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We investigate learning in a probabilistic task, catled “medical
diagnosis.”” On each trial, a subject is presented with a stimulus con-
figuration indicating the value of four medical symptoms, The subject
responds by guessing which of two diseases is present and is then
given feedback about which disease was actually present. The feed-
back is determined according to fixed conditional prebabilities
unknown to the subject. We test a normative Bayesian rodel as well as
simple variants of well-known psychological models including the
Fuzzy Logical Medel of Perceplion, an Exemplar model, a two-layer
Connectionist model and an ALCOVE model. Both the asymptotic
predictions of these modeis (i.e., predictions regarding behavior after it
has stabilized and learning is complete ) and predictions of trial-by-trial
changes in behavior are tested. The models are tested against existing
data from Estes etal. {1989, Journal of Experimental FPsychology:
Learning, Memory, & Cognition, 15, 556-571} and new data from
medical diagnosis tasks that include not only asymmetric but also
symmetric base rates. Learning was observed in all cases in that
subjects tended to match the objective prohahilities of the symptom
configurations mare closely in later trials. All of the descriptive models
give a more accurate account of performance than the normative
Bayestan model. Relative to a benchmark measure, however, none of
these models does an especially good job of characterizing asymptotic
performance or the learning process. We suggest that future
experiments should address individual perfermance, rather than group
learning curves, & 1995 Academic Press, Inc.

INTRODUCTION

Behavior changes with experience. An'individual takes an
action, observes some of the consequences, and perhaps
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later takes a different action in similar circumstances.
The purpose of the present paper is to investigate such
behavioral changes, which we regard as the manifestation of
fearning. We are interested in several guestions, both
normative and descriptive. Does behavior converge to an
oplimum? Il so, is convergence as rapid as possible given
available information? If not, can behavioral changes be
described reasonably well by any simple model?

These and similar questions can be asked in quite general
contexts. In this paper we confine our attention to a particular
laboratory version of a “medical diagnosis” task. This task has
been addressed in previous work on learning { Gluck & Bower,
1988; Esies, Campbell, Hatsopoulos, & Hurwitz, 1989,
Nosofsky, Kruschke, & McKinley, 1992; Shanks, 1991) and is
simple but nontrivial. Alter a short review of reseuarch in
probabilistic learning siluations, we describe the medical
dingnosis task. the analytic framework we use, the question off
optimalily, and the formalization of the models for this task.

We base our analysis on five models, the normative
(optimal} Bayesian model, the Fuzzy Logical Model of
Perception {(FLMP), the two-layer Connectionist model |
{CMP), an Exemplar model, and a recent exemplar-based
network model (ALCOVE). The asymptotic predictions
and learning predictions of these models are all presented in
the context of the medical diagnosis task in order to keep
the exposition self-contained and to {ix ideas and establish
notation.

Next we turn to the data. In addition to existing data
from Estes eral. (1989), we analyze new data from
simplified medical diagnosis tasks that include not only
asymmetric but also symmetric base rates. We find evidence
that subjects do learn in the sense that response [requencies
to the symptom configurations approach objective
probabilities more closely on later trials than on earler
trials. All of the descriptive models give a more accurate
account of performance than the normative Bayesian
model. Relative to a benchmark measure, however, none of
these models does an especially good job of characterizing
asymplotic performance or the learning process. In the last
seclion we summarize our findings. Our results raise more
questions than they answer, so we conclude by suggesting
directions for more definitive work.
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A BRIEF HISTORY

The study of learning has a long and multifaceted history
within psychology. Experiments on learning in animals at
the turn of the century were guided by association theory.
A response to an environmental event that led to some
reward would be more likely to occur at some future time.
Thorndike, in his famous puzzle box experiments with
cats, formulated a theory of connectionism in which one
appropriate response became connected with another and
erroneous responses were stamped out. William James
anticipated the development of neural networks to describe
how to behave appropriately given some environmental
event.

The task we investigate here has roots in the 1950s
probability learning experiments, in which human subjects
predicted which of two events would occur on each of a
series of trials. For example, the two events might be the left
light with probability 0.8 and the right light with probability
0.2, independently on each trial. This paradigm placed
the human subject in a simple nondeterministic situation.
An extension, called discriminative probability learning,
involved two test stimuli with independent reinforcement
schedules (Massaro, 1989; Myers & Cruse, 1968).

To maximize the number of correct responses, the subject
should always chose the more likely event given the
stimulus, e.g., the left light. The persistent finding in this
research was that subjects tended to probability match, e.g.,
to chose the left light with probability 0.8 {Estes, 1959). In
a significant number of experiments, however, subjects tend
to overshoot, i.e., 1o exceed probability matching (Massaro,
1969; Myers & Cruse, 1968).

Castellan (1974) studied multiple cue probability
learning with up to four separate cues. In this and related
studies he examined the effect of various sorts of feedback,
especially in the form of a summary statistic (¢} for the
normative utilization and/or the subject’s actual utilization
of each cue. The feedback typically brought asymptotic
performance only modestly closer to maximizing the
number of correct responses, the strongest effects appearing
in experienced subjects recerving both actual and normative
utilization. Substantial individual differences were found
and it is not clear that all subjects understood this added
information. Castellan (1977) reviews the large body of
previous relevant literature.

Gluck and Bower (1988} revived the contemporary
study of multiple cue probability learning in a medical
diagnosis task. Gluck and Bower (1988) found that an
adaptive network model gave a good description of subjects’
asymptotic performance. In addition, they extended the
standard learning task to include single-symptom test trials
in which a single symptom was presented and subjects had
to estimate the percentage of patients that would be
expected to be suffering from a given disease. The results on
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special trials indicated that subjects tend to overestimate the
probability of the rare disease, a form of base-rate neglect.
Estes ef al. (1989) extended this study to include tests of
models’ predictions of trial-by-trial learning. They found
evidence for a particular network model over an exemplar
model.

CONCEPTUAL FRAMEWORK AND MODELS

We consider a slight generalization of the Gluck and
Bower (1988) task. A subject is presented in each trial with
stimulus vector s =s,5,---5,, where, fori=1,..,n s,= 1 or
0 indicates one value {1) or the alternative value () of a
medical symptom ¢ in a particular patient. For example,
5, = 1 might indicate a sore throat and s, = 0 might indicate
the absence of dizzy spells. The subject must respond by
stating whether (d=1) or not (d =0) she believes that this
patient has the target disease or, equivalently, which of two
diseases a patient has., Then the subject is told the actual
value of d. Our task uses #n =4 conditionally independent
symptoms and a random trial sequence. The classical prob-
ability learning experiments ¢an be regarded as degenerate
medical diagnosis tasks with n =0 symptoms; ie., subjects
must learn only a fixed numerical probability (Estes,
1959). The probabilistic discrimination experiments can be
regarded as simple medical diagnosis tasks with n=1
symptom (Massaro, 1969). In this task, subjects must learn
only two independent probabilities to the two levels
(values) of a single symptom.

