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Abstract
A Cyberware laser scan of DWM was made, Baldi’s
generic morphology was mapped into the form of DWM,
this head was trained on real data recorded with
Optotrak LED markers, and the quality of its speech was
evaluated. Participants were asked to recognize auditory
sentences presented alone in noise, aligned with the
newly trained synthetic textured mapped target face, or
the original natural face. There was a significant
advantage when the noisy auditory sentence was paired
with either head, with the synthetic textured mapped
target face giving as much of an improvement as the
original recordings of the natural face.

1. Introduction
Important goals for the application of talking heads are to
have a large gallery of possible agents and to have highly
intelligible and realistic synthetic visible speech. Our
development of visible speech synthesis is based on facial
animation of a single canonical face, called Baldi (see
Figure 1; Massaro, 1998; Massaro, 2002). Although the
synthesis, parameter control, coarticulation scheme, and
rendering engine are specific to Baldi, we have developed
software to reshape our canonical face to match various
target facial models. To achieve realistic and accurate
synthesis, we use measurements of facial, lip, and tongue
movements during speech production to optimize both the
static and dynamic accuracy of the visible speech. This
optimization process is called minimization because we
seek to minimize the error between the empirical
observations of real human speech and the speech
produced by our synthetic talker (Cohen, Beskow, &
Massaro, 1998; Cohen, Clark, & Massaro, 2001).

2. Improving the Static Model
A Cyberware 3D laser scanning system is used to enroll
new citizens in our gallery of talking heads. To illustrate
this procedure, we describe how a Cyberware laser scan
of DWM was made, how Baldi’s generic morphology was
mapped into the form of DWM, how this head was trained
on real data, and how the quality of its speech was
evaluated.  A laser scan of a new target head produces a

very high polygon count representation. Figure 2 shows a
high-resolution texture mapped Cyberware scan of DWM,
and Figure 3 shows the underlying polygon mesh. Rather
than trying to animate this high-resolution head (which is
impossible to do in real-time with current hardware), our
software uses these data to reshape our canonical head to
take on the shape of the new target head. In this approach,
a human operator marks corresponding facial landmarks
on both the laser scan head (Figure 4) and the generic
Baldi head (Figure 5). Our canonical head is then warped
until it assumes as closely as possible the shape of the
target head, with the additional constraint that the
landmarks of the canonical face move to positions
corresponding to those on the target face.

Figure 1. Picture of Talker DWM with Optotrak
LED markers and our canonical head, Baldi.

This morphing algorithm is based on the work of Kent,
Carlson, and Parent (1992). In this approach, all the
triangles making up the source and target models are
projected on a unit sphere centered at the origin. The
models must be convex or star shaped so that there is at
least one point within the model from where all vertices of
all triangles are visible. This can be confirmed by a
separate vertex visibility test procedure that checks for
this requirement. If a model is non-convex or non-star
shaped, then it may be necessary to ignore or modify these
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sections of the model. In order to meet this requirement,
portions of the ears, eyes, and lips are handled separately
from the rest of Baldi’s head.

Figure 2. High-resolution texture mapped
Cyberware laser scan.

For the main portion of the head, we first translate all
vertices so that the center point of the model coincides
with the coordinate system origin. We then move the
vertices so that they are at a unit distance from the origin.
At this point, the vertices of the triangles making up the
model are on the surface of the unit sphere. This is done
to both Baldi’s source head and the Cyberware laser scan
target head. The landmarks are then connected into a
mesh of their own. As these landmarks are moved into
their new positions, the non-landmark points contained in
triangles defined by the landmark points are moved to
keep their relative positions within the landmark triangles.
Then, for each of these source vertices we determine the
location on the target model to which a given source
vertex projects. This gives us a homeomorphic mapping
(1 to 1 and onto) between source and target datasets, and
we can thereby determine the morph coordinate of each
source vertex as a barycentric coordinate of the target
triangle to which it maps. This mapping guides the final
morph between the source and target datasets.
A different technique is used to interpolate polygon
patches, which were earlier culled out of the target model
on account of being non-convex. These patches are
instead stretched to fit the new boundaries of the culled
regions in the morphed head. Because this technique does
not capture as much of the target shape's detail as our
main method of interpolation, we try to minimize the size
of the patches that are culled in this manner. To output the
final topology the program then reconnects all the source
polygonal patches and outputs them in a single topology
file. The source connectivity is not disturbed and is the

same as the original source connectivity.  Figure 6 shows
the morphed head as used in the current study.

Figure 3. High-resolution polygon mesh obtained
from the Cyberware laser scan.

