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M. A. Pitt (1995a) studied the joint influence of phonological information and lexical context in
W. F. Ganong’s (1980) task. Pitt improved on earlier studies by collecting enough observations to
make possible the quantitative analyses of an individual’s data. The present article shows that the
results of such analyses demonstrate that the integration of phonological information and lexical
context is very well accounted for by the fuzzy logical model of perception (FLMP). Although Pitt
concluded that the results of his research argued against the FLMP in favor of an interactive
feedback system, his conclusion was based on an analysis of transformed results. It is argued that
this use of a response transformation led to incorrect conclusions and that ultimately, models must

be tested directly against observed behavior.

Pitt (1995a) studied the joint influence of phonological
information and lexical context in an experimental paradigm
developed by Ganong (1980). Pitt improved on earlier studies
by collecting enough observations to allow a participant-by-
participant evaluation of the ability of models of language
processing to account for the results of this task. Previous tests
of models using this task have been primarily dependent on
group averages which may not be representative of the
individuals that make the averages up.

However, the conclusion reached by Pitt (1995a)—that the
results of his study revealed violations of the independence
hypothesized by the fuzzy logical model of perception
(FLMP)—is incorrect. As we show in this article, the results
are, in fact, completely consistent with the FLMP and, indeed,
provide strong support for it. We also examine a number of
critical technical issues pertaining to the study of these
questions.

The Fuzzy Logical Model of Perception

Within the framework of the FLMP, perceptual events are
processed in accordance with a general algorithm (Massaro,
1987; Oden, 1979, 1984). As shown in Figure 1, the model
consists of three operations: feature evaluation, feature integra-
tion, and decision. The sensory systems transduce the physical
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event and make available various sources of information called
features. These continuously valued features are evaluated and
matched against prototype descriptions in memory by a pro-
cess that integrates individual feature values according to the
specifications of the prototypes. An identification decision is
then made on the basis of the relative goodness-of-match of
the stimulus information with the relevant prototype descrip-
tions. This relative goodness-of-match value thus predicts the
proportion of times the stimulus is identified as an instance of
the prototype or predicts a rating judgment indicating the
degree to which the stimulus matches the category. A strong
prediction of the FLMP is that the impact of one source of
information on performance increases with increases in the
ambiguity of the other available sources of information.

The FLMP provides a natural account of the integration of
bottom-up and top-down sources of information in language
processing. Indeed, from the beginning (see e.g., Oden &
Massaro, 1978), a major attraction of this model has been its
ability to account for context dependency in perception while
maintaining strict independence in the basic perceptual pro-
cesses. A very good example of this remarkable fact is provided
by Ganong’s (1980) results, which established that lexical
identity could influence phonetic judgments. In Ganong’s
article, a continuum of test items was made by varying the
voice-onset time (VOT) of the initial stop consonant of
consonant-vowel-consonant (CVC) syllables. The vowel-
consonant (VC) was also varied and took one of two forms. For
example, participants identified the initial consonant as /d/ or
/t/ in the context __ash (where /d/ makes a word and /t/ does
not) or in the context __ask (where /t/ makes a word and /d/
does not). A lexical effect was observed because there were
more voiced judgments /d/ in the context __ash than in the
context __ask. The form of this effect has been shown to be
well accounted for by the FLMP (Massaro & Oden, 1980).
Ganong’s original results have been replicated by several
investigators (Connine & Clifton, 1987; McQueen, 1991; Pitt &
Samuel, 1993). However, none of these previous experiments
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Figure 1. Schematic representation of the three stages involved in

perceptual recognition. The three stages are shown to proceed left to
right in time to illustrate their necessarily successive but overlapping
processing. The sources of information are represented by uppercase
letters (indicated by X; and ¥;). The evaluation process transforms
these sources of information into psychological values (indicated by
lowercase lettersx; and y;). These sources are then integrated to give an
overall degree of support for a given alternative s, The decision
operation maps this value into some response, Ry, such as a discrete
decision or a rating.

reported results at the individual participant level. Although
formal models can be tested against group results, there is
always a chance that the average results do not represent the
results of the individuals making up the group (Massaro &
Cohen, 1993). Pitt is to be applauded for sufficiently testing
individuals under each condition in order to have reliable
individual results. This is essential for testing competing
models and yet has been exceedingly uncommon, even though
the interaction of bottom-up and top—-down sources of informa-
tion has been of central interest in the last decades of research
on language processing.

