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The fuzzy logical model of perception (FLMP; Mas-
saro, 1998) has consistently provided a good description
of a variety of results in bimodal speech perception and
in many other domains of human performance. The as-
sumptions central to the model are (1) each source of in-
formation is evaluated to determine the degree to which
that source specifies various alternatives, (2) the sources
of information are evaluated independently of one an-
other, (3) the sources are integrated to provide an overall
degree of support for each alternative, and (4) perceptual
identification and interpretation follows the relative de-
gree of support among the alternatives. In a two-alternative
task with /ba/ and /da/ alternatives, the degree of auditory
support for /da/ can be represented by a i, and the support
for /ba/ by (1 2 a i). Similarly, the degree of visual sup-
port for /da/ can be represented by vj, and the support for
/ba/ by (1 2 vj). The probability of a response to the uni-
modal stimulus is simply equal to its feature value. For

bimodal trials, the predicted probability of a response,
P(/da/) is equal to

(1)

In the course of our research, we have found that the FLMP
accurately describes human pattern recognition. For ex-
ample, we have learned that people use many sources of
information in perceiving and understanding speech, emo-
tion, and other aspects of the environment. In many cases,
these sources of information are ambiguous, and any par-
ticular source alone does not usually specify completely
the appropriate interpretation. The influence of one mo-
dality is greater to the extent that the other is ambiguous,
a result well described by the FLMP. The results from
many studies are consistent with the FLMP, which de-
scribes a universal law of behavior (Massaro, 1998).

In our previous work, we have contrasted the FLMP
against several alternative models such as a weighted av-
eraging model (WTAV), which is an inefficient algo-
rithm for combining the auditory and visual sources. For
bimodal trials, the predicted probability of a response,
P(/da/) is equal to

(2)

The WTAV predicts that two sources can never be more
informative than one. In direct contrasts, the FLMP has
consistently and significantly outperformed the WTAV
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The fuzzy logical model of perception (FLMP; Massaro, 1998) has been extremely successful at de-
scribing performance across a wide range of ecological domains as well as for a broad spectrum of in-
dividuals. An important issue is whether this descriptive ability is theoretically informative or whether
it simply reflects the model’s ability to describe a wider range of possible outcomes. Previous tests and
contrasts of this model with others have been adjudicated on the basis of both a root mean square de-
viation (RMSD) for goodness-of-fit and an observed RMSD relative to a benchmark RMSD if the model
was indeed correct. We extend the model evaluation by another technique called Bayes factor (Kass &
Raftery, 1995; Myung & Pitt, 1997). The FLMP maintains its significant descriptive advantage with this
new criterion. In a series of simulations, the RMSD also accurately recovers the correct model under
actual experimental conditions. When additional variability was added to the results, the models con-
tinued to be recoverable. In addition to its descriptive accuracy, RMSD should not be ignored in model
testing because it can be justified theoretically and provides a direct and meaningful index of goodness-
of-fit. We also make the case for the necessity of free parameters in model testing. Finally, using New-
ton’s law of universal gravitation as an analogy, we argue that it might not be valid to expect a model’s
fit to be invariant across the whole range of possible parameter values for the model. We advocate that
model selection should be analogous to perceptual judgment, which is characterized by the optimal use
of multiple sources of information (e.g., the FLMP). Conclusions about models should be based on sev-
eral selection criteria.
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(Massaro, 1998). Our criterion for model selection has
been a goodness-of-fit measure called root mean square
deviation (RMSD) between predicted and observed pro-
portions. The RMSD is computed by (1) squaring the
difference between each predicted ( p) and observed (o)
value (this makes all differences positive and also mag-
nifies large deviations relative to small ones), (2) summing
the squared differences across all n conditions, (3) taking
the mean of these differences, and (4) taking the square
root of this mean.

(3)

The RMSD provides an easily understood measure of the
agreement between the actual and the theoretical out-
comes. An RMSD of .02 means simply that the model’s
predictions differ by roughly an average of .02 from the
observations. Recently, this measure has been called into
question given a resurgence of interest in model testing
and selection from researchers in various domains of per-
formance and also in the mathematical modeling commu-
nity (Cutting, Bruno, Brady, & Moore, 1992; Dunn, 2000;
Massaro, 1998; Massaro & Cohen, 1993; Myung, Forster,
& Browne, 2000; Myung & Pitt, 1997, 1998).

Cutting et al. (1992) claimed that the good fit of the
FLMP did not necessarily reflect a good psychological
theory but rather some type of selectivity and scope
(flexibility) to fit any type of data, even random results.
Massaro and Cohen (1993) countered these claims by
demonstrating that the FLMP can be proven false and
does not have a superpower to predict a plethora of func-
tions or to absorb random variability (see also Massaro,
1998). More recently, Dunn (2000) provided an innova-
tive assessment of a model’s propensity to fit arbitrary
sets of data. These analyses measure the extent to which
the prediction range of a model extends into the poten-
tial outcome space. Using this criterion, he found that the
FLMP and an alternative, the linear model of perception
(LIM) did not differ. The linear model is an additive model
analogous to the WTAV given in Equation 2 except that
no weight parameter is included and no averaging oc-
curs. Dunn concluded from his analyses “that if the FLMP
enjoys any advantage relative to the LIM in being able to
fit arbitrary data points, the size of this advantage is very
small” (p. 21).

Myung and Pitt (1997) explored the identifiability of
three extant models by simulating hypothetical data from
a 2 3 8 factorial design, with 20 observations at each of
the 16 experimental conditions. They began with three
sets of hypothetical parameter values and simulated re-
sults from three different models for 100 subjects for each
parameter set. The models used to simulate the results were
(1) a linear model (LIM) in which the values from the two
independent variables were simply averaged (as in Equa-
tion 2 but without the weight parameter w), (2) the FLMP
(Massaro, 1998), and (3) a model based on signal detec-

tion theory (TSD, Massaro & Friedman, 1990). In our
earlier work (Massaro, 1987; Massaro & Friedman, 1990),
we found that these models made different predictions
from one another and that one model’s predictions could
not mimic another model’s predictions when there was
no variability in the data. However, it was pointed out that
FLMP and TSD made very similar predictions and were
probably indistinguishable in practice (when sampling
variability and other sources of noise are a factor).

Myung and Pitt (1997, 1998) found that the RMSD mea-
sure of goodness-of-fit was not always sufficient to re-
cover the model that actually generated the original data.
They found that the FLMP and TSD were more flexible
than the LIM in that they gave a better account of the
simulated results, even when the LIM was used to gener-
ate the data. When the FLMP or TSD was used to gener-
ate the hypothetical results, the LIM never provided a
better fit than the other two models. When the LIM was
used to generate the hypothetical results, it provided a
better fit than the other two models only about 28% of
the time. Li, Lewandowsky, and DeBrunner (1996) found
similar results by evaluating a model’s flexibility in terms
of its parameter sensitivity, defined as the change in a
model’s predictions due to variations in the model’s pa-
rameters, and parameter interdependence, defined as the
amount of covariation among parameters during their es-
timation. They evaluated the FLMP and LIM in the con-
text of the four-factor experiment of Bruno and Cutting
(1988) and found that the FLMP had significantly more
parameter sensitivity and only somewhat greater param-
eter interdependence than the LIM.

Proponents of additive or averaging models should have
been pleased with these results because they indicate that
the LIM might have been erroneously rejected because
the competing models were too flexible (Cutting et al.,
1992). This is obviously an undesirable state of affairs
for advocates of the FLMP, and it challenges our previous
work in this arena. On the basis of recent techniques of
model testing developed by Jefferys and Berger (1992)
and Kass and Raftery (1995), Myung and Pitt (1997) pro-
posed a method of model selection that incorporates both
functional form and model flexibility (we prefer this term
rather than the term complexity, used by Myung and Pitt)
as criteria for selecting the best model (DiCiccio, Kass,
Raftery, & Wasserman, 1997). When applied to the sim-
ulated results, this method provided a recovery of the
“correct” model about 88% of the time. Thus, the previ-
ously rejected LIM based on RMSD might actually have
been the correct model for previous experiments. Myung
and Pitt (1997, 1998), however, did not pursue this pos-
sibility and did not present any analyses of actual empir-
ical results (although there are many relevant data sets in
the literature) in order to address whether previous out-
comes using RMSD were invalid.

