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Abstract

A discrete feature model (DFM) and the fuzzy logical model (FLMP) were formulated to
predict the distribution of rating judgments in a pattern recognition task. The distinction
was between the spoken vowels /i/ and /I/. as in beer and bit. Subjects were instructed to
rate the vowel on a nine-point scale from /i/ to /I/. Two features, the first formant
frequency (F,) and the vowel duration, were orthogonally varied: The vowel /i/ has a lower
(F,) and a longer duration compared to a somewhat higher (F)) and shorter duration for
/1/. The DFM predicts that the separate features are recognized discretely, whereas the
FLMP assumes that continuous information is available about each feature. Tests of these
models on the observed data indicated that the continuous information assumption of the
FLMP gave a significantly better description of the distribution of rating judgments.

1. Introduction

Cognitive scientists have devoted considerable effort and ingenious experiments
to the question of discrete versus continuous processing. Sternberg’s formalization
of the additive factor method (AFM) illustrated the power and feasibility of
discrete stage models (Sternberg, 1969). Other researchers documented supporting
evidence in their research programs (e.g., Miller, 1988; Sanders, 1990). This work
was so influential that the field of information-processing research was identified
almost synonymously with the methodologies and findings of this research
paradigm. As scientists, we are well aware of the power of linear models and
discrete models. In addition to their attractive parsimony, they have proven
successtul in describing a wide range of results (Massaro and Cowan, 1993;
Roberts and Sternberg, 1993).
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1.1. Stage models

Information processing is characterized by a series of successive processing
stages in which each stage has some input and transforms it into an output for the
succeeding stage (Palmer and Kimchi, 1986). This transformation takes some time
t. In its simplest form, the discrete model assumes that the processing at a stage
does not begin until the previous stage has finished. In addition, the output from a
stage to the following one does not vary systematically with the time taken for the
stage to process its input. For example, lowering the quality of the test letter (by
adding visual noise, for example) in a memory search task would slow down the
recognition stage, but it would still be transformed into a recognized letter. This
output would be identical to the output given the presentation of a high-quality
letter.

There appear to be four ways that discrete and continuous information and
information processing can occur in stage models. Miller (1988,1990) distinguished
among (a) whether the representational codes input to or output from a particular
stage of processing are discrete or continuous, (b) whether the transformation
accomplished at a particular stage takes place at a discrete time or gradually over
time (i.e., continuously), and (c) whether the information is transmitted to the next
stage at discrete times or continuously (see also Massaro and Cowan, 1993). First,
the input representation to a stage can be continuous or discrete. Second, either of
these types of input representations can be transformed in a discrete or continuous
fashion — that is, at a given instant in time or extended over time. Third, the
transmission of information from one stage to the next can be discrete or continu-
ous. Finally, regardless of the type of transformation and/or transmission, the
actual output representation of a stage can be discrete or continuous. Thus, sixteen
alternatives appear to be possible.

Discrete transmission and discrete outputs are usually assumed to apply in the
AFM, although they are not necessary (Sanders, 1990). Localizing the influence of
an independent variable at a particular stage of processing requires the assumption
of constant stage output, which is usually assumed to be unambiguous (error-free).
In memory search, additive effects of test-stimulus quality and memory size can
only be meaningfully interpreted if it is assumed that the output of the recognition
stage does not vary with test-stimulus quality. In this case, it is natural to assume
that the output of recognition must be categorical (e.g., abstract digit identity) in
order to be unaffected by test-stimulus quality. Furthermore, without discrete
transmission, reaction time does not necessarily equal the sum of durations of
processing at all stages.

