be a simple user-friendly software interface to describe the model, and to 

implement its test against a particular database. We will ask students, colleagues, and others to 

use the interface and to give usability feedback to improve its functionality and friendliness. A 

current version of the model testing program available on the web is at 

http://mambo.ucsc.edu/psl/stepit.html, and with sample results at 

http://mambo.ucsc.edu/psl/Training/. 

A new model or a new database can be submitted to the library in a straightforward 

manner. We will provide detailed formatting instructions for the submission of new models and 

databases. Investigators who submit results or models will be acknowledged for their 

contributions. 

Different techniques for model testing will also be provided. One available technique that 

is possible is a parameter-free test. In this technique, the results of a subset of the experimental 

conditions are used to predict the other conditions (Braida, 1991; Massaro, 1998b). Although this 

technique cannot be expected to optimize the goodness-of-fit of a model (Massaro, 1998), it is a 

legitimate technique as long as the resulting goodness-of-fit is appropriately evaluated. A 

benchmark goodness-of-fit provides such an evaluation metric (Massaro, 1998b, chapter 10). 

In most cases, however, parameter-free tests are not possible. Because of the many 

sources of variability inherent in experimental testing, we cannot expect a model's predictions of 

behavior to be very accurate without first taking into account what results are being predicted. As 

an example, we cannot know exactly how often a given person will identify one of the visible 

speech syllables as a particular alternative. Individual participants give similar but not identical 



results for the same experiment. We can know that one syllable might be more likely to be 

identified as /ba/ but we cannot predict ahead of time the actual probability of a /ba/ response by 

an individual participant. This uncertainty would preclude the quantitative test of models if we 

were not able to determine (estimate) the values of free parameters.  

When applied to empirical data, most computational or quantitative descriptions have a 

set of free parameters. A free parameter in a model is a variable whose values cannot be exactly 

predicted in advance. We do not know what these values are, and we must use the observed 

results given to find them. The actual performance of the participant is used to set the value of 

this variable. This process is called parameter estimation. In parameter estimation, actual 

observations of behavior are used to estimate the values of the free parameters of the model being 

tested. Because we want to give every model its best shot, the goal is to find the values of the 

parameters that maximize how accurately the model is able to account for the results. The optimal 

parameter values can be found with an iterative search algorithm to find those parameter values 

that minimize the differences between the predicted and observed results. The parameters and 

parameter space must be specified for the search. In our model fitting technique, we usually 

estimate the free parameters based on all of the conditions, not just a subset. We have rationalized 

why this approach is more optimal (see also Schwartz, 2003). 

 

RMSD Measure of Goodness-of-Fit 

A factor that is often used to maximize the goodness-of-fit is the root mean squared deviation 

(RMSD) between the predicted and observed values. The best fit is one that gives the minimal 

RMSD. The RMSD is computed by a) squaring the difference between each predicted and 

observed value, b) summing across all conditions c) taking the mean, and d) taking the square 

root of this mean. (Squaring the differences makes all differences positive and also magnifies 

large deviations compared to small ones.) The RMSD can be thought of as a standard deviation of 



the differences between the predicted and observed values. The RMSD increases as these 

differences increase. In general, the smaller the RMSD value, the better the fit of the model.    

The quantitative predictions of a model are determined by using any mimimization 

routine such as the program STEPIT (Massaro, 1998b). In STEPIT, a model is represented to the 

program in terms of a set of prediction equations and a set of unknown parameters. By iteratively 

adjusting the parameters of the model, the program maximizes the accuracy of the predictions by 

minimizing the RMSD. The outcome is a set of parameter values which, when put into the model, 

come closest to predicting the observed results. The RMSD is used to evaluate the goodness-of-fit 

of a model both in absolute terms and in comparison to other models.  