There are two sources of information in the Ganong (1980)
task: the bottom-up information from the initial speech
segment and the top—down context from the following speech
segment. In the framework of the FLMP, it is assumed that
both of the sources are evaluated and integrated to achieve
perceptual identification. Let s; be the degree of support for
the voiced alternative given by the initial segment and ¢; be the
support for the voiced alternative given by the following
context. In this case, the total support for the voiced alterna-
tive would be as follows:

S(voiced |S;C;) = s; X ¢;. Y]

The subscript i indexes the ith level along the stimulus
continuum of the segmental information and indexes the level
of the context. In the special case of just two response
alternatives, the support of one source of information for one
alternative can be taken to be one minus the support for the
other alternative. (Nothing in what follows actually depends on
this simplifying assumption.) In this case, the total support for
the voiceless alternative would be as follows:

S(voiceless | $;C;) = (1 —s;) X (1 = ¢). 2)

Given the relative-goodness rule at the decision stage, the
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predicted probability of a voiced response, P (voiced | §;C;), is
equal to

5 X ¢
(5 X cp) + [(1 — 5} x (L —¢;)] .

P(voiced|S§,C;) = ©)

Test of the Model

This model was applied to the identification results of the 12
individual participants in Pitt’s (1995a) Experiment 3a for
which 104 observations were obtained for each data point for
each participant. The points in Figure 2 give the observed
results for each of the 12 participants in the task. For most of
the participants, the individual results tended to resemble the
average results reported by Pitt and earlier investigators. Of
the 12 participants, 10 were influenced by lexical context in the
appropriate direction. Participant 1 gave an inverse context
effect, and Participant 7 was not influenced by context.

In producing predictions for the FLMP, it is necessary to
estimate parameter values for each level of each experimental
factor. The initial consonant was varied along six steps be-
tween /g/ and /k/ and the following context was either /Ift/ or
/Is/. Thus, there were six levels of bottom—up information and
two contexts. A free parameter was necessary for each level of
bottom-up information and for each level of contextual
support. Thus, eight free parameters were estimated to predict
the 12 independent data points: six values of s; and two values
of ¢;. These parameters were estimated using the program
STEPIT (Chandler, 1969). The parameter values in the
prediction equations of the FLMP were iteratively adjusted by
minimizing the squared deviations between the observed and
predicted values. The program determines the set of param-
eter values that come closest to predicting the observed results.
The goodness-of-fit of the model was given by the root-mean-
square deviation (RMSD)—the square root of the average
squared deviation between the predicted and observed values.

The lines in Figure 2 give the predictions of the FLMP. As
can be seen in the figure, the model generally provided a good
description of the results of this study. The RMSD between
predicted and obtained was .017 on the average across all 12
independent individual participant fits. For the 10 participants
showing appropriate context effects, the RMSD ranged from
.003 to .045, with a median of .007. Thus, for each of these
individuals, the model captured the observed interaction
between phonological information and lexical context: The
effect of context was greater to the extent that the phonological
information was ambiguous. This yielded a pattern of curves in
the shape of an American football, which is a trademark of the
FLMP.

The only participant whose data reflected an effect of
context not following this pattern was Participant 1, whose
context effect went in the direction opposite to the context
effect for the other participants (and opposite to reasonable
expectation). The FLMP gave a very poor description of this
participant’s results, yielding an RMSD of .066. Although one
would ordinarily not dwell on the anomalous data for a single
participant, it may be worthwhile to observe that the fact that
the FLMP did not provide a good fit to this participant’s data is
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Figure 2. Observed (points) and predicted (lines) proportion of /g/ identifications for FT and S contexts
as a function of the speech information of the initial consonant. Results from Pitt’s (1995a) Experiment
3a. Predictions of the fuzzy logical model of perception.

evidence that the model is not so powerful that it can fit
anything. The repeated success of the model appears to have
led some researchers to suspect that it has excessive param-
eters or some other “unfair” advantage that somehow makes it
effectively unfalsifiable. Such suspicions are wholly unfounded
(see Massaro & Cohen, 1993). In fact, the evaluation of
independence of process by means of the FLMP uses just the
same number of free parameters as in the test for interaction
within the analysis of variance (ANOVA). As the data for
Participant 1 demonstrated concretely, it is entirely possible
for the FLMP to fail to fit data; indeed, it is conceptually just as
possible as it is for an interaction to be obtained with an
ANOVA.

Figure 3 shows the parameter values in terms of the support
for /g/ for the stimulus and context sources of information. As
can be seen in the figure, the parameter values varied in a
sensible way with changes in stimulus and context. The support
for /g/ fell as the segment level was changed from /g/ to /k/.
The support for /g/ was larger given the /Ift/ than the /Is/
context. This is important because one would not conclude
that the model gave a good description of the data if it required
unreasonable parameter values to do so.

Although the FLMP provided a good description of the
results, it is worthwhile to know how good is good. Even if a
model is perfectly correct, we cannot expect it to fit observed
results perfectly. Reasonably accurate models must be stochas-
tic or have built-in variability, as do observed results. As it is
stated, the FLMP is deterministic (has no variability) at the
feature evaluation and integration processes and becomes

stochastic only at the decision process. The variability at the
decision process is due to the relative-goodness rule in which
the probability of a response is equal to the merit of that
alternative relative to the sum of the merits of all relevant
alternatives. For example, given a relative-goodness value of
.8, that alternative is randomly chosen .8 of the time. This is
analogous to flipping a coin that is biased to give a certain
outcome 80% of the time. With a finite number of observa-
tions, we cannot expect that the actual probability of respond-
ing with the alternative will be exactly .8, even if the model is
correct. A strong prediction of the model is that the observed
variability should be equal to that expected on the basis of
simple binomial variability.

