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This book on Cued Speech is representative of a fairly recent paradigm shift in spoken 
language processing. Traditionally, speech was viewed as solely an auditory phenomenon. 
Research manipulating multiple sources of potential information, however, indicates that speech 
perception is most productively viewed as multimodal and sensitive to a variety of inputs in 
addition to the auditory speech input. This ability to exploit multiple modalities and multiple sources 
of information is a godsend to almost all individuals at some time in their lives. Although the 
auditory input alone is insufficient for adequate communication for many individuals and/or many 
situations, lipreading (also known as speechreading because it involves more than just the lips) 
allows individuals to perceive and understand oral language and even speak. Speechreading 
seldom disambiguates all of the spoken input, however, and other techniques have been used to 
create a richer input. Cued Speech, a solution to having limited auditory input that consists of hand 
gestures while speaking, provides the perceiver with information that disambiguates linguistic cues 
seen on the face. We have built on the conceptual framework underlying Cued Speech to design 
iGlasses, an automated wearable computer, to supplement face-to-face speech with additional 
information. Analogous to Cued Speech, this language aid can facilitate speech perception and 
language understanding for persons who have limited auditory input. Before addressing the needs 
for language aids and the challenges they provide, we summarize evidence for viewing speech 
perception as a pattern recognition problem involving multiple sources of information from multiple 
modalities. 
/H1/ Multiple Sources of Information in Speech Perception.  

One of the fundamental principles underlying the effectiveness of Cued Speech is that 
language perceivers easily learn to naturally integrate visual gesture cues with auditory and visible 
speech input. In contrast to this principle, speech science evolved as the study of a unimodal 
auditory channel of communication because speech was traditionally viewed as primarily auditory 
(e.g., Denes & Pinson, 1963).  There is no doubt that the voice alone is usually adequate for 
understanding and, given the popularity of mobile phones, might be the most frequent medium of 
communication today. However, there are many deaf and hard-of-hearing individuals who require 
other sources of language input. The face is valuable as a source of language input even for 
hearing individuals because many environments in which communication occurs involve a noisy 
auditory channel, which degrades speech perception and recognition. Speech should be viewed 
as a multimodal phenomenon because the human face presents visual information during 
speaking that is critically important for effective communication. Experiments indicate that our 
perception and understanding of language are influenced by a speaker's face as well as the actual 
sound of speech (Bernstein, 2005; Massaro, 1987, 1998; Summerfield, 1987).  

There are several reasons why the use of auditory and visual information in face-to-face 
interactions is so successful and why it holds so much promise for language communication 
(Massaro, 1998). These include a) the information value of visible speech, b) the robustness of 
visual speech, c) the complementarity of auditory and visual speech, and d) the optimal integration 
of these two sources of information. We will review evidence for each of these properties and 
begin by describing an experiment illustrating how facial information improves recognition and 
memory for linguistic input. 
/H2/ Information Value of Visible Speech.  
The value of visible speech is demonstrated by the results of a series of experiments in which 71 
college students reported the words of sentences presented against a backdrop of noise (Jesse et 
al., 2000/2001). On some trials, only the acoustic sentence was presented (unimodal condition). 
On some other trials, the acoustic sentence was appropriately aligned with a highly realistic 
computer-animated face known as Baldi (bimodal condition). Baldi’s presence facilitated 
performance for all participants. Performance accuracy more than doubled for participants 
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performing particularly poorly when given acoustic speech alone. Although a unimodal visual 
condition was not included in the experiment, based on previous research, we believe that 
participants would have performed much more poorly under such a condition than under the 
unimodal acoustic condition (Massaro, 2004). Thus, the combination of acoustic and visual speech 
is often described as synergistic because their combination can lead to a level of performance 
significantly higher than performance using either modality alone. 

Similar results are found when noise-free speech is presented to persons with limited 
hearing (Erber, 1972). Adolescents and young adults who were either profoundly deaf or had 
severely-impaired hearing benefited more from face-to-face speech than they benefited from  
acoustic speech alone.  Perceivers with severely impaired hearing (having a hearing loss between 
75 and 90 dB) experienced the largest performance gain, exhibiting nearly perfect performance in 
the bimodal condition relative to either of the unimodal conditions (Massaro, 1998, p. 159; 
Massaro & Cohen, 1999).  
/H2/ Robustness of Visual Speech.  
Empirical findings indicate that the ability to obtain speech information from the face is robust; that 
is, perceivers are fairly good at speechreading in a broad range of viewing conditions. To obtain 
information from the face, the perceiver does not have to fixate directly on the talker's lips, but can 
be looking at other parts of the face or even somewhat away from the face (Smeele et al., 1998). 
Furthermore, accuracy is not dramatically reduced when the facial image is blurred (for example, 
because of poor vision); when the face is viewed from above, below, or in profile; or when there is 
a large distance between the talker and the viewer (Massaro, 1998; Munhall & Vatikiotis-Bateson, 
2004; Munhall et al., 2004). These findings indicate that speechreading is highly functional in a 
variety of suboptimal situations. The robustness of visible speech is particularly important in the 
context of our research and development because perceivers combine speechread information 
with additional visual cues.  
/H2/ Complementary Auditory and Visual Speech.  
Complementary sources of information occur in circumstances where one source of information is 
most informative when the other source is weakest. In auditory/visual speech, two segments that 
are easily distinguished in one modality are relatively ambiguous in the other modality (Massaro & 
Cohen, 1999). For example, the difference between /ba/ and /da/ is easy to see but relatively 
difficult to hear. On the other hand, the difference between /ba/ and /pa/ is relatively easy to hear 
but very difficult to discriminate visually. The complementary nature of two sources of information 
makes their combined use much more informative than if the two sources were redundant 
(Massaro, 1998, Chapter 14, pp. 424-427). In our application of these principles, our goal is to 
make linguistic information that is particularly difficult to see on the face visible.  
/H2/ Optimal Integration of Sources of Information.  
The final advantage afforded by having both auditory and visual sources of information is that 
perceivers tend to combine or integrate them in an optimally efficient manner (Massaro, 1987; 
Massaro & Cohen, 1999; Massaro & Stork, 1998). There are many possible ways to treat two 
sources of information: use only the most informative source, average the two sources together, or 
integrate them such that both sources are used but the least ambiguous source has a greater 
influence on interpretation. Perceivers integrate information available from each modality efficiently 
according to the tenets described by the Fuzzy Logical Model of Perception (FLMP). This model of 
perception is mathematically equivalent to Bayes’ theorem, a statistical method that is optimal for 
combining two sources of evidence to test among hypotheses (Massaro, 1998, Chapter 4). The 
FLMP assumes that visible and audible speech signals are each evaluated (independently of the 
other source) to determine how much they support each alternative. The integration process 
optimally combines these support values to determine how much their combination supports 
various alternatives. The perceptual outcome for the perceiver is a function of the relative degree 
of support among the competing alternatives. The most compelling evidence for the FLMP comes 
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from an important experimental manipulation that systematically varies the ambiguity of each 
source of information (Massaro, 1998).  

