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Several models of information integration are developed and analyzed within the context ofa proto- 
typical pattern-recognition task. The central concerns are whether the models prescribe maximally 
efficient (optimal) integration and to what extent the models are psychologically valid. Evaluation, 
integration, and decision processes are specified for each model. Important features are whether 
evaluation is noisy, whether integration follows Bayes's theorem, and whether decision consists of a 
criterion rule or a relative goodness rule. Simulations of the models and predictions of the results 
by the same models are carried out to provide a measure of identifiability or the extent to which the 
models can be distinguished from one another. The models are also contrasted against empirical 
results from tasks with 2 and 4 response alternatives and with graded responses. 

C o n c e p t u a l  F r a m e w o r k  

There is a growing consensus that behavior reflects the influ- 
ence of  multiple sources of  information. Auditory and visual 
perception, reading and speech perception, and decision mak- 
ing and judgment are modulated by a wide variety of influences 
(Anderson, 1981; Bruno & Cutting, 1988; Falmagne, 1985; 
Massaro, 1987a, 1988a; Oden, 1981; Perkell & Klatt, 1986; 
Welch & Warren, 1980). Until only recently, psychological inquiry 
was aimed at studying the relationship between behavior and a given 
single source independently of other sources of information. The 
common strategy was to eliminate or to hold constant all potential 
sources of information except the source of interest. This research 
strategy was most apparent in psychophysics but was also pervasive 
in perception, memory, and learning. 

The single-factor experiment was the dominant mode of in- 
vestigation when one-dimensional functional relationships 
were the primary goal. Trying to understand behavior when 
multiple sources of information are available poses additional 
problems. Factorial experiments seem to be the most promising 
approach, and we have witnessed immense methodological and 
theoretical progress in this domain. Specifically, the additive- 
factor method developed by Sternberg (1969) and Anderson's 
(1970, 1981) functional measurement are milestones that will 
not be easily surpassed. Without these methodologies, there 
would have been a plethora of idle psychologists in the last cou- 
ple of decades. True, Fisher (1935) bequeathed the statistical 
tools for factorial designs long before Anderson, Sternberg, and 
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other scientists exploited them. However, Anderson and Stern- 
berg contributed paradigms for blending Fisher's methodology 
and psychological theory--something that had not been done 
previously. Although this blending is not without fault (Giger- 
enzer & Murray, 1987), the positive contributions of the re- 
search paradigms cannot be questioned (Townsend, 1984). 

The magnitude of the problem of multiple sources of informa- 
tion compared with understanding how a single source might have 
an influence is uncertain. A comparable problem is illustrated by 
the considerable research effort that has been directed at the ques- 
tion of threshold versus continuous-state sensory systems and the 
difficulty in deciding between these two alternatives (Krantz, 1969; 
Massaro, 1969; Swets, 1961; Swets, Tanner, & Birdsall, 1961; 
Wickelgren, 1968). Given this experience, a justified fear is that 
the problem of how multiple sources of information influence be- 
havior will increase in difficulty in some exponential manner. A 
hope is that the manipulation of multiple sources of information 
will also provide more experimental power than a single-factor de- 
sign and, eventually, make the task easier. 

In this article, we present and compare various existing 
models of how multiple sources of information influence per- 
ception and decision. The question we address is how individu- 
als process two or more sources of information that may agree 
with one another or conflict to various degrees. The central con- 
cerns are the processes assumed by the models and resulting 
differences in their predictions. Our goal is to identify the simi- 
larities and differences among the models that are often olin- 
looked in the literature. We also address the optimality proper- 
ties and empirical validity of the models. Although most of our 
examples involve a prototypical pattern-recognition task and 
the application of extant models to this task, our analysis can 
be applied to any domain involving information integration. 
Each model is described and implemented, and similarities and 
differences among the models are noted for various types of ex- 
periments. We begin our discussion with a description of our 
prototypical task and a taxonomy of experiments. 

Taxonomy of Experirnents 
We describe different types of  experimental tasks and often 

use specific examples to facilitate the presentation. Hence, we 
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Figure 1. Forty-nine test letters, varying between G and Q, created by 
varying the obliqueness of the straight line (row factor) and the closed- 
ness of the gap in the oval (column factor). (After Massaro & Hary, 
1986.) 

begin by describing a prototypical pattern-recognition task of 
manipulating two sources of  information at several levels. Two 
categories, G and Q, are chosen as the alternatives in a letter- 
processing task (Massaro & Hary, 1986). A factorial design is 
used to generate test stimuli representing all combinations of 
the two sources of  information. A range'of letters between G and 
Q is created when the obliqueness of  a line and the closedness of 
the gap in the letter Q are varied across seven levels each (Figure 
1). Seven levels of closedness are made by removing 0, 2, 3, 4, 
7, 9, and 10 points from the right side of  the oval of  the capital 
letter Q. Similarly, the obliqueness of  the line varies between the 
horizontal and 11, 21, 29, 38, 51, and 61 degrees of obliqueness 
measured from the horizontal. The resultant 49 test letters 
make up the factorial design. The factorial design can be ex- 
panded to allow presentation of  each source of  information 
without the presence of  the other source of  information. In this 
expanded design (not shown in Figure 1), the separate charac- 
teristics of  each of  the two sources of  information are presented 
in isolation. Seven test letters are composed of  just the oval, and 
seven test letters are composed of just the straight line. The test 
items are presented repeatedly to subjects in randomized order 
during a series of test trials. Two dependent measures are the 
identification judgments and the reaction times. In addition to 
experiments requiring categorical judgments, rating tasks can 
also be carried out in which subjects are asked to rate each letter 
along a continuum, such as that between G and Q. 

We now introduce some definitions and distinctions that are 
useful for the developments in the article. A set of different ex- 
perimental designs is illustrated in Figure 2. A single-factor de- 
sign involves the manipulation of  one independent variable. For 
example, only the closedness of  the test letters might be varied, 
with the obliqueness of the straight line and all other physical 
properties held constant. A factorial design involves the orthog- 
onal manipulation of  two or more independent variables; each 
level of one independent variable is paired with every level of 
the other independent variable. In the prototypical example, 
this would involve using the set of  49 test letters shown in Figure 
1. An expanded factorial design adds conditions in which each 

level of  each independent variable is presented in isolation. The 
expanded conditions involve the variation of  one source of in- 
formation without the presence of other sources of information. 
In the example, the closedness of the gap in the oval of  the test 
letter would be varied without the presence of  the straight line. 
Analogously, the straight line would be varied without the pres- 
ence of the oval. There are two types of single-factor, factorial, 
and expanded factorial designs. A categorical design involves 
just the endpoint stimuli of  each of the independent variables. 
For example, the letters in the four corners in Figure l would 
make up a categorical factorial design. A graded design involves 
intermediate stimuli between the endpoints, as with the test let- 
ters in Figure 1. When the independent variables are also pre- 
sented in isolation, all 63 of the test letters would constitute a 
graded expanded factorial design. The graded design is ideal for 
addressing the integration question because the exact nature 
of the integration can be determined only when the sources of 
information are varied to span the complete range of the inte- 
gration function. 