The method of model selection is called Bayes factor
(Kass & Raftery, 1995) and is defined as a ratio of two
marginal likelihoods
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(4)

where P(D |Mi ) is the probability of the observed data
across all possible parameter values. The term corre-
sponds to an average of likelihoods under a prior distri-
bution of the parameters. Myung and Pitt (1997, 1998)
gave an integral form for the marginal likelihood:

(5)

where q is a parameter vector under model i, P(D |q, Mi)
is the likelihood function, and P(q, Mi) is the prior den-
sity of q for model i.

This Bayes factor method of model selection seeks to
handicap models to the extent that they can predict a large
range of outcomes with changes in their parameter val-
ues. If a model predicts a large range of outcomes with
changes in parameter values, then its ability to predict a
single data set with all possible parameter values will be
very poor. On the other hand, a model that predicts only
a small range of outcomes across changes in its param-
eter values will do much better if the data to be predicted
are within that small range of outcomes predicted by the
model. This is the logic of handicapping models based
on their flexibility.

Viewed from a slightly different perspective, the Bayes
factor should not be an entirely new concept to mathe-
matical modelers. One of the traditions in the field is to
value what might be dubbed the invariance of parameters
in a model. For example, Atkinson, Bower, and Crothers
(1965) advocated the value of parameter invariance across
different experimental situations. Models might be con-
sidered to have additional value when they are able to
give a fairly good description of a given set of results across
a fairly broad range of parameter values. The Bayes fac-
tor formalizes this principle by determining the proba-
bility of the observed data given a model across all pos-
sible parameter values of the model. Thus, the Bayes
factor is concerned with goodness-of-fit across all possi-
ble parameter values. In contrast, a model is tested using
RMSD by finding a single set of estimated parameter
values to maximize goodness-of-fit to the data. Accord-
ing to the RMSD measure, the investigator is satisfied if
at least one set of parameter values gives a good fit. Ac-
cording to the Bayes factor, the investigator is satisfied
only if the model does a respectable job of prediction
across all parameter values.

The Bayes factor adjusts a model’s goodness-of-f it
index by the model’s ability to describe a large range of
different data configurations. A model capable of fitting
a broader range of data configurations than another is
not necessarily the better model. We desire a model to
have good taste and to predict only a constrained set of
data outcomes—if any configuration can be predicted, it
is not falsifiable. In a series of simulations, for example,
it was demonstrated that neural networks with hidden
units could mimic a variety of different information pro-
cessing models (Massaro, 1988). The Bayes factor hand-

icaps a model to the extent that it can predict a broad range
of data configurations other than the observed data, by
simply different parameter values. According to the as-
sumptions underlying Bayes factor, a better model is one
that predicts only data close to the data actually observed,
regardless of the parameter values.

This important analysis and potential solution provided
by the Bayes factor alerted us to the possibility that our
previous model tests may have led us to incorrect conclu-
sions. In many experiments, the FLMP has been found to
provide a significantly better fit than alternative models.
The demonstration of Myung and Pitt (1997) reveals that
our conclusions might have been invalid given the po-
tentially more flexibility of the FLMP to fit results, even
results that were not generated by that model. There were
several aspects of the Myung and Pitt simulation, how-
ever, that did not mirror our prototypical experimental
situations. First, the authors simulated data from an un-
weighted averaging model (LIM) rather than a weighted
averaging model (WTAV) that we have tested in all of
our research (Massaro, 1998; Massaro & Cohen, 1976).
The FLMP always gave a significantly better fit than the
WTAV even though the WTAV also had one additional
free parameter than the FLMP, and we did not adjust the
RMSD measures to reflect this difference in number of
parameter values. We expect the WTAV to be more flex-
ible than the LIM, which would influence the outcome of
model selection using Bayes factor.

Weighted averaging is more psychologically realistic
than unweighted averaging in that it is unlikely that each
influential factor contributes equally to performance in
pattern recognition tasks. A weighting parameter allows
that a .7 scale value from one factor might make a differ-
ent contribution than a .7 value from another factor. Dif-
ferential weighting in the FLMP and TSD descriptions
emerges from the nonlinear combination of the two
sources of information corresponding to the two factors.
Second, the authors simulated data from a highly asym-
metrical factorial design, whereas we usually carry out
symmetrical expanded factorial designs. The latter are
much more efficient than the former in discriminating
among different models. A symmetrical design has the
highest ratio of independent observations relative to free
parameters, and the expanded design provides an addi-
tional set of data points whose expected values are pre-
dicted by the same parameter values. Third, the authors
used only three hypothetical sets of parameter values to
generate hypothetical data, whereas we have contrasted
the models in literally dozens of independent tests.

To explore these differences, we replicated their anal-
yses with additional data sets. Given the similar predic-
tions of the FLMP and TSD, however, we eliminated the
latter from our horse races. The major concern in the field
is also the nature of the additive (linear) and nonadditive
models (e.g., Dunn, 2000), which is addressed by com-
parisons of LIM, WTAV, and FLMP. We also reanalyzed
two data sets from our laboratory and a recent experi-
ment carried out by Pitt (1995; Massaro & Oden, 1995).
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In addition to analyzing the actual results, we simulated
data from these experimental situations in order to as-
sess the validity of the RMSD and Bayes factor measures
of model selection.

REPLICATION AND EXTENSION
OF MYUNG AND PITT

In replicating and extending Myung and Pitt’s analy-
sis, data sets were generated using parameters that sim-
ulated five different response patterns in a 2 3 8 factor-

ial design experiment, with two response alternatives. In
the context of speech perception this would correspond
to choosing between the outcomes /ba/ or /da/, for exam-
ple. The first three parameter sets are taken directly from
Myung and Pitt’s (1997) simulation. The fourth and fifth
parameter sets were chosen to produce data sets that would
exhibit a pattern with either a small or large effect of the
two-level factor (Figure 1). Each parameter set was com-
posed of 10 parameter values (2 + 8) with the exception
of WTAV, which has a weight (.2426) as an additional
parameter (Massaro, 1998, pp. 59–60). Figure 1 shows the

Figure 1. Response patterns generated from five different sets of parameters with three models: FLMP, LIM, and WTAV (without
sampling variability or additional noise).
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five sets of response patterns for the three models. Prob-
abilities of choice outcomes were generated for each of
the 16 conditions by applying a given set of parameter
values to a given model. The probability of a subject se-
lecting one of the two responses (e.g., a /ba/) was calcu-
lated for each of the 16 experimental conditions as pre-
dicted by a particular model.

To generate data from these probabilities that simulate
actual human responses, sampling variability was intro-
duced using the binomial probability distribution. For each
of the 16 response probabilities, 20 simulated observa-
tions (uniformly random between 0 and 1) were gener-
ated that were compared with the probability for each
condition. If the simulated observation was less than the
probability for that condition, then that observation was
taken as a subject choosing /ba/; otherwise it would be
taken as a /da/ response. For example, in the FLMP case
mentioned earlier, the probability of choosing /ba/ in the
first condition was .934. If the generated random num-
ber was less than .934, then a /ba/ response was recorded
for that trial; otherwise a /da/ response was recorded.
After this was completed for all 20 observations, the pro-
portion of /da/ responses was taken for each condition to
produce the response characteristics of an individual sub-
ject. There were 100 simulated subjects using this method
for each of the three models for all five parameter sets.