We have found that, like adults, typically-developing children (Massaro, 1984; 1987; 1998), 
deaf and hard-of-hearing children (Massaro, 1999, 2004, 2006; Massaro & Cohen, 1999), and 
autistic children (Massaro & Bosseler, 2003; Williams et al., 2004) integrate information from both 
the face and the voice. This optimal integration occurs even if the auditory and visual speech are 
not perfectly synchronous (up to at least 100 ms), a finding that is critical to the requirements of 
our research application. Finally, analogous to the benefits found with Cued Speech, the results 
described below indicate that individuals can easily learn to integrate facial information with 
supplementary visual features of speech. 

We now discuss the need for automatically supplementing spoken language with visual 
features of speech and how our approach to speech perception can motivate the development of 
technology to provide additional sources of information in language processing. 
/H1/ Need for Language Supplements 

There are millions of individuals with language and speech disabilities who require 
additional support for language comprehension and acquisition. In California alone, there are 
almost 200,000 deaf, hard-of-hearing, and speech/language impaired children who receive special 
education services (http://www.cde.ca.gov/re/pn/sm/index.asp). As an example of a specific need 
addressed by these services, most deaf and hard-of-hearing children have significant deficits in 
both spoken and written vocabulary knowledge (Breslaw et al., 1981; Holt, Traxler, & Allen, 1997). 
A similar situation exists for autistic children, who lag behind the expected trajectory in language 
acquisition (Tager-Flusberg, 2000). Currently, however, these needs are frequently underserved. 
One problem that the people with these disabilities face is that there are not enough qualified 
teachers, interpreters, and other professionals to give them the one-on-one attention that many of 
them need to successfully learn how to communicate using language.  

Humans can learn and use language successfully without adequate auditory input. Sign 
language, a form of language without an auditory component, parallels spoken language in 
acquisition, use, and communication. Moreover, even oral language can subserve communication 
when auditory input is degraded or even absent. Lipreading (also known as speechreading 
because it involves more than just the lips) allows hearing-impaired individuals to perceive and 
understand oral language and even, in some cases, to speak (Bernstein, Demorest, and Tucker, 
2000; Kisor, 1990; Mirrelles, 1947). Speechreading seldom completely disambiguates spoken 
input, however, and other techniques have been used to create a richer input. For example, Cued 
Speech, a solution to limited auditory input, consists of hand gestures made while speaking that 
provide the perceiver with information that can potentially disambiguate linguistic cues seen on the 
face. Very few people are proficient in Cued Speech or have the motivation to learn it, however, so 
many individuals with limited auditory speech input are faced with insufficient input in a variety of 
face-to-face and classroom-like environments. 

Building on the value of Cued Speech and the innovative idea of Upton (1968), a solution 
Michael Cohen and Dominic Massaro proposed (Massaro, 1998) is to establish the technology 
required to design a device that would perform acoustic analysis of speech and transform several 
acoustic features into visual features that the speechreader would use in conjunction with visual 
cues from the speaker's face. This device would transform acoustic features associated with 
important linguistic information that is not directly observed on the face into visual cues intended to 
enhance intelligibility and ease of comprehension. We will review research that shows that people 
can learn to integrate these linguistic features with incomplete visual information to achieve 
enhanced language comprehension. Furthermore, similar to Cued Speech, the users of this device 
would have the advantage of gaining additional phonological awareness through the use of these 
linguistic features. We now discuss research that illustrates the value of providing additional visual 
cues to supplement auditory speech input. 



 
 
 

 5 

/H1/  Supporting Research on Supplementing Visible Speech.  
As illustrated throughout this book, Cued Speech has become an accepted form of communication 
for deaf and hard-of-hearing individuals. Cued Speech was designed as a means for 
supplementing lipreading by providing manual cues to phoneme identity to replace information not 
perceivable from the talker’s face.  Properties of Cued Speech include: 1) hand gestures that can 
be learned, 2) structure based on the phonemes of the spoken language, and 3) functionality at 
the earliest stages of language acquisition. One drawback to Cued Speech, however, is that both 
communicating parties need to know the system of cues for it to be effective. Although being deaf 
or hard of hearing and their family members and friends might be motivated to learn a system of 
cues, we cannot expect other individuals to be similarly motivated. Thus, a solution that does not 
require any specialized skills to supplement communication would be ideal. 

Cornett’s (1967) idea was to provide supplementary visual cues for language based on the 
realization that speechreading does not provide sufficient detail to distinguish all of the phonemes 
in a language, but only subsets of phonemes, such as /b/, /p/, /m/ versus /f/, /v/. Cued Speech 
hand gestures were therefore designed to denote different subsets of phonemes so that both 
subsets together would indicate a single phoneme. For example, when the hand gesture with the 
index finger extended that signals the subset of phonemes /d/, /p/, /zh/ is used in conjunction with 
the speechread phonemes /b/, /p/, /m/, the combination of cues denotes the phoneme /p/. The 
linguistic and psychophysical structure of Cued Speech categories is not ideal, however, which 
probably makes their learning and understanding more difficult than necessary. Meaningful 
categories, such as birds, fish, and chairs, share prominent perceptual and conceptual properties 
(Rosch & Lloyd, 1978). Thus, the supplementary feature solution we propose is more noticeably 
perceptually-based and conceptually-based than Cued Speech and also provides continuous 
information indicating the degree to which a feature is present. 

In Upton’s (1968) seminal automatic language feature-signaling device, relatively simple 
circuitry extracted three features from the acoustic signal: voicing, frication, and stop. These three 
simple features, plus two combination features: voiced fricative and voiced stop, were conveyed to 
the user via five tiny lamps cemented to the lens of a pair of glasses in order to appear near the 
mouth of the talker being viewed. After a "considerable" training period, the viewer (Upton) was 
able to use the transformed acoustic cues to disambiguate speechread information. Although 
Upton's initial paper includes only his subjective report, later papers (Pickett, Gengel, Quinn & 
Upton, 1974; Gengel, 1976) documented positive empirical results (using somewhat modified 
versions of the original device). Supporting research focusing on laryngeal, nasal, and total 
intensity feature information presented in the tactile modality (Miller, Engebretson & DeFillipo, 
1974) as well as voicing and stop features presented in the visual and tactile modalities (Martony, 
1974) was reported at about the same time.  