These experimental designs can be used with several response 
modes. Categorical responses involve a forced choice among a 
set of stimulus categories. In our example, categorical responses 
would involve identifying each test stimulus as Q or G or as one 
of  some other set of letter categories. For example, it would not 
be unreasonable to give subjects the four letter alternatives cor- 
responding to the stimuli in the corners of Figure 1. Townsend, 
Hu, and Kadlec (1988) suggested the term feature completefac- 
torialdesign for an experiment using the four stimuli at the end- 
points in Figure 1 along with the four corresponding response 
alternatives. More generally, the number of response alterna- 
tives could be as small as two or as large as the number of  unique 
test stimuli. With respect to the test letters in Figure 1, Nosofsky 
(1986) and others have described the task with two response 
alternatives as categorization and the task with 49 alternatives 
as identification. For symmetrical designs that have the same 
number of  levels of each independent variable, the number of 
categorical responses can be 2, or 2 n where n is the number of  
independent variables, or k n where k is the number of  levels 
of  each independent variable, or in fact any value between 2 
and k n. 

Number of  Independent Variables (IVs)? o // wo 
Single-Factor Number o f  Levels? 

T W O ~ ~ R E A T E R  T H A N  TWO 

Categorical-Factorial IVs Presented in Isolation? 

Graded-Factorial  Expanded Graded-Factorial  

Figure 2. A taxonomy of different experimental designs illustrating 
some important distinctions among different types of pattern-recogni- 
tion tasks. 
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Graded responses permit subjects to indicate the degree, 
probability, or confidence that the test stimulus matches one of 
the response categories. For example, subjects could be asked 
to rate on a scale from 0 to 100 the degree to which the test 
letter matches G as opposed to Q, where 0 is a perfect G and 
100 is a perfect Q. Similarly, the subject might be given a 50- 
mm line between the Q and G alternatives and asked to mark 
the line corresponding to their interpretation of  the test letter. 
Tasks with graded responses have been called rating tasks (e.g., 
Kornbrot, 1978). Graded-response alternatives could be multi- 
dimensional in principle, but almost all previous tasks have 
been limited to one dimension. 

Note that pattern recognition tasks, such as the G-Q experi- 
ment, go beyond the domain typically addressed by recognition 
or decision models. In previous work, a normatively correct an- 
swer could be computed from the stimulus information that is 
given to the subject. For example, the subject is shown two urns 
of balls and told the percentage of red and green balls in each 
urn. The subject is also told the prior probability (or likelihood) 
that each urn of balls would be picked. Finally, the subject is 
told the composition of  a sample of balls that was obtained in a 
given draw from one of  the urns. The question asked is, From 
which urn was the observed sample taken? A normatively cor- 
rect answer can be computed for this urn task, and a subject's 
choice can be compared with the normatively correct one. In 
the letter-recognition task, on the other hand, there is no objec- 
tively correct answer, and subjects are not given feedback. The 
subject simply gives his or her perceptual report. Even so, the 
graded factorial design permits us to address the question of 
how the information is processed and whether this information 
processing is optimal (see the Optimality section). 

A General Stage Model 

Given the prototypical pattern-recognition task, or any other 
psychophysical task involving multiple sources of  information, 
a basic empirical difficulty is that information integration can- 
not be observed in isolation because several processes are in- 
volved. The tasks described in the previous section appear to 
involve evaluation, integration, and decision processes (Self- 
ridge, 1959). Evaluation is defined as the analysis of each source 
of information by the processing system. It can be thought of  
as the transformation of the physical value of each source into 
a psychological value. In the G-Q task, for example, evaluation 
would give separate representations of the oval and straight-line 
components of the test letter. Integration is defined as some 
combination of the representations made available by the evalu- 
ation process. Decision maps the outcome of integration into a 
response. To develop the various models of  pattern recognition 
and decision making, we give an account of  these three stages 
of processing between stimulus and response. The three stages 
of processing are illustrated in Figure 3. Regardless of the type 
of model, each of these stages must be specified to make predic- 
tions of performance. A theory must describe how each source 
of information is evaluated, whether and how the different 
sources are integrated, and how a decision is made given the 
outcome of  evaluation and integration. 

As anticipated by Estes (1986), the models could be com- 
pared and tested more easily if our experiments could provide 

results about the operations of  one stage without the contribu- 
tion of the other stages. All three stages are not necessarily in- 
volved in all tasks, but even the simplest experiment appears to 
require at least two of these stages. Although integration would 
not occur if only one source of information were presented, 
evaluation of that source of information and selecting a re- 
sponse based on the outcome of evaluation would still be neces- 
sary. We also consider models that bypass integration and send 
the outputs of  evaluation directly to decision. We call these 
models nonintegration models. Whether or not integration oc- 
curs, a decision process mediates the actual response. For some 
tasks, one might assume that the response directly reflects the 
outcome of  integration and therefore bypasses the decision 
stage. This assumption has been used with considerable success 
in traditional psychophysical scaling (Stevens, 1961) and in in- 
formation integration (Anderson, 1981). 

Optimality 

We make the following assumptions about the three stages of 
information processing. The outcome of  the first stage, evalua- 
tion, can be described by a scale value, which in general we 
denote as x for a given information source X, y for an informa- 
tion source Y, and so on. The appendix is a summary of the 
notation used throughout this article. We assume that x is a real 
number on an interval scale that is measured in some sort of 
"currency" such as truth value, probability, activation, energy, 
or strength. We do not discuss binary-valued feature models; 
available evidence such as that presented by Shaw, Mulligan, 
and Stone (1983) and Massaro (1987b) suggests that real-valued 
evaluation functions better explain the data. For each source of 
information, this scale value is some function (possibly stochas- 
tic) of the stimulus provided from that source but is indepen- 
dent of the stimulus from other sources. In the stochastic case, 
this assumption naturally can be extended to perceptual inde- 
pendence in the sense described by Ashby and Townsend 
(1986). For example, in the G-Q recognition experiment, our 
independence assumption rules out the possibility that an ob- 
server's evaluation of  the degree of closedness is affected by the 
level of obliqueness in a test object. However, it certainly does 
not rule out a statistical interaction of  the sources in his or her 
responses that is due to the nature of the integration process. 

