Picture My Voice:
Audioto Visual Speech Synthesisusing Artificial Neural Networks

Dominic W. Massaro , Jonas Beskow, Michael M. Cohen, Christopher L. Fry, and Tony Rodriguez
Perceptual Science Laboratory, University of California, Santa Cruz, Santa Cruz, CA 95064 U. S. A.

ABSTRACT

This paper presents an initial implementation and
evaluation of a system that synthesizes visua
speech directly from the acoustic waveform. An
artificial neural network (ANN) was trained to
map the cepstral coefficients of an individual’s
natural speech to the control parameters of an
animated synthetic talking head. We trained on
two data sets; one was a set of 400 words spoken
in isolation by a single speaker and the other a
subset of extemporaneous speech from 10
different speakers. The system showed learning in
both cases. A perceptual evaluation test indicated
that the system’s generalization to new words by
the same speaker provides significant visible
information, but significantly below that given by
atext-to-speech algorithm.

1. INTRODUCTION

Persons find it hard to communicate when the
auditory conditions are poor, e.g. due to hoise,
limited bandwidth, or hearing-impairment. Under
such circumstances, face-to-face communication
is preferable. The visual component of speech can
compensate for a substantial loss in the speech
signal. This so-called superadditive combination
of auditory and visual speech can produce a
bimodal accuracy, which is greater than the
simple sum of their separate unimodal
performances [9]. An even more striking result is
that the strong influence of visible speech is not
limited to situations with degraded auditory input.
A perceiver's recognition of a noise-free auditory-
visual phrase reflects the contribution of both
sound and sight. For example, if the (non-
meaningful) auditory sentence, “My bab pop me
poo brive’, is paired with the visible sentence,
“My gag kok me koo grive’, the perceiver is
likely to hear, “My dad taught me to drive”. Two
ambiguous sources of information are combined
to create a meaningful interpretation [9,10].

1.1 Facesin Teecommunication

Although we benefit from face-to-face dialog,
current technology precludes it when the conver-
sationalists are at a distance and must communi-
cate electronicaly, such as over the telephone or
over the Internet. One option is video-

conferencing, but the visual quality and frame-
rate provided by such systems with reasonable
bandwidth constraints are normally too poor to be
useful for speech-reading purposes.

Having developed a three-dimensional talking
head, we are interested in its application in tele-
communications. As has been shown by severa
researchers [3,9,10], animated talking faces can
account for significant intelligibility gains over
the auditory alone condition, amost comparable
to areal speaker’sface. There are two methods to
exploit the real time use of taking faces in
human-human dialog. The most obvious involves
text-to-speech (TtS) synthesis. By transmitting the
symbolic message over the phone line or the
Internet, this information could be used to
animate a talking face at the receiving station of
the participant. A standard text-to-speech engine
would trandate the symbolic (written) message
into a string of spoken segments [14]. The face
movements of the talking head would be aigned
with these synthetic speech segments. Texture
mapping technology [9] would potentially allow a
person’s email to be spoken aloud by a talking
head, which resembles the original sender. The
downside of this technology is that the voice
would not correspond to the voice of the sender
and furthermore, synthetic auditory speech is
heard as robot-like with very little prosodic and
emotional structure.

The second approach to audible/visible speech
synthesis uses the origina auditory speech in its
output. With this technique, the animated talking
head is generated from and aligned with the
original speech of the talker. In order to do this, it
is first necessary to identify the segments in the
utterance either directly or via recognition of the
words, so that the appropriate mouth and facia
movements can be determined. A potentia
limitation of this approach is that automatic
speech recognition is not accurate enough to pro-
vide a reliable transcription of the utterance. For
more reliable performance, the user can type the
actual utterance in addition to saying it. By
aligning the speech waveform and its phonetic
transcription [15], it would then be possible to
determine and implement the appropriate facia
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movements of the talking head, a function cur-
rently available in the CSLU toolkit
[http://cdu.cse.ogi.edu/tool kit/].