Two other attempts have been made to design an automatic cueing system that 
accomplishes the same outcome as Cued Speech.  Acoustic cues are extracted from the speech 
input and these are transformed into visual cues. The first of these attempts, which began in 1969, 
was termed the Autocuer (Cornett, 1977).  The Autocuer consists of a pair of eyeglasses through 
which a virtual image of seven LED (Light Emitting Diode) elements is projected.  Linguistic cues 
are presented to the user in visual form via patterns in the LED array.  Evaluation of the Autocuer 
occurred without automatic extraction of the acoustic cues from the speech but rather ideal (hand-
extracted) acoustic cues were used. The task was performed with normal-hearing as well as deaf 
and hard-of-hearing listeners.  Recognition of isolated words was tested after a considerable 
training period consisting of 40 hours and was shown to increase from 63% with speechreading-
only to 84% with speechreading plus use of the Autocuer (Cornett, 1977). .  Later evaluations of 
the original Autocuer reported a less substantial increase (8%) when the extraction of the acoustic 
cues from the speech were generated by a real-time recognizer (Duchnowski et al., 2000).  This 
weaker result was most likely due to poor accuracy (54%) of the cue recognizer.   
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The second of the attempts at an automatic cueing system used a sophisticated, speaker-
dependent, speech recognizer to derive individual phones for conversion into a time-aligned set of 
cues for display (Duchnowski et al., 2000). The cues were designed to look identical to Cued 
Speech so that those already familiar with this system of communication would have no trouble 
interpreting its display. Keyword scores for low-context sentences increased by 31% over 
speechreading alone (Duchnowski et al., 2000) although the scores fell well below Cued Speech 
controls. (Keyword scores using Upton’s device for 6 months yielded an increase of 18% relative 
to sentences in the speechreading alone condition.) Despite this achievement, Duchnowski et al. 
(2000) expressed doubt that a portable version of this device was feasible. One reason for this 
pessimistic conclusion is that speech recognition was used to generate the cues. Our approach 
bypasses all-inclusive speech recognition because automatic speech recognition (ASR) 
recognizes words, not acoustic features, and requires extensive computational resources, limiting 
the process to less than real-time performance. (Optimal performance occurs with at least a 3 GHz 
processor when a complete sentence is available. Successful systems carry out an acoustic signal 
analysis that evaluates about 60-90 spectral features (which are unrelated to linguistically-relevant 
features). All three of these limitations preclude our use of ASR because the requirements for our 
approach are the tracking of acoustic features at close to real-time performance and a lightweight 
portable device with limited computing power. Our proposed alternative is to create a device that is 
capable of quickly detecting a few robust acoustic features of speech, mapping them into visual 
cues, and conveying them to the viewer to facilitate speech interpretation. 

To compensate for the delay required for all-inclusive speech recognition, Duchnowski et 
al. (unpublished) recorded a video of a talking face and replayed it to the listener in tandem with 
Cued Speech by a 2-second delay. This solution would be functional in a televised broadcast or 
played on a monitor such as a video iPod. However, Duchnowski’s system would be impractical in 
face-to-face encounters whereas our envisioned system would be highly functional in most 
foreseeable applications. 

In summary, widespread use of Cued Speech and research with visual cueing systems 
show that automatically supplementing speech with visual features is a worthwhile goal. Our 
current research is pursuing the development of a successful system of augmented 
communication that satisfies requirements such as light footprint for a wearable device, operation 
in near-real time, accurate tracking of acoustic speech features, learnable visual features 
representing auditory speech features, and ability of the user to integrate these features with 
auditory and visual features of speech. 
/H1/ Research from the Perceptual Science Laboratory 
Our research has investigated how to automatically supplement talking faces with information that 
is ordinarily conveyed by auditory means. This research consists of two areas of inquiry, which will 
be discussed in the next two sections: 1) developing a neural network to perform real-time analysis 
of selected acoustic features for visual display, and 2) determining how quickly participants can 
learn to use these selected cues and how much they benefit from them when combined with 
speechreading.  
/H2/ Acoustic Feature Analysis.  
The goal of feature analysis is to track certain acoustic features in real time and to transform them 
into continuous visual displays. We developed and trained a neural network to recognize three 
auditory speech characteristics: nasality, voicing, and frication. The training database was a 
sample of 23 words, containing 2,607 analysis frames from within the Bernstein & Eberhardt 
(1986) corpus. Each frame was 7.8 ms (Hanning windowed), and a new frame was sampled every 
1.6 ms. The phoneme segments and their durations were determined using Verterbi alignment (a 
speech recognition algorithm when the phonemes are known). In previous research, we developed 
a computer-animated talking head trained on real speech to produce accurate synthetic speech 
with appropriate coarticulation (Massaro et al., 2005). To improve speech perception for hard-of-
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hearing individuals, Massaro et al. (2007) patented a set of supplementary visible speech features, 
such as vibrating the throat to signify voicing, to provide additional information not seen on the 
face, and these features were shown to be effective in training speech perception and production 
in hard-of-hearing children (Massaro & Light, 2004). Baldi could now be aligned with the natural 
speech in the training database to give subphonemic features describing the moment-to-moment 
changes in voicing, frication, and nasality.  

The neural net included 22 input units, 8 hidden-layer units, and 3 output units. A fast 
Fourier transform (FFT) computed the amount of energy in each of 20 Bark frequency bands (the 
Bark scale is nonlinear to match the properties of the peripheral auditory system). These 
measures, together with overall amplitude and number of zero-crossings, gave a 22-valued input 
vector. The feedback to the three output nodes were the subphonemic values computed in the 
alignment process. The weights on the connections among the units in the neural net were 
adjusted to minimize the differences between the actual and predicted features. Training gave a 
.057 root mean square deviation (RMSD) between the actual and predicted feature values on a 0-
1 scale. To summarize, the neural net model was successfully trained to provide moment-by-
moment outputs for the three features on the basis of acoustic input. 

Thus, in principle, we have learned that we can use a network to transform the Bark scale 
energies from each speech frame into continuous visual features for presentation. Extensions of 
this work to a functional, effective, real-time system are described later in this chapter. 
/H2/ Visual Feature Perception.  
To provide a direct test of the perception of supplementary visual feature information, we used 
simulated rather than real-time analysis of acoustic features. We wished to see how difficult it 
would be for participants to learn to effectively use the visual features we had selected to 
supplement speechreading. A printed table mapping the relationships between phonemes and 
their corresponding visual features as well as phonetic and coarticulatory information was provided 
to participants. The following listing is an example of information provided in the table: vowels are 
voiced, fricatives have frication, frication can occur during the onset of stop consonants, and a 
nasal following a vowel can produce nasality during the vowel as well as during the nasal 
segment. In a five-day experiment, participants speechread 318 one-syllable words from the 
Bernstein & Eberhardt (1986) corpus that were presented visually. Visual speech was conveyed 
via the face of a humanoid speaker, presenting an image 13.7 deg horizontal and 20.4 deg vertical 
on a 30.5 cm diagonal screen 50 cm from the viewer. One group of 4 participants was presented 
with feature information along with this silent talking face, whereas a control group of 3 participants 
received only the silent talking face and no feature information.  

For the feature group, three phonetic features (nasal, voiced, and fricative) were presented 
at the left side of the screen (centered 10.2 deg from face midline) in the form of intensity 
(saturation) of colored bars (5.1 deg horizontal by 2.0 deg vertical in size, spaced 2.9 deg apart 
vertically). Figure 1 gives an example of the display with the features. A series of trials is given on 
Band 14.8 in Massaro (1998), and is available online at 
http://mambo.ucsc.edu/psl/mmc/14_8.mov. It shows the  
Insert Figure 1 about here 
continuous nature of the colored features during the speech input. The top bar indicated the nasal 
sounds by lighting up orange during the period they occurred. The middle bar indicated voiced 
sounds by lighting up white when they occurred and remaining off when they did not. Two bars 
could light up at the same time, as during a voiced fricative, for example. Silence would be 
indicated when all three features are dark. The bottom bar, which corresponded to frication, lit up 
during the frication in fricatives and the burst/aspiration period in stop consonants.  In all cases, 
the intensity of each of the three cues corresponded to the degree to which the corresponding 
acoustic feature was present in the speech signal. Speech cues were generated based on the 
phonetic labels of the acoustic speech as determined by Viterbi alignment (when knowledge of the 
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words was provided). This process will be described in more detail below. Participants responded 
by typing a word on a keyboard, which was followed by feedback during which the word was said 
again (with features for the feature group) with the sound on, and the word shown in print on the 
left side of the screen.  

