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Abstract
We consider the problem of speech recognition given

visual and auditory information, and discuss some of the
ways that speech synthesis can provide assistance. Three
possible contributions of synthetic visual speech are dis-
cussed: First, the use of synthetic speech to study human
speech perception, second, the use of speech synthesis
techniques to instantiate models of human speech produc-
tion, and third, the use of these production models to help
guide automatic speech recognition. Finally, we consider
the reverse relationship: How can the techniques of
automatic speech recognition assist in better visual
speech synthesis?

1. Speech perception by human and machine
Speech perception is a human skill that rivals our other

impressive achievements. Even after decades of intense
effort, speech recognition by machine remains far inferior
to human performance. Although some engineering
approaches to speech recognition may take advantage of
distinctly non-human methods (e.g. the Blackboard model
in HEARSAY which does not take into account human
memory constraints), we believe that an understanding of
human performance is highly valuable for any machine
solution. Humans have solved the problem of speech
recognition; understanding these solutions would neces-
sarily be valuable for improving machine recognition.
Our understanding of the human solution has been helped
immensely through the use of speech synthesis. We
begin by briefly considering some aspects of human
speech recognition research, especially concentrating on
bimodal perception.

Experiments have revealed conclusively that our per-
ception and understanding are influenced by the visible
speech in the speaker’s face and the accompanying ges-
tural actions. These experiments have shown that the
speaker’s face is particularly helpful when the auditory
speech is degraded due to noise, bandwidth filtering, or
hearing-impairment [20]. Although the influence of visi-
ble speech is substantial when auditory speech is
degraded, visible speech also contributes to performance
when paired with intelligible speech sounds. Although

visible speech has a strong influence in speech perception,
it does not provide all of the segmental distinctions pro-
vided by auditory speech. The number of distinctive visi-
ble categories, called visemes, are fewer than the number
of audible categories or phonemes.

One might think that visible speech is simply redun-
dant with auditory speech. However, research has shown
that human speech perception is robust because per-
ceivers use multiple sources of information, not just a sin-
gle source or modality. It follows that disruption of a
given source will not dramatically disrupt speech percep-
tion. One additional attractive aspect of having both visi-
ble and auditory speech is the complementarity of the two
channels. Visible speech is usually most informative for
just those distinctions that are most ambiguous auditorily.
For example, perceiving place of articulation (such as the
difference between /b/ and /d/) is difficult via sound but
relatively easy via sight. Voicing information, on the
other hand, is difficult to see visually but is easy to
resolve via sound. Thus, audible and visible speech not
only provide two independent sources of information,
these two sources are often productively complementary.
Each is strong when the other is weak.

Recent research has also conclusively demonstrated
that perceivers have continuous information from the
speech cues, not just categorical information. Although
one’s phenomenal experience in speech perception is usu-
ally that of perceiving categories, the processing system is
not limited to categorical information. Many empirical
investigations have now demonstrated that perceivers are
capable of perceiving differences within a speech
category. When asked appropriately, people can reliably
indicate the degree to which different speech tokens
represent a given speech category [20, 21]. In addition,
ambiguous tokens require more time for categorization
than do clear tokens. These results indicate that people
can discriminate differences within a speech category and
they are not limited to just categorical information. The
richness of the representation of a speech token is not
obscured during speech perception, but retains its graded
composite of information. Most likely because of the
discrete structure of human communication via spoken

Administrator
Cohen, M.M. & Massaro, D.W. (1995).  What can Visual Speech Synthesis Tell Visual Speech Recognition? Presented to the 28th Asimolar Conference on Signals, Systems, and Computers.  Pacific Grove, CA. Page numbers?




language, however, the decision process simply maps the
rich continuous information into one of the discrete
categories used in our language. We note that for ASR
also, there are advantages to using continuous as opposed
to discrete information [5, 7].

Finally, research has demonstrated that humans natur-
ally integrate multiple sources of information in speech
perception. Within the framework of the Fuzzy Logical
Model of Perception, perceptual events are processed via
three operations: feature evaluation, feature integration,
and decision. The sensory systems transduce the physical
event and make available various sources of information
called features. These continuously-valued features are
evaluated, integrated, and matched against prototype
descriptions in memory, and an identification decision is
made on the basis of the relative goodness-of-match of
the stimulus information with the relevant prototype
descriptions.