1.2. Discrete feature model (DFM)

Even the strongest advocates of discreteness would not claim that discrete
processing is universal. There are many instances in which the outcome of
identification is necessarily continuous or “fuzzy” because the available category
labels describe some stimuli better than others (Massaro, 1987). An intermediate
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theoretical alternative to the discrete-continuous issue is exactly analogous to the
asynchronous discrete coding (ADC) model of Miller (1982, 1988). Miller proposed
that each feature of a test display is transmitted in discrete all-or-none fashion.
The DFM assumes that each feature is coded in a discrete (all-or-none) fashion
and, therefore, bears some similarity to earlier letter recognition models in which a
given feature activates its detector with the same intensity regardless of the
goodness of that feature. As an example, Gibson, 1969 hypothesized all-or-none
detectors in the visual system to recognize specific features regardless of the
length, density, or goodness of the feature. An all-or-none or binary feature
detector means that the feature is detected as being either present or absent (or
having one of two values).

The DFM makes it possible for a perceptual representation to appear continu-
ous even though each feature is encoded in a discrete manner. A letter, for
example, would necessarily have several features whose outputs might not neces-
sarily be consistent with one another. With two features, a letter might be
consistent with 0, 1, or 2 features. Thus there would be potentially 3 rather than
just 2 levels of information about this letter even though information about each
separable feature of the letter is discrete. The DFM is powerful because it is not
necessarily inconsistent with either discrete or continuous results. Discrete codes
would be observed when just a single feature must be processed whereas continu-
ous performance would be representative of processing multiple features. An
alternative model assumes that information about a single feature is continuous.

1.3. Fuzzy logical model of perception (FLLMP)

The fuzzy logical model of perception (FLMP) assumes feature evaluation,
feature integration, and decision (Oden and Massaro, 1978). Continuously-valued
features are evaluated, integrated, and matched against prototype descriptions in
memory, and a response is made on the basis of the relative goodness-of-match of
the stimulus information with the relevant prototype descriptions. Thus, the FLMP
differs from the DFM in terms of having continuous rather than discrete informa-
tion about the features. Information about each feature is represented in terms of
truth values from fuzzy logic because they provide a natural representation of the
degree-of-match. Fuzzy truth values lie between zero and one, corresponding to a
propositionbeing completely false and completely true. With two contrasting
alternatives, the value 0.5 corresponds to a completely ambiguous situation,
whereas (0.7 would be more true than false, and so on. Fuzzy truth values,
therefore, not only can represent different kinds of information, they can represent
continuous rather than just discrete information.

1.4. Nature of information output
The goal of the present research is to test whether single features are encoded

discretely as assumed by the DFM or continuously as assumed by the FLMP.
Consider the six level ¢—e continuum illustrated in Fig. 1. It can be safely argued
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Fig. 1. A continuum of 6 letters varying between a prototypical ¢ and a prototypical e.

that only a single feature distinguishes these letters. Thus, the DFM can be
interpreted to predict that recognition of these letters should be characterized by a
discrete perception model. Although discrete judgments do not permit a test
between these theories, rating judgments can be analyzed to distinguish between
them. In rating judgments, subjects are asked to rate the stimulus in terms of the
degree to which it falls between two prototypical extremes, €.g., a good ¢ or a good
e. An important question is how the mean rating responses are expected to differ
as a function of the position along the stimulus continuum. According to the DFM,
a given stimulus produces an information state ¢ with probability P, and an
information state e with probability 1 — P.. Perception is discrete and probabilistic,
and a stimulus produces the information state ¢ to the extent that it is towards the
¢ end of the continuum. We can also expect a distribution of rating judgments
given each information state because of random variability in the perceptual,
memory, or response systems. The distribution of rating responses to a given
stimulus will actually be a mixture of ratings generated by two distributions,
corresponding to ¢ and e information states. The proportion of ratings generated
from the distribution of ¢ ratings will increase with increases in P.. Continuous
changes in the mean rating response can occur with continuous changes along the
c—-e continuum, even though perception is discrete.

The FLMP assumes that readers perceive the degree to which a test letter
resembles each alternative. The FLMP predicts a systematic and continuous
change in the distribution of information states across the six test letters. The
information state given a stimulus towards the ¢ end of the continuum will be
more c-like than that of a neighboring stimulus towards the e side of the
continuum, The FLMP also predicts that mean rating responses change continu-
ously with changes along the stimulus continuum.

