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Abstract 
The goal of this project is to enhance the ability of hearing-
challenged and deaf persons to understand conversational speech 
in face-to-face spoken interactions. The idea was to present 
certain robust phonetic properties of the incoming speech 
visually to supplement speech reading. We developed real-time 
digital signal processing of the speech and designed and trained 
artificial neural networks (ANNs) and Hidden Markov Models 
(HMMs) to learn these acoustic/phonetic properties. These 
properties were transformed into visual cues to supplement 
speechreading and whatever hearing was available. The three 
cues were presented as illuminations on three LEDs placed in the 
periphery of a lens on eyeglasses. The automated speech 
processing was reasonably accurate and perceivers learned to 
decode this information and integrate with information from the 
face. However, the cues could only be used deliberately for 
single words and phrases but not for continuous speech even 
with extensive practice. We subsequently turned to a new 
strategy that used automated speech recognition (ASR) to 
translate the interlocutor’s speech into text. The user sees the 
interlocutor talk and then reads the text on a screen of a portable 
device such as an iPhone, iPod, or iPad. This solution, called 
Read What I Say, is now available in the Apple app store. 
 
Index Terms: Hearing Impairment, Automated Speech 
Processing, Face-to-Face Communication, Hearing Impairment 

1 Hearing Impairment 
Our research and application project addresses the need for 
language aids for the millions of individuals who are deaf, hard-
of-hearing, or have other language and speech challenges. For 
example, 36 million people in the U.S.A. alone live with hearing 
deficits and confront extraordinary difficulty participating in 
spoken interaction [1,2,3]. In Saudi Arabia, 13% of a sample of 
children ages 4-15 were hearing impaired and another 8% were 
were at risk of hearing impairment [4]. While many individuals 
rely on speechreading, cued speech, cochlear implants, or 
hearing aids to help them perceive spoken language, seldom do 
these solutions restore communication completely. Our goal is to 
develop another technology that can be used to enhance common 
face-to-face conversation. Importantly, the technology can be 
used as a supplement rather than simply replace other hearing 
and speech enhancements. The goal is to enable nearly complete 
understanding of face-to-face spoken conversation in a portable, 
low cost, and widely accessible device.  

2 A Potential Solution 
This research involved originally developing and testing 
embellished eyeglasses, which perform two simultaneous 
functions [5,6,7]. First, real-time acoustic analysis of an 
interlocutor’s speech tracks several speech-relevant acoustic 
features: voicing, frication, and nasality. Second, these acoustic 
features are transformed into continuous visual cues displayed on 
small LEDs on the eyeglasses (see Figure 1). By integrating 
these visual cues with lip-reading (preferably called 
speechreading, because it involves more than just the lips), the 
user should gain much more understanding of the conversation. 

Figure 1. Two illustrations of the iGlasses in use. The wearer 
sees the talker in central vision as well as the cues shown on 
LEDs in the periphery. 

As shown in Figures 1 and 2, the iGlasses were 
envisioned to be worn as a regular pair of eyeglasses, but with 
two small microphones and three colored LEDs. The wearer 
looks at the interlocutor and the microphones deliver the 
interlocutor’s speech to a portable processing device such as an 
iPhone, which processes the acoustic input. The input is analyzed 
for low frequency voicing information, high frequency frication 
energy, and nasal resonance that are associated with the 
acoustic/phonetic properties of voicing, frication, and nasality in 
English. The three properties are transformed in real-time into 
simple visual cues displayed on the three vertically mounted 
LEDs visible only to the wearer. These particular phonetic 
properties were chosen because they are fairly easy to track in 
the speech signal, and importantly, because they distinguish 
instances within a viseme category (a subset of phonemes that 
are highly confusable in speechreading). These cues also require 
no literacy, which is a benefit in that it widens the demographic 
to include pre-literate children and other non-readers. 

The two branches of the research involved 1) the signal 
processing of the speech and the training of artificial neural 
networks (ANNs) and Hidden Markov Models (HMMs) to 
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Figure 2. Schematic illustration of the iGlasses. Microphones 
record the talker’s speech which receives real-time digital signal 
processing on the iPhone. Visual cues are presented on LEDs on 
the iGlasses. 
accurately learn and track the  acoustic/phonetic properties of the 
incoming speech and 2) how easily people can be taught to learn 
and use the cues in typical face-to-face settings. 