The medical diagnosis task is very simple in that stimuli
s and responses d are both composed of binary variables,
coded here as O or 1. But with one or more symptoms
presented the task is nontrivial for two reasons. First, all
trials are training trials in that the subject always teceives

X.
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FIG. 1. Schematic representation of the three stages of information

processing. The sources of information are represented by uppercase
letters. The psychological representations are given by lowercase letters.
The evaluation process transforms the symptom values into psychological
values {indicated by lowercase letters). The integration process takes the
output of the evaluation process and combines or integrates the psychologi-
cal values to give an overall value for sach of the relevant alternatives. The
decision operation maps these values into some response, such as a discrete
decision or a rating.
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feedback (the actual value of d) and the subject has no
initial knowledge of the relation between 4 and the given s.
Second, the relationship between the feature values and the
feedback is stochastic, so the subject sometimes will be
misled. For example, the subject may pick a rather unlikely
discase and turn out to be correct on that {rial, or pick the
highly likely disease and turn out to be incorrect.

The main goal of this paper is to find models that ade-
quately describe subjects’ behavior as they leamn to perform
the medical diagnosis task. It will be useful to describe the
models within an analytic framework used by Massaro and
Friedman (1990). The medical diagnosis task involves
multiple sources of information, and these sources must be
processed and mapped into a decision. As illustrated in
Fig. 1, the framework assumes three stages of informa-
tion processing intervening between presentation of the
symptoms and the response: evaluation, integration, and
decision. Here we add a fourth stage, learning or updating
in response to feedback.

Three of the models (Bayes, FLMP, and CMP) share a
number of important properties and also differ in specific
ways. All three models assume that each of the symptoms is
intially processed or evaluated independently of the other
symptoms. Furthermore, continuous information is made
available by the evaluation and integration processes. In
addition, all of the models assume a relative goodness
rule—RGR {Massaro & Friedman, 1990) or probability
matching at decision. The models differ from one another in
terms of the interpretations they provide to the parameters
or what Massaro and Friedman (1990} call currency. The
Bayes model and the FLMP assume mathematically
equivalent rules for the integration stage. However, their
updating of the parameter values during learning differs.
The Bayes model differs from the CMP in terms of both
integration and updating during learning. The FLMP dif-
fers from the CMP only in terms of the integration process.
Even with this difference, these two models make equivalent
predictions for tasks with two mutually exclusive response
alternatives (but not for tasks with three or more alter-
natives). The exemplar model differs from these three
models by storing each symptom configuration and the
associated disease. The ALCOVE model is more complex
by combining aspects of the exemplar model and connec-
tionism. We now develop the models to be tested.

Bayes

The Bayestan model is normative in that it assumes no
loss of information or biases introduced by irrelevant infor-
mation. In this case, each learning experience is processed
fully and is used completely in updating memory. Further-
more, it is assumed that the subject begins the experiment
tabula rasa. On the first trial, the subject necessarily
responds randomly, and only observations made during the
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actual experiment have any influence on performance. In
our strict interpretation of the Bayesian model, we do not
allow any information about base rates or conditional
frequencies other than those actually observed in the experi-
ment. That is, we assume that subjects process information
as if they were Bayesian statisticians with initially diffuse
priors.

Bayes theorem can be expressed either in terms of prior
and posterior probabilities or, alternatively, in terms of
prior and posterior odds. For p and p representing the
(prior or posterior) probabilities of d=1 and d =0, we can
write the odds ratio as r = p/g = p/(1 — p), and can recover
the probabilities from the odds ratio by p=r/(1+r} and
F=1{/(1+r). The odds ratios lead to more convenient
expressions, so the derivation starts with Bayes theorem in
odds form:

Pld=1|s] P[s|ld=1] P[d=1]
P[d=0|s] P[s|ld=0] P[d=0]

(1)

The verbal statement of (1) is that the posterior odds are
equal to the likelihood ratio times the prior odds.

Next, use conditional independence to expand the like-
lihoods P(s|d)= P(s,|d) P(s,|d)--- P(s,|d). We reduce
clutter by writing the elementary likelihoods as p,=
Pls,=1|d=1) and ¢,=P(s;=1|d=0). Note that in
general p; and ¢, can vary independently, but that
P(s;=0|d=1)=1—p, and P(5,=0|d=0)=1—gq,. Since
5;=0 or 1, we note that p%(1 —p,)' ~*is p,if 5,=1 and is
1 — p, if 5,=0. Using this and a similar expression for the
g;’s, we expand the likelihood ratio in (1) to arrive at

Pld=1]|s] _[(&y‘ (1 _p])l_”
Pld=0]|s] 4 l—g,

(P_> (1 —p,\' 7 Pld=1]
“\g.) \T=q,) | Pld=0]
Equation (2) expresses the posterior odds in terms of the 2»n
numerical values p, and g,, i = 1, ..., n, plus another numeri-
cal value for the prior odds. Let ¥{s) represent the posterior
odds, the left-hand side of (1) or (2), and let b,=

Pld=1]/P{d=0] represent the prior odds (or “base
odds™). Grouping the fractions we get the more compact

expression
" pN (1=pN\' e
Yis)=b, (_,> (__) .
'_I:—[] q: 1—g,

In terms of the information processing framework, the
Bayes model evaluates each symptom 7 as a feature value p,
or g, and integrates them using the multiplicative formula
(3). For the decision stage, we assume that subjects choose

(2)

(3)
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their responses randomly according to the computed
posterior odds. That is, we assume the relative goodness
rule or probability matching (Massaro & Friedman, 1990).
This decision rule is not normative if subjects attempt to
maximize the number of correct responses (although it may
be normative if subjects have other goals). We assume RGR
at the decision stage in all other models and do so here to
maintain comparability. The “currency” or interpretation of
the variables is subjective probability.

How might subjects come to learn the parameter values p,
and ¢; and b,7 A Bayesian statistician with no prior
knowledge except that the symptoms are conditionally
independent and the trials are exchangeable (randomly
sequenced) would estimate p, simply by counting the num-
ber of times s, =1 and d=1 relative to the number of times
d=1. Analogous count ratios would be used to estimate the
¢;'s. The value b, would be estimated by counting the num-
ber of times d = 1 and dividing by the number of times 4 = (.
Denoting these ratios as p,,, g,, and b, and substituting
them into Eq. (3), we have the Bayesian model’s prediction
Y.(s} of the odds that a subject would choose the first
disease if presented with thé symptom configuration s on
trial ¢.

Fuzzy Logical Model of Perception (FLMP)

The fuzzy logical model of perception (FLMP) formalizes
developments in fuzzy logic, pattern recognition, and choice
theory to provide a systematic account of perceptual judg-
ment and decision making (Massaro, 1987). Its currency is
a truth value that can range from 0 or completely false to 1
or completely true. For example, a 0.3 truth value for the
proposition “a whale is a fish” means that the proposition
is true to degree 0.3; ie., there is a moderate degree of
similarity between whales and fish. It is psychologically
different from a probability. An objective 0.3 probability
that “a whale is a fish” would mean that 3 out of 10 whales
are fish. A subjective 0.3 probability would mean that that
a bet (that a whale is a fish) with 7 to 3 odds is fair. Neither
of these probabilistic interpretations works because a whale
is never a fish.