The discrete and continuous perception models can make similar predictions for
the mean rating judgments. Thus, the mean rating judgments alone are not capable
of testing between the two models. The models, however, can be distinguished on
the basis of the distribution of rating responses because the distribution of rating
responses is predicted to differ for the two models. For example, for an ambiguous
stimulus in the middle of the c-e continuum, the discrete model would predict a
bimodal distribution with a central trough, whereas the continuous model would
predict a distribution with a single peak.

When the distributions of rating judgments are analyzed, the results favor the
continuous over the discrete model. There is evidence for continuous recognition



D.W. Massaro. M.M. Cohen / Acta Psychologica 90 (1995) 193-209 197

of speech (voicing, voice onset time, and vowel quality, Massaro and Cohen, 1983),
musical consonance (Hary, 1984), and letter features (Massaro, in press).

The goal in this paper is to extend this type of test to speech stimuli that vary
along two auditory dimensions. There are several justifications for an additional
test in a situation with two varying dimensions. It is important to know if our
conclusions reached in single-factor studies can be extended to a two-factor study.
It might be the case that perception at the feature level becomes discrete when two
or more features are varied in a stimulus. The two-factor study probably requires a
combining or integration process that is not necessary in the single-factor situation.
The addition of this integration process might limit the perceiver to only discrete
information about each feature. The more complex experimental situation also
allows us to test a more complex discrete feature model. It warrants empirical test
because the more complex model might give accurate predictions even though a
simpler version has already been falsified.

The test situation involved the distinction between the spoken vowels /i/ and
/1/, as in beer and bit. The two features orthogonally varied were the first
formant frequency (F)) and the vowel duration. The F, is higher in /I/ than in
/1/, and /i/ tends to be longer in duration. Subjects were instructed to rate the
stimulus to the degree to which it falls between the two alternatives - i.e., a good
/1/ or a good /i/. The distribution of rating judgments for each subject were
tested against formal predictions of the DFM and the FLMP.

2. Method
2.1. Subjects

Seventeen native speakers (11 females and 6 males) of American English
participated in this experiment. Their average age was 20.8 years. All were
students from the University of California, Santa Cruz. They reported having
normal hearing, and normal or corrected-to-normal vision. The subjects were paid
six dollars for their participation. All subjects were unfamiliar with the specific
goals of the study.

2.2. Apparatus and materials

The test vowels were made from synthetic audible speech using the Klatt (1980)
software synthesis program. The stimuli were variations of the vowels /I/ and
/i/. We first generated eleven 300 ms vowels. These vowels differed only in the
first formant (F,), which varied from 310 to 400 Hz in 9 Hz steps. In the
experiment proper, the F, values were 310, 328, 346, 364, 382, and 400 Hz. The
other formants were fixed: F, at 2000, F, at 2815, and F, at 120. We varied only
F, rather than F, and F,, because we interpreted F, as a single feature in the
context of the DFM. The bandwidths were 50. 150, and 270 Hz for the first three
formants, respectively. The stimuli also varied in duration. Eleven durations were
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made: 20, 30, 45, 65, 80, 100, 125, 150, 180, 210, and 245 ms. The 6 durations used
in the experiment proper were 20, 45, 80, 125, 180, and 245 ms. To ensure a valid
test between the FLMP and DFM, no other aspect of the test stimulus was varied.

There were two groups of subjects that differed with respect to their introduc-
tions to the experiments. Nine of the subjects had the 11 step F, continuum played
twice as an example of the vowels going from /1/ to /i/. The duration was held
constant at 300 ms. The other eight subjects had the 11 step duration continuum
played twice as an example of the vowels going form /1/ to /i/. The F, was held
constant at 355 Hz.