The standard deviation of a binomial distribution (with two

outcomes) is equal to
o= \/pE 4)

where p is the probability of one outcome, ¢ is the probability
of the other (g = 1 — p), and N is the number of observations.
Applying this equation to the present task, p is equal to P(/g/),
q = P(/k/), and N is 104, the number of observations at a given
experimental condition for a given participant.

The benchmark RMSD may be determined by computing
the binomial variance (pg|N) at each of the 12 experimental
conditions, averaging these 12 values, and taking the square
root. This benchmark RMSD was determined for each of the
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Figure 3. Parameter values for the fuzzy logical model of perception in terms of the support for /g/ for

the stimulus and context sources of information.

participants and compared with the RMSD values from the fit
of the FLMP to the observed results shown in Figure 2. The
average of these 12 individual participant benchmarks was
.024, on the same order as the observed RMSDs, which
averaged .017. An ANOVA comparing the observed and
benchmark RMSDs was not statistically significant, F(1, 11) =
2.97, p = .11. Thus, we concluded that the FLMP described the
results as accurately as could be expected from a correct
model.

Accounting for Other Response Forms

Although the focus in Pitt’s (1995a) article, as with most
other studies in this area, was on the identification response
data, there were several other types of data obtained across the
various experiments as well. Rating and response latency data
are valuable both because they may yield converging support
for conclusions and because each provides finer grained
information regarding psychological processes than does the
binary forced-choice response.

Ratings

In addition to the forced-choice response, participants in
Pitt’s (1995a) Experiment 3a were also required to rate their
confidence in their decision. These confidence judgments can
be treated as ratings on an interval scale to provide another
test of the FLMP (see Oden, 1979). To provide this test, the six
confidence categories were linearly transformed into values
between zero and one, with the endpoint categories given the
values 0 and 1. In this case, the ratings varied between very sure

/k/ (0) and very sure /g/ (1). A mean rating was computed for
each participant at each of the 12 experimental conditions.
Figure 4 gives the mean ratings for the 12 participants in
Experiment 3a. These mean ratings were fit by the FLMP, the
predictions of which are also shown in Figure 4. The FLMP
gave a good description of the results with an average RMSD
across the 12 individual fits of .026. An average participant was
also created by averaging the results across all 12 participants.
The RMSD for the fit of the model to the average participant
was .011. Thus, the FLMP is also able to describe exactly the
results used by Pitt to compute the A4, (sensitivity) measures
that were argued to provide evidence against the model.

Absolute Identification

Pitt’s (1995a) Experiment 3b required participants to identify
absolutely the test stimulus as one of four responses. We
analyzed the results in two ways. We computed the proportion
of /g/ responses by calling the two most /g/-like responses /g/
and the other two responses /k/. We also computed a /g/-ness
rating by transforming the absolute judgments into a value
between zero and one, as we did in our analysis of the results
for Experiment 3a. The individual results of the 3 participants
were fit by the FLMP. Figure 5 gives the observed proportion
of /g/ along with the predictions of the FLMP. For the
proportion measure, the average RMSD for the 3 participants
was .007. Figure 6 gives the rating of /g/ along with the
predictions of the FLMP. For the rating measure, the average
RMSD was .042. Thus, the FLMP also gives a fairly good
description of individual results recorded in an absolute
identification task.
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Figure 4. Observed (points) and predicted (lines) rating of /g/ for FT and S contexts as a function of the
speech information of the initial consonant. Results from Pitt’s (1995a) Experiment 3a. Predictions of the

fuzzy logical model of perception.

Lexical Influence as a Function of Reaction Time (RT)

The FLMP is also consistent with the important finding that
the size of the lexical context effect was positively correlated
with RT. As shown in Pitt’s (1995a) Experiment 1 and his
Figure 2, the contribution of lexical context increased as the
RT to make the judgment increased. In the framework of the
FLMP, bottom—-up phonological information and top-down
lexical information are processed over time. The FLMP
predicts that support for /g/ from the bottom-up and top—
down sources grows with processing time. However, given test
items such as /gIft/ or /kls/, the lexical information occurs
later in the test word than the phonological information in the
initial consonant. Therefore, there is necessarily a delay in the
arrival of the lexical information relative to the stimulus
information from the initial consonant. Thus, there is a delay
of the top~down influence relative to the bottom—up influence,
but both functions grow with increases in processing time (see
Massaro & Cohen, 1991; Massaro & Cohen, 1994).