Several analyses were carried out, including accuracy of word identification; accuracy in 
identifying initial consonants, vowels, and final consonants; consonant and vowel confusions; and 
accuracy of feature identification for initial and final consonants. The left panel of Figure 2 shows 
the proportion of words correctly identified as a function of the five successive experimental 
blocks. Both groups improved with experience, but the feature group was significantly more 
accurate overall and improved faster. The center and right panels of Figure 2 show a d-prime 
measure of accuracy for identification of initial voicing and nasality for the two groups, respectively. 
(The d-prime measure is bias-free and is measured in z-scores. Note that these two panels have 
different scales based on the ranges of performance.) Relative to the control group, the feature 
group improved quickly by utilizing the supplementary visual feature information. It should be 
noted that word accuracy was still below perfect performance. This could mean either that the 
speechreading and features together were still insufficient to disambiguate the words or that the 
participants had not yet learned to use the information to achieve perfect word recognition.  
Insert Figure 2 about here 
Analysis of consonant confusions for the control and feature groups indicated that the feature 
group was able to make discriminations that the control group was not able to make. For example, 
within the category of labial stops (/b/, /m/, /p/), the feature group could discriminate between the 
three phonemes whereas the control group split their responses equally among the three 
alternatives. This experiment demonstrates that speechreading using visual features is learnable 
and greatly improves speechreading accuracy. However, it is necessary to determine if this 
positive outcome will also occur in more challenging situations, including scenarios with 
conversational speech and multiple speakers. In the next two sections, we outline plans for our 
ongoing and future work towards the goals of determining suitable acoustic features to extract 
from the speech, transforming them for presentation via the wearable supplement, and evaluating 
the prototype system. 
/H2/ Acoustic Feature Analysis 
/H3/ Evaluating Different Approaches to the Extraction of Features.  
The proposed system is critically dependent on successfully extracting informative acoustic 
features from the speech signal, which several recent investigations have shown to be feasible. 
For example, the extraction of abstract phonetic features is apparently advantageous as a 
preliminary stage of automatic speech recognition (ASR) (King & Taylor, 2000).  Typically, 
investigators have used TIMIT sentences with a preliminary Mel frequency cepstral coefficient 
(MFCC) analysis with a 25.6 ms window moving in 10-ms steps. This representation, sometimes 
with additional sets of first- and second-time derivatives (delta and double delta features), is then 
analyzed using neural nets (NNs), hidden Markov models (HMMs), support vector machines 
(SVMs), or decision trees. Chang, Greenberg, and Wester (2001), for instance, used a NN solution 
with separate networks for each phonetic feature with a mechanism for using only high-confidence 
results. Eide (2001) instead used a Gaussian-mixture (GM) approach. Frankel, Wester, and King 
(2004) compared dynamic GM models with NNs but found no advantage for either. Abu-Amer & 
Carson-Berndsen (2003) used independent HMMs. We now review the literature on the feasibility 
of extracting specific phonetic features. 
/H3/ Extracting Voicing 
Aioanei, Carson-Berndsen, and Kanokphara (2006) developed two phonetic feature-extraction 
engines for voicing and frication that were similar to two of the four acoustic features we used in 
our initial research. The output of their engine was the presence or absence of a feature. “The 
TIMIT training set was parameterized into 13 dimensional MFCCs, energy and their delta and 
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acceleration (39 length front-end parameters).” The feature models were trained from these 
parameters. Performance for voicing was very good, averaging about 90% accuracy.  
/H3/ Extracting Frication  
In contrast to the relatively accurate performance for voicing, the overall accuracy for frication was 
only about 37% correct. Lower accuracy was observed for frication because, although fricatives 
were usually recognized, the burst and aspiration phases of stops were also erroneously 
recognized as fricatives. Although this type of false alarm is problematic for categorizing phonetic 
features, it would not occur in our planned system, which extracts the acoustic characteristic of 
frication, not the phonetic feature of frication. Acoustic frication occurs in sub-segments of both 
fricatives and stops. Our supplementary visual feature for frication conveys the acoustic feature 
frication, not the phoneme fricative. Participants in our research learn that acoustic frication 
characterizes not only fricatives but also stop bursts and voiceless transitions. We found in our 
study of visual feature perception that perceivers benefited from this visual cue in identifying both 
stops and fricatives. That is, when perceivers learn the appropriate mapping, activation of acoustic 
feature frication during stop onsets is informative, as it is during fricatives. Supporting this analysis, 
when accuracy was recomputed for frication occurrence for both stops and fricatives in the Aioanei 
et al. (2006) study, feature extraction performance improved to over 80%. 
/H3/ Extracting Nasality  
Frankel et al. (2007) trained multi-layer perceptrons (MLPs) for feature classification on nearly 
2,000 hours of telephone speech. A context window of 9 10-ms frames (central frame plus 4 
frames each of left and right context) was used on the input layer for all MLPs. Given the 39 
dimensional input feature, this amounts to 351 input units. The number of units on the output layer 
of each MLP corresponded to the number of levels of the feature group. For the nasality feature, 
the system achieved an accuracy of 90% correct. This study provides initial support for the 
feasibility of accurately tracking the acoustic feature nasality in our proposed system. 
/H3/ Extracting Sonorant  
Although we have not evaluated the sonorant feature, it could serve as a robust and valuable cue. 
Sonorant categorizes “+ sonorant” for vowels, semi-vowels, and nasals, as well as “- sonorant” for 
fricatives, stops, and non-speech. Shutte and Glass (2005) implemented a support vector machine 
to detect sonorant features in TIMIT sentences. For each utterance, 14 Mel-frequency cepstral 
coefficients (MFCCs) were computed every 10 ms over a 25.6 ms Hamming window, with 
cepstral-mean subtraction performed over each 500-ms window. After training, fairly accurate 
performance was obtained even when a moderate amount of noise was added to the speech. 
These representative studies add credibility to our proposed system, which would require robust 
extraction of three or four acoustic (rather than phonetic) features: voicing, frication, nasality, and 
sonorant. 
/H3/ Discrete Features with Continuous Outputs  
Our planned system would display an analog or continuous measure of each acoustic feature. 
This might seem problematic because our feature labeling of the acoustic input would be discrete 
(a feature would be either present or absent in a sub-segment). King and Taylor (2000), however, 
pointed out that while feedback data used to train the feature-detection mechanism (e.g. an NN) 
might be discrete, output features of the NN may be continuous in value. In our prior use of visual 
features for supplementing speechreading this type of continuous output is explicitly the case. 
Figure 3, a screen shot from our development system, shows an illustration of the mapping of the 
acoustic signal to the fricative indicator for the phrase “he then sat.”  
Insert Figure 3 about here 

We generated the display intensity in the same way as other synthesis control parameters 
for a computer-animated talking face (Cohen & Massaro, 1993; Massaro, 1998, Chapter 12) using 
coarticulation blending functions with specific target values and co-articulation dominance 
functions for each phoneme. Although the occurrence of frication at each moment is coded as 
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either present or absent, the coarticulation blending function produces continuous outputs. For 
example, in Figure 3, the output of frication for /h/ is computed as having weaker frication than the 
output for /s/. In addition, the amount of frication changes dynamically at transitions between 
successive phonemes. Figure 3 also shows that short frication is displayed during the consonant 
release burst of /t/.  