2.3. Design and procedure

Vowel duration and vowel quality were manipulated in a factorial design. There
were 6 possible durations and 6 possible F, formants. Each of these 36 trial types
was presented once in every block of 36 trials. There were 8 blocks of trials per
session and a total of 3 sessions. This design gives a total of 24 rating responses per
subject for each vowel. Unknown to the subjects, there were also 10 unanalyzed
practice trials before each experimental session.

A Silicon Graphics Inc. Crimson-VGX computer was used to control the
experiment. The stimuli were presented using a Vigra MMI-210 audio board at a
16K sampling rate. Responses were made using TVI-950 terminal keyboards
connected by serial lines to the SGI computer.

Subjects were instructed to rate each stimulus indicating where on a 9-point
/1/ 1o /i/ scale the vowel fell. “In the experiment, you will hear a vowel on each
trial. Your task will be rate where on a nine point scale from /I/ to /i/ you
perceive the vowel to be. You will make your response using only these 9 buttons
EE-1,2,3,4.5,6,7,8,IH-9 on the top row of your keyboard. The EE button would
be used to indicate the best EE, and the IH button would be used to indicate the
best IH. The other seven buttons would be used to indicate intermediate degrees
of the vowel between these extremes. For example, the 3 button would be used for
a vowel perceived to be a fairly good EE, but not as good as EE-1 or 2. The 7
button would be used for a vowel perceived to be a fairly good IH, but not as good
as IH-9 or 8 and so on for the other buttons. The 5 button would be used in the
case a vowel which falls exactly in the center between EE and IH.”

The experimental stimuli were presented to the subjects over SONY MDR-V6
headphones. The loudness level of the auditory stimuli was 68.4 dB-A (slow). The
measurement was done with the sound level meter (B&K 2231, with a Type 4133
microphone and a type 4153 B&K artificial ear. The playback amplitude of each
vowel was adjusted to make it equivalent for each test vowel.

Up to four subjects could be tested simultaneously in individual sound-at-
tenuated rooms. These rooms were each illuminated by two 60 Watt incandescent
bulbs in a frosted glass ceiling fixture. The experiment was subject-driven, i.e. a
next trial would only occur after all of the simultaneously tested subjects had
responded to the previous trial.
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3. Results
3.1. Mean rating judgments

Subjects’ response ratings were recorded for each stimulus. In addition to the
raw ratings, a mean /I /-ness rating was computed. The ratings were transformed
to a 0-1 /I/-ness scale by subtracting 1 and dividing by 8. The mean observed
/1/-ness was computed for each subject by pooling across all 24 experimental
trials for each condition. Fig. 2 shows the mean rated IH-ness as a function of
duration and F, averaged across the formant and duration demonstration groups.
The rating of /I/-ness decreased with decreases in the F, value and with
increases in vowel duration. In addition, increases in vowel duration enhanced the
discriminability of the F| values. Finally, although not shown in Fig. 2, the two
different demonstrations of vowel changes before the experiment influenced
performance. Subjects were more sensitive to the independent variable that was
systematically varied during the demonstration. All of these differences were
statistically significant ( p < 0.001).

3.2. Model tests against distributions of ratings

Subjects made their rating judgments by hitting one of 9 keys on the nine-point
scale from /i/ to /1/. For each subject. the proportion of rating judgments in
each of these rating categories (bins) was computed. In all cases, the models were
fit to the proportions of judgments in each of the 9 rating bins. A number of
discrete and continuous models were tested against the resuits. Each model was
formulated mathematically and fit to the results of each subject. The free parame-
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ters were estimated to minimize the squared differences between the predicted
and observed values, using the minimization program STEPIT (Chandler, 1969).
The goodness-of-fit of a model to a subject’s results is given by the root mean
squared deviation (RMSD) between predicted and observed values. Models are
compared by ANOVAs on these RMSD values.

Although a number of different instantiations of the FLMP and DFM were
tested against the results, we present only a single representative comparison. In
all cases, when these two models were made as comparable as possible with a
similar number of free parameters, the continuous model gave a significantly
better description than the discrete model.