According to the FLMP, feature evaluation in the
medical diagnosis task produces a truth value (or “feature
value™) denoted f; for the statement “the disease is d=1"
when 5, = 1, and produces a value g, for the same statement
when s, =0. The two discases are mutually exclusive and
exhaustive, so one uses the fuzzy logical negation operation
to conclude that the truth values for the statement “the
disease is d=0" are 1 — f, and 1 — g, when 5s,=1 and =0,
respectively. In the absence of symptoms the statement
“d=1" has some truth value denoted b. As explained in
Massaro and Friedman (1990), the integration stage of
information processing in the FLMP combines the feature
values to produce integrated truth values, using the same
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multiplicative formula as in Bayes. That is, even though the
feature values are psychologically different from elementary
conditional probabilities, the integration stage treats them in
an analogous fashion. Specifically, the result of FLMP integra-
tion in the medical diagnosis task is a truth value ford=1 of

b1/, fig;™"
bITi., figi "+ (=TT, (1—fy"(1—g}

after observing the symptom configuration s=5,---5,. In
ratio form, the expression becomes

Y(s) = by ol = arol) =, @
where b, is b/(1 —B), u,=f;/(1 = f), and v,= g, /(1 — g,).

The decision stage again is RGR—the odds with which
subjects choose the diseases are given by Eq. (4). It is clear
that Egs. (3) and (4) are equivalent. In our implementation
of the models, however, we use objective frequencies for the
Bayesian model and subjective truth values for the FLMP,

The two models also differ from one another with respect
to the learning or the updating of the feature values from
trial ( — 1) to trial (¢). Learning in the FLMP is described
by the general rule

u,=u,_,+ Aes,

5
v,=v,_,+4de(l—3s,), (5)

where u and v denote the features being learned, A denotes
the learning rate, and e = d — p(d|s) denotes the perceived
error, given the current feedback 4 and truth value p(d|s) of
that disease assessed using the current feature values for the
current symptoms s. An analogous formula can be written
for b, but it seems to require a much different learning rate.
As explained in the Appendix, the ratio b, can be absorbed
into the other ratios «; and v;, and so we estimate Eq. (4)
without the b, parameter. Thus, in a four-symptom task,
there are four f; and four g, for a total of eight feature values.
Note that the g, but not the f; are updated when s, =0, and
the reverse is true when s, = 1. All feature values fand g are
assumed to start at 0.5 (completely ambiguous) in the
FLMP. We call this model FLMPS.

Equation (5) reveals several characteristics of the
updating rule (or learning algorithm} for the FLMP. First,
learning occurs only to the extent that there is nonzero
perceived error. Second, all features (symptoms) are learned
at the same rate i. Third, the learning rate 1 is constant
throughout the course of learning. We use this same
updating rule in the test of all of the models except Bayes to
keep them as comparable as possible.

Connectionist

Much of the revival of interest in probabilistic learning
comes from the renewed excitement over neural networks or
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connectionist models. Connectionist models map input to
output via activation along a number of simple processing
units organized into separate layers. Here we consider only
the simplest sort of connectionist models with two layers, an
input layer and an output layer. The stimulus input is
mapped to a set of input units that are connected to a set of
output units that are, in turn, connected to responses.
Activation is propagated from input to output and
modulated by the weights on the connections between the
input and output units. These weights are dynamically
modified during learning. Information about the symptoms
and diseases is contained in the weights connecting the
input and output units.

We focus on a simple connectionist model called CMP,, .,
and illustrated in Fig. 2. It has one output node and » input
nodes, one for each symptom plus a bias (or base rate) node
constantly at unit activation. Feature evaluation consists of
the activation w,s, produced by each node in the input layer
(wel = wy, for the base rate node). Given four symptoms in
our task, there are four w; and a w, parameter for a total of
5. We call this model CMPS5. Information integration
consists of summing the activation arriving at output node
y=w,+ 37, w5, and using the standard sigmoid function
S(y)=1/(1+ e~ 7} to rescale the output to the range [0, 1].
As usual, the decision stage is RGR—disease 1 is chosen
with probability S(y) and the alternative disease with
probability 1 — S{»). In the current task (or any other task
with two mutually exclusive response alternatives), it has
been shown that this model is asymptotically equivalent to
the FLMP (Massaro & Friedman, 1990).

The learning algorithm for connectionist models is
standard; weights are updated after each leaning trial
according to the perceived error. For the medical diagnosis
task the learning algorithm is

Wi=w,_ +Ad—S(y|s))s,_,- (6}
{For wg use the convention s, =1 on every trial.} Clearly
this is the same learning algorithm as wsed in the FLMP
model and so the models are formally equivalent for our
task.

Gluck and Bower (1988) investigated an asymptotic
version of a four-input node (plus one output node) model in
a four-symptom medical diagnosis task. Estes er al. (1989)

FIG. 2.

Tlustration of CMPn + | connectionist model.
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tested two other versions of the connectionist model for the
standard four-symptom medical diagnosis task. In the
Appendix we show that these {and some other two-layer
connectionist models) are very closely related to our five-
parameter CMP35. We also show there that, despite their
quite different underlying psychology, the connectionist
models have a very close formal relation to the Bayesian
model.

Exemplar

Exemplar models are fundamentally different from
models based on summary descriptions. Models based on
summary descriptions potentially are more efficient because
these models select the relevant information about each
feature, categorize the input based on the summary descrip-
tion, and update it based on feedback. Exemplar models
store the complete symptom configuration and the
associated disease. At test, the exemplars in memory are
used to categorize the input. Exemplar models can assume
attention weights or allow a nonzero similarity among
different symptom configurations. Estes ef al. (1989) (and
previously Medin, Altom, Edelson, & Freko, 1982) applied
an exemplar model to the medical diagnosis task, Here we
will test a simple version of the Estes ez al. (198%) model; its
detailed specification and relation to other exemplar models
are presented in the Appendix.

In the exemplar model we test, each of the sympiom
configurations j=1, ..., 2" is considered quite distinct from
the others. Each configuation j has a weight w;, that reflects
the fraction of stored exemplars associated with the target
disease (d=1). At evaluation stage, the weight w; is trans-
mitted directly to the decision stage if j corresponds (o the
actual stimulus configuration; the weights corresponding to
other configurations are not transmitted. The integration
stage is bypassed because there is cnly one nonzero output
from feature evaluation. The output, transformed by the
usual sigmoid function S(w,} = 1/(1 +e7™), is the predicted
probability of responding with that category.

We apply the standard learning algorithm to the weights,
exactly one of which is updated after each trial. The
Appendix shows that this version of the exemplar model is
an appropriate simplification of the model used by Estes
et al. (1989).

ALCOVE

Our final candidate for explaining behavior in the
medical diagnosis task is the ALCOVE model (Kruschke,
1992)—a hybrid of connectionism and spatially represented
exemplars. The Alcove model extends the exemplar model
presented above by including a parameter for similarity
scaling, so all exemplar representations have a chance to
influence performance. We use the version of ALCOVE
adapted to the medical diagnosis task by Nosofsky et al.
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(1992). This version does not include the mechanism for
attention-strength learning.

The ALCOVE model has three layers. The input layer
has four nodes, one for each of the four symptoms. Feature
evaluation consists of the activation @ of these nodes.
Information integration is more complex. The activation

hid

a* of each of the 2* exemplar hidden units j=1, .., 16

arises from feature evaluation according to the formula

a}ﬁd=exp[_52|h:‘j_aiin|], j=lm (7)

where ¢ is a positive constant and the A, represent the
n-dimensional locations of the exemplar units. The effect of
the |h,—a®| term is to activate all hidden units according
to their similarities, which are then summed. Information
integration is completed by summing the activations a}™
from the hidden units, modulated by the learned weights w,;
at each output node k=0, | according to

azut — Z ija}‘id. (8)
i

At the decision stage these activations are mapped into
response probabilities by an RGR on the exponentially
transformed activations

PU) = exp(dag™) /2 exp(a™
k

using a free parameter ¢. It turns out that in the medical
diagnosis task the second output node is redundant; given
the standard weight initialization, we get exactly the same
fits with one output node. The ¢ parameter also is redun-
dant in that it can be constrained to be 1.0 without affecting
the fit to the data. Thus we can use the standard sigmoid
function so the last part of information integration (and the
decision stage) of ALCOVE is exactly the same as for the
exemplar model.