2.1 Automated Speech Processing 

A major milestone was the implementation and formative testing 
of the digital signal processing and Artificial Neural Networks 
(ANNs) on the iPhone. We learned that all of the iPhone and 
iPad models and some iPods have the computational resources to 
carry out the analyses in real time.  

As in almost all automated speech processing systems, 
training on speech databases is necessary. Since there were no 
existing speech databases with labeled acoustic features, our 
team labeled two relevant databases, the Buckeye corpus and 
TIMIT [8,9], which were then used in the ANN training. Next, 
using the labeled corpora, hundreds of ANNs were trained to 
arrive at a configuration that met the constraints required by the 
real-time requirements of the intended application. The best 
ANNs could operate with less than a 40 ms delay, which is ideal 
for the real-time requirements of the iGlasses.  
 

Figure 3. Illustration of the ANN/HMM used for digital 
processing of the incoming speech.  

Figure 3 illustrates the ANN/HMM used for digital 
processing of the incoming speech. The ANN has a target 
window of 16 ms and five overlapping neighboring windows 

with a 8 ms overlap on each side. The Mel-Frequency Cepstral 
Coefficients (MFCCs) were computed on each of the five 
windows. Preliminary training and testing indicated that a 
network using just 12 MFCCs + log energy value, with 100 
hidden units, gave roughly equivalent network performance 
relative to more complex ANNs. An independent ANN was used 
for each of the three features voicing, frication, and nasality, 
respectively. If all three of the output feature nodes are below a 
set threshold, the segment would be labeled as silence. 

Given promising but not sufficiently accurate speech 
processing, we extended the signal processing in two ways. First, 
we programmed a Hidden Markov Model (HMM) to receive the 
outputs of the three ANNs (as is often the case in ASR systems). 
The input to the HMM was the activation of the output nodes of 
the ANNs corresponding to voicing, frication, and nasality, 
respectively. This gives 8 possible inputs to the HMM. The 
HMM also incorporated the transition probabilities between all 
pairs of the three features and silence as measured in our 
Buckeye and TIMIT data sets. Table 1 gives the transition 
probabilities among the 8 possible ANN output states. 
 
Table 1. The transition probabilities among the 8 possible ANN 
output states. The rows give State n and the columns give State n 
+1. s = silence; v = voicing; f = frication; n = nasal 
 
State n +1 

 Second, in addition to having 3 separate networks for 
the three features, we programmed a three-out ANN with 8 
possible output states, and used these possible states as input to 
the HMM. This ANN had 300 hidden units as opposed to just the 
100 hidden units when a separate ANN was used for each of the 
three features. The best performance was given by the three-out 
ANN with 8 possible output states.  
 
Table 2. The confusion matrix for the three-out ANN with 8 
possible output states and with these possible states as input to 
the HMM. The numbers in the first column and first row 
correspond to the frequency of each state. s = silence; v = 
voicing; f = frication; n = nasal 

Predicted State 

Table 2 presents the confusion matrix for the three-out 
ANN with 8 possible output states and with these possible states 
as input to the HMM. As can be seen in the table, voicing plus 
nasality was accurately detected only about 68% of the time and 
misclassified as voicing about 29% of the time. Voicing was 
misclassified as voicing plus nasal about 6% of the time. Silence 
was mistakenly classified as frication about 9% or the time. 
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Voicing plus frication was accurately detected only about 1% of 
the time and usually misclassified as either just voicing or just 
frication. The entries for nasal alone, nasal plus frication, and 
voicing plus frication plus nasal are not an issue because in total 
they occurred only 0.1% of the time. Overall, reasonable 
performance was obtained with an average accuracy of .85, .89, 
.88, and .65 for silence, and for voicing, frication, and nasality, 
respectively, when the segment was labeled with just this feature. 