The FLMP, LIM, and WTAV were each fit to the five
simulated data sets using both the Bayes factor and the
RMSD. The Bayes factor was evaluated using a Monte
Carlo simulation of the integral specified in Equation 5
(see also Myung & Pitt, 1997) and was numerically eval-
uated with 500,000 iterations. Software to perform this
calculation was kindly provided by Myung and Pitt. The
RMSD method used for model comparison relies on min-
imizing the RMSD value across the 16 conditions in the
experimental design.

Replicating the Myung and Pitt (1997) findings, Table 1
shows that the RMSD measures were biased in favor of
the FLMP. When the FLMP generated the results, the
RMSD selected the FLMP 93% of the time. When the
LIM generated the results, the RMSD selected the LIM
only about 12% of the time. Table 2 shows that, using the
Bayes factor, these values were 75% and 89%, respectively.
However, as we expected, the RMSD was less biased in
favor of the FLMP relative to the WTAV. When the WTAV
generated the results, the RMSD selected the WTAV
42% of the time. This still fell short of the Bayes factor,
which selected the WTAV 74% of the time. However,
Data Sets 4 and 5 demonstrate that the Bayes factor is
not infallible. The Bayes factor selected the WTAV as the
best model 92% of the time for Data Set 4 generated by
the FLMP. For Data Set 5, the WTAV failed to recover it-
self by a narrow margin, being beaten out by the FLMP
52% of the time. Although there is no obvious explana-
tion for these outcomes, they suggest some caution in the
use of the Bayes factor.

To summarize, the results, shown in Tables 1 and 2,
agree with Myung and Pitt (1997) by showing better model

T
ab

le
1

Su
m

m
ar

y 
of

 R
M

SD
 a

nd
 P

er
ce

nt
ag

e 
of

 M
od

el
 W

in
s

D
at

a 
G

en
er

at
ed

 F
ro

m
 P

ar
am

et
er

s

S
et

 1
Se

t 2
S

et
 3

S
et

 4
S

et
 5

M

M
od

el
 F

it
te

d
F

L
M

P
L

IM
W

TA
V

F
L

M
P

L
IM

W
TA

V
F

L
M

P
L

IM
W

TA
V

F
L

M
P

L
IM

W
TA

V
F

L
M

P
L

IM
W

TA
V

F
L

M
P

L
IM

W
T

A
V

F
L

M
P

0.
05

46
*

0.
05

46
0.

06
58

0.
03

14
*

0.
05

76
0.

06
01

0.
03

17
*

0.
06

18
0.

05
23

0.
06

01
0.

06
12

0.
05

28
0.

02
46

*
0.

04
56

*
0.

05
22

*
0.

04
05

0.
05

62
0.

05
66

%
 w

in
88

.0
53

.0
51

.0
10

0.
0

64
.0

52
.5

10
0.

0
58

.0
52

.0
77

.5
62

.0
65

.5
10

0.
0

74
.0

66
.0

93
.1

62
.2

57
.4

L
IM

0.
08

64
0.

06
36

0.
07

03
0.

11
95

0.
06

22
0.

07
92

0.
13

38
0.

06
59

0.
08

57
0.

09
10

0.
06

36
0.

08
76

0.
15

20
0.

05
71

0.
08

72
0.

11
65

0.
06

25
0.

08
20

%
 w

in
0.

0
20

.0
4.

5
0.

0
12

.5
0.

0
0.

0
10

.0
0.

0
0.

0
11

.5
0.

0
0.

0
5.

5
0.

0
0.

0
11

.9
0.

9
W

TA
V

0.
06

83
0.

06
34

0.
06

61
0.

11
14

0.
06

14
0.

06
15

0.
07

55
0.

06
40

0.
05

40
0.

06
29

0.
06

17
0.

05
39

0.
05

54
0.

05
59

0.
05

72
0.

07
47

0.
06

13
0.

05
85

%
 w

in
12

.0
27

.0
44

.5
0.

0
23

.5
47

.5
0.

0
32

.0
48

.0
22

.5
26

.5
34

.5
0.

0
20

.5
34

.0
6.

9
25

.9
41

.7

*p
<

 .0
5.



6 MASSARO, COHEN, CAMPBELL, AND RODRIGUEZ

recovery using Bayes factor than RMSD for the 2 3 8 fac-
torial design (Bayes factor achieving 10 hits and 1 false
alarm vs. RMSD with 4 hits and 2 false alarms). However,
the results were highly dependent on the parameter val-
ues chosen. The Bayes factor favored the WTAV for Set 4
data and favored the FLMP for Set 5 data.

A comparison of the curves in Figure 1 reveals a po-
tential limitation in simulating data based on equivalent
parameter values for the different models. As can be seen
in the f igure, equivalent parameters for the different
models can lead to very different hypothetical data sets,
and different parameters for the different models can
lead to fairly similar hypothetical data sets. For example,
the FLMP simulated data for Parameter Set 1 is most
similar to the WTAV simulated data for Parameter Set 2,
whereas the WTAV simulated data for Parameter Set 1 is
most similar to the FLMP simulated data for Parameter
Set 4. When equivalent parameters for the different
models are used, any observed differences in a model’s
ability to fit another model’s data set might be (at least
partially) due to the data set itself rather than the model.
We suggest that the best comparison of simulated data
from different models should be driven by the parameter
values of a model found in the fit to real data. We carry
out this technique in the next section.

EXTENSION TO PROTOTYPICAL DESIGNS
AND REAL DATA

In addition to simulation tests with hypothetical param-
eter values, we used parameter values from real data. Con-
veniently, we had already established two different data-
bases used for model testing in a bimodal speech perception
task.1 A typical manipulation is to vary the ambiguity of
each modality of information by systematically making
a continuum between two different syllables; that is, how
much it resembles each syllable. Synthetic speech (or at
least a sophisticated modification of natural speech) is
necessary to implement this manipulation. We used syn-
thetic speech to cross five levels of audible speech varying
between /ba/ and /da/ with five levels of visible speech
varying between the same alternatives. We also included
the unimodal test stimuli to implement the expanded fac-
torial design.

The properties of the auditory stimulus were varied to
give an auditory continuum between the syllables /ba/ and
/da/. In analogous fashion, properties of our animated face
were varied to give a continuum between visual /ba/ and
/da/. Five levels of audible speech varying between /ba/
and /da/ were crossed with five levels of visible speech
varying between the same alternatives. In addition, the
audible and visible speech also were presented alone for
a total of 25 + 5 + 5 5 35 independent stimulus condi-
tions. Six random sequences were determined by sam-
pling the 35 conditions without replacement giving six
different blocks of 35 trials. An experimental session con-
sisted of these six blocks preceded by six practice trials
and with a short break between sessions. There were four
sessions of testing for a total of 840 test trials (35 3 6 3 4).
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Thus there were 24 observations at each of the 35 unique
experimental conditions. Subjects were instructed to lis-
ten and to watch the speaker and to identify the syllable
as /ba/ or /da/. This experimental design was used with
82 subjects (Massaro, Cohen, Gesi, & Heredia, 1993; Mas-
saro, Cohen, & Smeele, 1995) and these results have also
served as a database for testing models of pattern recog-
nition (Massaro, 1998, chaps. 2 and 10).

The mean observed proportion of /da/ identifications
was computed for each subject for the 35 unimodal and
bimodal conditions. The points in Figure 2 give the ob-
served proportion of /da/ responses for a subject who can
be considered typical, for the auditory alone (left plot),
the bimodal (middle plot), and the visual alone (right plot)
conditions as a function of the five levels of the synthetic
auditory and visual speech varying between /ba/ and
/da/. For the unimodal plots, the degree of influence of a
modality is indicated by how much the response func-
tion changes across the continuum. By this criterion, both
the auditory and the visual sources of information had a
strong impact on the identification judgments. As illus-
trated in the left and right plots, the identification judg-
ments changed systematically with changes in the audible
and visible sources of information. The likelihood of a /da/
identification increased as the auditory speech changed
from /ba/ to /da/, and analogously for the visible speech.