The main difference between ALCOVE and our exemplar
moedel is the similarity parameter ¢. When c is larger than
1.0, the influence of the hidden unit j is disproportionately
large and the influence of more distant units is dispropor-
tionately small. When c is sufficiently large, the activation of
all hidden units is effectively zero except for the unit j that
corresponds to the stimulus vector s. Then ALCOVE in
effect reduces to our basic exemplar model,

Learning is confined to the weights w,; from the hidden
layer to the output layer. The formula again is given by
Eq. (6). The similarity parameter ¢ and the learning rate A
are estimated to give the best fit to the data.
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PRESENT STUDY

The present study is a partial replication and extension of
the Gluck and Bower (1988) and Estes et al. (1989) studies.
We modified the typical symptom probabilities used in
these tasks because they produced only nine unique
posteriori probabilities for the 16 symptom configurations.
With our new symptom probabilities, each symptom con-
figuration has a unique posteriori probability of occurrence.
We did not include interspersed test trials on just one of the
symptoms (as was done in those studies). The reason is that
we were concerned whether the subjects would interpret this
new type of trial appropriately. It is possible that subjects
interpret the new type of trial with a single symptom as
coming from a different population than the four-symptom
configurations. Accordingly, these test trials might be an
unfair test of the normative and descriptive models. We did
include, however, a condition with symmetric base rates as
well as the standard one with asymmetric base rates. These
two conditions allow performance to be tested at a much
larger range of posteriori probabilities. With asymmetric
base rates, most of the symptom configurations have
relatively extreme posteriori probabilities for the disease
with the highest base rate. With symmetric base rates, the
posteriori probabilities are more symmetric and less
extreme. These extensions allow a broader empirical base
for comparing the various models. They also allow us to test
for stability of parameter estimates across the two base
rates.

METHOD

Subjects

Forty-two members of the university community
participated in the experiment for about 1.5 h each. Their
participation fulfilled a course option or they were paid
$5.56 per hour.

Apparatus

All experimental events were controlled by a DEC PDP-
11/34A computer. Four sound attenuated subject rooms
were used, each illyminated by two 60-W incandescent
bulbs in a frosted glass ceiling fixture. Each room contained
a chair facing a table holding the visual display, a TVI9350
terminal.

Procedure

There were two sessions of 240 trials, each taking about
30 min with a 5-min break in between. Subjects were told
that this was a study of how people learn from experience
and make decisions. The medical diagnosis task, the
diseases, and the symptoms were described. Subjects were
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instructed that there were two possible diseases and four
symptoms. Each of the symptoms could be negative (“—)
or positive (“+7). Subjects were told to evaluate the
symptoms and decide if the patient had one disease or the
other. The feedback was described and it was stressed that
the order of patients was strictly random with no particular
sequence of diseases that could be guessed.

Stimuli

Each trial began with a vertical table of the four symptom
names; Circulation, Temperature, Pain, Skin. The values of
these symptoms were indicated by placing a “+” ora “—"
next to each of the symptom names. Each subject then
responded by pushing one of two buttons labeled by the
disease names. The response interval was not limited, After
a subject responded, feedback was given by displaying the
appropriate names of the diseases next to the “ACTUAL
ILLNESS” and “YOUR DIAGNQSIS” entries. Given that
up to four subjects could be tested simultaneously with
yoked displays, the symptom and feedback values were not
cleared from the display until 2s after the last subject
responded. The next trial began 3 s later.

The stimuli were generated following the method of
Estes ef al. (1989). In each frial the subject was shown a
configuration of four symptoms exhibited by a particular
patient, and was asked to provide a diagnosis. The two
possible diseases were called ROMELLA and BIRNOMA
and the four symptoms were called Circulation, Tem-
perature, Pain, and Skin. For each dimension, the symptom
could be positive (+) or negative (—). For analytical
purposes we coded the symptoms as s, to 5, with values 0
and 1, and coded the diseases as category A {or d=1) and
B (ord=10).

Table 1 gives the likelihood ( p;, ¢,) of each symptom for
disease categories A (d=1}and B {(d=0). We used two base
rates for the occurrence of category A: 0.5 (referred to as
symmetric) and 0.25 (referred to as asymmetric). The
stimuli were generated in two blocks of 240 trials each.
Within each block the frequencies of each category and each
feature were consirained to match the probabilities in

TABLE 1

Probability of Sympton Occurrence for Categories A and B for the
Original Estes ef al. (1989) and the Current Study

Data set Estes et al. Current
Category A B A B
Symptom
1 0.6 02 0.6 0.25
2 04 03 04 035
3 0.3 0.4 0.3 0.45
4 02 0.6 0.2 0.65
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FIG. 3. Observed probabilities of category A responses to each of the
16 stimulus combinations as a function of their a posteriori Bayesian
probabilities for the asymmetric condition in the first block of 240 trials.

Table 1. It should be noted that the higher order combina-
tion frequencies were not constrained, except that random
sequences were chosen for each block of 240 which ensured
that, for both base rates, all 32 possible stimulus events
(four dimensions with two levels per dimension for both
categories) occurred at least once. All subjects tested at a
given base rate received the same sequence of test stimuli.

RESULTS

The first question is to determine i subjects learned to
respond differentially to the different symptom configura-
tion To answer this question, we divided the 480 trials in
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16 stimulus combinations as a function of their a posteriori Bayesian
probabilities for the asymmetric condition in the second block of 240 trials.
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FIG. 5. Observed probabilities of category A responses to each of the
16 stimulus combinations as a function of their a posteriori Bayesian
probabilities for the symmetric condition in the first block of 240 trials.

cach data set into two blocks of 240 consecutive trials. For
each block and for each symptom configuration we
correlated the true probability of disease A (given the
symptom configuration) with the observed frequency with
which the 24 subjects responded A. The true probability of
a disease is equivalent to the a posteriori Bayesian proba-
bitity. If subjects learn the probabilitics conditioned on the
symptom configurations (and if they probability match),
then the correlation will increase across the two trial blocks.

Figures 3 and 4 plot the observed response probabilities
against the a posteriori Bayesian probabilities in the asym-
metric condition for each of the 16 symptom configurations
for the two blocks of trials. As can be seen in the figures,
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FIG. 6. Observed probabilities of category A responses to each of the
16 stimulus combinations as a function of their a posteriori Bayesian
probabilities for the symmetric condition in the second block of 240 trials.
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subjects learned to approximate the conditional proba-
bilities. The correlation increased from 0.761 in the first
block to 0.934 in the second block. Figures 5 and 6 plot the
observed response probabilities against the a posterion
Bayesian probabilities in the symmetric condition. Although
learning did not occur across these two blocks in the
symmetric condition, it appears that learning was
completed earlier in the experiment. When the trials were
partitioned in blocks of 160 trials each, the correlation
increased from 0.703 in the first block to 0.912 in the second
block. Performance became somewhat more variable in the
third block with the correlations dropping slightly to 0.860.
We conclude that subjects learned to respond differentially
to the different symptom configurations, so it makes sense
to compare the predictions of the various models against the
asymptotic and learning results.