We assume that the information-integration stage, our cen- 
tral concern, provides a single scale value ak (measured in the 
same currency as the x and y) as a deterministic function of the 
scale values provided by the evaluation stage, for each choice 
alternative Ak. At this point, we put no restrictions on the func- 
tional form of the integration function, so as to allow investiga- 
tion of a wide class of integration models. Although we will not 
emphasize them in this article (see the First-Order Versus Sec- 
ond-Order Integration section for a brief discussion), this for- 
mulation includes so-called nonintegration models. We empha- 
size that the value ak is assumed to have no "memory"  of  how 
it was obtained. If two different combinations of the sources of 
information lead to identical outcomes of integration, then the 
decision would be the same in both cases. Put in somewhat 
different terms, the decision process does not have access to the 
initial statistics given by evaluation and operates on only the 
summary statistic produced by integration. In the case of two 
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Evaluation Integration Decision 

Figure 3. Schematic representation of the three stages of processing that must be accounted for in a pattern 
recognition-task with multiple sources of information. (The three stages are illustrated for the sources of 
information closedness C and obliqueness O in the G-Q task. The evaluation of the degree to which the 
oval is closed and the straight line is oblique produces values c and o that are made available to the integra- 
tion process. If no integration occurs, these two values are passed directly to decision. Integration of the 
values gives an overall value ak, indicating the degree of support for alternative k [Ak]. The decision process 
maps the information made available to it into a response.) 

response categories or a graded response between two catego- 
ries, a single value a can represent the outcome of  integration 
(and the subscript can be dropped). 

Regarding the final stage, decision, we assume only that the 
value of  the chosen response alternative Ak is some determinis- 
tic or stochastic function of  the integrated scale values ak of  all 
relevant alternatives. Two of  the more popular decision rules, 
which we refer to as the criterion rule (OR) and the relative good- 
ness rule (RGR), are described in the Ingredients for Integration 
Models section. 

In our examination of  models from the literature, we specify 
the evaluation and decision stages as well as the integration 
stage, although one or more of  these stages is often left implicit 
in the original presentation. An important  concept to recognize 
is that the validity and optimality of  a given model of  informa- 
tion integration generally depend on its assumptions regarding 
the evaluation and decision stages, as well as its specification of 
the integration stage (Estes, 1986). 

We are now prepared to define optimality as a property of  an 
integration model. The basic idea is that the integration process 
is optimal if it maximizes the final information content or, 
equivalently, minimizes the average loss of information. Spe- 
cifically, if ak is a sufficient statistic (DeGroot, 1970) for (x, y, 
• -.),  then there is no loss of  information in the integration 
stage, and the integration function is optimal. Often, no suffi- 
cient statistic exists, and optimality must be judged in terms of  
all three stages taken together. In this case, we use the usual 
definition from statistical decision theory: For a given reward 
structure for responses and given structure for presenting stim- 
uli (possibly including noise), the overall process is optimal if  
it maximizes the expected reward. If the reward structure and 
stimuli presentation are unbiased (in senses to be discussed be- 
low), then this weaker notion of  optimality reduces to the maxi- 
mum likelihood property: An individual chooses the response 
that has the greatest likelihood of  being correct. 

For example, if the currency (i.e., the scale values produced 
by evaluation and used by the decision process) is subjective 
probability, then Bayes's theorem, discussed in the next section, 
always produces a posterior probability that correctly and fully 
incorporates the prior probabilities and likelihoods obtained 
from the evaluation stage. Hence, this posterior probability is a 
sufficient statistic, and the integration process that produces it 
is optimal. We show that some models with currency that is not 

subjective probability also produce sufficient statistics in some 
contexts. However, for most models, we investigate optimality 
of the overall prediction (evaluation and decision together with 
integration), usually with reference to maximum likelihood. 
We emphasize that the sufficient-statistic definition of  optimal- 
ity allows subjective probabilities used by the subject to differ 
from objective probabilities. In many tasks, in fact, objective 
probabilities do not exist (see the Taxonomy of  Experiments 
section). When they do, an optimal integration process might 
not maximize the objective expected value. 

Note that optimality differs from empirical validity. Indepen- 
dently of  the optimality question, we also ask to what extent a 
given model accurately describes the actual results of  an experi- 
ment (see the Empirical Predictions and Tests of  the Models 
section). This analysis of empirical results also addresses the 
interesting question of  whether human choice behavior is op- 
timal. 

Implementation of Models 

We illustrate model implementation with results drawn from 
Massaro and Hary (1986), who actually carried out the letter- 
recognition task that we have described, using a graded factorial 
design. Nine subjects saw each of  the test letters (shown in Fig- 
ure 1) for 400 ms 12 times in random order. On each trial, they 
labeled the test letter Q or G. Figure 4 gives the observed perfor- 
mance for 2 subjects. The probability of  a Q response for each 
test letter is the dependent variable. Given that the Q and G 
identifications sum to 1, the probability o fa  Q response to each 
test letter, P(AQ) completely represents the identification judg- 
ments. Thus, we have 49 independent observations to describe 
the 49 test letters. 

The ultimate goal of our analysis of  integration models is to 
determine their optimality properties and to discover which 
models better describe actual behavior. It is important to keep 
in mind how each of the models is implemented in a given ex- 
periment. All of the models require free parameters. That is, 
none of the models specifies a priori the outcome of evaluation 
for a given level of a given source of  information. However, the 
models should have equivalent degrees of  freedom when con- 
fronting our basic pattern-recognition task so a valid compari- 
son can be made. We limit the number of free parameters to the 
number of  unique levels of  the independent variables. In the G-  
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Figure 4. Observed probability of Q responses for the 49 test letters presented in Figure 1 (created by 
varying the obliqueness of the straight line and the closedness ofthe gap in the oval). (The results are for 2 
typical subjects from an experiment carried out by Massaro and Hary, 1986.) 

Q task illustrated in Figures 1 and 4 (or in the expanded version 
of this task), 14 parameters are necessary: seven parameters 
each for obliqueness and closedness. The parameters represent 
some measure of the degree to which the obliqueness and clos- 
edness features are present in the test letter. These estimated 
parameters in turn give rise to specific predictions for each 
model regarding response frequencies (or response ratings in a 
graded design). We contrast these predictions in the Empirical 
Predictions and Tests of the Models section. 