2. Synthetic speech
A critical assumption of human speech perception

research concerns the theoretical, experimental, and
applied value of synthetic speech. Auditory synthetic
speech has proven to be valuable in all three of these
domains. Synthetic speech has made both theoretical and
applied contributions to analysis of speech perception. It
gives the experimenter control over the stimulus in a way
that is not always possible using natural speech and per-
mits the implementation and perceptual test of theoretical
hypotheses, such as a) which cues are critical for various
speech distinctions and b) how these cues are integrated.
Synthetic speech also allows us to evaluate the adequacy
of our models of human speech production. Speech pro-
duction models serve to formalize a theoretical overview
as well as to focus experimental research activities [27].
Eventually, such models should incorporate everything
from anatomy, biomechanics, and aerodynamics, to pho-
nology, syntax, and semantics. Finally, the applied value
of auditory synthetic speech is apparent in the multiple
everyday uses for text-to-speech systems for both normal
and visually-impaired individuals.

We believe that visible synthetic speech will have the
same value as audible synthetic speech. Its use can pro-
vide a more fine-grained assessment of psychophysical
and psychological questions not possible with natural
speech. For example, testing people with synthesized
syllables intermediate between several alternatives gives a
more powerful measure of the functional value of visible
cues and how these cues are integrated with auditory
information. These two questions cannot be answered as
easily, if at all, with unaltered natural speech stimuli.
Analogous to the valuable contribution of using auditory
speech synthesis in speech perception research, visible

speech synthesis permits the type of experimentation
necessary to determine 1) what properties of visible
speech are used, 2) how they are processed, and 3) how
this information is integrated with auditory information
and other contextual sources of information in speech per-
ception.

Given the value of synthetic speech, it is worth consid-
ering some general requirements for good speech syn-
thesis. There are basically two necessary ingredients
[30]. The first is to have a highly-specified low-level
model for the human speech production apparatus. In the
acoustic modality, Fant’s [10] source-filter theory of
speech production has provided a model, which has been
instantiated for synthesis electronically [11] and in
software [15]. The second necessary ingredient for
speech synthesis is to have a good higher level model of
the transformation from linguistic information to the con-
trol parameters for for the production apparatus [16].
Important developments in this area were made in the
MITalk project [1]. Among the important higher level
phenomena to be modeled are segmental timing changes
dependent on phonetic and syntactic structure and coarti-
culation. Coarticulation refers to changes in the articula-
tion of a speech segment depending on preceding (back-
ward coarticulation) and upcoming segments (forward
coarticulation). An example of backward coarticulation is
the difference in articulation of a final consonant in a
word depending on the preceding vowel, e.g. "boot"
versus "beet". An example of forward coarticulation is
the anticipatory lip rounding at the beginning of the word
"stew". The degree to which both our low and high level
models accurately capture the nature of human speech
production will be reflected in the quality of our synthetic
speech production. We should keep these criteria in mind
during our discussion of visual speech synthesis.

3. Approaches to visual speech synthesis
Some early work by speech researchers [9] used rela-

tively simple Lissajou’s figures displayed on an oscillo-
scope to simulate lip movement. Later, a model for lip
shape [22] using about 130 vectors was developed which
allowed computation of coarticulatory effects for short
segments. More recent researchers working in computer
graphics have used 3-dimensional facial models (cued by
lighting, shading, and in some cases texture).

Two general strategies for generating highly realistic
full facial displays have been employed: parametrically
controlled polygon topology and musculoskeletal models.
Using the first strategy, Parke [25] developed a fairly real-
istic animation by modeling the facial surface as a
polyhedral object composed of about 900 small surfaces
arranged in 3D, joined together at the edges, and smooth
shaded. The face was animated by altering the location of



various points in the grid under the control of 50 parame-
ters, about 10 of which were used for speech animation.
The control parameters used for several demonstration
sentences were estimated by studying articulation frame
by frame.

Parke’s software and topology was given new speech
and expression control software [26] in which a user
could type a string of phonemes which were then con-
verted to control parameters which were changed over
time to produce the desired animation sequence. Each
phoneme was defined in a table according to values for
segment duration, segment type (stop, vowel, liquid, etc)
and 11 control parameters such as jaw rotation, mouth
width, lip protrusion, lower lip "f" tuck, etc. The program
made a transition between two phonemes by interpolating
in a nonlinear fashion between the values for two adjacent
phonemes. Different transition speeds were used depend-
ing on the type of segments involved. Our current
software [6] is a descendant of the Parke software, incor-
porating additional control parameters, a tongue, and a
new speech synthesis control strategy. An important
improvement in our visual speech synthesis software has
been the development of an new algorithm for articulator
control which takes coarticulation into account. Our
approach to the synthesis of coarticulated speech is based
on an articulatory gesture model [19]. In this model, the
speech segment has dominance over the vocal articulators
which increases and then decreases over time during arti-
culation. Adjacent segments have overlapping domi-
nance functions which leads to a blending over time of
the articulatory commands related to these segments. We
have instantiated this model in our synthesis algorithm
using negative exponential functions for dominance.
Given that articulation of a segment is implemented by
several articulators, there is a separate dominance func-
tion for each articulator. The different articulatory domi-
nance functions can differ in time offset, duration, and
magnitude.