3.3. Test of the FLMP

The three operations of the FLMP can be formalized mathematically. Feature
evaluation gives the degree to which each characteristic supports the presence of a
particular prototype feature. The physical input is transformed to a psychological
value, and is represented in lowercase, e.g., F; would be transformed to f;, the
degree to which the formant value supports the formant feature of the alternative
/1/. With just two alternatives, /1/ and /i/, we can make the simplifying
assumption that the degree to which the formant value supports the alternative
/1/ 1s 1 — f.. Feature evaluation would occur analogously for the duration feature,
D,

Feature integration consists of a multiplicative combination of feature values
supporting a given alternative. If f, and d , are the values supporting alternative

1

/1/, then the total support, S(/1/). for the alternative /1/ would be given by
S(/1/IF,.D,) = fd,. (1)

The third operation gives the relative degree of support for each of the test
alternatives. In this case, the rating of an /1/ response given F,, D; is equal to the
total support for /1/ divided by the sum of S(/1/) and S(/i/).

S(/1/) fd,
S/ +S(/i/)  [fd+(L=f)(1-d)]

Central to the FLMP is the amount of support of each of the two features for
each of the two alternatives. A complicating factor is that cue value of the F, cue
was also dependent on vowel duration, so that F, was more informative with
longer durations. To build this factor into the cue value for F,, the cue value was
assumed to move away from 0.5 towards an asymptotic value with increases in
vowel duration. That is, an F| value supporting /1/ has some optimal support at a
given duration, and shorter durations give some value between this value and the
ambiguous value 0.5. It was assumed that the F, feature value supporting the
alternative /I/ was a weighted average of its asymptotic support and 0.5.

(/1) =wyafi( /1/) + (1 —w,)0.5. (3)

R(/1/1F,.D,) = (2)
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where f,, is the cue value of a particular F, at a given duration, afi is the
asymptotic support for that F,, and w, is the weight given the asymptotic support.
The support for /i/ would simply be one minus the support for /1/, given by Eq.
(3).

The integration rule of the FLMP was used to combine the F| and duration
information to predict the distribution of ratings to the 36 different vowels. The
FLMP rating model assumes that there is a normal distribution of truth values for
each feature. That is, a given level of a given feature generates a distribution of
feature values. Thus, each cue level has a unique mean and a standard deviation.
In this formulation, there are six unique means for the six levels of duration, six
asymptotic values for the six levels of F|. and 6 weights on the cue values for F| (as
a function of duration). Normally, there would be an additional 12 free parameters
necessary for the standard deviations. However, we assumed that the standard
deviation of a feature distribution was simply a polynomial function of its truth
value. Previous results of single-factor experiments indicated that the standard
deviation of the distribution of ratings tends to decrease as the truth value
becomes less ambiguous (moves away from 0.5 towards 0 or 1). This third-order
polynomial required 4 free parameters. Therefore, the implementation of the
continuous FLMP requires 6 + 6 + 6 + 4 = 22 free parameters. Given these values,
the 36 rating distributions corresponding to the 36 different vowels can be
computed directly by convolving the two feature distributions through the integra-
tion rule of the FLMP.

The computation of the fuzzy logical integration of the two feature distributions
is done as follows. Each of the 9 rating bins is set to 0. Consider all possible joint
occurrences of the F, feature falling in bin j and the duration feature falling in bin
k. For each jk combination, we take the center values of the bins and combine
them according to the FLMP. The resulting value tells us in which bin of the
resultant distribution the identification will fall. To that bin we then add the
product of the areas of the two bins ; and k, which gives the probability of the
joint occurrence of the F, feature falling in bin j and the duration feature falling
in bin k. This entire process is repeated for each possible combination of stimulus
levels for the two features.

This implementation of the FLMP was fit to the observed distributions of each
of the individual subjects. The FLMP described the results with an average RMSD
of 0.072. Fig. 3, Figs. 4 and S give the observed distributions of ratings for three
typical subjects. As can be seen in the figure, the FLMP does a fairly good job of
describing the results. The predicted lines tend to follow the trends in the observed
points. We will contrast this fit with the fit of the discrete model as implemented in
the DFM.