Ingredients  for Integrat ion Models 

We postulate evaluation, integration, and decision processes 
and illustrate the importance of  each of these contributions in 
our analyses of  the models. In this section, we make some pre- 
liminary remarks addressing the issue of how each of these pro- 
cesses influences optimality. Assumptions about evaluation 
have consequences for optimality. The primary consideration is 
whether evaluation is noisy (stochastic) or noise free (determin- 
istic). To anticipate, most of the models we consider assume 
noise-free evaluation, whereas the models based on statistical 
theory, such as the theory of signal detectability (TSD), typically 
assume a noisy evaluation process. Assuming an independent 
sample of noise added to the evaluation of each source of infor- 
mation usually leads to different predictions than assuming 
noise-free evaluation with noise added at some later stage, for 
example, in a stochastic decision process. 

Bayes's Theorem 

The most venerable method for combining multiple sources 
of information is given by a theorem attributed to Reverend 
Thomas Bayes (circa 1701-1761) but also derived indepen- 

dently by Pierre Laplace (1749-1827; Stigler, 1986). Bayes's 
theorem states that 

P(E[ Ha) × P(H~) 
P(H~IE) Z P(EIH;) × e(Hi)' (1) 

i 

where P(H;I E) is the probability that some hypothesis Hi is 
true given that some evidence E is observed; P(EI Hi) is the 
probability of the evidence E, given that the hypothesis Hi is 
true, and P(H;) is the a priori probability of the hypothesis Hi. 
The probability of  hypothesis Ht given some evidence E is equal 
to the probability of the evidence given the hypothesis times the 
a priori probability of  the hypothesis, divided by the sum of 
analogous likelihoods for all possible hypotheses. If the a priori 
probabilities of all possible hypotheses are equal, Bayes's theo- 
rem reduces to 

P(H~IE) = P(EIHO . (2) 
P(EIHi) 

i 

Bayes's theorem specifies how different sources of evidence 
are combined. Given two independent pieces of  evidence E~ and 
E2 and equal a priori probabilities, the probability of a hypothe- 
sis H~ is equal to 

P(HI ]El and E2) = P(EI and E21H0 % (3) 
~, P(EI and E21Hi) 
i 

P(E~I HO × P(E2IHO 
. 

Y~ P(E~ IHi) × P(Ei[Ht) 
i 

Equation 3 has a direct correspondence to our evaluation and 



230 DOMINIC W. MASSARO AND DANIEL FRIEDMAN 

integration processes. In our notation, Equation 3 gives the out- 
come al for integrating two sources of  information X and Y, 
where P(EI [H~) represents evaluation of  the first source (in 
terms of the subjective probability currency) and P(E2IHI) rep- 
resents separate evaluation of  the second source. Equation 3 
describes optimal information integration in the currency of  
probability under two assumptions. First, the prior probabili- 
ties of  all relevant response alternatives are equal. Second, the 
sources of evidence are evaluated independently of one another, 
as explained previously in the Optimality section. Under these 
assumptions, Equation 3 follows from probability theory, in 
which the probability of  the joint  occurrence of  two indepen- 
dent events is the multiplicative combination of  the probabili- 
ties of  the separate events. The probability of  two heads in two 
tosses of a coin, for example, is the multiplicative combination 
of  the probability of  a head on each toss. See Stigler (1986) for 
the derivation, which of  course goes back 200 years to Reverend 
Bayes and Laplace. 

Criterion Rule  (CR) 

As illustrated in Figure 3, the outcome of  integration is trans- 
formed by a decision process to produce a response. We con- 
sider two general algorithms for the decision operation. The 
first, derived from communication theory, rests on the notion 
of  a criterion. The decision operation uses a criterion value to 
assess the outcome of  integration (or evaluation in the case of  a 
single source of  information). In a task with two response alter- 
natives, for example, the outcome is compared with the crite- 
rion. If the outcome exceeds the criterion, one of  the alterna- 
tives is selected. Otherwise, the other alternative is selected. 

Consider a stimulus continuum in a graded single-factor de- 
sign in which the value of  information source X is varied from 
not A to A. Assume, for this argument, that this variation gives 
linearly increasing evidence for a given alternative A. That is, 
the outcome of  evaluation (or integration, given multiple 
sources of  information) is assumed to be a linear function of  
some independent variable. The left panel of  Figure 5 shows 
this outcome as a linear function of  variable X. 

A deterministic criterion rule in a discrete judgment task 
with the criterion value at .5 would classify the pattern as A for 
any value of a greater than this criterion value. Otherwise, the 
pattern is classified as not A. Given this CR, the probability of  
an A response would take the step-function form shown in the 
right panel of  Figure 5. That is, with a fixed criterion value and 
no noise, the decision operation changes the continuous linear 
function of  a into a step function of probability of response (,4). 
Although based on continuous evidence, the response function 
is discrete. This categorical result is uncommon for actual ex- 
periments (see Figure 4). 

If there is noise in the mapping from variable Xto  a, however, 
a given level of  variable X cannot be expected to produce the 
same identification judgment on each presentation. With the 
addition of noise, it is reasonable to assume that a given level of  
variable X produces a bell-shaped range of  values of  a with a 
mean directly related to the level of  variable X and a variance 
equal across all levels of  variable X. Figure 6 illustrates the ex- 
pected outcome for identification if there is bell-shaped noise 
added to a with the same criterion value assumed in Figure 5. A 

signal with a mean value of  a at the criterion value will produce 
completely random classifications over many trials. This value 
of  a based on both signal and noise is above the criterion on half 
of the trials and below the criterion on the other half. As the 
mean of  variable X moves away from the criterion value, the 
addition of  noise will have a diminishing effect on the identifi- 
cation judgments. Thus, noise will have a larger influence on 
identification in the middle of  the range of  probability values 
than it will at the extremes. A similar outcome to that shown in 
Figure 6 is achieved if the mapping from variable X to a is noise 
free and the criterion value fluctuates randomly from moment 
to moment (Carterette, Friedman, & Wyman, 1966). 