An example of the system’s operation is shown in the
top panel of Figure 1, illustrating the lip protrusion domi-
nance functions for the word "stew". As can be seen, the
/s/ and /t/ segments have very low dominance with respect
to lip protrusion compared to /u/. Also the dominance of
/u/ extends far forward in time. The lower panel gives the
resulting lip protrusion. One can see how the lip protru-
sion extends forward in time from the vowel. Note that
the figure only illustrates the dynamics for lip protrusion.
Other control parameters, e.g. tongue angle, for /t/ and /u/
have equal dominance. This allows the tongue to reach
its proper location against the back of the upper teeth for
/t/. As part of our higher level control strategy we have
integrated the MITalk system [1] to provide the segments,
durations, and suprasegmental information to the visual

Fig. 1. Dominance functions (top panel) and param-
eter control functions (bottom panel) for lip protrusion
for the word "stew". The circles in the bottom panel
indicate the control parameter targets for each seg-
ment.
synthesis algorithms, and also to provide the auditory
speech which is played in synchrony with the visual
speech.

Using the second basic strategy, human faces have
been made by constructing a computational model for the
muscle and bone structures of the face [28, 32, 33]. At
the foundation of the model is an approximation of the
skull and jaw including the jaw pivot. Muscle tissues and
their insertions are placed over the skull. This requires
complex elastic models for the compressible tissues. A
covering surface layer changes according to the underly-
ing structures. The driving information for such a model
can be defined by a dynamically changing set of
contraction-relaxation muscle commands, often con-
trolled using the "Facial Action Coding System" [8].
These codes are based on about 50 facial actions defined
by combinations of facial muscle actions.

One drawback to this synthesis approach is that calcu-
lations needed for the tissue simulations take significantly
longer to carry out than the calculations of the changing
surface shapes in the polygon models. It also may be
more difficult to achieve the desired articulations in by
varying the constituent muscle actions as opposed to
varying the desired shapes directly. This difference in
synthesis methods is parallel to the difference between
articulatory [12] and terminal-analog [13] synthesizers for
auditory speech. As with visual speech, auditory articula-
tory synthesizers require much more computation.



Although still in its early stages, the development of
realistic, high-quality, facial displays provide a powerful
tool for investigation of a number of questions in
auditory-visual speech perception. The analysis of the
articulation of real speakers guides the development of
the visible speech synthesis. In addition, perception
experiments can tell us how well the synthesis simulates
real speakers. The results of this research can be used to
implement automatic lipreading to enhance speech recog-
nition by machine. Just as human perceivers achieved
robust recognition of speech by using multiple sources of
information, the same could be true for machine recogni-
tion.

4. Using speech synthesis to aid speech recognition
As we have discussed, our speech synthesis techniques

should incorporate all of our knowledge about the human
speech production. The question is how to apply that
knowledge, indirectly and directly to the problem of
speech recognition.

Let us first consider the indirect contributions from the
study of human perception using synthetic speech. As
mentioned above, our perceptual research suggests that
we integrate continuous valued multi-modal feature infor-
mation to achieve optimal recognition performance.

Both human perceptual research as well as our syn-
thesis algorithms tell us that coarticulatory and other
phenomena occur over a supra-phoneme span [6]. This
fact alone leads to a recommendation for an analysis win-
dow which takes into account feature information over
several phonemes.

We can also synthesize synthetic speech to test our
speech recognition systems. Synthetic speech, both uni-
modal and multimodal can also be used as inputs to vali-
date recognition techniques. Precisely controlled stimuli
allow a fine-grained assessment of system operation.

A somewhat more direct use for speech synthesis is
illustrated in the ANGEL ASR system [7]. In this system,
the lexicon consists of word pronunciations stored in the
form of phonetic networks. To create these networks,
baseform pronunciations were first derived using MITalk
letter-to-sound rules or transcriptions. These baseforms
were then transformed using more than 250 rules for
word boundary effects, followed by the folding of indivi-
dual words into a general graph structure. This use of
speech synthesis greatly simplified the adapting the lexi-
con for new tasks with fairly large vocabularies.