For the bimodal results in the middle plot, the degree
of influence is again indexed by the changes in the func-
tions across the variable plotted on the x-axis, and by the
spread among the curves for the variable described in the

key or legend. By these criteria, both sources had a large
influence in the bimodal conditions. The curves across
changes in the auditory variable are relatively steep and
also spread out from one another with changes in the vi-
sual variable. Finally, the auditory and visual effects were
not additive in the bimodal condition, as demonstrated
by a significant auditory–visual interaction. The inter-
action is indexed by the change in the spread among the
curves across changes in the auditory variable. This re-
sult is consistently obtained in this type of experiment. It
means that the influence of one source of information is
greatest when the other source is neutral or ambiguous.

The FLMP gave a better description than the WTAV
model for 94% of these 82 subjects. To analyze the va-
lidity of the RMSD measure, we created a set of hypo-
thetical subjects who behaved according to either one
model or the other. This Monte Carlo simulation involved
creating 20 simulated subjects for each model for each
real subject. The parameter values that optimized the
model fit (using RMSD) for a given subject were used to
simulate hypothetical results conforming to the model’s
outcome. Thus, the simulated subject had some proba-
bility of response for each experimental condition. For
example, the predicted probability of a /da/ response for
the real subject might be .75 for a given condition. In our
two-alternative task, the probability of a /ba/ response
would consequently be .25. For each simulated subject,
a uniform random number between 0 and 1 is drawn. If
the number was less than or equal to .75, then the simu-
lated response would be a /da/. If the number was greater

Figure 2. The points give the observed proportion of /da/ identifications for a typical observer
in the auditory-alone (left panel), the factorial auditory–visual (center panel), and the visual-
alone (right panel) conditions as a function of the five levels of the synthetic auditory and visual
speech varying between /ba/ and /da/. The lines give the predictions of the FLMP.
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than .75, then the simulated response would be a /ba/.
This computation was carried out 24 times to simulate
the 24 observations in the experiment. Because the sim-
ulation uses the same number of trials, it should have the
same sampling variability as was present in the data set
being modeled. The same procedure was carried out for
each of the 35 conditions of the experiment, resulting in
a set of results corresponding to 1 simulated subject. Be-
cause any 1 simulated subject does not provide a good es-
timate of the variability, the procedure was used to cre-
ate 20 simulated subjects for each real subject. For these
simulated subjects, with the same sampling variability,
the RMSD measure was sufficient to recover the original
model that generated the data. For both data sets, the in-
correct model was recovered only 1% of the time.

To further test the validity of the RMSD measure, we
compared it against the Bayes factor for our prototypical
design. Similar to Myung and Pitt (1997), we generated
100 simulated subjects with the Monte Carlo simulation
procedure described above. Rather than choosing arbi-
trary parameter values, the mean parameter values for the
fit of the FLMP averaged across the 82 real subjects were
used to generate 100 FLMP subjects. Similarly, the mean
parameters for the fit of the WTAV were used to generate
100 WTAV subjects. These two groups of 100 data sets
each were then fit by both models with either the RMSD
measure or the Bayes factor. 

Replicating the earlier simulation, the results show
that the RMSD measure is quite sufficient for our proto-
typical design with 99% correct recovery for the FLMP
and WTAV models. The Bayes factor also did well by cor-
rectly recovering the FLMP and WTAV models for 98%
of the cases. These results indicate that both Bayes factor
and RMSD were adequate for selecting among these
competing models under these conditions. 

To directly insure that the Bayes factor does not revise
our conclusions in past work, we tested the FLMP against
the WTAV model using the Bayes factor for our proto-
typical design. These two models were fit to the observed
data of the 82 subjects. Similar to the RMSD results, the
Bayes factor showed that the FLMP gave a better fit of
the 82 subjects with an average marginal log likelihood
of 2 49.0 in contrast to a value of 2 57.2 for the WTAV.
Using the Bayes factor selection method, the FLMP fit
better than the WTAV for 80% of the subjects. Although
this difference was statistically significant, 80% wins is
still somewhat short of the 94% wins using the RMSD se-
lection method. Because of this discrepancy, we repeated
the Bayes factor with 5,000,000 rather than 500,000 it-
erations in the computation of the marginal likelihoods.
The FLMP now fit better than the WTAV for 94% of the
subjects. These results support the idea that the RMSD
measure yields similar conclusions to the Bayes factor
for the conditions of our prototypical design.

Figure 3. Observed (points) and predicted (lines) proportion of /ba/, /da/, /va/, /tha/, and /bda/
identifications for the visual-alone (leftmost plot), auditory-alone (second plot), and bimodal
(remaining plots) conditions as a function of the five levels of the synthetic auditory (AUD) and
visual (VIS) speech varying between /ba/ (B) and /da/ (D). The lines give the predictions of the
FLMP for the task with a fixed set of eight response alternatives.
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EIGHT-ALTERNATIVE TASK

We explored the same question when the number of
response alternatives was eight. We replicated our basic
5 3 5 expanded factorial design with eight rather than
just two response alternatives. This basic task was carried
out in four different experiments to give a total of 36 sub-
jects in this data set (Massaro, 1998, chap. 10). Each of
the 35 stimulus conditions was tested 12 times. It should
be noted that this experiment has only half the number of
observations per condition as the previous one, which is
important because goodness-of-fit is highly dependent
on sampling variability. Subjects were instructed to lis-
ten to and watch the talker, and to identify the syllable as
/ba/, /da/, /bda/, /dba/, /tha/, /va/, /ga/, or “other.” The
category “other” was to be used by the subject whenever
none of the other seven responses seem suitable. These
eight response alternatives were determined from pilot
studies in which the responses were not constrained.

Figure 3 gives the average proportion of responses
across the 36 participants. Although the test continua were
between /ba/ and /da/, we obtained several other response
alternatives. The most frequent responses were /ba/, /da/,
/va/, /tha/, and /bda/. The alternatives /dba/, /ga/, and
“other” were seldom used. There was a strong contribu-
tion of both audible and visible speech. The number of
/ba/ judgments increased toward the /ba/ end of the vis-
ible continuum. The /bda/ judgments occurred primarily
when a visible /ba/ was paired with an auditory syllable
from the /da/ end of the continuum. Visible /da/ articu-
lations increased the likelihood of /da/, /tha/, and /va/
responses. The visual information influenced the likeli-
hood of a /va/ judgment primarily at the /ba/ end of the
auditory continuum. The visual /ba/ endpoint stimulus de-
creased the number of /va/ responses, whereas the other
four visual levels increased the number of /va/ judg-
ments at the /ba/ end of the auditory continuum. These
judgments reflect the contribution of both auditory and
visual speech, even when subjects are permitted a larger
permissible set of response alternatives.

The FLMP is tested against results with multiple re-
sponse alternatives in the same manner as with just two
response alternatives (Massaro, 1998, pp. 184–186). With
more than two alternatives, it is necessary to estimate a
unique parameter to represent the degree to which each
source of information supports each alternative. The de-
gree to which the auditory speech supports an alternative
such as /ba/ would be aBi, whereas vGj would correspond
to the visual support for the alternative /g/. The total sup-
port for the alternative /ba/ would be

(6)

The support is computed in a similar manner for the other
alternatives. The probability of a particular response such
as /ba/ would be

(7)

where åSr is the sum of the total support values over all
r possible alternatives.

The fit of this model requires five a i and five vj pa-
rameters for each of the eight response alternatives, for a
total of 80 free parameters. This might seem like a large
amount, but we have increased the number of data points
to be predicted by the same factor. We are now predicting
35 3 8 5 280 data points. The fit of this model to each
of the 36 subjects produced an average RMSD of .0507.
Figure 3 also gives the average of the predicted results.
To assess whether the FLMP maintains its advantage with
multiple response alternatives, we compared this fit with
that of a single-channel model (or equivalently, a weighted
averaging model). The fit of this competing model was
about two times poorer, giving an RMSD of .1049.