In evaluating competing approaches to the signal analysis, real-time performance is a 
critical factor because there should not be a substantial time lag between visual facial information 
and feature displays. Research in auditory/visual speech perception suggests that a short delay 
(e.g. up to 50-100 ms) would nonetheless be acceptable (Grant, 2002; Grant et al., 2004; Grant & 
Greenberg, 2001; Massaro, 1998, Chapter 3). 
/H3/ Other Potentially Informative Features  
The features voicing, frication, nasality, and sonorancy are derived from prior knowledge of 
acoustic phonetics and as such are likely to be highly effective for determining phoneme identity 
when combined with a facial display.  However, these features may not necessarily be the most 
distinguishable of all possible features, and they may not be completely independent of one 
another and may be jointly redundant with the facial display.  Furthermore, the number of visual 
features of interest should be kept to a minimum because of a limit in the number of visual cues 
that the glasses can accommodate (3), and because of a limit in the number of visual cues that 
participants may reasonably be able to learn to use. These criteria suggest the use of machine-
learning techniques to determine optimal speech features to display visually, where we roughly 
define "optimal speech features" as the 3 functions of the acoustic vector that, when augmented 
with the face, most accurately classify acoustics into phonemes. While these features will likely 
lack a straightforward interpretation such as, for instance, acoustic frication, this lack of pre-
existing categorical labels may not necessarily result in increased learning difficulty for 
participants.   

There are specific methods to determine optimal visual speech features. One possibility is 
to extract informative features from each acoustic frame (13-D MFCCs) using dimensionality 
reduction methods. These methods seek, in an unsupervised way, a small number of continuous 
features that preserve information about the acoustic vector. Many methods exist in the machine 
learning and statistics literature, including linear methods (such as PCA, factor analysis and 
independent component analysis) and nonlinear methods (such as autoencoders, nonlinear latent 
variable models, Isomap, LLE, Laplacian eigenmaps and others) (Carreira-Perpiñán, 2001; Saul et 
al., 2007).  For our task, which requires us to extract 3 latent features and to extract features from 
test data unseen during training, we plan to use a recently-introduced nonlinear method, the 
Laplacian Eigenmaps Latent Variable Model (LELVM; Carreira-Perpiñán & Lu, 2007). This method 
has the advantages of scaling well to latent spaces of three or more dimensions, having no local 
optima, and providing both continuous mappings (for dimensionality reduction and reconstruction) 
and probability densities (for the data and latent features); no other nonlinear method that we know 
of possesses all of thesebenefits.   

A more direct approach that actively seeks features that maximize discriminant ability 
jointly with the face display is described as follows.  Consider, for simplicity, visual features W*x 
that are a linear projection of the 13-D MFCCs x (where W is a matrix of weights) and assume we 
can extract a face feature vector y from the face image, for example, from the lip and tongue 
contours (note that these face features are used exclusively in an offline analysis to determine the 
most informative visual features, not in real-time use with the glasses). Now, we can use the joint 
vector (W*x,y) of linear visual features and face features as inputs to a neural-net classifier that 
maps its input to the corresponding phoneme. By minimizing the classification error over the 
neural-net weights and the linear projection weights W, we can find the best linear projection. In 
this case, "best" means optimal for classification, and the projection may differ from the PCA 
projection that we would obtain in an unsupervised training. Thus, our projection would be a form 
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of supervised dimensionality reduction. Clearly, we can also use a nonlinear projection (e.g., 
another neural net) of the acoustic vector x instead of a linear projection W*x. The classification 
error would also allow a comparison with the phonetic features of voicing, frication, nasality, and 
sonorant.  
/H3/ Labeling New Data Sets  
The use of acoustic rather than phonetic features requires new labeling of existing speech 
corpora, which are phontically but not acoustically labeled. Two feasible candidates are the well-
known TIMIT Acoustic-Phonetic Continuous Speech Corpus, which contains a total of 6,300 
sentences, consisting of 10 sentences spoken by 630 speakers from 8 major dialect regions of the 
United States (DARPA TIMIT), and a Buckeye database of face-to-face spontaneous speech (Pitt 
et al., 2007). Forty speakers, all natives of Central Ohio, contributed about 300,000 words of 
spontaneous speech in interviews in which they expressed their opinions in conversation. The 
speech of central Ohioans is fairly representative of American speech without the accents of the 
northeast or southeast. 