An important consideration is whether a set of results is actually possible to distinguish 

between the predictions of two or more different models. One way to assess whether your data set 

is valid in discriminating two models is to 1) fit the models to the results, 2) cross-fit each model 

to simulated data generated from the predictions of the other model, 3) and find whether the two 

models are equally good at fitting their own simulated (predictive) data and equally poor at fitting 

the simulated (predictive) data from the other model (see Massaro & Friedman, 1990). If this is 

the case, then the data are discriminating. If a model can predict another model’s predictions for a 

particular set of results, then the data set is not sufficiently detailed to differentiate between the 

models. If a model consistently predicts the predictions of other models across a broad range of 

results, then that model appears to be nonfalsifiable and probably not scientifically worthy 

(Massaro, 1988). 

Given the delicate nature of testing among quantitative modes, we have explored 

alternative methods of model testing (Massaro, 1998, Chapter 10). The first involves the match 

between the goodness-of-fit of a model and a benchmark measure that indexes what the goodness 

of fit should be if indeed the model was correct. Because of sampling variability, we cannot 

expect a model to give a perfect description of the results, and the benchmark provides an 

absolute index for the observed RMSD. Second we have used a model selection procedure 



suggested by Myung and Pitt (1997; 1998; Massaro et al., 2001), and by Schwartz (2003), which 

we now describe.  

 

Model Selection using Bayes Factor 

This Bayes factor method of model selection seeks to handicap models to the extent they can 

predict a large range of outcomes with changes in their parameter values. One model might 

predict a large range of outcomes with changes in parameter values, whereas another model 

might predict only a small range of outcomes across changes in its parameter values. If these two 

models give an equally good description of an observed data set, then the second more 

constrained model should be preferred based on parsimony. This observation leads to the idea of 

handicapping models based on their flexibility in predicting a large range of outcomes.  

The Bayes factor adjusts a model’s goodness-of-fit index by the model’s ability to 

describe a large range of different data configurations. One model capable of fitting a broader 

range of data configurations than another is not necessarily the better model. We desire a model 

to predict only a constrained set of data outcomes because if any configuration of data can be 

predicted, it is not falsifiable (Massaro, 1998). The Bayes factor handicaps a model to the extent 

that it can predict a broad range of data configurations other than the observed data, by simply 

assuming different parameter values. According to the assumptions underlying Bayes factor, a 

better model is one that predicts only data close to the data actually observed, regardless of the 

parameter values. 

The data warehouse will therefore have several methods of selecting among models. It 

should be noted that as in all things, however, there is no holy grail of model evaluation for 

scientific inquiry. We offer several techniques for model testing to allow the researcher to provide 

converging evidence for the selection of one model over another. As an example, both RMSD 

and the Bayes factor can be used as independent metrics of model selection. Inconsistent 

outcomes should provide a strong caveat for the validity of selecting one model over another in 



the same way that conflicting sources of information create an ambiguous speech event for the 

perceiver. 

 

Statistical Tests of the Models  

The goodness-of-fit measures from different models can be evaluated using analysis of variance. 

When model fits are carried out on each participant’s results individually, the goodness-of-fit 

measure can be used as the dependent variable and the different models as the independent 

variable. 

 

Protection of Participants’ Privacy 

All of the previous publications of these databases safeguarded the privacy of participants, and 

this safeguarding will be maintained in the sharing of the databases. 
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Table 1. Description of the planned databases to be included in the resource sharing application 

hosted by the Perceptual Science Laboratory. 

 

 