For these 36 participants, the FLMP gave a better de-
scription than the WTAV model for 97% of the real sub-
jects. To analyze the validity of the RMSD measure, we
repeated the Monte Carlo simulations by creating simu-
lated subjects for each real subject as in the two-alternative
task. Each simulated subject had some probability of re-
sponse for each experimental condition that is set equal
to the predicted proportion of response in a real subject.
In this case, there are eight predicted probabilities that sum
to 1 for each experimental condition. This computation
was carried out 12 times to simulate the 12 observations
in the experiment. By using the same number of trials,
the simulation has the same sampling variability as was
present in the data set being modeled. The same proce-
dure was carried out for each of the 35 conditions of the
experiment, resulting in a set of results corresponding to
1 simulated subject. As in the two-alternative task, we
created 20 simulated subjects. For these simulated partic-
ipants, the RMSD measure was sufficient to recover the
original model that generated the data. For data sets gen-
erated from both the FLMP and WTAV, the incorrect
model was recovered only about 1% of the time.

We also evaluated the FLMP against the WTAV model
using the Bayes factor. For the two-alternative task, the
Bayes factor is performed by calculating the binomial re-
sponse probabilities for each set of parameter values
given some N number of observations. Since this exper-
iment allowed for eight response alternatives, we calcu-
lated multinomial response probabilities instead of bi-
nomial using the following equation:

(8)

where n is the number of observations, r is the number of
response alternatives, xi is the number of choices for re-
sponse i, and pi is the observed probability of response i.

The observed responses of the 36 subjects served as
the data for the Bayes factor. The FLMP fit with a log like-
lihood of 2 163.5, while the WTAV model performed
worse, with a log likelihood of 2 180.2. Using the Bayes
factor, the FLMP fit 97% of the subjects better than the
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WTAV model. These results are consistent with those ob-
tained with the RMSD measure and further support our
claim that the RMSD is an accurate measure of model
performance for our prototypical design. These results also
extend this conclusion to designs with more than two re-
sponse alternatives.

PITT (1995) DATA

Pitt (1995) studied the joint influence of phonological
information and lexical context in an experimental par-
adigm developed by Ganong (1980). In this task, a speech
continuum is made between two alternatives, and the
contextual information supports one alternative or the
other. The initial consonant of the CVC syllable was var-
ied in six steps between /g/ and /k/. The following con-
text was either /Ift/ or /Is/. The context /Ift / favors or
supports initial /g/ because gift is a word whereas kift is
not. Similarly, the context /Is/ favors or supports initial
/k/ because kiss is a word whereas giss is not. He improved
on earlier studies by collecting enough observations to
allow us to perform a subject-by-subject evaluation of
the ability of specific models of language processing to
account for the results. Previous tests of models using
this task have been primarily dependent on group aver-
ages which may not be representative of the individuals
that make up the averages. Each model was applied to
the identification results of the 12 individual subjects in
Pitt’s Experiment 3a, for which the greatest number of

observations (104) were obtained for each data point for
each subject. The points in Figure 4 give the observed re-
sults for each of the 12 subjects in the task. For most of
the subjects, the individual results tend to resemble the
average results reported by Pitt and earlier investigators.
Ten of the 12 subjects were influenced by lexical context
in the appropriate direction. Subject 1 gave an inverse con-
text effect and Subject 7 was not influenced by context.

According to the FLMP, both the bottom-up informa-
tion from the initial speech segment and the top-down
context are evaluated and integrated. If si is the degree of
support for the voiced alternative given by the initial seg-
ment and cj is the support given by the following con-
text, the total support for the voiced alternative is

S(voiced |SiCj) 5 si 3 cj , (9)

The support for the voiceless alternative would be

S(voiceless |SiCj) 5 (12 si) 3 (1 2 cj). (10)

The predicted probability of a voiced response is simply

P(voiced |SiCj) 5

. (11)

In producing predictions for the FLMP, it is necessary
to estimate parameter values for each level of each ex-
perimental factor. The initial consonant was varied along
six steps between /g/ and /k/, and the following context was

S(voiced |SiCj)

S(voiced |SiCj) + S(voiceless |Si Cj)

Figure 4. Observed (points) and FLMP’s predictions (lines) of /g/ identifications for FT and
S contexts as a function of the speech information of the initial consonant. Results from Pitt’s
(1995) Experiment 3a.
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either /Ift/ or /Is/. Thus, there were six levels of bottom-
up phonological information si and two contexts cj . A
free parameter is necessary for each level of bottom-up
information, but it is reasonable to assume that the con-
textual support given by /Is/ is one minus the lexical sup-
port given by /Ift/, so that only one value of cj needs to be
estimated. Thus, seven free parameters are used to pre-
dict the 12 independent data points: six values of si and
1 value of cj .

The lines in Figure 4 also give the predictions of the
FLMP. As can be seen in the figure, the model generally
provides a good description of the results of this study.
The RMSD between predicted and observed results is
.017 on the average across all 12 independent fits. For
the 10 subjects showing appropriate context effects, the
RMSD ranges from .003 to .045 with a median of .007.
Thus, for each of these individuals, the model captures the
observed interaction between phonological information
and lexical context: The effect of context was greater to
the extent that the phonological information was ambig-
uous. This yields a pattern of curves in the shape of an
American football, which is a trademark of the FLMP.

To further confirm that the FLMP was not overfitting
data only due to its putative flexibility, an analysis of
data was performed using the Bayes factor. Replicating
the RMSD analysis, the Bayes factor decided in favor of
the FLMP for 11 of the 12 subjects, a highly statistically
significant result (Table 3). The FLMP gave a better fit
of the observed results with a marginal log likelihood of
2 19.9, whereas the marginal log likelihood of the WTAV
was 2 31.6.

Subject 1 was the only subject whose context effect was
in the opposite direction relative to the other subjects (and
opposite to reasonable expectation). The FLMP gave a
very poor description of this subject’s results, yielding an
RMSD of .066. The Bayes factor also selected the WTAV
over the FLMP as the better fitting model. The fact that
the FLMP did not provide a good fit to this subject’s data
is evidence that the model is not so flexible that it can fit
anything. The failure of the FLMP in describing these
anomalous results supports our argument that the FLMP

does not have an excessive flexibility or some other “un-
fair” advantage.

BENCHMARK CRITERION FOR
GOODNESS-OF-FIT

We cannot expect our models to predict the proportion
of judgments exactly. The reason is sampling variability:
A finite sample cannot be expected to match the actual
probability of an event. Even if we knew the true pre-
dicted probability for some experimental condition, we
could not expect to observe this probability in actual prac-
tice. Thus, it is necessary to know the sampling variabil-
ity in order to evaluate goodness-of-fit. There are meth-
ods to determine how accurate the prediction has to be to
be considered correct. These involve a computation of
the variability in our predictions, in terms of a benchmark
RMSD. This makes transparent the pivotal role played
by RMSD. We have seen how the RMSD provides a mea-
sure of the deviation of a model’s predictions from a set
of observed results. The benchmark RMSD gives an anal-
ogous measure of the deviation between a model’s predic-
tions and data that were actually generated by the model.

With just two response outcomes, there is a computa-
tion that allows us to estimate sampling variability di-
rectly. This direct estimation is given by a closed-form
equation based on binomial variance. Binomial variance
is simply the expected variability for two-outcome ex-
periments and is a function of the probability of each out-
come and the number of repeated observations. The prob-
ability of each outcome is estimated from the observed
response proportions, and the number of observations is
equal to the number of trials. The binomial variance must
be averaged over all conditions of the experiment, and its
square root is the benchmark RMSD (see Massaro, 1998,
chap. 10). The benchmark RMSD can be computed by
either a closed-form expression when there are two re-
sponse alternatives or by Monte Carlo simulation for three
or more response alternatives.