To provide a quantitative test of this interpretation, the
FLMP was fit to the data for the 14 individual participants and
to the average results from Pitt’s (1995a) Experiment 1. The
model was fit to the three identification conditions in the slow,
medium, and fast RT conditions (Pitt, 1995a, Figure 2). It was
assumed that the available processing time differed in the
three conditions. The available processing time was taken to be
the mean RT for each participant under each of the three
conditions. The mean RTs across the 14 participants were 345,
445, and 633 ms. The mean RTs for individual participants
were taken to be the available processing time for the

1.0 S 1
0.51 conTexT
{ ——Fr |
ool s | ey
Z
O 1.0}
a
wn
5 0.5
(0 0.0-
ol

SPEECH

Figure 5. Observed (points) and predicted (lines) identifications of
/g/ for FT and S contexts as a function of the speech information of
the initial consonant. Results from Pitt’s (1995a) Experiment 3b.
Predictions of the fuzzy logical modet of perception.
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Figure 6. Observed (points) and predicted (lines) ratings of /g/ for
FT and S contexts as a function of the speech information of the initial
consonant. Results from Pitt’s (1995a) Experiment 3b. Predictions of
the fuzzy logical model of perception.

phonological information. These same values minus a constant
delay c; for the arrival of the lexical information were taken to
be the available processing times for the lexical information.
We assumed that evaluation of the speech information from
the initial segment followed the function given by Equation 5,
which gives the amount of support, s, for /g/, defined as S(s):

S(s) = a(l — %) + .5 %) 5)

Equation 5 describes the evaluation process as a negatively
accelerated growth function of processing time ¢. It is assumed
that the information provided by this source of information can
be represented by o 0, the rate of processing this information,
is independent of the information value. The value o repre-
sents the asymptotic support for the alternative /g/. These a
values are equal to the parameter values indicating the degree
of support in the typical fit of the model when processing time
is not a factor. If a corresponds to the amount of support for
the voiced alternative /g/, then changing the speech syllable
from a somewhat ambiguous /g/ to a less ambiguous /g/ would
yield a larger a value but would be processed with a fixed 6. As
noted above, different processing times would be available for
the three RT conditions.

The same type of equation would describe the growth of the
lexical context information c, except that the constant delay for
its arrival would be subtracted from the available processing
time.

Integration of the outputs of evaluation is assumed to occur

OBSERVATIONS

continuously, producing an overall goodness-of-match value
for each of the test alternatives. Given two sources of informa-
tion, the output of integration, S(s, ¢), is given by Equation 6:

S(s,¢) = [oy(1 —e™®) + .5(e™™)]
X fa (1 — e78—) + 5(e~%¢=<Dy], (6)

where a is the asymptotic support from the initial consonant
stimulus, and «, is the asymptotic support from the lexical
context. The value of 0 is the same for both the stimulus
information and the lexical context, and ¢, is the delay between
the onset of the processing and the onset of the lexical
information. The relative-goodness rule is simply instantiated
when the feature evaluation and integration are completed, as
constrained by the RT condition. The same operations occur
at all three RT conditions; only the available processing time
differs across the conditions.

To provide a baseline for the fit of this dynamic FLMP, the
standard (static) FLMP was first fit to each of the three RT
conditions separately, with a unique set of 10 parameters for
each RT condition. The average RMSD for the fit of the data
for the 14 individual participants was .017, whereas the RMSD
for the fit of the data for the average participant was .010.
Thus, the static FLMP provides an excellent description of the
results, consistent with the good fit of the data for the
participants in Pitt’s (1995a) Experiments 3a and 3b.

The fit of the dynamic FLMP reduced the total number of
free parameters required from 30 to 12. In this case, the FLMP
was being tested against three times as much data (16 vs. 48
observations), with only 2 additional parameter values (6
corresponding to the rate of processing and ¢, corresponding to
context delay). Figure 7 gives the predictions of this dynamic
FLMP to the average results. As can be seen in the figure, the
dynamic FLMP nicely described the increase in the influence
of lexical context with increases in processing time. The
average RMSD for the fits of the data for the 14 individual
participants was .046, whereas the RMSD for the fit of the data
for the average participant was .020. Considering the savings in
the number of free parameters, the dynamic FLMP did a
respectable job of describing the results. The average value of
0 was 8.59, and the average value of context delay ¢; was 297
ms. It is encouraging that the value of ¢; was a reasonable
estimate of the time between the onset of the syllable and the
onset of the lexical context. The good description given by the
dynamic FLMP reveals that the influence of lexical context as a
function of RT was parsimoniously described as being due to
processing time. Postulating different strategies or some other
qualitative influence was not necessary.

The FLMP might also explain the identification results
across the RT partitioning in Pitt’s monetary bias conditions.
Because the monetary bias was known before the test stimulus
was presented, its effect should have been greatest at the
shortest RTs. With longer RTs, the stimulus was processed
more completely and produced a bigger influence on perfor-
mance. This prediction is consistent with the observed results.