The asymptotic and trial-by-trial predictions of each
model were fit to the data using a program written by the
third author. The observed data to be fit are the responses
pooled across subjects, i.e., the fraction of subjects choosing
disease A (d=1). The main reason is that the theoretical
models predict some probability of an A response (a point
on the 0-1 continuum) while the task allows each subject
only the binary {endpoint) response 0 =B or 1 = A. (Tests
of the models against individual data would be possible
if the task permitted a continuous response such as
estimation of probability of a given disease category.) The
asymptotic data consist of 16 observations: subjects’
responses averaged across the 21 subjects and the repeated
occurrences in an appropriate block of triais of each of the
16 symptom configurations. The trial-by-trial data consist
of 480 observations: responses averaged across the 21
subjects for each of the 480 individual trials. Each model is
represented as an algorithm for computing the sum of
squared deviations between the observed and predicted
data as a function of a set of parameters. By iteratively
adjusting the parameters of the model, the program
minimizes the sum of squared deviations (or equivalently,
the root mean squared deviation, RMSD) between the
observed and predicted points. Alternatively, the program
maximizes the likelthood (or log likelihood) of the data.
Thus, the program finds a set of fitted parameter values
which when put in the model come closest to predicting the
observed data.

To provide a measure of the absolute goodness-of -fit of a
model, we computed a benchmark RMSD, the RMSD that
would be expected if the model were correct. For all of the
models, the output of the integration stage is mapped into
a response probability via a relative goodness rule (RGR),
independently for each subject on each trial. Thus, even ifa
model were correctly specified and the fitted free parameters
(e.g., connection weights) were exactly correct, there would
be a binomial sampling error for the response probabilities
averaged across subjects.
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The benchmark RMSD is defined as the binomial RMSD
calculated from the actual data by the formula »n~'pg.
For example, suppose that 16 of 21 subjects chose disease A
(d=1) on trial 123. The binomial variance on this trial is
21 7N(16/21)(1 — 16/21) = 0.00864, and the standard devia-
tion (the RMSD for the single trial) is about 0.093. The
benchmark RMSD for a set of trials is the square root of the
mean binomial variance (the binomial variance for each
trial averaged across the trials).

The RMSD for each fitted model can then be compared
to the benchmark RMSD. When the benchmark RMSD is
reasonably small and closely approximated by the actual
RMSD we can conclude that the model does an absolutely
good job of explaining the data. When all models have
actual RMSD greatiy in excess of their benchmarks, we can
conclude that even the model with the lowest RMSD does
not adequately capture subjects’ average behavior. In this
case we should seek new models and/or more refined data.

ASYMPTOTIC FITS

To assess asymptotic performance, three of the models
were fit to the observed probabilities of responding discase
A (d=1) to each of the 16 symptom configurations
averaged over the last block of 240 trials in the two current
data sets (symmetric and asymmetric conditions), and
averaged over the last 120 trials in the two shorter data sets
of Estes er al. (1989). The exemplar and ALCOVE models
were not tested because the number of free parameters
for these models would equal or exceed 16, the number of
independent data points.

Table 2 presents the models and the results of their fit to
the asymptotic data. The asymptotic Bayes (normative)
model predicts that the probability of responding disease A
to each symptom configuration should be equal io the
objectively correct conditional probability of disease A
given that symptom configuration, shown for each data set
in Figs. 3-6. This model has no free parameters (NP = 0). Its

TABLE 2

The Number of Free Parameters (NP) and the RMSD Values for
the Models Fit Asymptotically

Symmetric Asymmetric
Model NP Current Current  GroupE  Group C
Bayes 0] 0.132 0.091 0.103 0.136
FLMP 8 0.065 0.044 0.070 0.086
CMP 5 0.065 0.044 0.070 (086
Benchmark 0.026 0.024 0030 0029
Note. The fit is to response average in the last 240 trials of the

symmetric and asymmetric conditions of the current study, and in the last
120 trials of the estimation {Group E) and categorization {Group C)
conditions of Estes e al. {1989).
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RMSD values for the four data sets range from 0.136 to
0.091, about 3 and 5 times larger than the benchmark
RMSDs. We conclude that the Bayesian model gives a poor
description of the asymptotic results.

The FLMP is equivalent to the normative Bayesian
model but aliows the subjective feature support values (and
prior odds) to differ from their objective probabilities. The
eight free parameters in the FLMPS reduce the RMSDs
considerably, as can be seen in Table 2. As expected, the five
free parameter CMPS gave the same asymptotic predictions
as the FLMP. As mentioned in the derivation of the models,
it has been shown that these models are asymplotically
equivalent for two mutually exclusive response alternatives
(Massaro & Friedman, 1990). However, the RMSDs still
were between 2 and 3 times targer than the benchmarks, so
the asymptotic performance of these descriptive models is
still well below an adequate fit.

TRIAL-BY-TRIAL LEARNING

Trial-by-trial data can be expected to produce larger
RMSDs than the asymptotic data for at least three reasons.
First, an observation in the trial-by-trial data consists of a
smaller sample of subjects’ choices than an observation in
the asympiofic data. Second, it is harder to capture a
changing process than a steady state. Third, it is harder,
other things being equal, to fit 480 (or 240} observations
than to fit 16 observations. The first reason leads to larger
benchmark RMSDs, e.g., about ., /120/16 =~ 2.7 times larger
for the tast 120 trials {observations) in the Estes data than
for an observation in the asymptotic data (16 observations).

Table 3 summarizes the trial-by-trial fits and, as expected,
the RMSDs are all larger than for the asymptotic fits. The
Bayesian mode]l produces RMSDs approaching 0.20,
indicating fairly sizable and frequent errors in predicting
subjects’ average choice. Of course, this model has no free
parameters. The FLMP8 and the CMP5 learning models

TABLE 3

The Number of Free Parameters (NP) and the RMSD Values for
the Models Fit Trial by Trial

Symmetric Asymmetric

Model NP Current Current GroupE Group C
Bayes 0 0.195 0.190 (.178 0.186
FLMP 1 0.167 0.159 0168 0.181
CMP 1 0.166 0.157 0.165 0.177
Exemplar 1 (150 0.153 0.145 0.157
ALCOVE 2 0.850 0.150 0.133 (.143
Benchmark 0.095 0.087 0.078 0.074

Note. The fit is to trial-by-trial results of the symmetric and asymmetric

conditions of the current study, and in the last 120 trials of the estimation
{Group E) and categorization {Group C) conditions of Estes ef al. {1989).
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have a single free parameter, the learning rate A that adjusts
the internal values (eight truth values or five connection
weights, respectively). The free parameter allows these
descriptive models to noticeably improve performance over
the Bayes model. The CMPS5 consistently did a shade better
than the FLMP8, suggesting that the five internal value
scheme is a bit more efficient than the eight-value scheme.
As shown in the Appendix, the five-parameter scheme has a
natural FLMP interpretation, and one could easily con-
struct a network model mathematically equivalent to the
eight-value FLMP. Given their mathematical equivalence,
the slight edge of CMP5 over FLMDP8 should not be inter-
preted as proving the superiority of an underlying
psychological theory.