Reference Experiment Participants, 

Responses, 

Conditions 

Description 

Oden & Massaro, 

1978 

Place and VOT Cues 16 Ss, 4 responses, 35 

conditions 

Acoustic Cues to 

Place and Voicing 

Massaro & Oden, 

1980, Exp 1 

Place and VOT Cues 11 Ss, 4 responses, 49 

conditions 

Acoustic Cues to 

Place and Voicing 

Massaro & Oden, 

1980, Exp 2 

Place, VOT, and 

Aspiration Cues 

8 Ss, 4 responses, 84 

conditions 

Acoustic Cues to 

Place and Voicing 

Derr & Massaro, 1980 Duration Cues to 

Final Voicing 

7 Ss, 2 responses, 16 

Conditions 

Duration Cues to 

Voicing 

Derr & Massaro, 1980 Duration Cues to 

Final Voicing 

10 Ss, Rating 

responses, 16 

Conditions 

Duration Cues to 

Voicing 

Port & Dalby, 1982, 

exp. 1, Massaro & 

Cohen, 1983 

Duration Cues to 

Voicing 

16 Ss, 2 responses, 45 

Conditions 

Duration Cues to 

Voicing 

Port & Dalby, 1982, 

exp. 2, Massaro & 

Cohen, 1983 

Duration Cues to 

Voicing 

10 Ss, 2 responses, 45 

Conditions 

Duration Cues to 

Voicing 

Port & Dalby, 1982, Sentence Tempo Cue 12 Ss, 2 responses, 64 Duration Cues to 



Massaro, 1984 to Voicing Conditions Voicing 

Erber, 1972; Massaro 

& Cohen, 1999 

Hearing Level in 

Children 

3 different hearing 

populations, 8 

responses 

Auditory and Visual 

Cues in Perception 

Dowell et al., 1982, 

Massaro & Cohen, 

1999 

Cochlear Implant 1 patient, 12 

responses, 3 

conditions 

Auditory and Visual 

Cues in Perception 

Agelfors, 1996, 

Massaro & Cohen, 

1999 

Hearing Aids vs. 