2.2 Perceptual Learning of the Cues 

A series of learning and test exercises was developed and given 
to subjects to learn to use the visual cues in speech processing. 
These exercises were implemented on the iPhone, iPod, and 
iPad. These devices are inexpensive and convenient and several 
of our participants had their own devices and could practice and 
test at their own discretion. We developed an application, 
BaldiExp, that allows different learn, test, and evaluation 
exercises and can be used and modified by our experimenters 
and participants without any programming experience. Initially, 
a set of learn and test exercises was aimed at whether reasonably 
trained participants could use the simlulated LED cues in 
combination with the face to adequately perceive the face-to-face 
speech with no sound. These perceptual learning sessions 
simulated a perfectly accurate speech processing so that the 
accuracy of performance could be directly evaluated. Figure 4 
illustrates three successive views from the utterance of the word 
fan to show the occurrence of the appropriate cues during the 
three phonetic segments. 

Figure 4. Three successive views from the utterance of the word 
fan to show the occurrence of the appropriate cues during the 
three phonetic segments. 
 

Subjects: There were six participants. All subjects 
were young adults, approximately in their early twenties. All 
subjects were familiarized with the project and received 
sufficient background training on the cues and speechreading. 
All subjects received monetary compensation for their 
participation. (In retrospect, it might have been somewhat more 
successful if the subjects were given bonuses for improvement 
and very good performance.) 

Materials: In all cases, Baldi, our computer-animated 
talking face developed to produce realistic speech, was used to 
simulate the face in the face-to-face scenario. Baldi and text to 
speech synthesis are used to eliminate the tedious content 
preparation for training and testing that would have been 
required if real faces were used. The exercises were performed 
on the iPhone, iPod Touch or iPad, using the BaldiExp 
application. We developed our exercise protocol on these devices 
because of the ease of programming exercises and their 
availability, low cost, responsiveness, and user-friendliness. A 

user manual is available and is constantly updated as 
enhancements are made to the program.  

Procedure: Subjects were familiarized with the cues by 
performing a number of exercises. For several months 
beforehand, subjects progressed through a changing protocol 
using formative evaluation to optimize learning. The participants 
were exposed to a variety of different learning and test 
presentations in the form of syllables, words, and short phrases 
and sentences. The protocol consisted of each set of test items 
being made into a Learn, a Test, and an Evaluation exercise. 

A learn exercise with test words consists of Baldi 
presenting each word in a test set by speaking aloud 
simultaneously with the cues, followed by Baldi mouthing the 
word with no sound simultaneously with cues. The subject 
pronounces the word in synchrony with Baldi’s mouthing of the 
word. The idea is that this will connect the cues with the mouth 
movements in a more integrative way, which will increase 
proficiency in using cues.  

A test exercise presents each test word with Baldi 
mouthing the test word simultaneously with the cues, followed 
by a response request. There are two types of response options: 
the first is a two alternative force choice or 2AFC, the second has 
a list of all possible alternatives in the test set. For 2AFC there 
will be two options to choose from: the correct answer, and an 
incorrect one. In the second task, subjects are given a list of the 
possible test items. Word lists are usually relatively short, 
between 10 and 30 words. In both types of tests, after the answer 
has been selected Baldi will say the correct word aloud 
simultaneously with cues. There is also the option to have the 
test word repeated once more with Baldi mouthing the word 
along with the cues as an additional reinforcement. When the test 
is completed there is a results screen that gives the score and the 
option of emailing the results for archival purposes. 

An evaluation exercise randomly presents all words in 
a test set twice – once with the visual cues and once without the 
cues. This allows a direct comparison of performance when 
Baldi mouths the word with the presence of the cues to the 
condition when Baldi mouths the word with no cues. Response 
options are the same as for a test. We also evaluated the effect of 
the voicing cue being on during vowels compared to the voicing 
cue being off during vowels, and found no significant difference. 
Figure 5 shows Baldi on the iPad with a display of the voicing 
cue. 

Figure 5. Baldi on the iPad with a display of the voicing cue. 
 

Results: After 3 or 4 months of training and testing 
about 3-7 hours a week, subjects consistently performed better 
with than without the visual cues. This was true for 5 of the 6 
subjects. The sixth subject spoke English as a second language 
and had great difficulty in the task overall. Table 3 gives the 
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average proportion correct as a function of blocks of training and 
testing for the two conditions.  
 