In earlier simulations of the two-alternative task (Mas-
saro, 1998), we found that the fit of the FLMP fell slightly
shy of the benchmark. However, the addition of decision
noise (noise added at the response selection stage) with
a standard deviation of .1 brought the RMSD for the FLMP
in line with what would be expected from the data being
generated by this model. It is therefore important to de-
termine whether our conclusions about model selection
hold up when additional noise is added to the model fits.
When this amount of noise was added to simulated re-
sults, the WTAV model gave the best fit to data simulated
by this model for 93% of the simulated subjects. The
FLMP gave the best fit to data simulated by this model
for 96% of the simulated subjects. Thus, the RMSD mea-
sure for model selection doesn’t seem to be problematic
for our prototypical experimental situations.

The procedure of computing benchmarks and adding
noise in the model fits revealed a severe limitation in the
WTAV. In the two-alternative task, no amount of noise

Table 3
RMSD and Log Marginal Likelihood Approximations

of the Bayes Factor for Pitt (1995) Data

RMSD Log Marginal Likelihood

Subject FLMP WTAV FLMP WTAV

1 0.0662 0.0445 2 31.85 2 28.08
2 0.0047 0.0286 2 16.62 2 30.74
3 0.0058 0.0494 2 20.92 2 29.64
4 0.0057 0.0311 2 14.46 2 26.90
5 0.0083 0.0198 2 15.66 2 19.84
6 0.0450 0.0745 2 24.78 2 30.10
7 0.0210 0.0196 2 17.73 2 26.26
8 0.0029 0.1182 2 21.06 2 53.85
9 0.0183 0.0593 2 17.59 2 33.51

10 0.0093 0.0402 2 19.77 2 24.29
11 0.0073 0.0808 2 19.16 2 32.14
12 0.0051 0.1025 2 19.71 2 43.53

Average 0.0166 0.0557 2 19.94 2 31.57
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could be added that could bring the WTAV in line with
that expected if indeed the WTAV was the correct model
that generated the results (Massaro, 1998, chap. 10).

When additional variability was added to the results
in the eight-alternative task, the models continued to be
recoverable. In earlier simulations (Massaro, 1998), we
found that the addition of decision noise (noise added at
the response selection stage) with a standard deviation
of .012 brought the RMSD for the FLMP in line with
what would be expected from the data being generated
by this model. When this amount of noise was added to
simulated results, the FLMP gave the best fit to data sim-
ulated by FLMP for 99.6% of the simulated subjects. For
the WTAV, .118, or over nine times as much noise as re-
quired for the FLMP, was necessary to bring the RMSD
in line with the observed RMSD. When this amount of
noise was added to simulated results, the WTAV model
gave the best fit to data simulated by the WTAV for 95.6%
of the simulated subjects. Clearly, the RMSD measure is
capable of recovering the “correct” model in our proto-
typical experimental situations. Thus, the RMSD mea-
sure for model selection doesn’t seem to be problematic
for our prototypical experimental situations.

For a final comparison of the RMSD and Bayes factor,
we evaluated model recovery with increasingly noisy
data. We expect that with increasing noise, model recov-
ery will decline monotonically for both the FLMP and
WTAV models. Eighty-two simulated subjects were cre-
ated by Monte Carlo simulation. Rather than using the
average parameter values, we used the parameter values
of each real subject to generate each simulated subject.
Gaussian distributed noise was added during simulation
by adding a noise value to the sampled probability. The
noise value was created by randomly selecting a number
from a Gaussian distribution with a standard deviation
at some given noise level. There were seven noise levels
given in standard deviations: 0.00, 0.05, 0.10, 0.15, 0.20,
0.40, and 0.80. Seven sets of FLMP data and seven sets
of WTAV data were generated using this method and
then were cross-fit by each model using RMSD and
Bayes factor.

Table 4 shows the average RMSD values for the RMSD
method and the average marginal log likelihoods using
Bayes factor. The results for the RMSDs indicate, as ex-
pected, model recovery declines for both the FLMP and
WTAV models as the data become more noisy. The re-
sults for the Bayes factor show that model recovery de-
clined for the FLMP, but that model recovery for the
WTAV model actually levels off at a large value of 88%.
If this was the result of the superior model recovery abil-
ity of Bayes factor, then why isn’t the FLMP also recov-
ered at high levels of noise? Our interpretation is that
Bayes factor is biased for less flexible models. Models
are less flexible when their predicted results do not change
much with changes in their parameter values. Given the
lack of meaningful data in the noisy conditions the good-
ness-of-fit (actually, poorness-of-f it as indexed by the
large RMSDs) for both models is about the same. How-

ever, Bayes factor penalizes the FLMP for being more
flexible. Therefore, care should be taken to ensure that the
data are not too noisy when using Bayes factor because
an unfair advantage will be given to simple (less flexible)
models.

To clarify the results and our interpretation, we com-
puted sensitivity and criterion values using the theory of
signal detectability, even though we are not making any
strong claims about the nature of the underlying distrib-
utions. This analysis is simply being used to measure
how well a model selection procedure distinguishes the
two models and whether there is a bias to favor one of the
models over the other. Table 5 gives the d ¢ values com-
puted from the hit and false alarm rates. As can be seen
in the table, the d ¢s decrease for both types of model se-
lection as the data become more noisy. Furthermore, the
overall sensitivity of both methods of model selection is
about the same. However, RMSD is better able to dis-
criminate between the two different models with low noise
and less able to discriminate the two models with high
noise. The Bayes factor is better able to discriminate the
two models when the data are very noisy.

The beta values are also shown in Table 5 and indicate
the degree to which each model selection procedure fa-
vors one model over the other. Beta values less than

Table 4
Summary of Average RMSD Values, Log Marginal

Likelihood Approximations, and Percentage of Wins
for Each Model for RMSD and Log Marginal Likelihood

(Bayes Factor) as a Function of Noise Level

Data Generated With Decision Noise

RMSD Log Marginal Likelihood

Noise (SD) Model FLMP WTAV FLMP WTAV

0.00 FLMP 0.0367 0.0864 2 35.9 2 41.9
% win 99 1 96 3
WTAV 0.1085 0.0530 2 41.0 2 37.5
% win 1 99 4 97

0.05 FLMP 0.0524 0.0920 2 38.1 2 43.4
% win 98 2 95 4
WTAV 0.1127 0.0650 2 43.1 2 38.1
% win 2 98 5 96

0.10 FLMP 0.0767 0.1071 2 41.9 2 46.0
% win 96 6 89 6
WTAV 0.1233 0.0881 2 45.6 2 40.4
% win 4 94 11 94

0.15 FLMP 0.1021 0.1267 2 44.8 2 49.3
% win 94 13 78 11
WTAV 0.1384 0.1137 2 48.9 2 43.2
% win 6 87 22 89

0.20 FLMP 0.1273 0.1478 2 48.9 2 52.6
% win 88 22 78 11
WTAV 0.1558 0.1390 2 52.8 2 46.5
% win 12 78 22 89

0.40 FLMP 0.2150 0.2278 2 66.7 2 70.1
% win 78 47 62 12
WTAV 0.2292 0.2281 2 70.9 2 63.0
% win 22 53 38 88

0.80 FLMP 0.3089 0.3141 2 91.9 2 95.2
% win 66 42 61 12
WTAV 0.3173 0.3192 2 96.9 2 86.4
% win 34 58 39 88
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1 favor the FLMP and beta values greater than 1 favor
the WTAV. As shown in Table 4, as the noise increases and
the d ¢s decrease, the RMSD method tends to favor the
more flexible FLMP and the Bayes factor tends to favor
the less flexible model.