1.2 Previous Resear ch

Severa researchers have investigated techniques
for fully automatic generation of lip-movements
from speech. The research fits within the two
methods described in the previous section. The
first method is based around a discrete
classification stage to divide the speech into
language units such as phonemes, visemes or
gyllables, followed by a synthesis stage. This
approach has been employed by severa
investigators [8,12,16] In one study [16],
auditory/visual syllable or phoneme/viseme
HMMs were trained with both auditory and visual
speech features. Context dependent lip parameters
were generated by looking ahead to the HMM
state sequence that was obtained using context
independent HMMs.

The second group of methods does not attempt a
direct classification into discrete meaningful
classes, but rather tries to map the acoustics
directly to continuous visual parameters, using
some statistical method. Visible speech control
parameters for either lip movement [13,16] or a
complete talking head [11] are computed from the
auditory speech signal directly. Morishima [11]
trained a network to go from LPC Cepstrum
speech coefficients to mouth-shape parameters.
He trained on 75 speakers and included only one
time step of speech information for his network.
Another approach is a vector-quantization (VQ)
based method maps a VQ code
word vector of an input acoustic
speech signal to lip parameters File Help
frame-by-frame [16].

1.3 Baldi, theTalkingHead

Our talking head, called Baldi, is
shown in Figure 1. His existence
and functionality depend on
computer animation and text-to-
speech synthesis. His speech is
controlled by about 3 dozen pa
rameters. With our completely
animated, synthetic, talking head
we can control the parameters of
visible speech and determine its
informative  properties.  Experi-
ments by Cohen, Walker, and Mas-

adumbrated form, is amost comparable to that of
areal human.

The talking head can be animated on a standard
PC, and requires no specialized hardware other
than a good 3D graphics card, which is now
standard on many computers. In addition, we have
a desktop application in which any person’'s face
can be manually adjusted and mapped onto the
talking head. A single image of a person, once
adjusted to fit on the talking head, can be moved

appropriately [9].

1.4 An Acoustic Speech to Visual Speech
Synthesizer

A system that reliably trandates natural auditory
speech into synthetic visible speech would
normally require the following components.

1. A labeled data base of auditory/visua
speech,

2. A representation of both the auditory and
visual speech

3. Some method to describe the relationship
between two representations, and

4. A technique to synthesize the visible
speech given the auditory speech.

There are several labded databases of auditory
speech but no readily available labeled databases
of visual speech. Given the lack of databases for
visible speech, investigators have created their
own in order to carry out auditory-to-visible
speech synthesis. In some cases, 3D
motion capture systems are used
utilizing reflective markers on the
face [2]. In other cases lip contours
are traced using image processing
techniques [3,12]. The resulting
measurements can be used as inputs
to the visible speech synthesis.

An dternative to a recorded
auditory/visible speech data base, is
to define the properties of the visi-
ble speech a priori in terms of
synthesis parameters for each
speech  segment. Given  our
previous research and current tech-
nology, we know which facia
movements should be made for
each spoken speech segment [6, 9,

saro [5] and Massaro [9] have
shown that visible speech produced

by the synthetic head, even in its e Bad:

Figure 1: The animated talking head

Chapters 12 & 13]. For example,
the mouth is closed at the onset of
/bl and open at the onset of /d/. In
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Figure 2: The model architecture of our parameter estima-
tor.

our development we have determined synthesis
parameters that create intelligible speech
approximating the visible speech produced by a
natural speaker. The facid movements are
realistic because they have been fine-tuned to
resemble a natural talker as much as possible [9].
These control parameters then serve as labeled
representation of the visible speech.

Our system takes natural auditory speech and
maps it into movements of our animated talking
head that are aligned appropriately with the audi-
tory speech. Our goal is to go directly from the
auditory speech to these specific movements. We
determined the mapping between the acoustic
speech and the appropriate visual speech
movements by training an artificid neurd

network to associate or map fundamental acoustic
properties of auditory speech to our visible speech
parameters. Neura networks have been shown to
be efficient and robust learning machines which
solve an input-output mapping and have been
used in the past to perform similar mappings from
acoustics to visua speech. We report the results
of training the network against two different
databases: isolated words and extemporaneous
speech.