Table 3. Average proportion correct for all six subjects in the 
initial learning and test exercises, with no cues or with cues 
across 8 blocks of trials. 
 

Block: 1 2 3 4 5 6 7 8 
Condition         
no cues 0.403 0.439 0.475 0.496 0.518 0.546 0.583 0.591 
with cues 0.531 0.610 0.662 0.696 0.733 0.772 0.794 0.831 

At the end of this training, subjects were tested in an expanded 
factorial design with three types of trials: face alone, cues alone, 
and both face and cues. As described next, quantitative model 
tests indicated that the subjects were able to integrate the face 
and visual cues, as described by the Fuzzy Logical Model of 
Perception [6].  

2.3 Ability to Integrate the Face and Cues 

Although there are several paradigms to study auditory-
visual integration in speech perception, we employ a simple task 
in which test alternatives are presented with just the cues, with 
just the face, and both together (called a both condition).  

Subjects: The same subjects just described in the initial 
learning test study participated. 

Procedure: Subjects were tested on two lists of 42 one-
syllable words each [6].  Test A included the words Path, Pang, 
Pad, Bath, Bang, Bad, San, Sad, Sat, Zan, Zad, Zat, Fan, Fad, 
Fat, Van, Vad, and Vat. The words in Test B were Pan, Pat, Pad, 
Ban, Bat, Bad, Man, Mat, Mad, Tap, Tab, Tam, Dap, Dab, Dam, 
Nap, Nab, and Nam. Each subject repeated the test ten times 
over the course of five weeks, for an hour a session. Most tests 
were done in the lab in a sectioned off room with few 
distractions. 

Results. As can be seen in Table 4, the participants 
performed much more accurately given both the face and the 
cues than with either one alone. This synergy has been observed 
in previous studies of integration of the face and the voice, and 
the results indicate a true integration of the face and the cues. 
This outcome is a critical stage in proving the feasibility of the 
iGlasses innovation. 
 
Table 4. Number of Sessions (#) and proportion of correct for the 
cue, the face, and for both the cue and the face for each of the 5 
subjects for Texts A and B. 
Subject # Test A Cue Face Both 
E 13 0.33 0.23 0.91 
H 11 0.39 0.23 0.97 
K 14 0.52 0.43 0.77 
S 4 0.29 0.25 0.96 
T 10 0.39 0.19 0.97 
Subject # Test B Cue Face Both 
E 12 0.48 0.09 0.86 
H 11 0.52 0.14 0.89 
K 11 0.59 0.31 0.80 
S 5 0.47 0.10 1.00 
T 10 0.56 0.14 0.96 

The question motivating this study was whether 
persons could integrate newly-learned cues about frication, 
voicing, and nasality with visible speech in speechreading. These 
results were well-described by the fuzzy logical model of 
perception [6], which predicts optimal or maximally efficient 

integration. This result reinforces our goal of developing 
technology to translate acoustic characteristics of speech into 
visual cues that can be used to supplement speechreading when 
hearing is limited.  

These results were initially very promising, but even 
with additional training the subjects did not progress to a level of 
expertise that would be necessary for success in face-to-face 
communication. The subjects learned the cues explicitly and 
could deliberately integrate them with the visible speech from 
the face. However, they did not seem to be able to utilize them 
automatically as in everyday conversations. It is generally 
accepted that 5000-10000 hours are required to achieve 
expertise, and we soberly accepted that this time commitment 
was not feasible for our projected application. 