One argument against the use of RMSD is that its mea-
sure of discrepancy between the observed and predicted
probability values is necessarily linear even though the
expected variance across probability is nonlinear. In a
two-alternative task, for example, the expected variance
is greatest for probabilities of .5 and decreases monoto-
nically as the probabilities move to either 0 or 1. The
RMSD (see Equation 3) simply adds the squared discrep-
ancies without taking into account this nonlinearity. The
computed RMSD is necessarily influenced to a greater
extent by the conditions with the more ambiguous prob-
abilities than the unambiguous probabilities. This is not
a major problem if the goal is simply to contrast differ-
ent models against the same observed probabilities. Be-
cause the different models are being tested against the
same observed probabilities, the bias in the RMSD mea-
sure is the same across the different models. For the abso-
lute assessment of model accuracy, we have the benchmark
RMSD. Conveniently, the benchmark RMSD provides a
standard that overcomes this limitation in the computa-
tion of the observed RMSD. That is, the benchmark RMSD
is based on the same observed probabilities and there-
fore provides a direct and valid comparison for the ob-
served RMSD.

A TEST OF NEWTON’S LAW

We provide one further illustration of our hypothesis
that one model selection procedure is not always better
than another. As we have argued, the Bayes factor might
unduly favor simple but incorrect models. A data set was
generated by assuming the gravitational force in Newtons
(N) was measured between two large objects (.98 and
.97 kg) and eight objects of varying masses (.99, .85, .70,
.60, .40, .30, .15, and .01 kg) for a total of 2 3 8 5 16
measurements. Each of these masses was a parameter
value resulting in 2 + 8 5 10 parameters for each model.
For the weighted additive version of Newton’s law
(WNAV), an additional weight value was included that
had a value of 1.0. The 16 measurements were sampled 40

times each to produce a unique data set. This sampling
was repeated 100 times to create 100 data sets. Finally, 
for each model the universal gravitational constant (G)
was

and the distance between objects (d ) was 8.17 3 1026 m
or .008 mm, resulting in a measured force (F) always be-
tween 0 and 1.0. Newton’s law was calculated according
to the following:

(12)

where M is the mass of the two large objects and m is the
mass of the eight objects. Newton’s law was compared
with a simple weighted additive version of Newton’s law:

(13)

where w is a weight between 0 and 1.0.
Newton’s law (NMP) and a simple weighted additive

version of Newton’s law (WNAV) were each fit to the
simulated data set using both the Bayesian factor and the
RMSD. The Bayes factor was evaluated using a Monte
Carlo simulation of the integral specified in Equation 5
of Myung and Pitt (1997) and was numerically evaluated
with 1,000,000 iterations, in the same manner as our pre-
vious tests. The RMSD method used for model compar-
ison relies on minimizing the RMSD value across the 16
conditions. Table 6 gives the outcomes of the Bayes fac-
tor and RMSD selection procedures. The Bayes factor
erroneously favored the WNAV over the true NMP 78%
of the time ( p < .05). The RMSD criterion, on the other
hand, always recovered the true NMP. The RMSD erred
in the opposite direction, significantly favoring the NMP
for data generated by the WNAV. Thus, this example fur-
ther reinforces our conclusion that RMSD is biased to-
ward the more flexible model (which we already knew)
and that the Bayes factor may be biased toward the less
flexible model (which was not previously known). Al-
though an unbiased model selection method is the goal
and may yet be devised, multiple methods of selection
should be used in theory testing.
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Table 5
Summary of d ¢ Values for RMSD and

Log Marginal Likelihood (Bayes Factor)

RMSD Bayes Factor

Noise Level d ¢ beta d ¢ beta

0.00 4.65 1.00 3.63 1.27
0.05 4.11 1.00 3.40 1.20
0.10 3.31 0.72 2.78 1.58
0.15 2.68 0.56 2.00 1.58
0.20 1.95 0.68 2.00 1.5
0.40 0.85 0.74 1.48 1.90
0.80 0.61 0.94 1.45 1.92
M 2.59 0.81 2.39 1.56

Table 6
Summary of Log Marginal Likelihood Approximations of the

Bayes Factor and RMSD for Newton’s Law (NMP) and a
Simple Weighted Additive Version of Newton’s Law (WNAV)

Data Generated From Parameters

Bayes Factor RMSD

Model Fitted NMP WNAV NMP WNAV

NMP 223.19 230.69 .0517* .0154*
% win 22 0 100 90
WNAV 213.81* 213.81* .0764 .0167
% win 78 100 0 10

*p < .05.
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ISSUE OF FREE PARAMETERS

Some modeling traditions place great weight on de-
riving a priori constraints on a model’s free parameters.
Earlier advocates of the localist connectionist modeling
had great faith in specifying the parameter values before
any data were observed. According to Grainger and Jacobs
(1998), the state of the art today would involve large-
scale parameter-fitting procedures to test among differ-
ent models. Frauenfelder and Peters (1998) adopted a pa-
rameter estimation routine to obtain a better match to
existing data. In defense of this action, they said that the
new parameter set was chosen so that it did not change
the basic behavioral pattern of the TRACE model. How-
ever, it is important to determine what one means by the
basic behavioral pattern of a given model. In principle,
if a model has a set of free parameters, then any param-
eter values within that set should represent the “basic be-
havioral pattern” of the model. In FLMP, for example,
there are no parameter values that would produce a dif-
ferent set of behavioral patterns than those that have
been assumed.

We cannot expect a model’s predictions of behavior to
be exact or even very accurate without first taking into ac-
count what results are being predicted. As an example, we
cannot know exactly how often a given person will iden-
tify one of the visible speech syllables as a particular al-
ternative. Individual subjects give similar but not identi-

cal results for the same experiment. We can know that
one syllable might be more likely to be identified as a /ba/
than another, but we do not know how much more. This
uncertainty would preclude the quantitative test of mod-
els if we were not able to determine the values of (estimate)
free parameters.

The idea of free parameters has received a steady stream
of bad press. Miller, Galanter, and Pribram (1960, p. 182)
remarked that “a good scientist can draw an elephant
with three parameters, and with four he can tie a knot in
its tail.” Although we can grant that too many free pa-
rameters elevate a model beyond falsifiability, they are
still necessary for accurate prediction. To convince the
reader that prediction is not possible without free pa-
rameters, we carried out the following exercise. The ar-
gument is that we cannot make a priori predictions of
how a given person will categorize a given source of in-
formation. To illustrate this, we computed the average
probability of a /da/ response, P(/da/), for each subject to
each of our test conditions. Consider the third level of the
unimodal auditory stimulus, A3, and the third level of the
unimodal visual stimulus, V3. Figure 5 plots P(/da/) for
each of our 82 subjects to the unimodal V3 as a function
of P(/da/) to the unimodal A3.

As can be seen in the figure, the response probabilities
are distributed across the complete range of possible val-
ues for both A3 and V3. Figure 5 also shows that there is
very little correlation between the two modalities. This

Figure 5. The probability of a /da/ response for each of 82 subjects to V3 as a
function of their probability of a /da/ response to A3.
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result replicates in another way the earlier finding of in-
dependence between auditory and visual speech recog-
nition tasks (Raney, Dancer, & Bradley, 1984). Knowing
a person’s performance in one modality will not help pre-
dict his/her performance in the other modality. The conclu-
sion from this exercise is that we cannot have a parameter-
free model of speech performance. Given this variability
across subjects, we cannot hope to predict a person’s judg-
ments without some type of parameter estimation based
on that person’s actual results. Even traditional psycho-
physical theories require free parameters. Similarly, speech
scientists cannot be expected to predict categorization of
a speech stimulus even if all of its physical properties are
known. This outcome also is consistent with our pro-
posal (Massaro, 1998, chap. 11) that average results can
be meaningless and that theories should be aimed at in-
dividual performance. Most importantly, it might seem
unreasonable that a model should be handicapped for
flexibility when this flexibility is needed to account for
individual variability.