2. EXPERIMENT 1: WORDS

2.1 Method

We used a bimodally recorded test list in natural
speech that is available to the speech and
animation communities. This data set existed in
the form of a corpus of one-syllable words pre-
sented in citation speech on the Bernstein and
Eberhardt [4] videodisk. This laser-man data set
represents a potentially straightforward task for

the network; the words are isolated and had a pre-
dictable structure. The training set (about 10
minutes worth of speech) consisted of 400 words,
randomly selected out of the 468 words, leaving
68 words for testing. The audio was digitized with
aPC soundcard at 8 bit/16 kHz.

From the acoustic waveform we generated cep-
strum coefficients at 50 frames per second. 13
coefficients were generated using 21 Mel-scaled
filters, using overlapping hamming windows with
awidth of 32 ms.

Desired output parameters were generated as fol-
lows: The digitized waveforms and the corre-
sponding text, were input into a Viterbi-based
forced alignment program, that produced time-
aligned phoneme labels for al of the words in the
database. Using the time-aligned phoneme labels,
37 control parameters for the talking head were
generated at 50 frames per second, using our cur-
rent visual speech TtS algorithm [9, pp. 379-390].
Two sets of tongue parameters for the smple and
complex tongue models and the three visible cues
used in our training studies [9, pp. 437-442] are
included as outputs of the network. Furthermore,
since the activation values of the networks' output
nodes are constrained to lie in the range 0.0 to 1.0,
each parameter was normalized relative to it's
minimum and maximum values over the entire
data set in such a way that all parameters varied
between 0.05 and 0.95.

We used a feed-forward artificial neural network
(ANN) with three layers, as shown in Figure 2.
The acoustic input is streamed at 50 frames a
second. At every frame, 13 cepstral parameters
serve as the input to 13 input units. All of the 13
input parameters were taken at eleven consecutive
time frames (current + five frames back + five
frames forward) yielding a total of 143 input
nodes and 37 output nodes. Networks with 100,
200, 400 and 600 hidden units were trained using
the back-propagation agorithm with a learning
rate of 0.005 during 500 iterations. We found that
increasing the number of hidden units improved
generdization to the data in the test set. The
network with 600 hidden units produced the best
overall correlation between desired and generated
output for the test set. We therefore report the
results with 600 hidden units.

When using the network outputs to drive the ar-
ticulation of the synthetic face, we found the
motion to be somewhat jerky due to instability in
the output values. Empirically it was found that a
simple post-hoc filtering, using a triangular aver-
aging window with a width of 80 ms significantly
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Figure 3. Proportion correct of initial consonant, vowel, and
final consonant phoneme recognition for ANN and TtS
synthesis.

reduced these disturbances without notably im-
pairing the tempora resol ution.

2.2 Results

The network trained on laser-man’s isolated
words showed fairly good learning and
generalized fairly well to novel words. We
computed a correlation between the target and
learned parameter values across the complete
training and test data sets. The overall average
correlations between the target and learned
parameter values were 0.77 for the training set
and 0.64 for the test set.

2.3 Perceptual Evaluation

In order to evaluate the quality of the ANN versus
TtS synthesized speech, a perceptual identifi-
cation study was carried out with human
participants. For this experiment, 131 short
English words were tested, 65 of which had been
used to train the network and 66 completely new
words. Each of these 131 words was presented
using ANN and text-to-speech (TtS) based
synthesis, for atotal of 262 trials per participant.
Students from introductory psychology classes (5
male, 12 femae, average age 18.7 years) with
either normal or corrected vision served as sub-
jects. All were native English speakers. The sub-
jects were tested individually in sound attenuated
rooms. On each trial of the experiment, a word
was presented silently and then the subject typed
in what word was presented. The size of the talk-
ing face was about 7 inches verticaly viewed
from about 12 inches. Only valid single syllable
words were accepted as responses. If the typed
word was not on the program’s list of 11,744
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Figure 4. Proportion of initial consonant, vowel, and final con-
sonant viseme recognition for ANN and TtS synthesis.

words, the subject was cued to enter a new
response. The next trial started 1 second after a
response was entered. The experiment was
presented in two sessions of about 20 minutes
each.