In terms of direct application of synthesis to recogni-
tion, we return first to one of the earliest models:
Analysis-by-Synthesis. This model was formulated as
part of the original motor theory of speech perception
[29]. The basic idea of this theory was that we under-
stand speech by recovering the articulatory information

from the acoustic signal. It was believed that the problem
of mapping the acoustics to articulation was too difficult
due to contextual effects. The idea of analysis-by-
synthesis method [2, 31] could be used to synthesize and
verify some particular hypothesis. Some typical later
works on this idea are given in perception of transitions
[24] and sentence recognition [4]. However, there are
two major problems with this approach [17]. First, there
is no satisfactory solution to how one comes up with ini-
tial hypotheses to test (but see [35]), and second, the cog-
nitive load required by the model is too high [23]. We
would also point out that the revised version of the motor
theory [18] obviates the need for analysis-by-synthesis by
the assumption of direct perception through a special-
purpose module which directly transforms acoustic infor-
mation to the intended underlying articulatory gestures.
But this idea has other problems [20] including the fact
that any particular acoustic signal could be produced from
a variety of vocal tract shapes. Another criticism is that
mediation of auditory speech perception by articulatory
gestures is probably unnecessary [20]. It is interesting to
note that in at least one scheme for recognition from
bimodal speech [34], the visual information is translated
to an auditory space before combination. All that being
said, we do not argue that the articulatory information is
necessarily uninformative, and in fact with visual speech,
it may be easier to obtain. It remains an open question,
however, whether analysis-by-synthesis will play a valu-
able role somewhere down the line.

How should we make use of the production models as
represented in our speech synthesis techniques. We think
that it would be valuable to take this information into
account somehow, given the current weakness of some
current approaches dealing with contextual information
and the temporal character of speech. Hidden Markov
Models (HMMs) for example, commonly assume that the
probability that a certain feature vector will occur
depends solely on the current state probability, thus disal-
lowing the influence of contextual information.

One approach which may hold promise for integrating
production knowledge is the idea of constraint surface
learning [3]. In this approach, the possible feature values
(e.g. representing lip shape) form a surface in a multidi-
mensional space. Given some input feature vector which
may contain noise, a revised feature vector is formed
which is the closest projection from the observed vector
to the surface. This is then used in a hybrid connectionist
recognition system. Because the temporal resolution of
acoustic information in a bimodal speech recognition
situation is considerably faster than the visual information
(100 frames/second vs 30 frames/sec), it may prove use-
ful to create interpolated visual feature vectors for combi-
nation with the auditory. However, rather than using



Fig. 2. Jaw rotation and lip-protrusion control param-
eter trajectories for the word "loom". The solid lines
give the direct path between phonemes and the
dashed lines give the coarticulated path.
linear interpolation, it may be better to interpolate along
the surface. We are collaborating with Bregler and his
colleagues in this investigation, with validation by high
speed image capture.

We believe that this general approach might similarly
be extended by using production information to constrain
possible trajectories on the surface given contextual infor-
mation. For our visual speech synthesis algorithm [6],
Figure 2 illustrates the difference between linear and
coarticulated control parameter trajectories. In this sim-
ple example for the word "loom", we trace the path in
jaw-rotation / lip-protrusion space starting (and ending) at
the silent (SIL) position, going through the phonemes /l/,
/U/, and /m/. As can be seen, the coarticulated trajectory
follows a much different path than the direct linear one.
For example, lip-protrusion never reaches it’s target for
/l/. While this plot shows the trajectories in control-
parameter space, using the synthesis software we can also
easily generate feature information corresponding to the
lip-shape measurements used by Bregler and his col-
leagues. We are currently evaluating methods of using
such trajectory constraints.

In addition to using constraint surface trajectories
directly, synthesis might also be used in an indirect
fashion similar to its use in the ANGEL system. That is
to say, the synthesis could be used to generate feature-
vector data for learning the constraint surface. For exam-
ple, by modeling different talkers in our synthesis, the
recognition system could more easily adapt to speaker
variability.

5. From recognition to synthesis
In this section we briefly consider the reverse relation-

ship between synthesis and recognition: How can speech
recognition techniques aid the development of speech
synthesis.

The first contribution that is apparent is the use of
automatic lip tracking techniques for refining our syn-
thesis parameters, both in terms of obtaining segment tar-
get values and control parameter dynamics, which in turn
allow us to evaluate the accuracy of our synthesis algo-
rithms and their underlying production models.

A second contribution of recognition techniques is the
assessment of which cues provide optimal recognition.
Finn [12] used an algorithm to obtain the best weighting
of facial features for recognition. A similar examination
of various features using a principal components analysis
and then selecting those with the highest eigenvalue has
been employed [14] to pick which features would be used
for recognition. Although these results do not necessarily
mean that the same features are equally important to
human observers, the results are suggestive (and rein-
forced by the fact that the recognition algorithms yield
similar results to the humans). By assessing the accuracy
of recognition and the nature of the confusion errors, the
commonalities of human and machine recognition can be
determined.
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