Relative Goodness Rule (RaR) 

A second algorithm for decision is based on the ideas of  Shep- 
ard (1957, 1986), Clarke (1957), Luce (1959, 1977), and Ander- 
son (1981). This is the RGR algorithm. Two underlying assump- 
tions are that alternatives defined as irrelevant to the choice task 
play no role in the decision and that the probability of a re- 
sponse alternative is simply equal to the ratio of  the goodness 
of match of  that alternative relative to the sum of the goodness 
of  matches of  all relevant alternatives. In the context of  a cate- 
gorical-response experiment with m alternatives, this general 
rule can be expressed as 

P(Ak)= a~ , (4) 

ai 
i=l  

or the expected probability of  response Ak is equal to the scale 
value ak of  that alternative divided by the sum of  the scale values 
for all the relevant alternatives in the task (including the alterna- 
tive of  interest). In contrast to the deterministic algorithm 
based on a CR, the RGR predicts a response only probabilisti- 
cally. The RGR specifies only asymptotic response probabilities; 
it is not a complete process model of  how these probabilities 
occur. Townsend and Landon (1982) provide a few alternative 
process interpretations that are consistent with the choice rule, 
but there have been no tests among these alternatives. Although 
we lack a process model, there is considerable evidence that 
judgment appears to be relative, as predicted by the RGR (Luce, 
1977; Oden, 1977). 

Applying the RGR when the currency is subjective probability 
creates a situation called probability matching (Davison & Mc- 
Carthy, 1988; Thomas & Legge, 1970). That is, subjects might 
not respond optimally by always choosing the most likely alter- 
native but might instead choose each alternative with the proba- 
bility given by Bayes's theorem. This model predicts that the 
probability of  a response corresponding to hypothesis Hi is 
given by Equation 3. Although nonoptimal, this prediction 
should be taken seriously, given that humans and animals have 
been shown to probability match in many different domains 
(Davison & McCarthy, 1988; Estes, 1984; Myers, 1976). 

In experiments with graded responses, the RGR is straightfor- 
ward. For example, in our prototypical pattern-recognition 
task, Equation 4 would apply to continuous rating judgments 
on individual trials, not just average probability of categorical- 
response alternatives. In contrast to the RGR prediction for cate- 
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Figure 5. Left panel: The evidence for A as a function of the level along a stimulus continuum between not 
A and A. Right panel: The probability of an A response as a function of the stimulus continuum if the 
subject maintains a criterion rule at a particular value and responds A if and only if evidence for A exceeds 
the criterion. 

gorical responses, its predictions for graded responses are opti- 
mal as long as the response on each trial can be interpreted as a 
subjective probability. Given the optimality of RGR for graded 
responses, an argument might be made for optimality of RGR 
for categorical responses. In this case, the decision maker's goal 
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Figure 6. The probability of an A response as a function of variable X 
given the linear relationship between evidence for A and variable X and 
the criterion rule represented in Figure 5, but with bell-shaped (trun- 
cated normal) noise added to the mapping of variable X to evidence 
for A. 

is to communicate subjective probability over the course of  the 
experiment rather than simply the most likely alternative on 
any given trial. We accept this logic in our analysis. 

Fuzzy-Logica l  Mode l  o f  Percep t ion  (FLMP) 

We begin our survey of specific models with the fuzzy-logical 
model of perception (FLMP) for several reasons. First, the re- 
search framework we used for this article emerged together with 
the model over the course of empirical and theoretical work. 
Second, the model, although developed independently of 
Bayes's theorem, has identical optimality properties for integra- 
tion. Third, the three operations of  evaluation, integration, and 
decision are clearly articulated in the model. 

Underlying this model is the assumption that well-learned 
patterns are recognized in accordance with a general algorithm, 
regardless of the modality or particular nature of the patterns 
(Massaro, 1984, 1987a; Oden, 1981, 1984). The model has re- 
ceived support in a wide variety of domains. The model consists 
of three operations in perceptual recognition: feature evalua- 
tion, feature integration, and pattern classification. Continu- 
ously valued features are evaluated, integrated, and matched 
against prototype descriptions in memory, and an identification 
decision is made on the basis of  the relative goodness of  match 
of  the stimulus information with the relevant prototype de- 
scriptions. 

Given multiple features, it is useful to have a common metric 
representing the degree of match of each feature. Two features 
that define a prototype can be related to one another more eas- 
ily if they share a common currency. To serve this purpose, fuz- 
zy-truth values (Goguen, 1969; Zadeh, 1965) are used because 
they provide a natural representation of  the degree of  match. 
Fuzzy-truth values lie between 0 and 1, corresponding to a 
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proposition being completely false and completely true. The 
value .5 corresponds to a completely ambiguous situation, 
whereas .7 would be more true than false and so on. Fuzzy-truth 
values, therefore, not only can represent continuous rather than 
just categorical information, they also can represent different 
kinds of information. 

The three operations between presentation of a pattern and 
its categorization, as illustrated in Figure 3, can be formalized 
mathematically. Feature evaluation gives the degree to which a 
given dimension supports each test alternative. The physical in- 
put is transformed to a psychological value and is represented 
in lowercase letters; for example, dimension X would be trans- 
formed to xk, and analogously for dimension Y. Each dimension 
provides a feature value at feature evaluation. Feature integra- 
tion consists of a multiplicative combination of  feature values 
supporting a given alternative Ak. If xk and Yk are the values 
supporting alternative Ak, then the total support ak for the alter- 
native Ak would be given by the product ofxk and y~. 

The third operation is pattern classification, which gives the 
relative degree of  support (merit) for each of the test alterna- 
tives. In this case, the probability of response Ak given the spe- 
cific stimulus Xi Yj is 

P(A, IX= X~, r =  L ) =  Xkyk 
rrt 

Z xiYi 
i=1  

(5) 

where the denominator is equal to the sum of the merit of all m 
relevant alternatives, derived in the same manner as illustrated 
for alternative Ak. 

To recapitulate, evaluation in the FLMP involves the represen- 
tation of  each source of information in terms of a truth value, 
between 0 and 1, indicating the merit of  a particular alternative. 
Integration consists of a multiplicative combination of truth 
values. The decision uses the RGR. 

Implementation Of FLMP 

Given a test letter in the G-Q task, the featural evaluation 
stage determines the degree to which the Q and G alternatives 
are supported by each feature of  the visual information. With 
the use of  fuzzy-truth values, a value between 0 and 1 is assigned 
to the oval and straight-line dimensions, indicating the degree 
to which these features support the Q and G alternatives. These 
feature values are then integrated within the Q and G proto- 
types. The prototypes are defined by: 

Q: closed oval and oblique line 

and 

G: open oval and horizontal line. 