The ALCOVE learning model gave the best fit, using the
free parameters A and ¢. However, the exemplar model uses
only one free parameter, fits the current data almost as
well as ALCOVE, and does relatively well on the Estes
data. Although the descriptive models improve on the fit
given by the Bayesian model, there is still considerable
room for improvement. The RMSDs for the descriptive
values, shown in Table 3, vary between 2 and 1.5 times the
benchmark RMSDs.

Table 3 is a very brief summary of our empirical work.
We constructed a variety of connectionist and other models
and looked at some alternative learning algorithms. None of
these variants outperformed the basic models reported in
the table. We also found basic model fits that maximized
likelihood instead of minimizing RMSD, but we found no
substantial change in the parameter estimates.

Maximum likelihood estimation does permit additional
tests. The Appendix shows that the ALCOVE model
reduces to the basic exemplar model as the similarity
parameter ¢ — c0. The estimates of ¢ typically are fairly
large and the RMSDs for ALCOVE are sometimes only a
bit less than for the basic exemplar model. Could it be that
the exemplar model in fact is correct? The question can be
answered using maximum likelihood techniques. Under the
null hypothesis that the constrained model is correct, it can
be shown that twice the difference between the maximized
log likelihood of the constrained model and the maximized
log likelihood of the unconstrained model has the x*
distribution with k degrees of freedom, where &k is the
number of constraints (e.g., Cramer, 1986}. For the question
at hand, k=1 and we obtain the results shown in the first
three lines of Table 4. Thus we can confidently say that the
ALCOVE model explains the trial-by-trial mean choices
better than the basic exemplar model.

Is our benchmark RMSD too demanding? A maximum
likelihood approach is to form a saturated model that will
fit the data perfectly because it has as many parameters as
there are data points. If one of our models is exactly correct,
then the difference in log likelihoods between it and the
saturated model with have a y* distribution as above. The
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TABLE 4

Chi Squared Tests of the ALCOVE versus the Exemplar Model
and the Saturated Model versus the ALCOVE model for the
Symmetric and Asymmetric Conditions

Symmetric Asymmetric

Model Current  Current Group E Group C
LL(ALCOVE)-LL{Exemplar) 17.17 107.22 47.29 Ry
Chi-squared(1) 343 2144 94.6 154.7
Significance, p < 0.001 0.001 0.001 0.001
LL(saturated)-LL(ALCOVE)  570.78 63839 207.09 343.18
Chi-squared(478) 1141.6 1276.8
Chi-squared{238) 5342 686.4
Significance, p< 0.0 0.001 0.0 0.001

Note. Conditions cover the current study, the estimation (Group E),
and the categorization {(Group C) of Estes er al. {1989). The difference in
log likelihoods (LL) is given, together with the number of degrees of
freedom, and the significance level.

ALCOVE fits are best and therefore have the best chance of
passing the test. But the results shown at the bottom of
Table 4 show we can strongly reject the null hypothesis. We
conclude that the ALCOVE model (and also the other
models) does not provide a complete explanation of the
trial-by-trial data.

DISCUSSION

Our data point to three conclusions. Firsi, subjects do
learn in the medical diagnosis task. In the current (480 trial}
data sets, subjects’ average responses more closely match
the objective conditional probabilities in later trials than in
earlier trials, as illustrated in Figs. 3-6.

Second, all of the descriptive models did better than
the normative {Bayesian) model in predicting subjects’
asymptotic responses and trial by trial learning. The best
performance was by the model with the most internal
variables and free parameters, ALCOVE; but the basic
exemplar model does almost as well with the same internal
variables and only one free parameter.

Third, none of the models (neither the basic models
reported here nor the variants discussed in the Appendix)
provides an impressive fit to the data. The basic models
produced errors 2 to 4 times larger than the benchmark in
the asymptotic data and, more importantly, the learning
models produced errors about 1.5 to 2 times larger than
their benchmarks in the trial-by-trial data. Maximum
likelihood techniques confirm the gap between the best
fitting model (ALCOVE) and actual behavior. We conclude
that there is considerable room for improvement,

These results provoke new questions. We began our work
with the belief that we would be able to identify some
learning model as the best of the current crop and would be
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able to say why it was better than its rivals. Conclusions 2
and 3 above indicate why we hesitate to announce a winner,
The ALCOVE model has the best fit but needs a lot of
internal variables and free parameters to do so. More
parsimonious models do almost as well on several data scts.
Given the sizable gap remaining from the benchmark and
given considerable instability of parameter estimates across
data sets, we still regard it as an open question which
learning models can best account for the data.

How might the learning models be improved in the
future? In exploratory work, we find that the performance
of the Bayesian model improves considerably when we relax
the tabula rasa assumption of diffuse priors and allow a
single free parameter to represent prior beliefs. This version
of Bayes outperforms several of the behavioral models on
some data sets and is much more parsimonious than any of
them. On the other hand, when we use a learning algorithm
similar to the Bayesian procedure (in particular, letting the
learning rate A decline as evidence accumulates or letting the
error specification depend directly on the feature value as in
Bayesian updating) we do not generally improve the fits of
the behavioral models.

The models we considerad differed considerably in their
description of the three stages of information processing,
but all of them emphasized learning the feature values, and
we assumed that the information integration stage and the
decision stages were fixed during the course of an experi-
ment. Perhaps learning {behavioral change) takes place for
the later two stages as well as for the evaluation stage. The
old Markov learning models allow change at the decision
stage, enjoy empirical success in some contexts (e.g.,
Massaro, 1969), and provide a natural way to incorporate
a recency bias. Further theoretical work in this direction
may be useful.

We belicve that more refined experiments and data
analysis may turn out to be at least as useful as more
sophisticated models. In retrospect the experimental
methodology used here and in previous studies has several
remediable shortcomings.

First, there is a serious problem in interpreting the data
unless we have a clearer idea of subjects’ decision processes.
The normative models and all of the descriptive models are
applied to the data with the assumption that subjects will
independently probability match or use the relative good-
ness decision rule (RGR). {See Massaro & Friedman, 1990,
and Yellott, 1977, for another theoretical justification
involving optimal deterministic decision-making based on
noisy inputs.) It is important to observe that information
processing can be optimal, even though the information
transmitted by the subject is not veridical. The data would
be easier to interpret if subjects had a clear and compelling
goal at the decision stage.

Second, probably the most important shortcoming in
current methodology is that the models are applied to
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aggregate data, assuming implicitly that all subjects obey
the same learning model and that all have the same learning
rate. We do not know of any evidence justifying these
assumptions.

These two problems can be greatly reduced by changing
the response mode of the experimental task. If subjects
are allowed to give continuous responses (probability
estimates, Wallsten, 1971) on each trial, and are capable of
using an interval scale, then the RGR seems theoretically
justified because it assumes that the subject has available the
relative goodness of match of each alternative for a given
symptom configuration. In this case, a subject’s continuous
response should be equal to the relative goodness of match
of each alternative for a given symptom configuration. The
aggregation problem can also be eliminated by elicited
continuous (estimate) responses because these data can be
fit trial-by-trial {or asymptotically) to the models for each
subject sgparately.