3 An Alternative Solution 
Our newest research results and relevant results from our 
continuing research showed: 
1) Learning to use the three-LED system's cues proved difficult, 
even with training, especially for the older users who comprise 
the bulk of the hard of hearing population. Although most of our 
testers were able to learn the cues after many hours of practice 
and were able to use the cues in combination with the face, none 
of them developed an "automatic" response to interpreting the 
cues. 
2) The LED cues plus speechreading would provide only about 
50% accuracy in interpreting typical speech, according to our 
tests and research: 25% by speech reading and 25% by the LED 
cues. Our neural network output is only 85% accurate, increasing 
the difficulty for the listener to learn and interpret the LED 
signals.  
3) We considered and implemented a new system to increase the 
potential accuracy to 90% by adding two LEDs to report on the 
"manner" of speech by indicating vowels, stop consonants, 
fricatives (as opposed to frication) and liquids, but 5 LEDs 
would have been more complex for users to interpret and to learn 
to use than just 3 LEDs. In addition, our speech processing 
algorithms proved to be much less accurate for these cues and 
difficult to deliver in real-time, as required by application. These 
three results indicated that the original proposal is not feasible. 

One of the primary motivations for our initial approach 
was that we believed that full-blown ASR was not accurate 
enough to translate speech into text for the hearing-impaired 
listener [5]. Since that time, however, ASR has become much 
more accurate and we believe that appropriate employment of an 
ASR system can be accurate enough to translate spoken 
communication into written text that can be read by the hearing-
impaired listener. The quality of the SIRI recognizer on the 
iPhone and the quality of the ASR on the Jibbigo speech-to-
speech translation app on the iPhone [10] demonstrate that ASR 
should be accurate enough to aid hearing-impaired listeners.  

Because of the dramatic improvement with ASR and the 
difficulties our perceivers had with learning the LED cues, we 
concluded that a different technology pairing, ASR with easily-
readable text, would be a more effective solution to the problem. 
Since text, rather than simple LEDs, would be required for the 
output, simple eyeglasses with LEDs are no longer feasible for 
the output at this stage. The technology for presenting text on 
eyeglasses and the cost are prohibitive at the current time. Thus, 
our research direction changed to implement a different solution. 
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3.1 Read What I Say 

Our initial product, called Read What I Say, is now for sale in 
the Apple App store (see Figure 6). The app is installed on an 
iPad, iPhone, or iPod which would be held or worn on a vest by 
a person talking to a hearing-impaired listener. This solution 
would also allow two hearing-impaired listeners to 
communicate. This solution requires no learning and simply 
requires the hearing-impaired or deaf listeners to be able to read. 
The app uses the ASR system of Mobile Technologies LLC [11] 
to carry out ASR. Their ASR system incorporates thousands of 
person hours and millions of dollars of research and application 
funding, which cannot be approximated by a new effort [12]. 
Most importantly, the ASR in our app [13] runs locally on the 
portable devices without access to a large server. This feature is 
essential for situations when an Internet connection is not 
available.  

The goal of the Read What I Say [14] is to make it 
possible for all of us to engage in face-to-face conversations, 
even though we have limited hearing and/or the conversation is 

occurring in very noisy conditions. 
After the talker records a sentence or 
two, the words will occur on the iPad 
screen. For best accuracy, the talker 
should read clearly and with 
emphasis. She or he makes the 
recording by touching the screen just 
before and just after talking. The 
words will then appear on the iPad 
screen. The user should make sure 

that he or she has a good view of the screen for reading. Figure 6 
illustrates the use of the application with a person with hearing 
aids. 

Read What I Say [13], an iPhone app using ASR 
technology, is a proof-of-concept for facilitating face-to-face 
communication. The hard of hearing individual has his/her 

Figure 6. The use of the application Read What I Say with a 
person with hearing aids. 
interlocutors talk into an iPhone or iPad, which will present the 
text of what they said. The user first sees the person talking and 
then sees the corresponding text so that both of these can be used 
together to help understand the message. 

3.2 Alternatives to Read What I Say 

As mentioned earlier, ASR has improved significantly in the last 
few years and there are surprisingly good systems available. 
SIRI on the iPhone, for example, gives very good automated 
speech recognition performance (even if the question-answering 
component is sometimes disappointing). Apple does not permit 
other applications to access SIRI, however, and therefore its 
ASR is not available. Our ASR system could be improved with 
access to the internet and we will soon implement this 
embellishment [11].  

3.3 Alternatives to Read What I Say 

Our current iPad application Read What I Say bypasses the 
problem of a poor speech signal from the talker because the 
talker has the iPad or iPhone device and can talk directly into it 
with a near microphone, or simply into the device’s microphone. 
The written text from the ASR is shown on the same device and 
viewed by the hard-of-hearing person. 