3.4. Test of the DFM
The DFM is formalized to be as analogous to the FLMP as possible, with the

primary exception of continuous versus discrete feature information. Thus feature
evaluation, feature integration, and decision are specified. Features are evaluated
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Fig. 3. The observed and predicted distribution of rating judgments across the 9 rating categories as a
function of the duration of the test vowel and the F, formant frequency. Results for subject 2 and
predictions of the FLMP.

as being present or absent which represents the discreteness property. Feature
evaluation provides information about whether each feature in the test vowel
matches one alternative or the other. Feature integration consists of counting the
number of matching features for each alternative. In the decision operation, the
count of feature matches for each competing prototype is evaluated relative to the
sum of the counts for all competing prototypes. This relative goodness-of-match
gives the rating judgment indicating the degree to which the test vowel matches
/1.

The integration of the features is assumed to be the sum of the number of
feature matches. In this case with two varying features, the outcome can be 0, 1, or
2. If M(/1/) and M(/i/) correspond to the number of matches to the /1/ and
/1/ alternatives, respectively, the decision operation determines their relative
merit to produce a rating response

M(/1/) @)
M(/1/)y+M(/i/)
where M(/1/) can be 0, 1 or 2, depending on whether the test stimulus is

evaluated as having 0, 1 or both of the /I/ features. Because /I/ and /i/ are
defined as differing on both features, M(/i/)=2—M(/1/).

R(/1/) =
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Fig. 4. The observed and predicted distribution of rating judgments across the 9 rating categories as a
function of the duration of the test vowel and the F, formant frequency. Results for subject 4 and
predictions of the FLMP.

To derive the predictions for the rating judgments, it is necessary to determine
the likelihood of obtaining the different outcomes of 0, 1, or 2 feature matches.
Table 1 gives the probabilities of the four possible outcomes of the feature
evaluation process. The probability f, is defined as the probability of evaluating
the formant feature as matching /I/. The probability d, is defined as the
probability of evaluating the duration feature as matching /1/. Suppose that we
have values for the f, and the d,. As can be seen in Table 1, both the F, and
duration features will match the alternative /1/ with probability f;d;. When this
occurs, it is assumed that the rating comes from a distribution near the /I/ end of
the rating scale. Similarly. both the F, and duration features will match the
alternative /i/ with probability (1 — f,) (1 —d;). When this occurs, it is assumed
that the rating comes from a distribution near the /i/ end of the rating scale. The
final case is when only one of the features matches, and the rating will come from
somewhere in the middle of the rating scale. This case is given by sum of the lower
left and upper right cells in Table 1. Thus, the overall distribution of rating
judgments is predicted to be a mixture from three separate distributions, occurring
with the probabilities given by Table 1.
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Fig. 5. The observed and predicted distribution of rating judgments across the 9 rating categories as a
function of the duration of the test vowel and the F, formant frequency. Results for subject 6 and
predictions of the FLMP.

If subjects actually perceived discretely, they might object to being asked to
make continuous rating judgments. However, as in most research, they would
probably attempt to comply. In the case of two independent features, the subject
would choose a rating toward the /1/ end of the response scale for the case in
which both features match /1/, toward the /i/ end for the case in which both
features match /i/, and somewhere in the middle of the response scale for the
case in which one feature matches /I/ and one feature matches /i/. Although
there would be only three possible information states, there would probably be a

Table 1
The probabilities of the four possible outcomes of the feature evaluation process for the DFM. The
term /I/-match means the designated feature matches the prototype for /1/ and not for /i/.