3. Improving the Dynamic Model
To improve the intelligibility of our talking heads, we
have developed software for using dynamic 3D optical
measurements (Optotrak) of points on a real face while
talking. At ATR, Kyoto, Japan in April, 2001, we
recorded a large speech database with 19 markers affixed
to the face of DWM at important locations (see Figure 1).
Fitting of these dynamic data occurred in several stages.
To begin, we assigned points on the surface of the
synthetic model that best correspond to the Optotrak
measurement points. There were 19 points on the face in
addition to 4 points off the top of the head that were used
to remove head motion from these 19 points. Two of the
19 points (on the eyebrows) were not used in the current
study. The other 17 points were used to train the synthetic
face. These correspondences are illustrated in Figure 7
with model points (3 mm off the synthetic surface
corresponding to the LED thickness) given in green and
Optotrak points in orange. Before training, the Optotrak
data were adjusted in rotation, translation, and scale to
best match the corresponding points marked on the
synthetic face.

The data collected for the training consisted of 100 CID
sentences recorded by DWM speaking in a fairly natural
manner. In the first stage fit, for each time frame (30 fps)
we automatically and iteratively adjusted 11 facial control
parameters (shown in Table 1) of the face to get the best
fit (the least sum of squared distances) between the
Optotrak measurements and the corresponding point



locations on the synthetic face. A single jaw rotation
parameter was used, but the other 10 parameters were fit
independently for the two sides of the face. This yielded
21 best-fitting parameter tracks that were the inputs to the
second stage fit. The fit of a given frame was used as the
initial values for the next frame. We illustrate the fitting
process with one of the 100 CID sentences that were
recorded, “Breakfast is ready” . In Figure 8A, the white
line shows the vertical motion of one of the facial
Optotrak points, just to the left of center on the lower lip,
while the darker blue line shows how the corresponding
point on the synthetic face moves using prior baseline
phoneme definitions and the current parameters in visual
text-to-speech (TtS) process. We can see that there are
significant differences between the two sets of curves. For
all 100 sentences, the RMS error between these curves
(normalized for parameter range) was 26.4%. If we now
control the face with the best fitting (dashed line in Figure
9B) control parameters, we achieve a much better match
between the Optotrak (white) and synthetic facial (blue)
measurement points as seen in Figure 8B.

Figure 4. Laser scan of high resolution head
with alignment points.

In the second stage fit, the goal was to tune the segment
definitions (parameter targets, dominance function
strengths, attack and decay rates, and peak strength time
offsets) used in our coarticulation algorithm (Cohen &
Massaro, 1993) to get the best fit with the parameter
tracks obtained in the first stage fit. We first used Viterbi
alignment on the acoustic speech data of each sentence to
obtain the phoneme durations used to synthesize each
sentence. Given the phonemes and durations, we used our
standard parametric phoneme synthesis and coarticulation
algorithm to synthesize the parameter tracks for all 100
CID sentences. These were compared with the parameter
tracks obtained from the first stage fit, the error computed,

and the parameters adjusted until the best fit was
achieved.
Figure 9C shows the results of the second stage control
parameter fit for the 39 revised phoneme definitions, with
the stage 1 fit shown with dashed lines, and the revised
visual TtS tracks in solid lines. The RMS error for this fit
was 12%, less than ½ of the error of the original TtS.
Figure 8C shows the behavior of the lower lip control
point with these phoneme definitions. In addition to the
phoneme definition fit, we have also used phoneme
definitions conditional on the following phoneme. In the
CID sentences there were 509 such pairs. Figure 9D and
Figure 8D, respectively show the parameter tracks and
point motion for this fit, which had an RMS error of 6%.
As can be seen in the figure, the context sensitive
phoneme definitions provide an improved match to the
parameter tracks of the stage fit, as well as an improved
match to the point data.

Figure 5. Canonical Baldi low resolution head
with alignment points.

4. Perceptual Evaluation
We carried out a perceptual recognition experiment with
human subjects to evaluate the how well our synthetic
talker conveyed speech information relative to the real
talker. To do this we presented the 100 CID sentences in
three conditions: auditory alone, auditory + synthetic
talker, and auditory + real talker. In all cases there was
white (speech band) noise added to the audio channel
using a Grason-Stadler noise generator. For the synthetic
talker, the 21 best-fitting parameters from the first stage
fit were used to drive the face. The auditory signal was
analyzed using Viterbi alignment to derive the phonemes
and durations for using our standard TtS for the speech
parameters not listed in Table 1. For example the TtS



was used to drive the tongue, because the OPTOTRAK
data does not describe tongue motion. The talker was
animated in real time using OpenGL graphics routines on
a Dell Dimension 8200 PC with a 1.8Ghz Pentium 4
processor, 256MB memory, Nvidia GeForce 3 Ti 500
64MB DDR graphics card, under Windows2000
professional. The graphics window was 352w*450h,
centered at the top of a 1024w*768h video screen (19”
Viewsonic GS790). For the natural talker, we presented
the original video, transformed from digital betacam-sp
to 30 frame/sec, 352w*450h cinepack encoded avi files,
using the Microsoft Windows Player 6.4. The Media
Player and graphics window were co-located and the
currently used one was displayed on top of the other. The
graphics window was also used (blanked) for the
auditory alone condition. Each of the 100 CID sentences
was presented in each of the three modalities for a total
of 300 trials. The experiment occurred in 2 sessions of