Previous medical diagnosis-type studies have used
estimation judgmenis or similar continuous responses only
sporadically and have not tested models against the data.
There has always been some controversy about whether
estimation judgments can be considered to be an interval or
linear scale of the representation or process of interest
{Anderson, 1982). Although one cannot casually assume
that subjects are using an interval scale, there are safeguards
and tests that can be employed to ensure that responses are
meaningful {e.g., Oden, 1978; Varey, Mellers, & Birnbaum,
1990). Estimation judgments, although less customary than
categorical responses in medical diagnosis-type tasks, might
be just as legitimate and potentially more informative.

APPENDIX: ANALYTICAL DETAILS

In this appendix we show that, despite their very different
psychological origins, the behavioral models and the nor-
mative model have very close mathematical relationships.
We also discuss alternative specifications of the behavioral
models and the learning algorithms. Each mode! has a set of
internal parameters (e.g., feature values) whose values are
learned from experience. Models may differ asymptotically
—i.e., because the parameter sets are essentially different—
or they may differ only in that they use different learning
algorithms to adjust the internal parameters. We begin with
asymptotic comparisons, and discuss learning algorithms at
the end.

Asymptotic Comparisons

Recall that the normative Bayesian model for » condi-
tionally independent symptoms has the form

n A% 1_ ; 1—s
n-n (@) (75



COMPARISON OF LEARNING MODELS

where ¥(s) is the posterior odds ratio, b, is the prior odds
ratio, and the p,’s and ¢,’s are the elementary likelihoods for
s;=1 given that the disease actually 158 d=1 and d=0,
respectively. Taking logs of both sides we get

"

In ¥{s}= 3 {(Inp;—Ing}s+(In(l—p)

P=1

—In(l—g))1—5)} +ln b,

=Y {(lnp,—ing,~In(1-p)+In(1—4)) s,

i=1

+{n{(1 —p)—1In(1—g)) +Inb,.

Finally, defining p{s)=1In ¥{s) we get the very tidy linear
relationship

ye)=wo+ 3, wisi,

i=1

(Al)

where

wo=Inb,+ 3 (n(l —p)—In1 —g,))

i=1

(A2)

and

w,=Inp,—Ing,—In(l1—p;)+In(l—g,).  (A3)

for i=1, ..., n. The objective or true values of the internal
parameters w,’s specified in (A2) and (A3) are initially
known by the experimenter, not by the subjects. Thus
the normative learning task can be expressed as finding the
{n+ 1) unknown numerical values wy, w, .., w, in the
linear relationship (A1) for the log posterior odds y(s).

A comparison to the CMPS5 presented in the text reveals
that (Al) is precisely the activation arriving at the output
node in the CMP5. Recall that the output activation in
CMP is transformed using the sigmoid (or logistic) function
S(¥)=1/(1 +e7") and note that this is precisely the func-
tion that transforms log odds to probabilities. Hence the
asymptotic CMP can be interpreted as an n+1 free
parameter version of the Bayesian model, or, equivalently,
the Bayes model is a constrained CMP with the parameter
restrictions given in Eqs. (A2} and {A3}.

The FLMP has a similar interpretation. The 2a para-
meter version presented in the text has no separate basc
rate parameter b, but it is clear that applying the same
manipulations (taking logs and collecting terms) that
produced {A1l) from Bayes will also produce (Al) from 2n
parameter FLMP, but without the restrictions {(A2) and
{A3). Thus in effect the parameter b, can be absorbed into
the parameters f and g {or the ratios u and v defined in the
text) without affecting the asymptotic model fit. (It turns
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out that the trial by trial fit of the FLMP version with a
separate b, is inferior because subjects appear to use a
slower learning rate A for this internal parameter than for
other internal parameters.)

The literature contains several other connectionist
models besides our basic n+ 1 input node model CMPS.
Gluck and Bower (1988) investigate the asymptotic version
of an n =4 input node (plus one output node) model for the
standard r-symptom medical diagnosis task. Their Eq. (6),
the central equation for the model, can be written in our
notation as

where the connection weights w; are regression coefficients
for the binary independent variables s; and the dependent
variable y is the net activation at the output node. (See their
Fig. 2; we used the restrictions given on their page 231 that
A=a=1.) This expression clearly would be equivalent to
(A1) if an {#n+ 1)th input node, constantly at unit activa-
tion, were included to provide the missing w, parameter as
in our CMP5. As for the interpretation of y, Gluck and
Bower’s Bq. (7) specifies that P[d=1|s]=(1+e %)=
s(3y), so By 1s the log posterior odds. If the parameter & in
a regression can be regarded as a rescaling of all w,’s, then
it is inessential in this application. Alternatively, # can be an
additional free parameter used afrer estimating the w,’s, to
fit subjects’ tendency to respond as if understating or
overstating the true odds. Gluck and Bower (1988, p. 234)
adopt the free parameter interpretation.

Estes et e, (1989) tested two other versions of the connec-
tionist model for a four-symptom (n = 4) medical diagnosis
task. The first version, call it CMPn + 0, differs from our
CMPS3 in two respects: (1) two output nodes are used, one
for d=1 and the other for d=0; (2) an additional input
node 0 is activated if and only il al} of the other four nodes
are not activated (1e., 5,=0, i=1, ..., 4). Node 0 is required
because otherwise no activation would be available when all
symptoms are 0. The second version, call it 2CMP2n, drops
node 0 but adds nodes n+1,n+2, .., n+#n node n+1iis
activated if and only if node i is not active.

It turns out that these connectionist versions differ as
learning models but are very similar as asymptotic models.
Indeed, 2CMP2n and CMP5 are asymptotically equivalent.
To demonstrate, let v,; denote the connection weights for the
2CMP2n model, so it can be written

2n
yi= 2 vgsn  j=10 (A4)

i=1
where s, ., =1—s, fori=1, .., n
Note that the odds ratio for 2CMP2n is exp(8v,)/
expl(fyv,) =exp(B(y, — yo)), so we identify y in Eq. (Al)
with ¥, — y,1n (A4). Then (A4) becomes
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2n

y= Z (v;1—1;0) 8,

i=1

= Z (P —0;0) 3 H {0, a1 —Ynp oY —5))

i=1

H
= z [0 =0 0ipn 1+ Vicnal] s

i=1

+ {i (vt'+n, 1 _vf—o—n,ﬂ)}'

For i=1, .., n set w, equal to the expressions in square
brackets [ ]and set wyequal to the expression in curly braces
{ }, and we recover Eq. (Al). Conversely, it is clear from the
last expression that there are many ways to go from the
CMP5 parameters w; to the 2CMP2n parameters v;.

2CMPn +0 and 2CMP2n are almost asymptotically
equivalent. The linearizations of the models coincide, but
the models differ in the case when ail 5; are 0. To see this,
first note that we can again take y as the difference y; — yg
to express 2CMPn + 0 as

n n
Y= visi+uvg [] (1—s)

i=1 i=1

(A5)

The coeflicient v, is relevant only when the product in (AS)
1s nonzero, which is precisely when s, =0 for all symptoms
i. In this case, the last equation reduces to y =y, that is to
say, (A1) with wy = v,. When any s, is nonzero, the equation
reduces to y=3%7_, v;5,, that is, (A1) with w, =0.