Given a prototype's independent specifications for the oval 
and straight-line features, the value of  one of these features can- 
not change the value of the other feature at feature integration. 
In the implementation of  the model, closed and open are as- 
sumed to be opposites (or negations) of one another, as are 
oblique and horizontal. Using the definition of fuzzy negation 
as 1 minus the feature value (Zadeh, 1965), we can represent 

the prototypes in terms of the degree to which the oval is closed 
and the line is oblique: 

Q: closed and oblique 

and 

G: (1 - closed) and (1 - oblique). 

The integration of  the features defining each prototype can 
be represented by the product of  the feature values (Oden, 
1979; Oden & Massaro, 1978). In this case, the goodness of 
match with a Q or G alternative can be represented by 

aQ=cXo 

and 

ao = (1 - c) × (1 - o), 

where a o and aa represent the goodness of  match of a test letter 
to the Q and G alternatives, respectively. 

If Q and G are the only valid response alternatives, the deci- 
sion operation determines their relative merit, leading to the 
prediction 

= aq (6) P(A°) ao_+ aa' 

where P(AQ) is the predicted probability of  a Q response to a 
particular test letter shown in Figure I. In graded-response 
tasks, Equation 6 gives the mean predicted rating linearly scaled 
between 0 and 1. 

Comparison Of FLMP and Bayesian Integration 

The FLMP is closely related to Bayesian integration. The con- 
cept of fuzzy-truth value differs from that of a subjective condi- 
tional probability (see the Previous Rejections of Optimal Be- 
havior section). However, if the two concepts are assumed to 
coincide for a particular prediction, then simple substitution 
shows that Equations 3 and 5 are identical. That is, Bayes's theo- 
rem and the FLMP are conceptually equivalent if the truth value 
can be interpreted as a conditional probability. 

Even if truth values and probabilities are conceptually 
different mappings of  evaluated information from a single 
source into scale values, their estimated values in empirical 
tests will be the same. For instance, in the case of an expanded 
factorial design with categorical responses for our prototypical 
pattern-recognition task, the number of parameters and their 
estimated values are the same whether they are called subjective 
probabilities or truth values. Therefore, the FLMP is observa- 
tionally equivalent to Bayesian integration. 

T h e o r y  o f  Signal  De tec tab i l i ty  (TSD) 

A second model of  combining evidence from multiple 
sources is derived from Thurstone's (1927) law of comparative 
judgment. In Case V of Thurstone's theory, the discriminal pro- 
cess corresponding to an object in a set of objects can be repre- 
sented by a scale value that is a constant plus an independent 
normally distributed variable. The scale values differ across ob- 
jects, but the random variable is identically distributed. Stimuli 
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X~, X2 . . . . .  Xn are represented psychologically by real-valued 
random variables xt ,  x2, . . . ,  xn, called discriminal processes. 
Given two response alternatives Ag and A j, corresponding to X~ 
and Xj, the subject chooses A~ if and only ifx~ > xj. Given this 
assumption, the probability that Ai will be chosen is 

P(Ai lXi ,Xj)= P[xi> xj] = P [ x i - x j > O ] .  (7) 

By assuming that the real-valued random variables are nor- 
mally distributed with equal variance, the probability values 
can be transformed into scale values of the discriminal pro- 
cesses (d' values in the TSD). (This transformation is exactly that 
used by Dosher, Sperling, & Wurst, 1986, and by Bruno & Cut- 
ting, 1988, in their analyses of factorial experiments.) Thur- 
stone's Case V then becomes mathematically equivalent to the 
ISD with two test stimulus alternatives, and our analyses are 
made on this version of  the theory. 

The traditional assumption in psychophysics since the time 
of Fechner ( 1801-1887) is that sensory systems are character- 
ized by thresholds. A threshold represents a barrier in the sen- 
sory system that must be overcome in order for a signal to be 
detected. All inputs below the threshold value go undetected 
and have no differential influence on the sensory system. Input 
values above the threshold value are detected, The theory of 
signal detectability denied the presence of a threshold and 
claimed that some sensory information is always available to 
the sensory system (Tanner & Swets, 1954). Detection of a stim- 
ulus is viewed as being analogous to a statistical decision task 
in which the decision system assigns conditional probabilities 
to the output of the sensory system. The decision system sup- 
posedly knows the potential outputs from the environmental 
events of interest (as it does in a Bayesian analysis). Consider 
the standard signal-detection task in which there are two types 
of trials: noise (N) trials and signal-plus-noise (SN) trials. The 
decision system has knowledge of the SN and N distributions 
and, given evaluated stimulus x, computes the conditional prob- 
ability that x arose from an N trial and the probability that it 
arose from an SN trial. The decision system computes a likeli- 
hood ratio equal to the probability that x occurred given SN 
divided by the probability that x occurred given N: 

l(x) P(x[SN) (8) 
P(x[N) 

The decision system establishes a criterion value, and if the like- 
lihood ratio given by Equation 8 exceeds this value, the observer 
responds yes; otherwise, the response is no. 

In this traditional signal-detection task, a measure of  sensory 
performance that is independent of  the criterion value that was 
used in the task can be computed. The values o fx  from a partic- 
ular type of trial (SN or N) are assumed to be normally distrib- 
uted. In addition, the variance from SN trials is usually as- 
sumed to be equal to the variance from N trials. If the scale is 
chosen so that the variance is equal to 1, then the distances along 
the x axis can be expressed in z scores. The distance in z-score 
units between the mean of the SN distribution and the criterion 
value can be computed from the hit rate P(YeslSN), and the 
distance between themean  of the N distribution and the crite- 
rion value can be computed from the false-alarm rate 
P(Yes[N). The sum of these two distances preserving the sign 

gives d', the distance between the means of the two distribu- 
tions. 

Our goal, of course, is to develop the signal-detection model 
to address the problem of integrating multiple sources of  infor- 
mation. An early application was Green and Swets's (1966) in- 
vestigation of the relationship between yes-no tasks, in which 
the subject has only one observation interval before making a 
decision, and two-interval forced-choice tasks, in which the 
subject has two observation intervals before making a decision. 
Green and Swets (1966) assumed that the subject integrates the 
information by simply adding the evaluation outputs from the 
two observation intervals and responds on the basis on this sum. 
This new observation has more information relative to the sin- 
gle-observation condition which leads to a larger d' value. They 
proved that for an optimal observer, the d '  value determined 
from two observation intervals should be the square root of 2, 
or 1.414 times the d '  value determined from a single observa- 
tion interval (Green & Swets, 1966, Appendix 9-A). This opti- 
mality result can be explained intuitively by recalling the well- 
known statistical result that the mean (together with the sample 
size) of  an independent random sample drawn from a normally 
distributed population is a sufficient statistic for the sample. 
Thus, the sum x + y, together with the sample size of 2, carries 
the same information as the original sample {x, y}, and the TSD 
model ensures that it is properly processed in this context. 