Both of these databases have been orthographically transcribed and phonetically aligned, 
but this markup is not adequate for the training of acoustic features. Given their large size, only a 
subset of each database is necessary to mark up the presence or absence of acoustic features. 
The existing databases contain waveforms and spectra, phoneme labels and boundaries, and 
written transcriptions. Each frame of the waveform can be labeled as plus (1) or minus (0) on, for 
example, the four acoustic features of interest: voicing, frication, nasality, and sonorant. This 
markup can be aided by both the existing phoneme markup and acoustic properties, which will be 
evaluated by both listening and visual inspection. These analyses can be carried out using readily-
available applications such as Wavesurfer (Wavesurfer) or Pratt (Pratt). To obtain a sufficiently 
thorough database for neural network training and testing, it will probably be necessary to mark up 
about 24 sentences sampled from 12 speakers for a total of 288 sentences from the TIMIT Corpus 
and about 2 minutes sampled from 12 speakers for a total of 24 minutes of spontaneous speech in 
the Buckeye corpus. 
/H3/ Training and Testing Neural Networks  
We will train and test neural networks on the corpora in order to determine whether the acoustic 
features of interest can be accurately tracked by a neural network and to determine which acoustic 
features give the most accurate performance. We will use feed-forward neural networks with a 
single layer of hidden units, which can approximate most useful functions to a high degree of 
precision when a sufficient number of hidden units are used. Several different configurations of the 
acoustic input and the number of hidden units will be used to converge on a successful 
representation. As an example, there would be 9 input frames, consisting of a center frame and 
four frames preceding and following the center frame, each corresponding to 10 ms of speech. For 
each input frame, the neural net would have 22 input units, 8 hidden-layer units, and 4 output 
units.  The amount of energy in each of 20 Bark frequency bands combined with overall amplitude 
and number of zero-crossings would yield a 22-valued input vector. The target value for the four 
output nodes would be the subphonemic value computed in the proposed alignment process. The 
networks will be trained using backpropagation to minimize prediction error on the training set and 
weight decay to improve generalization. The best network architecture (i.e., the number of hidden 
units and the number of frames in the input window) will be determined by cross-validation. 
Training and test data will come, for example, from the TIMIT database (e.g. 12 sentences 
sampled from 12 speakers for a total of 144 sentences). Analogous training regimes will be 
employed for the conversation database. 
/H3/ Remote Recordings of the Speech  
Most ASR systems permit the talker to speak into a lapel microphone or a telephone during 
recording. To succeed, our envisioned system requires the recording of acoustic speech in face-
to-face conversations by a microphone worn by the interlocutor. The biggest sources of potential 
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error using a remote microphone located on the listener include background noise and room 
reverberation during the conversation. Optimum training performance should occur when the 
system is trained on remote recordings of acoustic speech. In these sessions, signal processing 
will be based on live presentations of the acoustic speech at distances resembling those in face-
to-face conversation rather than the original digital representation of the speech database..  
/H3/ Goal of Neural Network Training 
Our goal is to test the feasibility of our proposed feature analysis. Given the previous successes in 
phonetic feature analysis reviewed above and in our research, we expect this aspect of our work 
to be successful. Apart from the trained neural networks themselves (needed for real-time 
computation of the features), another outcome will be a direct measure of how accurately each of 
the four acoustic features of interest can be tracked by a neural network. This information will (in 
part) partially indicate which visual features would most likely be effective in representing the input 
in face-to-face communication. 
/H2/ Visual Feature Perception 
/H3/ Participant Population.  
Our research concerning the development of a speech facilitation device would benefit greatly 
from a design in which participants recruited for testing have a vested interest in the success of the 
project. Thus, participants, including both hearing and hard-of-hearing persons, should have the 
goal of enhancing their communication interactions. Similarly, persons skilled in Cued Speech 
would likely be interested in the project, and their performance will illuminate whether proficiency in 
Cued Speech facilitates or inhibits speech perception with supplementary visual features. 
/H3/ Use Neural Network Outcome to Choose Visual Features.  
The outcome of the neural network experiments will provide direct measures of how accurately 
each of the four acoustic features of interest can be tracked by a neural network. We will use this 
information to choose the three visual features to be used in these experiments. Ideally, all four 
visual features might be tested and compared with combinations of three features. Given that each 
experiment requires a significant amount of learning, however, four independent experiments (i.e., 
the 4 combinations ABC, ABD, ACD, BCD of 4 acoustic features A, B, C, D) would be too time-
consuming. Furthermore, if one of the acoustic features proves to be too difficult to track 
accurately, it would not be functional and could even be disruptive for performance. For these 
reasons, the design of the experiments on visual feature processing will be contingent on the 
outcome of the neural network experiments. 
/H3/ Extend Presentation of the Visual Features to LED Eyeglasses  
Our research indicates that perceivers were able to use supplementary visual features presented 
in the periphery to improve speech perception while still attending to the speaker's lips. 
Performance improved significantly with about 40 minutes of practice per day across 5 days of 
training. This improvement might have been due to the presentation of facial as well as visual 
feature information on the same computer display monitor. It is therefore important to replicate this 
study in a situation that more accurately approximates our envisioned real-world application. In this 
study, we will replicate our initial experiment so that the participants look through the instrumented 
eyeglasses to see the talking face on a computer monitor, with visual features displayed on LED’s 
in their peripheral vision.  The supplementary feature displays will be computer-generated and 
their output will be displayed on the eyeglass-mounted LED’s. 
 It will be necessary to build and configure eyeglass frames to hold the LED display. Figure 
4 shows a picture of our first mockup of the specialized eyeglasses. The display is mounted at the 
periphery of each lens. We will evaluate whether the LED display can be processed adequately or 
whether it must be moved to a more central position. It may also be necessary to adjust the 
forward-backward location of the display for some users in order to maximize comfort and view-
ability. We will 
Insert Figure 4 about here 
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assess whether it is valuable to mount LED displays on both sides or whether a one-sided LED 
display is sufficient. Eyeglasses with LED’s on one side only would significantly streamline the 
design of the device. If a single-sided display is sufficient, the side of the eyeglasses that holds the 
display may be an important variable because it will determine whether the visual features will be 
seen to the right or left of the talking face. There is a substantial amount of literature on hemifield 
effects in visual perception and language processing (Smeele et al., 1998), and it would be 
advantageous to choose the side that leads to most accurate performance on which to mount the 
LED display. Thus, we will systematically vary whether the LED display is shown on the left side of 
the left lens or on the right side of the right lens. We expect that visual cues presented via the LED 
display will improve speech perception, as it did in our previous research. If the LED display does 
not lead to improved speech perception, we will explore the differences between these two 
situations in order to better design an effective wearable display. 
 Figure 4 shows that the microphone, the processor, the battery, and the LED display can 
be placed together on one side of the eyeglasses. We have also mounted a small vibrator 
because we will also consider and evaluate the possibility of transforming one of the acoustic 
features, such as sonorant, into a slight vibration of the frame of the eyeglasses. 
/H3/ Evaluate Speechreading and Feature Perception with Sentences and Conversational Speech  
Our research has indicated that supplementary visual features positively influenced the perception 
and recognition of words presented in isolation. Natural dialog provides continuous speech; 
therefore, we will test the functionality of our system with sentences. This extension is important 
because with isolated words, participants may be able to employ perceptual strategies with words 
presented in isolation that are difficult with longer verbal stimuli, such as sentences. Martony 
(1974) reports a supplementary feature advantage for participants’ recognition of whole sentences 
that were previously trained with a closed response set method. For sentences not previously 
trained, however, they showed only a small non-significant advantage over unaided 
speechreading. Therefore, it is important to determine whether supplementary visual features 
contribute positively to speech perception for sentences from multiple speakers in our application.  

The test materials will consist of 144 sentences from the TIMIT database. These sentences 
will be presented both with and without supplementary features. To measure learning, participants 
will be asked to type as much of each test sentence as they can. The results will be analyzed in 
terms of the number of words correctly reported under the two conditions. With the exception of 
continuous sentences as opposed to isolated words, all other procedural details and data analyses 
will be similar to our initial pilot study described above. The same evaluation task will be extended 
to include perception of speech from the corpus of conversational speech. 
 An important aspect of these studies involves learning. Our research indicates that 
participants learn to take advantage of supplementary visual features. Even though learning 
occurred, there are alternative learning regimens that may potentially increase the rate and 
asymptote of learning. One possible training situation is to practice a single supplementary visual 
feature at a given time. After one feature has been successfully learned, the presentation could be 
made more challenging by adding a second feature and then a third, in like manner. Another 
technique to facilitate learning would be to present a practice period on each feature directly rather 
than in the context of words and sentences. In this case, the test materials would consist of simple 
consonant-vowel syllables so that participants will be able to focus on the visual features for a 
single consonant. Another possibility is to train participants on the visual features representing 
speech sounds without the face present so that they can directly learn the supplementary features 
of interest without interference. If we observe that the benefit from the supplementary features is 
acquired slowly in our standard testing paradigm, we will experiment with optimizing the learning 
process by instantiating some or all of these potential learning aids. 
/H3/ Combine Visual Feature Perception and Acoustic Feature Analysis in Real Time 
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After the research on visual feature perception and acoustic feature analysis in real time has been 
completed, an experiment will be carried out to test the two paradigms in combination. In this 
experiment, acoustic feature analysis and visual feature presentation will be combined during 
evaluation testing. To implement the experiment, it will be necessary to add a microphone and a 
wearable processor to the eyeglasses with the LED display. The microphone will capture the 
speaker’s conversational surroundings and an analog audio circuit will transmit the acoustic signal 
to the processor where it will be digitized. Given that the neural networks have already been 
trained off-line, it is only necessary to program the processor with any necessary signal processing 
for the sampled digital signal, the feed-forward network with the learned weights from the learning 
phase, and the output generation algorithm to drive the LED display. Running on the processor, 
the trained neural networks will process the digitized speech sounds in real time and directly 
control the LED display on the eyeglasses. All other procedural details will follow that given in the 
previous tests with sentences and conversational speech. 
/H3/ Evaluation Summary  
Normally, there are three sequential activities that can evaluate the quality of pedagogy and 
technology: 1) exploratory research, 2) formative evaluation, and 3) summative evaluation.  Our 
exploratory research has already been carried out along with specified procedures for formative 
evaluation: accuracy of acoustic feature analysis and speech perception benefit of supplementary 
visual features. The summative evaluation will assess the effectiveness of these two components 
in the context of a complete system of supplementing talking faces with visual features. 
/H3/ Extensions to Real World Performance  
Given a successful outcome, selected participants will wear the eyeglasses throughout a typical 
day. Participants will include deaf and hard-of-hearing persons, who have a vested interest in 
enhancing their communication interactions. These participants will be monitored to determine 
how functional the system is in typical interlocutor situations. Based on these observations and 
participant reports, we can determine the positive and negative aspects of the system. 
Modifications can be made, if necessary, to improve the system and the resulting quality of the 
face-to-face conversations. 
/H1/ Significance and Concomitant Advantages of the Proposed System 
The technology we are developing would be ideally designed for wearable computing, so a person 
could have face-to-face conversations while wearing a pair of glasses that could also be fitted with 
the wearer’s normal eye prescription. The wearable product would process primitive 
characteristics of the speech signal, such as voicing (the presence of energy at the fundamental 
frequency, such as in vowel sounds); frication (high-frequency noise similar to energy that is 
characteristic of various consonants such as [s], [z], and [sh]); and nasality (a unique resonance 
characteristic, as in [m], [n], and [ng]). These characteristics would be tracked in near-real time, 
and the output displayed on the LED display of the glasses (Costanza et al., 2006). 