Estes et al. (1989) present an exemplar model that
assumes that each symptom configuration is stored in
memory with fixed probability f, with the category label
d=1 or d=1{ attached. In the remaining 1 — f# proportion
of the trials, there is no memory storage. The similarity of a
new symptom configuration s to a stored configuration s*
that matches ¥ (s¥=+,) on exactly n —k& symptoms and
mismatches (sFf=1—35,) on exactly k=K(s, 5%)=

*_, |s;—s¥| symptoms is assumed to be a*, where a is a
fixed numerical value between 0 and 1. The model computes
the similarity of the new stimulus s each symptom
configuration in D, the set of stored d = 1 stimuli, and sums
these computed similarity numbers. Thus the overall
similarity index of s for ¢ =1 1s given by the formula

Ris)= Y af= (A6)

s"eln

The overall similarity index Rg(s) of the stimulus s to the
alternative {(d =0) disease is computed by the same formula
except that the sum is taken over 5* in D, the set of stored
d=10 stimuli. The model uses these similarity indexes and
the relative goodness rule (RGR) to predict subjects’
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responses. That is, the probability of a d=1 response is
Ry /(R + Ry).

As the similarity parameter « — 0 the Estes et al. (1989)
model reduces to our basic exemplar model because
the final probability is simply the fraction of stored s-exem-
plars that are labelled d =1, and that fraction is w, under
the coding used in our basic exemplar model. Fits of the
Estes et al. (1989) model to medical diagnosis data yield a
estimates of 0, so our simple exemplar model apparently
loses nothing crucial. (However, we use the standard
learning algorithm which produces better trial-by-trial
fits than the learning algorithm of Estes er ai,
1989).

Nosofsky (1990} presents a related model called the
“generalized multiplicative similarity prototype” {GMSP)
model. GMSP is a restriction of Eq. {A6) in that the storage
probability f is assumed to be 1 and the sets D, and D,
are replaced by their centroids (feature means); this
“prototype” restriction gives more influence to outliers and
omits the implicit sensitivity to base rates in {A6) when
#D, # #D,. On the other hand, GMSP generalizes
Eq. (A6) by allowing o to assume different values «; for
different symptoms.

Nosofsky (1990) derives an # + 1 parameter version of the
GMSP model as follows, Let r,; denote the ratio of similarity
constants (o, for =1 in the numerator and «; for d=10
in the denominator) for symptom i=1,..,n when the
symptom has one value (7= 1) or the other (j=0). Then
define ] as ./r; [rio, and define W, to be the product of a
bias (i.e., base rate or prior odds) factor and some other
terms involving square roots of the r parameters. Then
{using Nosofsky’s Egs. A6-A8 and present notation), we
can write the posterior odds ratio as

Pld=1|s1 =
Pa=ojsy~ " L0

i=1

(A7)

If we take logs of both sides of (A7) we once again recover
(A1), with wy=In W, and w, =2 In r}. Hence this version of
the GMSP is also asymptotically equivalent to CMP.

To summarize, there are many behavioral models in
the psychological literature but they yield only a few
observationally distinguishable asymptotic models for the
medical diagnosis task. The linear reduced form in
Eq. (Al) subsumes the CMP3, 2CMP2n, GMSP, and
FLMP. These models are normatively correct in the sense of
information integration; we recover Bayves maodel if we
impose the restrictions {A2-A3) that follow from optimal
feature evaluation. The other models are related but not
equivalent to (Al). The models all assume the relative
goodness rule RGR at the decision stage, which may
or may not be optimal, depending on the subject’s
goals.



COMPARISON OF LEARNING MODELS

Learning Algorithms

Learning algorithms specify how the feedback changes
the internal parameter values. The learning aigorithms we
consider can be expressed in the form

Ut:vr—l‘l"tre(drsvf—l)s (AS)
where v denotes the internal parameter being learned, A
denotes the learning rate, and e denotes the perceived error,
given the current feedback 4, and the current parameter
value. Our behavioral models all used the same learning
algorithm, which goes back to Rescorla and Wagner (1972):
a constant learning rate A, =1 and the error specification
e=(d— p(d|s)} v—compare Egs. (5) and (6) of the text,
bearing in mind that S{y} is a probability when y is log
odds.

The Bayesian learning algorithm is different. Recall that
the elementary likelihood of symptom i, given that the
target disease is p,=[s5,=1|d=1])=P[s,=1 & d=1]/
Pld=1]. Given observations t=1,.., T of 5, and d, the
maximum likelihood estimators for the p,’s and the g,’s in
the base odds can be expressed in terms of the curtent coun-
ters N ;. The estimators are (1/T) X7, 5, d, =(1/T) N, 7
for the numerator of p, and (1/T) > d,=(1/T} N, for
the denominator. Hence p,y=N.,r/N - is a consistent
estimator for p,. Similarly, estimate the likelihoods ¢,=
Pls;=11d=0] by §ir=Ngr/Naz= (N7 — Nuar) (T — N ),
where Np=3"7T_ s,, and estimate b= P[d=1]/Pr[d=0]
by b= N, /(T—N,). That is, the appropriate ratios of
the current counters N rare used to estimate the likelihoods
and base odds.

To express adjustment to the estimates in terms of
learning rates, we solve for the recursions as

_Nursr NurtSridra

Pirar= =
Naria Nyroa
_Nir Nar | Suran dry
Nur Nar Nar 1

=Pl —dr 1 Arp dHAr i dr i Siryis

using the fact that Ny =N, —dr, , to get the first term
in the last equation, where A, =1/N .. Rearranging
the last expression, we get

(A9)

P =Pir+ira drolsia i — i)
where again A,=1/37_,d,=Nz'. Similar calculations
vield

dirs1=Gir+ IT+](1 —dry S — 4y (ALD)

177

and

b'r+1=E’T+AT+1(dT+1“BT+dT+15T) (All)
for Ly=1/X_ {1 -d)=(T—Ng)~".

We conclude that normative Bayesian learning uses a
different error function from Rescorla and Wagner and a
different learning rate. The learning rate depends on history
to some extent; on average N, =T. P[d=1], but there is
some “sampling” variance about the mean. The most impor-
tant difference is that the learning rate is not constant,
but decreases approximately as /7 In retrospect, this is
intuitively obvious: if each observation is equally infor-
mative, then the learning rate 4 optimally should give equal
weight to each current and past observation. Because the
expected number of past observations is proportional to T,
the learning rate should decline inversely with T.

These conclusions concern learning the 2n+ 1 values
P, g5, b of the normative model. Linear recursions do not
seem possible for the reduced set of (n+ 1) parameters
Wo, «y W, in Eq. (A1), and logit or probit regressions may be
required to obtain efficient estimators. Nevertheless the w,’s
can be defined in terms of the p and § expressions and the
deceleration rate conclusion still appears valid. That is, A,
is O(T™1), not O(T~2) or O(1) as secems possible at first
given exp(W,) = (N )(1 + Ny — N1 = N JN; — Ny

It is perhaps worth noting that there are tasks for which
the normative model calls for a constant learning rate. For
example, suppose that the objective symptom likelihoods p;
and ¢, are known to drift over time. Under appropriate
technical assumptions, Kalman filter techniques (see
Meinhold & Singpurwalla, 1983, for example) provide
optimal estimates of the parameters w; of the form

Wy =W, +A(TAd) =W, _\), (Al2)

as in our basic learning algorithm. The intuition is that
when the true numerical values drift, old evidence becomes
obsolete at a rate that matches its accumulation rate, so the
marginal value of new evidence remains constant at some
valoe 4,.
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