Some researchers are uncomfortable with any model
the predictions of which require free parameters (Grant,
Walden, & Seitz, 1998). As a solution for the variability
in Figure 5, they might propose that a subject could be
given two independent tests. Parameters could be esti-
mated from the first test and used to predict the results
of the second (Dijkstra & de Smedt, 1996). This is not an
unreasonable suggestion as long as it is realized that the
parameter estimates will not be as accurate as they would
be when estimated from all of the data being predicted.
This method of testing a model against new results based
on parameter estimates from old results must necessarily
give a poorer description of performance than the case in
which all of the observations being predicted are used to
estimate the free parameters. Physical theories are some-
times used as ideal examples of prediction: Edmund Hal-
ley was able to predict the location of his comet over
100 years later, for example. What is forgotten, however,
is that he had a very reliable measure of the comet’s lo-
cation at an earlier time in a highly deterministic physi-
cal system. The recent decades of Chaos have left even
physical scientists less sanguine about chance and pre-
diction (Casti, 1994; Waldrop, 1992).

AN ANALOGY WITH NEWTON’S LAW

As an attempt to clarify the role of predictability and
the use of free parameters, we draw an analogy between
the FLMP and Newton’s Law of Universal Gravitation.
His law states that the gravitational force (F) between
any two bodies of mass m and M, separated by a distance
d, is directly proportional to the product of the masses
and inversely with the square of their distance.

(14)

where G is the universal gravitational constant.

In the FLMP, the bimodal performance is some func-
tion of the product of the information of the auditory and
visual sources presented separately. For two choice alter-
natives, the response information on bimodal trials, bij ,
is given by

(15)

where i and j index the levels of auditory and visual in-
formation, respectively.

In the same way that Newton requires information
about the masses (and their distance) in order to predict
the gravitational attraction, the FLMP requires informa-
tion about the information values of the auditory and vi-
sual sources in order to predict the bimodal outcome. One
cannot determine both of these types of values without
some form of prior measurement. In physics, the masses
are measured, whereas in psychophysics, some psycho-
physical or psychological test can be carried out to de-
termine information values.

We agree with Myung and Pitt (1997) and others that
model flexibility is an important dimension of predictive
models and one that must be assessed in choosing among
competing models. The Bayes factor method of model
selection is one specific technique for assessing flexi-
bility and handicapping models accordingly. To gain fur-
ther insight into this method, we can extend our analogy
in physics even further to consider various techniques of
model testing and selection. In the same manner that the
LIM has been proposed as an alternative to the FLMP,
we can compose an alternative to Newton’s law in which
the two masses are added rather than multiplied.

(16)

where G is the universal gravitational constant.
If we generalize from the Bayesian model selection re-

sults of Myung and Pitt (1997) for the FLMP and the
WTAV, we might propose that Newton’s law is more com-
plex than its alternative. If we adhered to the Bayes fac-
tor method of model selection, goodness-of-fit would be
measured across the entire range of possible parameter
values for m and M. For illustrative purposes, we could
even assume that the two masses will always be between
0 and 1 (which extends the parallel even further). We can
impose binomial sampling variability on the measure-
ment of the masses and replicate the model selection sim-
ulations. We expect that the Bayes factor would find that
Newton’s law is more complex than the linear alternative.
On the other hand, using a goodness-of-fit across the en-
tire range of possible parameter values for m and M is not
necessarily justified.

An alternative method of assessing model flexibility
has been proposed by Dunn (2000), which measures the
extent to which the prediction range of a model extends
into the potential outcome space. Although this analysis
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seems to run counter to the results obtained by the Bayes
factor method of model selection, it is not necessarily so.
The Bayes factor measures the prediction range across
the parameter space of each model, whereas Dunn’s method
selects the data points in the outcome space completely
at random. In our view, Dunn’s work not only supports
our earlier evidence that the FLMP is not inherently ca-
pable of fitting random data, but it also adds to the ar-
senal of means for evaluating model flexibility.

Not surprisingly, we observed that the Bayes factor is
not a panacea for model selection. As described, it is
grounded in the unsubstantiated assumption that an ap-
propriate criterion for model selection is what we have
called parameter invariance—the ability to predict an
observed data set across changes in the model’s space of
parameter values. In speech perception, we have seen that
individual differences in information require the full range
of parameter values and that it might not be reasonable
to demand that a model give a good fit to a data set regard-
less of the actual parameter values that are used.

SUMMARY AND CONCLUSIONS

It should be noted that LIM refers to different models
across the different assessments of flexibility. Li et al.
(1996) and Dunn (2000) evaluated the FLMP and LIM in
the context of the models defined by Massaro and Cohen
(1993) for the four-factor experiment of Bruno and Cut-
ting (1988). In these two cases, the LIM was a true addi-
tive four-factor model with a background source of in-
formation. The LIM used by Myung and Pitt (1997) and
in the current simulations and tests was an unweighted
averaging model.

Generalizing across all of the various analyses, a work-
ing hypothesis is that the FLMP is somewhat more flex-
ible than LIM when evaluated in terms the change in a
model’s prediction due to variations in the model’s param-
eters. This flexibility is taken into account in the Bayes
factor method of model selection. On the other hand, The
FLMP does not appear to have a meaningful advantage
over the LIM in predicting random or arbitrary data. For
future practice, investigators should recognize that the
FLMP does have greater flexibility than the LIM and this
should be accounted for in model comparisons. Either
simulations such as those carried out in the present paper
or the Bayes factor are reasonable methods for evaluation
of this flexibility. Our analyses also revealed that the FLMP
is not much more flexible than the WTAV. The extra pa-
rameter of the WTAV relative to the LIM appears to bring
the linear model in the range of flexibility of the FLMP.

The adequacy of the Bayes factor is in retrospect eas-
ily understood. If two models give an equally good de-
scription of a data set, then the simpler (less flexible) one
will be preferred. This outcome is reasonable. If the data
set is highly variable, however, the same two models will
give an equally poor description of a data set. Using the
Bayes factor, the simpler (less flexible) one will be pre-

ferred. However, this conclusion could be wrong because
the data themselves cannot distinguish among the mod-
els, and handicapping for flexibility could work against
the correct model. Of course, the bias we have shown for
the Bayes factor should not be generalized beyond the
conditions we have investigated.

As to be expected from the scientific process, there are
no easy answers. In a recent paper, Reinhard Selton (1998),
a 1994 Nobel laureate in Economics, formulized and jus-
tified a quadratic scoring rule over a logarithmic scoring
rule. The former is essentially equivalent to RMSD whereas
the latter is closely related to maximum likelihood (MLE).
The logarithmic scoring rule is too sensitive to small dif-
ferences between very small probabilities. This reference
is not meant to argue for RMSD over MLE or over Bayes
factor, but to simply highlight, as in all things, there is no
holy grail of model evaluation for scientific inquiry. As
elegantly concluded by Myung and Pitt (1997), the use of
judgment is central to model selection. Extending their
advice, we propose that investigators should make use of
as many techniques as feasible to provide converging ev-
idence for the selection of one model over another. More
specifically, both RMSD and the Bayes factor can be used
as independent metrics of model selection. Inconsistent
outcomes should provide a strong caveat for the validity of
selecting one model over another.
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NOTE

1. These data, corresponding model f its, parameter values, and
RMSDs are available at http://mambo.ucsc.edu/psl/8236/.

(Manuscript received August 25, 1999;
revision accepted for publication April 11, 2000.)

http://mambo.ucsc.edu/psl/8236/
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0749-596X^28^2927L.213[aid=57288]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-4966^28^2960L.704[aid=302892]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-3445^28^29122L.115[aid=1118874]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0095-4470^28^2921L.445[aid=948264]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0090-502X^28^2923L.113[aid=1118875]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0033-295X^28^2997L.225[aid=293950]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0278-7393^28^2921L.1053[aid=1118876]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0278-7393^28^2921L.1037[aid=1118877]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1386-4157^28^291L.43[aid=1118879]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0096-3445^28^29122L.115[aid=1118874]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0095-4470^28^2921L.445[aid=948264]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0278-7393^28^2921L.1053[aid=1118876]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0278-7393^28^2921L.1037[aid=1118877]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0278-7393^28^2921L.1053[aid=1118876]