Formant Duration
/1/-match /1/-match
/1/-match fd, fAl1=d)

/i/-match (1£,)d, (- fX1-d)
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Fig. 6. The observed and predicted distribution of rating judgments across the 9 rating categories as a
function of the duration of the test vowel and the F, formant frequency. Results for subject 2 and
predictions of the DFM.

larger number of different ratings. A subject might not remember exactly the
rating previously given for one of the three states. Subjects may not remember
exactly what rating they gave when both features matched /1/, for example. Thus,
the same information state would receive somewhat different ratings on successive
trials. This variability in the subject’s memory of the ratings, would produce a
distribution of rating responses for each of the two percepts. Furthermore, given
the rating task, subjects might actually generate additional variability in their
ratings if their percepts are discrete and they feel that they are expected to make a
range of rating responses.

This implementation of the DFM requires 6 f, values, 6 d ; values, and 6 w,
values to determine the likelihood of entering each of the 3 information states for
each test vowel. Three free parameters are also necessary for the three means of
these states and three more for their standard deviations. Thus, a total of 24 free
parameters are necessary, two more than needed for the predictions of the FLMP.

The fit of the DFM produced an average RMSD of 0.084, significantly larger
than the RMSD of 0.072 for the FLMP, F(1,16) =4.83, p < 0.05. Fig. 6, Figs. 7
and 8 give the DFM’s predicted distributions of ratings for the same three subjects
shown in Fig. 3, Figs. 4 and 5. As can be seen in the figure, this implementation of
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Fig. 7. The observed and predicted distribution of rating judgments across the 9 rating categories as a
function of the duration of the test vowel and the F, formant frequency. Results for subject 4 and
predictions of the DFM.

the DFM gave a poorer description of the distribution of rating judgments than did
the FLMP. Although the differences in RMSDs were not large, the figures show
that the DFM was not able to describe significant aspects of the distributions that
were well described by the FLMP.

4. Discussion

The results of the present experiment demonstrated that there is continuous
information available about each feature. The integration of several features also
provides continuous information about the degree to which a given alternative is
present. This type of a continuous output representation is not a problem for the
information processing approach because continuous outputs are not necessarily
incompatible with serially arranged stages of processing that are separately influ-
enced. In the FLMP, fuzzy information from each source of information is
evaluated independently of other sources. This continuous information is transmit-
ted to an integration stage of processing in which fuzzy information from several
sources is combined. The outcome of the integration stage, also fuzzy or continu-
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Fig. 8. The observed and predicted distribution of rating judgments across the 9 rating categories as a
function of the duration of the test vowel and the F, formant frequency. Results for subject 6 and
predictions of the DFM.

ous, is transmitted to a decision stage in which the relative goodness of match of
an alternative is determined. The stages in the FLMP are sequential and can be
influenced independently of one another — even though their outputs have a
continuous output representation (Massaro, 1987).

The FLMP differs from the DFM with respect to two of the three processes:
continuous versus binary output of the evaluation process; multiplicative versus
additive integration; and same decision rule. In both cases, the FLMP presumes
processes that are more efficient or optimal than those assumed by the DFM
(Massaro, in press). It is obvious that having continuous information is an advan-
tage over being limited to discrete information. Knowing how much an item costs
is more informative than simply knowing whether or not the item is expensive.
Although not as intuitive, it has been proven that multiplying two sources of
information in the FLMP is more optimal than simply adding the sources in the
DFM (Massaro, 1987. Section 10.3).

Our experimental results demonstrate the existence of a continuous output
representation. Perceivers in our task had plenty of time to make their judgment,
however, and it might be argued that this representation might not be made
available to rapid responses. As indicated in several of the papers of this special
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issue, there is still a good deal of disagreement about whether perceptual processes
make continuous information available to response processes. One might also
argue against continuous transmission of information from one stage to the next
even if the output of a stage is continuous. In this case, the continuous representa-
tion would be passed forward at a discrete moment in time. There is nothing in our
present research that addresses this issue.