Generalizing this derivation for two observations of the same 
source to a single observation of two sources of information, 
Green and Swets (1966) stated that the d' given two sources of 
information, say X and Y, is equal to the square root of the sum 
of squares of each of the individual d' values: 

d'xr = 1/(d'x) 2 + (d'r) 2. (9) 

Underlying this formula is the assumption that the observer 
knows the precision of each information source and takes a 
weighted sum of  the evaluation outputs, with greater weight on 
the more precise (i.e., lower noise variance) source. They 
proved that Equation 9 is consistent with statistical (i.e., Bayes- 
ian) decision theory and therefore optimal (for an appropriate 
decision rule, e.g., the CR) under the following assumptions: (a) 
All stimuli are degraded by random noise; the output from eval- 
uating stimulus Xi can be represented by the real number xi = 
si + e,, where ei is a random-error term (arising from imperfect 
presentation or imperfect evaluation of  the stimulus or both) 
and s~ is the evaluation of  Xi in the absence of  such noise; (b) 
the errors ei are independent and have a mean of 0; (c) the errors 
ei are normally distributed; and (d) the errors e~ have the same 
variance for every level of  each information source but may 
have different variances for different information sources (Pe- 
terson, BirdsaU, & Fox, 1954). 

To summarize, the main assumption of the TSD model is that 
evaluation is degraded by noise and produces a normally dis- 
tributed scale value for each source. It transforms these scale 
values by the inverse cumulative-unit normal distribution (z 
transformation) into d '  values. The integration function is de- 
fined on these d' values by Equation 9. The decision process 
uses the CR. 
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Implementation o f  TSD: Expanded Nonfactorial Design 

A natural implementation Of TSD is the case o fa  nonfactorial 
expanded design with two categorical responses (Stanislaw, 
1988). It is straightforward because, in contrast to the other de- 
signs, a measure of  response accuracy can be defined. For exam- 
ple, in the prototypical pattern-recognition task shown in Fig- 
ure 1, the test letters would be the upper left and lower right 
letters, corresponding to a prototypical G and Q, respectively. 
That is, the test letters in this case would be either X~ = (Cl, 
O 0 - - t h a t  is, the not-closed oval with a 10-point gap and a not- 
oblique line, as in the letter G - - o r  else X o = (C7, O7)--that is, 
a closed oval and a 6 I* oblique line, as in the letter Q. In addi- 
tion, each of the two levels of the two sources of information 
would be presented in isolation. That is, only the closed oval, 
open oval, oblique line, or horizontal line is presented on these 
single-source trials. The allowable responses for both types of 
trials would be either A O or ,4G, meaning, "it is most consistent 
with a Q" or "it is most consistent with a G." Following Equa- 
tion 9, performance given both sources of  information is pre- 
dicted from performance given each of  the two sources pre- 
sented alone. One calculates dk from the relative frequencies of  
hits p = P(Aol C7) and false alarms q = P(AQ[ C1) for the oval 
stimulus presented in isolation by the standard formula, that 
is, d~ = Z(p) - Z(q), where Z(*) is the z-score or inverse-unit 
normal cumulative distribution function (CDF). (Presumably, 
p > q, so d '  is positive; that is, a Q-like stimulus is more likely 
than a G-like stimulus to generate a Q response.) Similarly, one 
calculates d~ from the Z scores for P(Ao107) and P(AQ] Oi), 
the relative frequencies of  Q responses given Q-like and G-like 
line stimuli in isolation. The TSD model then predicts that 
d'co, the d '  value obtained as the difference of  the Z scores for 
hit and false-alarm rates P( A o I Xo ) and P( A o IX c) for the com- 
bined stimuli, will result from Equation 9. 

Optimality in this implementation of  the TSD model requires 
the four assumptions listed above, and these assumptions might 
not hold in the prototypical pattern-recognition task. If there is 
noise at evaluation, the noise from one source may be perfectly 
correlated with the other, contrary to Assumption b. In this 
case, as noted by Fidell (1970), Equation 9 must be replaced by 
the simple summation of  the separate d's. Likewise, if the noise 
processes are not precisely normal, then no weighted sum of 
the evaluation outputs is a sufficient statistic, and the optimality 
argument fails. One can construct an example with approxi- 
mately normal noise (provided by two dice) that shows dra- 
matic failure of optimality. Finally, suppose that Assumptions 
a, b, and c hold, but the noise variance for the oval stimulus is 
slightly different for C~ than for C7. Then it is easy to see that 
the likelihood ratio l(xc) is no longer a monotonic function. 
In this case, the criterion rule no longer represents an optimal 
decision process (Green & Swets, 1966). Thus, even in its natu- 
ral implementation, the TSD model becomes nonoptimal with 
violations of  its apparently minor assumptions. 

Implementation o f  Tso: Graded Factorial Designs 

Some additional assumptions have to be made to apply the 
TSD model to graded factorial designs because in many cases, 
there is no correct answer. In recognizing uppercase letters, for 

example, it is not obvious which letters in Figure I should be 
called G or Q. In fact, one goal of the experiment is to determine 
how the subject classifies a pattern varying with respect to these 
levels of  information. Thus, we are obtaining a perceptual re- 
port on the part of the subject that might be used to describe 
the relationship between the stimulus information and the per- 
ceptual judgment (see Braida & Durlach, 1972). The measure 
of performance now provides a measure of  the consistency in 
categorizing stimuli, rather than the subject's reliability in dis- 
tinguishing signal from noise. That is, two stimuli are consid- 
ered to be highly discriminable from one another if they are 
consistently categorized as different stimuli (i.e., produce 
different responses). 

Consider a response to a single dimension oftbe stimulus, for 
example Oj. The probability o fa  Q response given stimulus Oj, 
P(AoIOj), can be expressed in discrimination units. In this 
case, the subject needs to have some representation of  each of  
the response patterns relevant to the task at hand. That is, the 
subject is assumed to have information in memory about the 
uppercase letters Q and G. A test letter is evaluated in terms of 
the degree to which it matches the prototypical patterns stored 
in memory. Or, equivalently, taking the signal-detection per- 
spective illustrated in Figure 7, the subject can be assumed to 
evaluate the test letter along a one-dimensional G-Q continuum 
of  information. The subject is assumed to place the criterion 
at a point equidistant between the means of  the distributions 
corresponding to the prototypical G and Q, respectively. In our 
example, presentation of a given pattern produces a certain 
amount of Q-ness, and the subject decides whether this amount 
of  Q-ness exceeds the criterion value separating the G and Q 
categories. If the observation exceeds this criterion value, the 
subject responds Q; otherwise, the subject responds G. Of 
course, the evaluation process is degraded by normally distrib- 
uted noise as assumed in the standard signal-detection model. 