Our envisioned system holds promise because it does not replace auditory information with 
supplementary cues, but rather supplements auditory speech that is normally available to the 
listener. People naturally integrate auditory and visual information, so they should benefit from the 
availability of both visible and audible speech. In addition, this strategy is particularly effective 
because of the complementary nature of auditory and visual speech. Acoustic speech that is 
robust in signal and fairly easy to recognize consists of speech cues that are not readily 
perceivable from the face in visual form. This disparity in quality enhances recognition of the 
speech signal through simultaneous presentation of cues in both visual and acoustic form so that 
cues that are ambiguous in one modality are complemented by robust cues in the other modality. 

The proposed technology qualifies as a transparent information appliance that adds to the 
listener’s perceptual and cognitive resources (Clark, 2003; Norman, 1999; Weiser, 1991). We have 
developed an analysis of requirements, a conceptual design, and possible physical designs for this 
device. It consists of an affordable, non-invasive device that is seamlessly integrated with normal 
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dress, adding only a pair of glasses (which might be necessary regardless). This qualifies as an 
augmented-reality device that is available for use 24 hours per day, 7 days per week and requires 
very little maintenance.  
/H2/ Usability for All Individuals.  
The system we propose would be available to all individuals who can wear a pair of eyeglasses. 
The device does not require that speakers be literate because no written information is presented, 
as would be the case in a captioning system. It is also age-independent in that it can be used by 
throughout the life span. Young children are able to learn sign language and even finger spelling of 
the spoken language. Therefore, young children should also be able to use the proposed 
supplementary speech cues. The phonetic basis for speech-based cues should also reinforce an 
understanding of the phonology of the language (Morais & Kolinsky, 1994). Studies have shown 
that deaf and hard-of-hearing children who have mastered Cued Speech have internalized much 
of the phonology of their language and learn to read naturally. Thus, with our system, we expect 
that children will learn vocabulary and grammar and will gain meta-awareness of the structure of 
the community’s spoken language. 
/H2/ Available to All Language Groups.  
One of the major advantages of our envisioned system of communication is that it is language-
independent because all languages share the same fundamental acoustic characteristics. Other 
non-automated systems such as Cued Speech and sign language are language-dependent. Thus, 
all language groups can use the proposed system without compromising their normal language 
processing in other domains, such as sign or Cued Speech conversations. The device would be 
optimally functional when the listener is faced with a person who is proficient in oral language but 
is not proficient in Cued Speech. 
/H2/ Significant Help for People with Hearing Aids and Cochlear Implants.  
There have been substantial improvements in the technology of hearing aids and cochlear 
implants, which now provide significant help for many individuals. However, these persons remain 
at a disadvantage in many natural environments, such as those with background noise and 
reverberation, and in many fast-paced and/or dense conversations. The technology we propose 
will provide an additional supplement to speechreading that will allow communication in these 
situations. 
/H2/ Extended Reach of the Research.  
The benefits of this research extend beyond the hearing-impaired community. There are many 
individuals, including autistic children and persons recovering from brain trauma, who have 
difficulty processing acoustic speech. Many of them successfully communicate by alternative 
communication methods. Our research will improve the state of the art in transforming acoustic 
speech into other forms on information, offering a greater number of potential communication 
methods for these individuals.  
/H2/ Benefits to Pedagogy of Reading:  
It is well-known that there are numerous irregularities that a number of children encounter in 
learning to read and spell.  Children who have a substantially greater amount of difficulty in 
reading and spelling than would be expected based on their age and perceptual and cognitive 
abilities are labeled as dyslexic (Fleming, 1984; Willows, Kruk, & Crocos, 1993). Psychological 
science has established a close relationship between the mastery of written language and 
children's ability to process spoken language (de Gelder & Morais, 1995; Morais & Kolinsky, 1994; 
Taylor & Olson, 1994). That is, it appears that many dyslexic children also have deficits in spoken 
language perception. This difficulty with spoken language can be alleviated through improving 
children's perception of phonological distinctions in spoken language, which in turn improves their 
ability to read and spell (National Reading Panel, 2000). Experience with the wearable system 
could help these children gain insights into the spoken language and therefore improve their 
reading skill. 
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/H1/ Potential Limitations of the Proposed System 
A potential limitation of our system is that some non-visible acoustic features of vowels cannot  be 
mapped into visible features to help disambiguate the spoken message. Cuing vowels would 
obviously provide more potential information for the listener. As in all applications, however, there 
are trade-offs that must be considered. Cuing vowels could potentially entail a number of negative 
effects. First, recognition of vowels or vowel features from the waveform would be highly fallible 
relative to the features of consonants analyzed by our system. Second, there is a limit on the 
number of features that the listener can process in parallel with the audible and visible speech 
input. Adding several vowel features would probably exceed that limit. Third, vowels carry less a 
priori information than consonants in English. Thus, vowels are more predictable in word contexts 
than consonants. Fourth, for people with partial hearing due to hearing loss, noise, or cochlear 
implants, vowels appear to be less perceptually degraded and therefore more intelligible than 
consonants. In this case, the listener will probably benefit more from the acoustic signal for vowels 
than for consonants, making any visible feature for vowels less informative. Fifth, visible speech 
from the speaker is much more informative for vowels than it is for features of consonants such 
asvoicing, frication, and nasality, which are analyzed by the proposed system.  For this reason, 
vowel information is perceived fairly accurately from the face alone. Montgomery and Jackson 
(1983) and Massaro (1998) found about 75% correct lipreading among 8 vowel categories. Our 
research will determine whether consonant cues are sufficient for accurate performance given a 
reasonable amount of training. If so, the case can be made that a robust system of augmented 
communication can be implemented even though no additional supplementary cues are provided 
for vowels. 