4 Current Goals 
The iPad app serves as an intermediate goal of facilitating face-
to-face communication in a seamless manner. There are three 
aspects of our research currently underway to improve the 
quality of this type of assistive technology. The first is to 
enhance the signal processing from remote microphones and the 
second is to present the recognized text on eyeglasses in the form 
of a head up display (HUD). 

4.1 Enhanced Signal Processing on Remote Mics 

The longer range goal is to implement the original idea of 
microphones mounted on eyeglasses and the text presented on 
eyeglasses. The hard-of-hearing person using the iGlasses will 
capture the speech from a remote distance, such as a few feet or 
yards, in face-to-face interactions. Thus, it is critical to get a 
good quality speech signal from the talker. The user can look 
directly at the talker and the signal processing can take 
advantage of having one microphone on each of the two temples 
of the glasses to better isolate the speech from the talker. This 
design also benefits for the use of the head as a shadow when 
irrelevant speech or noise comes from the periphery. Currently, 
we are researching and implementing techniques to do noise 
cancelation and beam forming and signal enhancement to 
provide a clean signal to the ASR system.  
 We are researching the implementation of Voice 
Tracker II™ Array Microphone, from Acoustic Magic [14], 
which has both the original implementation of their patented, 
automatic and electronic steering, “listening beam” technology 
plus a high-quality acoustic echo cancellation (AEC) algorithm. 
The second product is the Andrea Electronics’ [15] system P-C1-
1021450-100 Pure Audio® USB-SA with Free Array-2SA, 
which has an external digital sound card with patented noise 
reduction technology and SuperBeam® array microphone 
bundle. The third possibility, from Li Creative Technologies, 
Inc. [16], has a highly directional, USB plug and play array 
microphone that provides crisp, clear, noise-reduced speech. We 
plan to modify the best system so that it can be adapted to 
microphones on eyeglasses, as we originally planned. 
 We have just recently evaluated several microphone 
arrays with noise cancellation and beam forming software, and 
compared their performance with the built-in microphones on the 
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iPhone and iPad. Surprisingly, we could find no significant 
improvement in ASR performance with these enhanced systems 
relative to the default microphone(s). Apple appears to have 
created a very good input system that doesn’t require 
embellishment for most applications. If our users are very close 
to the talkers they want to understand, it might be sufficient to 
use the iPhone’s input rather than add on additional 
microphones.  

4.2 Head Up Display (HUD) 

The technology of the head up display (HUD) has also advanced 
considerably since we began our project. Lumus [17] has 
developed transparent eyeglasses that allow text to be 
superimposed on the wearer’s normal view. They can also be 
easily placed over regular eyeglasses. Our microphones could 
therefore be easily placed on these eyeglasses and connected to 

Figure 7. Schematic illustration of how a child with a HUD can 
read a transcription of what the mother is saying. 
the iPhone. Given our ASR implemented on the iPhone, we can 
perform the automatic speech recognition and transmit the 
resulting text to these eyeglasses.  

4.3 Digital Signage and Robots as Companions 

We are also exploring the idea of presenting the text on a display 
in the user’s environment. Digital signage is becoming more 
pervasive and the written linguistic information could be 
presented on various screens in the room or even outdoors. There 
is also a concerted effort to develop robots as companions [18]. 
In this case, the hearing challenged person would have by their 
side a robot with microphones, an ASR system, and a visual 
display. The user could then look to the robot for the written 
transcription of what is being spoken. 

5 Summary 
We have traveled a somewhat circuitous path in our quest to 
improve communication in face-to-face conversations. We began 
with an application design grounded in the belief that full blown 
automated speech recognition (ASR) was not fast enough or 
accurate enough to meet the goal of real-time communication. 
After just a few years into the project, ASR had improved 
significantly to make its employment feasible. More generally, 
assistive technology is a rapidly developing field and the goal of 
our research and applications is to extend the range of mind and 

behavior by using behavioral science principles to guide the use 
of the developing technology. 
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