Pitfalls in Model Testing

The success of the FLMP in accounting for the variety of
Pitt’s (1995a) data is no small accomplishment, especially
because we have shown it to capture the precise quantitative
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Figure 7. Observed (points) and predicted (lines) proportion of /g/
identifications for FT and S contexts as a function of the speech
information of the initial consonant. The three panels give the results
for the fast, medium (mid), and slow identifications.

pattern of individual participants’ responses. How then, one
might ask, was Pitt led to conclude that the results of his study
falsified the independence prediction of this same model?
Indeed, the reader of that article may believe that he or she has
seen substantial signs of interactivity in the data Pitt presented,
such as that in his Figure 3. However, as we have seen, this
apparent evidence of violations of independence is illusory.
Furthermore, as we now show, this illusion appears to be the
consequence of at least three problems: (a) focusing on
differences between differences, (b) using a suboptimal param-
eter estimation procedure, and (c) using an inexact stand-in
for the model. Each of these problems contributes to produc-
ing the spurious appearance of substantial violations of inde-
pendence. We now consider each of these culprits in turn.

Differences of Differences

The critical figures in Pitt’s (1995a) article plot differences of
z scores (or A, scores) for adjacent stimuli under each
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respective context condition. The crucial comparisons are thus
given in terms of differences in these differences as a function
of context. This is a valid way to address whether there are any
Context x Stimulus Level interactions, but it tends to amplify
the appearance of any such interactions because the overall
range is greatly reduced. To illustrate this point, we plot in the
left panel of Figure 8 some stepwise differences of z scores
based on the data! from Pitt’s Experiment 3a that show the
crossover interaction that is characteristic of the data that he
believes support interactivity. In the right panel of Figure 8,
the same information has been replotted in the more usual
fashion for considering interactions, that is, in terms of the z
scores directly. This change by itself does not make the
interaction go away, of course, but it shows it not to be as
monumental as one might have been led to suppose from the
original figure. The curves are mostly parallel, which means
that there is really only a small interaction for which we must
still account.

Suboptimal Parameter Estimation Procedure

The parameter estimation procedure implicit in the d' (and
Ay) analysis used by Pitt (1995a) was suboptimal in the sense
that it did not provide the best possible fit to the data of the
model on which the signal detection analysis was based
(TSD—the theory of signal detectability), let alone of the
FLMP. It therefore does not really constitute a fair test of the
question of independence. Discrepancies from the model
(apparent violations of independence) may not be the fault of
the model but rather of the estimation procedure. The
problem is that these analyses do not constitute least squares
estimation procedures in the sense that really counts; that is,
they are not least squares estimates in terms of the actual data
being evaluated (i.c., the response proportions).

This may perhaps be more easily understood by direct
example. The top section of Table 1 provides the proportions
corresponding to the z scores plotted in Figure 8. The next
three sections of the table detail Pitt’s (1995a) z-score analysis
in terms of the equivalent additive model fit to the z scores.
First, we provide the z scores (standard normal deviates)
corresponding to the original proportions along with the row
and column means of these z scores. The row means have been
adjusted by subtracting out the grand mean to express the main
effect for rows as the comparable amount above and below the
grand mean. For each cell of the matrix, the sum of the
respective column mean and the respective adjusted row mean
provides the predicted z score for the linear model as fit to the
z-score transformed data.2 These values are shown in the next
two rows in this section of Table 1. Finally, these values are
converted back to proportions using the inverse of the cumula-
tive standard normal function (i.e., the values used to assess
independence when the z-score analysis is employed). The

! Just how these values are based on the data is explained in a
subsequent section. For now, it does not matter what these values are;
what matters is that they display the general pattern that Pitt obtained
in his studies.

2 This is simpler than but equivalent to the more usual form of the
linear model of the ANOVA, which is (row mean — grand mean) +
(column mean — grand mean) + grand mean.
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Figure 8. The left panel shows a set of z scores plotted as differences between adjacent stimulus levels, as
in the fashion of Pitt (1995a). The right panel shows the same z scores plotted directly in the more usual
way. The filled squares correspond to the FT context, and the empty squares to the S context. The stimulus

level goes from /g/ to /k/. See text for explanation.

RMSD between these predictions and the original proportion
values was .026. Even with the suboptimal estimation proce-
dure, this RMSD was reasonably small, which indicates that
we were correct in concluding on the basis of visual inspection
of the right panel of Figure 8 that the interaction there (and,
hence, the corresponding interaction in the left panel of Figure
8) was really not very substantial.

However, is the outcome of this analysis really as well as the
TSD version of the independence model can do? Would it be
possible to find parameter values for the additive z-score
model that would fit the data better (i.e., yield a smaller
RMSD value) than do the marginal means of the z scores? The
answer is most definitely yes: The point we are presently
making is that this analysis is not a least squares procedure in
the data and that it thereby still underestimates the degree to
which the data can be accounted for by the hypothesis of
independence. This is illustrated in the fifth and sixth sections
of Table 1, which contain the predicted z scores we obtained
by estimating row and column parameters corresponding 1o
those used above through an iterative procedure (in this case,
the Solver routine in Excel 4.0) that minimized the resulting
RMSD when the predicted z scores were used to produce the
predicted proportions. The parameter values obiained by
these means are shown along with the resulting predicted
z-score and proportion values. These values yielded an RMSD
of .004, which constitutes a dramatic improvement over that
obtained by the suboptimal estimation implicit in Pitt’s (1995a)
z-score analysis.