Cochlear Implants 

12 HA and 8 CI Ss, 

16 responses, 3 

conditions 

Auditory and Visual 

Cues in Perception 

Massaro et al., 1983 Tone and Vowel 

Perception 

6 Ss, 4 responses, 49 

conditions 

Auditory Cues to 

Vowel and Tone 

Massaro et al., 1985 Auditory Cues to 

Tone Perception 

6 Ss, 2 responses, 49 

conditions 

Auditory Cues to 

Tone 

Walden et al., 1990, 

Massaro & Cohen, 

1999 

Hearing Level in 

Older Adults 

2 groups, 15 Ss each, 

3 responses, 42 

conditions 

Auditory and Visual 

Cues in Perception 

Massaro et al., 1993 Cross-linguistic 

influences 

3 groups, 62 Ss, 2 

responses, 35 

conditions 

Auditory and Visual 

Cues in Perception 

Massaro et al., 1993 Cross-linguistic 

influences 

2 groups, 26 Ss, 8 or 6 

responses, 35 

conditions 

Auditory and Visual 

Cues in Perception 

Massaro et al., 1995, 

exp 1 

Cross-linguistic 

influences 

1 group, 20 Ss, 2 

responses, 35 

Auditory and Visual 

Cues in Perception 



conditions 

Massaro et al., 1995, 

exp 2 

Cross-linguistic 

influences 

1 group, 10 Ss, 8 

responses, 35 

conditions 

Auditory and Visual 

Cues in Perception 

Massaro, 1987, 

Chapter 8, pp. 224-

234 

Developmental and 

Life-Span Differences 

6 groups, 1-16 Ss 

each; 17 conditions, 2 

responses 

Auditory and Visual 

Cues in Perception 

Massaro, 1994 Life Span Differences 2 groups, 13 Ss each, 

35 conditions, 8 

responses 

Auditory and Visual 

Cues in Perception 

Massaro & Cohen, 

1995 

Auditory and Visual 

Cues in Perception 

10 Ss, 12 responses, 

24 conditions  

Auditory and Visual 

Cues in Perception 

Massaro & Cohen, 

1996 

Inverted vs. Upright 

Face 

20 Ss, 12 responses, 

44 conditions 

Auditory and Visual 

Cues in Perception 

Massaro et al., 1996, 

Exp. 1 

Timing of Auditory 

and Visual Speech 

10 Ss, 5 responses, 7 

SOAs, 24 conditions 

Auditory and Visual 

Cues in Perception 

Massaro et al., 1996, 

Exp. 2 

Timing of Auditory 

and Visual Speech 

18 Ss, 5 responses, 7 

SOAs, 24 conditions 

Auditory and Visual 

Cues in Perception 

Campbell et al., 1997 Visual Movement in 

Speechreading 

Patient LM, 2 

Controls 

Auditory and Visual 

Cues in Perception 

Massaro, 1998b Prosopagnosia and 

Speech Perception 

Patient HJA, 5 

responses, 35 

conditions 

Auditory and Visual 

Cues in Perception 

Pitt, 1995; Massaro & 

Oden, 1995 

Lexical Influences 12 Ss, 2 responses, 12 

conditions 

Acoustic Cues and 

Lexical context 



Grant & Seitz, 1998, 

Massaro & Cohen, 

2000 

Efficiency of 

Auditory-Visual 

Processing 

40 Ss, 18 response 

alternatives,  

Auditory and Visual 

Cues in Perception 

Chen & Massaro, 

2003, exp. 1 

Cross-linguistic 

Influences 

2 groups, 7 Ss each, 2 

response alternatives, 

35 conditions 

Auditory and Visual 

Cues in Perception 

Chen & Massaro, 

2003, exp. 1 

Cross-linguistic 

Influences 

1 group, 7 Ss, 8 

response alternatives, 

35 conditions 

Auditory and Visual 

Cues in Perception 

Sekiyama, 1997; 

Chen & Massaro, 

2003 

Cross-linguistic 

Influences  

14 Ss, 4 groups, 2 

response alternatives 

Auditory and Visual 

Cues in Perception 

Cathiard et al., 2001; 

Massaro, 2003 

McGurk Effect 126 Ss and 63 Ss, 11 

responses 

Auditory and Visual 

Cues in Perception 

*The number of responses refers to the number of unique responses coded for the model tests. 
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Figure 1. Expansion of a typical factorial design to include auditory and visual conditions 

presented alone. The five levels along the auditory and visible continua represent auditory and 

visible speech syllables varying in equal physical steps between /ba/ and /da/.  

Figure 2. The points give the observed proportion of /da/ identifications in the unimodal and 

factorial auditory-visual conditions as a function of the five levels of synthetic auditory and visual 

speech varying between /ba/ and /da/. The columns of points are placed at a value corresponding 

the marginal probability of a /da/ judgment for each auditory level on the independent variable. 

The auditory alone conditions are given by the open circles. The unimodal visual condition is 

plotted at .5 (completely neutral) on the auditory scale. Results for participant 9.  

Figure 3. The points give the observed proportion of /da/ identifications in the unimodal 

and factorial auditory-visual conditions as a function of the five levels of synthetic auditory and 

visual speech varying between /ba/ and /da/. The columns of points are placed at a value 

corresponding the marginal probability of a /da/ judgment for each auditory level on the 

independent variable. The auditory alone conditions are given by the open circles. The unimodal 

visual condition is plotted at .5 (completely neutral) on the auditory scale. Results for participant 

41. The lines are drawn through the observed points. The three large-circled points A2V5 give two 

unimodal conditions and the corresponding bimodal condition. The relationship among the three 

points can be explained by the use of a single modality, a weighted averaging of the two sources, 

or a multiplicative integration of the two sources.  

Figure 4. The points give the observed proportion of /da/ identifications in the unimodal and 

factorial auditory-visual conditions as a function of the five levels of synthetic auditory and visual 

speech varying between /ba/ and /da/. The columns of points are placed at a value corresponding 

the marginal probability of a /da/ judgment for each auditory level on the independent variable. 

The auditory alone conditions are given by the open circles. The unimodal visual condition is 

plotted at .5 (completely neutral) on the auditory scale. Results for participant 25. The lines are 



drawn through the observed points. The three large-circled points A3V1 give two unimodal 

conditions and the corresponding bimodal condition. The relationship among the three points 

cannot be explained by the use of a single modality or a weighted averaging of the two sources, 

but can be described by a multiplicative integration of the two sources. 
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the marginal probability of a /da/ judgment for each auditory level on the independent variable. 
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