Some hint of continuous processing and transmission comes from the present
study in which vowel duration, not only provided a cue to vowel identity but also
influenced the resolution of the formant cue. Increases in duration increase
resolution of the formant cue. One might argue that the transformation of formant
cue occurred continuously in the evaluation stage and was transmitted continu-
ously to the integration stage. However, it is possible that the continuous informa-
tion from evaluation was not transmitted forward to integration until the offset of
the vowel at which time it was transmitted in a discrete fashion. Although this
remains a logical possibility, it seems highly unlikely to us. If a masking stimulus
followed the test vowel after some silent period, we would expect performance to
improve with increases in the silent period. This masking function would illustrate
that perceivers do not necessarily transmit the information from the evaluation
stage at the offset of the test vowel.

In summary, the FLMP appears to describe the processing involved in feature
analysis and identification stages that are assumed in most information processing
models. If the FLMP is an accurate representation for perceptual processing in
most situations, then general models must account for processing when continuous
information is available from these initial stages of processing. A model might
always assume that this continuous information does not influence subsequent
processing stages. Although this might be the case in some situations, we doubt
that it can be a general phenomenon. The extant challenge is to delineate those
situations in which continuous information is functional in perception and action.

Acknowledgements

This research was supported, in part, by grants from the Public Health Service
(PHS RO1 DC 00236), the National Science Foundation (BNS 8812728), and the
University of California, Santa Cruz. The authors would like to acknowledge the
helpful comments of John Kounios, Jeff Miller, and Andries Sanders.

References

Chandler, J.P., 1969. Subroutine STEPIT - Finds local minima of a smooth function of several
parameters. Behavioral Science 14, 81-82.

Hary, J., 1984. The perceptual experience of the major and minor modes of chords. Unpublished
dissertation. University of California, Santa Cruz.

Gibson, E.J.. 1969. Principles of perceptual learning and development. New York: Appleton.



D.W. Massaro, M.M. Cohen / Acta Psychologica 90 (1995) 193-209 209

Klatt. D.H.. 1980. Software for a cascade /parallel formant synthesizer. Journal of the Acoustical
Society of America 67, 971-995.

Massaro, D.W., 1987. Speech perception by ear and eye: A paradigm for psychological inquiry.
Hillsdale. NJ: Erlbaum.

Massaro, D.W., in press. "How we read letters and words: Developing and evaluating computational
models’. In: S. Sternberg and D. Scarborough (eds.), Invitation to cognitive science, Vol. 4.
Cambridge. MA: MIT Press.

Massaro, D.W. and M.M. Cohen, 1983. Categorical or continuous speech perception: A new test.
Speech Communications 2, 15-35.

Massaro, D.W. and N. Cowan, 1993. Information processing models: Microscopes of the mind. Annual
Review of Psychology 44, 383-425.

Miller, J., 1982. Discrete versus continuous stage models of human information processing: In search of
partial output. Journal of Experimental Psychalogy: Human Perception and Performance &, 273-296.

Miller, J., 1988. Discrete and continuous models of human information processing: Theoretical
distinctions and empirical results. Acta Psychologica 67, 191-257.

Miller, J., 1990. Discreteness and continuity in models of human information processing. Acta
Psychologica 74, 297-318.

Oden, G.C. and D.W. Massaro. 1978. Integration of featural information in speech perception.
Psychological Review 85, 172-191.

Palmer, S.E. and R. Kimchi, 1986. ‘The information processing approach to cognition’. In: T.J. Knapp
and L.C. Robertson (eds.), Approaches to cognition: Contrasts and controversies (pp. 37-77).
Hillsdale, NJ: Erlbaum.

Roberts, S. and S. Sternberg, 1993. ‘“The meaning of additive reaction-time effects: Test of three
alternatives”. In: D.E. Meyer and S. Kornblum (eds.). Attention and performance XIV (pp.
611-653) Cambridge: MIT Press.

Sanders, A.F., 1990. Issues and trends in the debate on discrete vs. continuous processing of
information. Acta Psychologica 74, 123-167.

Sternberg, S.. 1969. The discovery of processing stages: Extensions of Donders’ method. Acta Psycho-
logica 30, 276--315.