Comparing the predicted proportions obtained by these two
procedures readily revealed the superiority of fitting the data
themselves rather than some nonlinearly transformed scores.
Note particularly that the data for the critical fifth stimulus
level (.909 and .390 for the two contexts, respectively) is now
well accounted for (.905 and .392), whereas it was not at all
well accounted for using the suboptimal procedure (.877 and
.460). Of course, the fit has gotten slightly worse in a few cells,
namely for some of those in the tails of the normal distribution.

This illustrates the problem of doing least squares estimation
in nonlinearly transformed data: The suboptimal procedure
was willing to trade off a much worse fit in the middle of the
proportion scale for piddling gains in the tails because extreme
proportions are overemphasized when transformed to z scores
(a small difference in p values in the tails leads to big
differences in the corresponding z values).

Note that up to this point, we are still using the TSD model.
Thus, there is nothing in what has just been demonstrated that
depends on the FLMP. Rather, simply applying a more
appropriate parameter estimation procedure with the TSD
model has caused the apparent violations of independence to
all but evaporate.

The Normal Instead of the Logistic

It may seem to be overkill, but there is still one more
important matter to consider: the exact technical conse-
quences of using the TSD to stand in for the FLMP. For
present purposes, the only real functional difference between
TSD and FLMP is in the transformation that converts the
model to linear form. Indeed, if one were to apply the TSD
model using the logistic instead of the normal probability
distribution, then it would become mathematically isomorphic
to the FLMP under the present conditions. It is well-known
that the logistic is closely related to the normal in form; for
many purposes, they can be treated as being practically
interchangeable. This was the basis of Massaro’s (1989b) use
of the z transform with the FLMP.

Nevertheless, the difference between the normal and the
logistic may sometimes be of real importance. A detailed
analysis of Pitt’s (1995a) data has revealed that this situation is
just such a case. The simplest concrete demonstration of this is
given by comparing the fit to the data of the TSD model to that
of the FLMP using the optimal estimation procedure in both
instances. For example, in the last section of Table 1, we
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Table 1
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Original Proportions and z Scores Used to lllustrate the Pitfalls in Pitt’s (1995a) Analyses

Stimulus level

Proportions and z scores 2 3 4 5 6 7
Original proportions
/ %ft / col:ne;):t 999 .997 .995 .909 .383 242
/Is/context .981 .961 933 .390 038 020
z scores corresponding to original
proportions
/Ift/context? 3.026 2.799 2.608 1.338 -.297 -.701
/1s/context® 2.072 1.764 1.498 —.280 -1.774 ~2.056
M 2.549 2.281 2.053 529 -1.035 ~1.379
Predicted z scores from LSF of
linear model to z scores®
/1ft/context 3.178 2.910 2.682 1.158 -.406 -.750
/1s/context 1.920 1.652 1.424 -.100 —1.665 ~-2.008
Predicted proportions
/Ift/context .999 .998 .996 .877 342 227
/1s/context? 973 951 923 460 .048 022
Predicted z scores from direct LSF
of TSD model to proportions
/1ft/context® 3.655 3.347 3.081 1.309 -.293 —-.698
/Is/contextt 2.071 1.763 1.497 -.274 -1.877 ~2.282
Column parameters 2.863 2.555 2.289 517 —-1.085 ~1.490
Predicted proportions .
/1ft/context 1.000 1.000 .999 .905 385 243
/Is/contexts .981 .961 .933 392 .030 01
Predicted proportions from direct
LSF of FLMP to proportions
/Ift/contexth 999 997 .995 .909 383 242
/1s/context! 981 .961 933 .390 .038 .020
Column parameters) 995 990 982 717 136 .074
Note. LSF = least squares fit.
*Adjusted row mean = .629. °Adjusted row mean = —.629. C°Predicted z scores = column mean + adjusted row mean. 9Root-mean-square

deviations (RMSD) = .026. “Row parameter = .792. ‘Row parameter = —.792. RMSD = .004. "Row parameter = .799. ‘Row parame-

ter = .201. JRMSD = .000.

present the results of fitting the FLMP to the original propor-
tions using the same iterative estimation procedure as was
used with the TSD model (presented in the fifth and sixth
sections of the table). That is, the procedure searched for
parameter values for the FLMP that would minimize the
RMSD between predicted and original proportions. The
predicted proportions are listed in the table along with the
parameter values on which they are based. (Note that in this
case, as described earlier, the two row parameters sum to one
rather than zero.) As can readily be seen, the FLMP fits the
original values even better that the TSD did. In fact, the
predictions are identical to the original values listed in the
table and, so, the RMSD is exactly zero! Thus, here is a case
where the fit of the TSD model is only an approximation of the
degree to which the FLMP can account for the data. That is,
the difference between the normal and the logistic really does
make a difference.