Figure 6. Morphed canonical head as used in
the current study.

150 trials, each taking about 30 minutes with a 5 minute
break between sessions. The list of 100 sentences was
split into 4 sublists of 25 sentences each. In a given block
of 75, for each of the 3 conditions, a different sentence
sublist was used so that a subject would see a particular
sentence only once in that 75 trial block. Each trial began
with the presentation of the sentence. If it was one of the
visual conditions, the face was then covered with a blank
graphics window. Subjects then typed in as many words
as they could recognize into a text entry box, followed by
the enter key.  The next trial started after a one second
interval. All experimental events and data collection was

done using a RAD application, part of the CSLU Toolkit.
Fifteen students in an introductory psychology course
served as subjects.

Overall, the proportion of correctly reported words for the
three conditions was 0.21 auditory, 0.42 synthetic face,
and 0.43 with the real face, with a significant difference
between conditions, F(2,28)=19.64, p<.001. However,
two visual conditions did not differ significantly from
each other (F(1,14)=0.08).

Figure 7. Illustration of placement of the points
placed on the new model of DWM, which
corresponds to Baldi’s wireframe morphed into
the shape of DWM. The points placed on DWM’s
wireframe (3mm off the synthetic surface) are
given in green and the placements of the
Optotrak points are given in orange. The blue
points correspond to the points on the skin
surface.

Table 1. L ist of the 11 facial control parameters.
1 jaw rotation
2 lower lip f-tuck
3 upper lip raising
4 lower lip roll
5 jaw thrust
6 cheek hollow
7 philtrum indent
8 lip zipping
9 lower lip raising
10 rounding
11 retraction



Figure 8. Illustration of the fitting process with
one of the CID sentences “ Breakfast is ready” . In
panel A, the white line shows the observed
vertical motion of one of the facial Optotrak
points, just to the left of center on the lower lip,
while the darker blue line shows how the
corresponding point on the synthetic face
moves using prior baseline phoneme definitions
and the visual TtS process. The blue line in
Panel B shows how the point moves after the
first stage fit. The blue line in Panel C shows
how the point moves after the second stage fit
for phonemes. The blue line in Panel D shows
how the point moves after the second stage fit
for context sensitive phonemes.

Figure 9.  Illustration of the fitting process with
one of the CID sentences “ Breakfast is ready” .
All panels show 3 of the 11 control parameters
using the visual TtS: jaw orientation in red,
rounding in green, and retraction in yellow. The
diamonds indicate target values. Panel A gives
the untrained target values and parameter
tracks. Panel B repeats Panel A with the dashed
line, which gives the best fitting parameter
tracks from the stage 1 fit. This dashed line is
repeated in Panels C and D, which also give the
best fitting parameter tracks from the stage 1 fit.
Panel C shows the results of the second stage
control parameter fit for the 39 revised phoneme
definitions, with the stage 1 fit shown with
dashed lines, and the revised visual TtS tracks
in solid lines. The points in B, C, and D are the
phoneme target values for the untrained,
phoneme trained and context sensitive
phoneme trained definitions.



Figure 10. Frame from video used in evaluation.

Figure 11. Proportion words correct as a
function of initial consonant of all words in the
test sentences for auditory alone, synthetic and
real face conditions.

Figure 11 shows the proportion of correct words reported
as a function of the initial consonant. Although the two
visual conditions did not differ significantly overall
(F(1,14)=0.16), there were some differences as a function
of the initial consonant (F(22,308)=45.09, p<.001) and an
interaction between the consonant and the talker
(F(22,308)=4.50, p<.001).

5. Conclusions
The results of the current evaluation study, using the stage
1 best fitting parameters is encouraging. In studies to
follow, we’ ll be comparing performance with visual TTS
synthesis based on the segment definitions from the stage
2 fits, both for single segments, context sensitive
segments, and also using concatenation of diphone sized
chunks from the stage 1 fits. In addition, we will be using
a higher resolution canonical head with many additional
polygons and an improved texture map.
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