The results of the experiment were scored in
terms of the proportion of correct initial conso-
nant, media vowel, and final consonant, both for
phonemes and visemes. Figure 3 shows the
proportion correct initial consonant, vowel, and
final consonant phonemes for the test words that
did not occur in the training set. As can be seen in
the figure, performance was well above chance
for both conditions, but the TtS synthesis
supported much better speechreading than the
ANN synthesis. Figure 4 shows the corresponding
viseme  performance. Correct  phoneme
identification averaged 21% for TtS synthesis and
1206 for ANN synthesis. Identification
performance is, of course, much better when
measured by viseme categories, as defined in
previous research [6, Chapter 13]. Replicating the
results a the phoneme level, performance given
the ANN synthesis fals significantly below TtS
synthesis. Overall, correct viseme identification
was 72% for TtS synthesis and 46% for ANN
synthesis. The discrepancy between the two
presentation modes was largest for the vowels. At
this time, we have no explanation for this
difference between vowels and consonants.

3. EXPERIMENT 2:
EXTEMPORANEOQOUS SPEECH

3.1 Method

Ten speakers from the CSLU sories database
[http://cdu.cse.ogi.edu/corporalstories/] were used



to train ten different ANNS. The stories corpus is
made up of extemporaneous speech collected
from English speakers in the CSLU Multi-lan-
guage Telephone Speech data collection. Each
speaker was asked to speak on a topic of ther
choice for one minute. This database has been
labeled and segmented so that the identity and
duration of the spoken language segments are
known.

The input data sets had approximately 50 seconds
of natural speech; 40 seconds were used as train-
ing data for the networks. The remaining 10 sec-
onds were used as a test set for the trained net-
works. The restricted amount of training data
avaliable from each speaker makes this data set a
hard test for the networks.

The training and generalization tests followed the
same general procedure as with the isolated
words. The networks were trained from 500 to
5000 epochs (passes through the data set) with
momentum set to 0.0 and a learning rate of 0.1,
.005 or .001. We experimentally determined that
100 hidden units were able to learn the mapping
by training several networks with 10, 50 and 100
hidden units.

3.2 Reaults

The networks were evaluated using the root mean
square (RMS) error over time and the correlation
of each output parameter with the corresponding
training values. The average correation of al pa-
rameters was also used as an indicator of network
performance. The networks varied somewhat in
their abilities to reproduce the output parameters
of each speaker (0.75 to 0.84 mean correlation
across all parameters).

Each network was tested on novel speech from
the speaker it was trained on. The average corre-
lation over every parameter for each network was
calculated on the corresponding test set for each
network. The ability to generalize to novel speech
varied across the 10 speakers. Speaker 8 and
speaker 4 generdized to novel speech from their
test set best with an average correlation of 0.27
and 0.28. We believe that these generalization
values are low because of the paucity of training
data and the restricted number of hidden units
(200).

4. CONCLUSIONS

In a typical application, natural auditory speech
can be used to generate an animated talking head
that will be aligned perfectly with the natura
auditory speech utterances as they are being said.

This type of approach ideally allows for what is
called graceful degradation. That is, the acoustic
analysis is not dependent on a speech recognizer
that could make catastrophic errors and therefore
misguide the visible speed synthesis. The
mapping between the acoustic parameters and the
visible speech parameters is continuous and a
dlight error in the analysis of the input utterance
will not be catastrophic because the parameters
will still approximate the appropriate visible
speech parameters for that utterance.

There are many potential applications for this
technology primarily because bandwidth is highly
limited in communication across the Internet and
therefore video teleconferencing and other means
of face-to-face communication are still very lim-
ited [7]. However auditory speech can be
represented accurately with very little bandwidth
requirements. The user could have the talking
heads stored locally and controlled and animated
locally by the auditory speech that is being
streamed over the Internet.

This application could work for video teleconfer-
encing as well asfor email in that user could send
an auditory message that would control the talk-
ing head located on the receiver’s desktop. In ad-
dition the message could contain information
about the sender and could either provide a tex-
ture map of the sender that would be mapped over
the talking head on the receiver’s computer or the
appropriate texture could be stored permanently
and retrieved on the receiving computer.

Currently, our system looks 5 frames or 100 ms
ahead to generate the appropriate visible speech
parameter values. In an actual application, it
would, therefore, be necessary to delay the
auditory speech by 100 ms. Another possibility is
to train a network with fewer frames ahead of the
current one. In either case, the network solution is
preferable to any speech recognition systems that
delay their decisions until at least several words
have been presented.
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