As the reader has undoubtably by now surmised, the values
plotted in Figure 8 (and the corresponding proportions listed
in the first section of Table 1) were computed from the
predictions of the FLMP when fit to the data for one of Pitt’s
(1995a) participants (Participant 12—chosen for having healthy
effects of both factors). Thus, throughout this section, we have
been dealing with values that followed the form of the FLMP
perfectly. This has been done to emphasize the finding that of

the procedures for evaluating this model, only a direct fitting of
the model itself to the data itself provided a real test. In the
course of doing so, we have also demonstrated a rather
startling result: Applying the z-score analysis to values that
perfectly follow the FLMP can yield results of exactly the form
that Pitt takes as evidence against the model. The pattern of
the plot in the left panel of Figure 8 is entirely spurious as an
indication of interactivity-—it results from applying the z-score
analysis to values that perfectly follow the FLMP and, thus, are
purely noninteractive.

It should be stressed that it is not just that Participant 12’s
values show that this state of affairs is possible. This pattern
generally holds for the other individual participants as well. In
fact, if we take the separate predictions of the FLMP when fit
to the individual data for each of the 12 participants in
Experiment 3a and apply the z-score analysis to each, followed
by the ¢ test that Pitt (1995a) computed, we find that the
differences for the 4-5 and 5-6 steps are significant, just as Pjtt
did. Furthermore, in Monte Carlo studies that involved adding
appropriate binomial noise to the predictions of the FLMP for
each of the 12 participants, we nearly always found the same
pattern of the interaction, and we obtained significant r tests
for Steps 4-5 and 5-6 as often as not.

All of this section has focused on the z-score analysis based
on TSD. As it turns out, exactly the same considerations apply
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to the A4, analysis, even though it is taken to be a nonparamet-
ric measure. Figure 9 plots the pattern that results when the 4,
values were computed on the basis of the predictions of the
FLMP for each participant and then averaged across partici-
pants.® Again, the resulting pattern was highly similar to that
actually obtained by Pitt, and the relevant comparisons were
significant across participants both for the specific case when
the data followed the FLMP exactly and also in the majority of
Monte Carlo trials when binomial noise was added.

Signal Detection Paradigm

So what, then, does all of this say about the use of the signal
detection model as a means for separating perceptual from
postperceptual processes? Although the signal detection para-
digm has been an extremely useful tool for psychologists, it has
also on occasion been misleading in terms of how dependent
measures are interpreted. Contrary to intuition, we showed
that dependent measures are not so easily equated with
perceptual and nonperceptual processes. Pitt (1995a) also
committed this error by equating the sensitivity measure d’
with perception and the decision bias measure with postpercep-
tual guessing. It is now clear that the bias measure can also
reflect perceptual processing and that it is necessary to
distinguish between two types of bias (Massaro & Cowan,
1993). The first, called a belief bias, refers to the perceptual
interpretation of the stimulus. The second, called a decision
bias, refers to the participant’s inclination to respond, given
the payoff contingencies. In these terms, we hypothesize that
lexical context and monetary payoff are necessarily different in

2 3 4 5 6 7
stimulus level

Figure 9. Mean A values between adjacent stimulus levels computed
from predictions of the fuzzy logical model of perception for individual
participants. The filled squares correspond to the FT context and the
empty squares to the S context. The stimulus level goes from /g/ to /k/.
See text for explanation.
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their influence on performance. Lexical context may reason-
ably be viewed as belief bias and monetary payoff as decision
bias.

Pitt’s (1995a) mistake in this regard is that he believes only a
change in sensitivity can reflect perceptual processing. As
emphasized in Massaro’s (1989b) use of signal detection,
however, the FLMP predicts an effect of lexical context on
bias, not sensitivity. As emphasized even more strongly, this
bias effect is interpreted as a true perceptual effect. To
demonstrate that a true perceptual effect can be reflected in a
belief bias and produce results consistent with the indepen-
dence assumption of the FLMP, we refer the reader to the
results of a series of experiments on speech perception by eye
and ear. As has been well documented (Massaro, 1987, 1989a),
a speaker’s face has a robust effect on the perception of the
corresponding auditory speech. As an example, the auditory
syllable /ba/ paired with the mouth movement corresponding
to /da/ is heard as the syllable /va/ or /8a/ (Massaro & Cohen,
1990; McGurk & MacDonald, 1976). This is a truly perceptual
effect, as everyone who has experienced the effect first-hand
knows. In fact, it is not possible to filter out consciously the
influence of the visible speech. Participants instructed to look
at the face but to report only the sound showed about the same
influence (Massaro, 1987, chapter 3, Figures 9 and 12). Given
the strong evidence that the influence of visible speech is
indeed perceptual, it is important to note that this influence
has been consistently well described by the FLMP (Massaro,
1987; Massaro & Cohen, 1990).