It could be argued that automatic speech recognition (ASR) by machine will improve 
sufficiently in the near future so that a full captioning of speech could be accurately rendered in 
real time. Although this significant breakthrough has always been possible, it seems unlikely that it 
will occur in the near future. ASR can be expected to function reasonably well as long as 
vocabulary and grammatical structure input is limited and the system is speaker dependent—that 
is, trained on a single speaker and/or used in a completely noise-free environment. We have also 
described how ASR functions with less than real-time performance and extensive computational 
resources. These constraints exist because most ASR systems do a poor job of recognizing 
phonemes (Greenberg, 2006; Greenberg & Chang, 2000), using sophisticated word models 
(usually bi- or tri-gram models) to deduce words from a flawed recognition of the phonemes. Our 
device, by contrast, will be functional in the natural setting of open dialogs and conversations from 
multiple speakers. Most importantly, however, our approach has five important advantages: 1) it 
supplements rather than replaces the acoustic signal, 2) it can be carried out in real time, 3) it 
requires relatively few computational resources, 4) it conveys a continuous analysis rather than a 
discrete categorization of the speech input, and 5) it is language independent because the 
acoustic features that will be analyzed should vary relatively little across languages. 

Most ASR systems permit the talker to speak into a lapel microphone or a telephone during 
recording. In the present system, however, the microphone embedded in the eyeglasses 
necessitates a remote recording of acoustic speech. The most likely sources of potential error 
using a remote microphone on the listener include background noise and room reverberation in 
the location of verbal exchange and the speech of others who are not in the conversation. In 
addition to the distance of the microphone from the speaker, the speech signal would also be 
somewhat variable because the distances and directions of speech will vary in typical face-to-face 
conversations. This challenge is anticipated by training the system on remote recordings, which 
should also have less impact on the tracking of acoustic features relative to speech recognition. 
Techniques are available to adjust for these sources of degradation of the acoustic spectrum. By 
training our neural-net acoustic-feature recognition system on remote recordings, the number of 
possible sources of degradation will be reduced. 
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Regardless of the advances or lack of advances in speech-recognition technology, it will 
always be more accurate and effective to automatically detect speech features than phonemes. 
First, there are typically only two to five alternatives for features, as opposed to roughly 40 to 60 
alternatives for phonemes. Second, features (voicing, frication, nasality, and sonorant) are 
relatively easy to recognize automatically. Our system does not attempt to analyze the most 
difficult acoustic feature, place of articulation, because it can be easily determined from visual cues 
that are readily perceivable from the face.  

It might be argued that the tactile modality is more appropriate for presentation 
ofsupplementary speech features than the visual modality. For example, instead of providing three 
colored bars, the same information could be mapped into three vibratory transducers. There are 
well-known commonalities between the visual and tactile sensory systems (Freides, 1974; Hirsh & 
Sherrick, 1961; Lederman & Klatzky, 2004; Loomis & Lederman, 1986; Loveless et al., 1970; 
Sherrick & Cholewiak, 1986), and it may be that observers will be at a disadvantage dividing their 
attention between two visual sources of information relative to coordinating two sources of 
information from separate modalities. However, it is also known that the tactile modality has much 
poorer spatial and temporal resolution than vision. In an experiment with CV syllables, better 
recognition was achieved with visual than with tactile presentation of speech features (Martony, 
1974). For voiced stops, there was no improvement with tactile feature presentation, but a 
significant improvement was observed with visual feature presentation. Martony suggests that this 
disparity was due to participants’ difficulty in perceiving the exact temporal relation between the 
visual and tactile information. Thus, there may be an advantage to using two sources from the 
visual modality because of an enhanced ability to perceive the temporal relationship between 
speechreading and visual cues. Using two visual sources, listeners should be able to easily detect 
temporal relation cues such as voice onset time (a cue to voicing which, in this case, would be 
realized as a relation between a visible facial articulation and the activation of the supplementary 
voicing bar).  
/H1/ Summary and Conclusion 
As illustrated by the success of Cued Speech, the need for language aids is pervasive in today’s 
world. Millions of individuals with language and speech impairments require additional support for 
language understanding and learning. Currently, however, these needs are frequently 
underserved because there are not enough qualified teachers, interpreters, and other 
professionals to provide the one-on-one attention that many of them need. Lipreading (also known 
as speechreading because it involves more than just the lips) allows deaf and hard of hearing 
individuals to perceive and understand oral language and even, in some cases, to speak. 
Speechreading seldom disambiguates all of the spoken input, however, and other techniques have 
been used to create a richer input. Cued Speech has been successful in providing additional 
supplementary linguistic cues, but very few people are proficient in Cued Speech or have the 
motivation to learn it. 

To fill the need for rich language input, we are developing a real time system to 
automatically detect robust characteristics of auditory speech and transform these acoustic 
features into supplementary visible features representing aspects of speech. This information, 
combined with the perception of visual speech cues from the speaker's face, provides additional 
information so that people with limited hearing can perceive and understand oral speech. Our new 
technology, a wearable computing device, would recognize primitive characteristics of the speech 
signal in real time and display supplementary visual features via an LED display mounted on a pair 
of eyeglasses. This system may possess some advantages over Cued Speech because it is 
directly based on the acoustic and phonetic properties of speech and provides continuous rather 
than only categorical information. Our research has demonstrated that it is possible to recognize 
robust characteristics of isolated spoken words from a single speaker and to transform them into 
visual features in real time. The proposed research seeks to extend these findings to sentences 
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and conversation from multiple speakers and to determine the selection of the ideal set of features 
for display. 

The successful outcome of this work would benefit society by providing an empirical and 
theoretical foundation for a system that would be available to most individuals at a very low cost. It 
does not require that users be literate because no written information is presented, as would be 
the case in a captioning system; it is age-independent in that it can be used throughout the life 
span; it is functional for all languages because it is language-independent given that all languages 
share the same phonetic features with highly similar corresponding acoustic characteristics; it 
would provide significant help for people with hearing aids and cochlear implants; and it would be 
beneficial for many individuals with language impairments and even for children learning to read. 
Finally, regardless of the advances or lack of advances in speech recognition technology, it will 
always be more accurate and effective to detect speech features than phones.  
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List of Figures 
 

Figure 1. An example of the LED display of the eyeglasses showing visual speech features. The 

top nasal bar indicates nasals by lighting up orange during the period of occurrence. The middle 

voicing bar indicates voiced sounds by lighting up white, and the bottom frication bar lights up 

(yellow and purple for voiceless and voiced fricatives, respectively) when there is frication noise. 

The intensity of each cue corresponds to the degree to which the indicated acoustic feature is 

present in the speech signal. (from Massaro, 1998). 

Figure 2. Proportion of correct word identification (left panel), identification (d prime) of initial 

voicing (center panel), and identification (d prime) of initial nasality (right panel) as a function of 

experimental block for the feature and control groups. 

Figure 3. Frication display intensity (bottom panel) for the phrase “he then sat.” The auditory 

speech signal is shown in the top panel and the spectrogram is shown in the middle panel. 

Figure 4. Photo of the first mockupprototype of the eyeglasses containing microphone, processor, 

battery, LED display, and vibrator. 
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