Pitt (1995a) appeared to find similar effects of both lexical
context and monetary payoffs on response probability. Thus, it
is important to find some other measure that could distinguish
between these two influences. Connine and Clifton (1987)
studied the effects of both lexical context and monetary payoff
in the Ganong (1980) task. The lexical contribution occurred
only within the ambiguous range of the segmental information.
A monetary payoff scheme was imposed only on nonwords to
bias the participants to respond with one alternative or the
other. These results replicated those found with lexical con-
text. Given just the response probabilities, there was no
evidence that these manipulations reflected different types of
bias. However, the pattern of RTs for the two tasks differed
even though the response probabilities did not. Given a lexical
context, the RTs of word judgments were faster only for speech
stimuli that gave a lexical context effect on response probabil-
ity. The monetary payoff produced RTs that were always faster
for the bias-consistent alternative even for speech stimuli that

¥To compare A,, it was necessary to extend the FLMP so that it
would generate predicted confidence ratings. We simply presumed
that the ratings corresponded to response bins separated by five
equally spaced (on the average) cutoffs, each of which varied from
occasion to occasion according to a normal distribution with constant
variance. We further presumed that the middle cutoff corresponded to
the point that separated the /k/ responses from the /g/ responses in
the identification task and that the spacing between the cutoffs was a
half of a standard deviation. Informal exploration of variations on
these presumptions indicates that the specifics do not matter much; of
course, a more systematic exploration might yield an even more
impressive demonstration, but the present one seems to make the
point sufficiently well.
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gave no effect of payoff on response probability. Thus, the RTs
were consistent with the hypothesis that the lexical context
induced a belief bias and the monetary payoff a decision bias.

Pitt (1995a) replicated the Connine and Clifton (1987) study
and looked to the d' analysis for differences between monetary
bias and lexical bias. The differences he observed were taken
as critical evidence against models that do not assume interac-
tive activation. Although both types of bias appeared to
produce similar shifts in the identification functions, they
putatively produced different patterns in the 4’ analyses.

However, once again this difference appears to be illusory.
When we applied the FLMP to the data for this study, we
obtained fits that were comparably good to those that were
obtained with the lexical context manipulation. The RMSD
between predicted and obtained was .013 on the average
across all 12 independent individual participant fits. The
RMSD ranged from .001 to .028 across the 12 fits. In terms of
the FLMP, both lexical context and monetary payoff reflected
independent influences on performance. However, we viewed
the lexical influence as perceptual (belief bias) and the
monetary influence as decision bias. Some evidence for this
distinction comes from the RT analysis in both the Connine
and Clifton (1987) and Pitt (1995a) studies. In Pitt’s study, for
example, the influence of lexical context increased systemati-
cally with increases in RT (see Figure 7), whereas this was not
the case for the influence of monetary payoff. This difference
in the effects of monetary payoff and lexical context supports
our view that they represent two different types of influence,
even though the FLMP gives an equally good description of
both.

Pitt’s Reply

Although Pitt (1995b) will have the final word in this issue,
we have been allowed to respond briefly to his reply to allow
the reader to be better informed. Pitt implies that only the
poor fit to Participant 1’s data shows that the FLMP cannot fit
any set of data. However, he does not reference Massaro and
Cohen’s (1993) article, in which we substantiate the falsifiabil-
ity of the FLMP. On the basis of an article by Crowther et al.
(1995), Pitt claims that the “FLMP’s power may lie in its ability
to generate equally good fits ... with different parameter
settings” (p. 1,037) and “This property of the model may blur
its usefulness” (p. 1,037). However, neither of these claims
were made by Crowther et al. One of our main points is that
the d' transformation is the incorrect one for testing the
FLMP. Therefore, we believe that his claim that the plots of d’
in Figures 1 and 2 of his reply somehow test the FLMP is
categorically false.

Pitt (1995b) stated that “Massaro and Oden seem to place
more faith in the identification data than in the detection data”
(p- 1,038). However, the “detection data” are simply transfor-
mations of the identification data, but his statement implies
they are different things. He also stated, “This seems to be a
change from past practices.” (p. 1,038) and refers to Massaro
(1989). This completely misrepresents Massaro’s 1989 paper.
First, Massaro (1989) did test the FLMP against the identifica-
tion data. Second, the detection transformation was used
primarily to test the TRACE model, not the FLMP. In the
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follow-up paper (Massaro & Cohen, 1991), the FLMP and
TRACE were tested against only identification data. Qur past
practices are consistent with our recommendation that models
should be tested against observed behavior, if possible, and not
simply against transformed results.

Conclusion

We have shown that, contrary to his conclusions, Pitt
(19952a) has presented some of the most convincing evidence to
date for the independence of stimulus information and context
in speech perception. The FLMP gave a good description of
the joint contribution of stimulus information and lexical
context on the judgments of individual participants. In addi-
tion, the model provided reasonable accounts for the results
involving a variety of response measures and manipulations.
Once again, careful examination of data has found context-
dependent perception to be well explained in terms of stimulus
information and contextual information making independent
but joint contributions to word recognition. Top~down effects
on sensitivity have yet to be convincingly demonstrated; there
continues to be no reason to believe that top~down activation
of lower level representations plays any role in perception.
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