Given this conceptualization of  the task, the distance between 
the mean of any distribution and the criterion can be measured. 
For argument's sake, assume that the distribution is normal 
with the same variance as the prototypical distributions, so dis- 
tance is measured in z scores. To the extent that this distribution 
is far from the criterion, subjects would show good discrimina- 
tion. In this case, a given pattern would tend to be identified 
most of the time as G or most of the time as Q. Poor discrimina- 
tion would be reflected by a small distance between the distribu- 
tion and the criterion, with the subject about equally likely to 
identify a given pattern as G or Q. Performance is evaluated in 
terms of the degree to which a given stimulus pattern leads to 
consistent or inconsistent responses. The probability o fa  Q re- 
sponse given pattern Oj can be considered to be the hit rate, and 
the probability of a G response given pattern Oj can be defined 
to be equal to the false-alarm rate. Given that only one stimulus 
pattern was presented, we see that the false-alarm rate must be 
equal to 1 minus the hit rate. Given these hit and false-alarm 
rates, the distance between the mean and the criterion can be 
computed in the standard manner. 

The TSD model represents integration by a sum of evalua- 
tions, Xc + Yo, with the corresponding d'co given by Equation 
9. Given this model, d'co, corresponding to performance given 
closed and oblique characteristics of the test letter, is equal to 
the square root of the sum of the squared d~-, given the closed 
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Figure 7. Two distributions corresponding to the G and Q prototypes, with a criterion C placed equidistant 
between the means Me and M 0 of the G and Q distributions. (A third distribution corresponds to a test 
stimulus S, with mean Ms.) 

characteristic, and the squared db, given the oblique character- 
istic. (Note that the sign has to be preserved in actual practice, 
as indicated later in Equation I I. That is, the closed characteris- 
tic might favor G, and the oblique characteristic might favor Q, 
for example, and the positive d' for the oblique characteristic 
would be offset by the negative d' for the closed characteristic. 
In this case, their combination would produce relatively ran- 
dom judgments.) 

This extension of  the TSD model differs from the FLMP model. 
To see this, consider any expanded factorial design for the pro- 
totypical pattern-recognition task illustrated in Figure I. Given 
the test alternatives Q and G, for example, the subject's response 
to stimulus CiOj on a single graded-response trial (or average 
response in a series of  categorical-response trials) may be inter- 
preted as the subjective probability that the stimulus was a Q, 
that is, P(QICi Oj). The corresponding responses to the single- 
factor trial in this case represent P(Qh Ci) and P(QI Oj), respec- 
tively. According to the FLMP, the prediction is derived from 

P(Q J C, Oj) 

P(Q[ C~) x P(QIOj) 
= P(QI 6',.) x P(QI Oj) + [1 - P(QI C;)] × [1 - P(QI Oj)]" 

(lo) 

Our implementation of TSD suggests a different prediction. 
Given that the hit rate is I minus the false-alarm rate, we calcu- 
late d'c, = 2 × Z[P(QICi)] and d~j = 2 × Z[P(QIOj)] from 
single-factor trials. The prediction, then, is that the d'c, oj ob- 
served from the factorial trial, calculated as d'c,o, = 2 × 

2 t 2 " Z P C O will be equal to +V (dc)  + do where the [ ( O l  ; j ) l ,  " - I , - (  j) l ,  
minus sign of  the plus/minus sign within the radical applies if 
d~ and dbj differ in sign, and the minus sign of the plus/minus 
sign outside the radical applies if the quantity within the I ~  is 
negative. Using N(=) to denote the normal CDF, the inverse of 
which is Z(*), we can reexpress this prediction as 

P(QICiOj) = N(+t/2Vl(d'c,) 2 - ~,,oj I). 1) 

Clearly, the predictions in Equations 10 and 11 are quite differ- 
ent. For example, suppose P(Q[Ci) = P(QIOj) = .7. Then, 
d~ i = dbj = 2. Z(.7) = 1.05, and Equation 11 yields an inte- 
grated d' of(V2)(l.05) = 1.485, with corresponding probability 
N(t/2.1.485) = .7711. By contrast, Equation l0 yields integrated 
probabi l i ty  (.7)2/[(.7) 2 + (.3) 2] = .8448, with a corresponding 
d' of  2.028. Thus, this TSD model and the FLMP give different 
predictions for the integration of two sources of  information. 

To summarize, the TSD model applies directly to nonfactorial 
designs with correct answers and can be extended to graded fac- 
torial designs in experiments with two response alternatives. It 
assumes that evaluation is degraded by noise, but the sensory 
output x always generates one response if it exceeds some spe- 
cific criterion value and otherwise always generates the alterna- 
tive response. Integration in the TSD model occurs by summing 
the x values obtained from the independent sources of  informa- 
tion. As stated by Green and Swets (1966, p. 271), "The 
so-called integration model associated with detection theory 
assumes in each instance that the multiple observations are lin- 
early combined to form a single basis for decision." The predic- 
tion of  performance based on this assumption corresponds to 
Equation 9 or I I. We saw that this model is consistent with 
optimal behavior ifa set of  rather strong assumptions regarding 
the noise process are valid. Otherwise, the TSD model has no 
normative justification. Of course, it nevertheless may turn out 
to be empirically useful for explaining behavior. 

Linear  Integrat ion Model  (LIM) 

Anderson (1981, 1982) and his students have established the 
most comprehensive framework for the analysis of  integration. 
This framework is called information integration and uses the 
tools of functional measurement--most notably, analysis of 
variance (ANOVA) and interval-response scales. In a seminal 
study, Anderson (1962) initiated this methodological and theo- 
retical framework for the study of  person impression (Asch, 
1964). Methodologically, a factorial design was used to indepen- 
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dently vary descriptive adjectives of a hypothetical person. An- 
derson used three adjective factors with three levels along each 
factor, giving a total of  33 or 27 unique adjective combinations. 
A subject was tested repeatedly on each of  the 27 unique de- 
scriptions presented in a random order. The three levels along 
each factor contained adjectives of  high, medium, and low lik- 
ableness value. On a given trial, a subject might judge a hypo- 
thetical person who was good-natured, unsophisticated, and 
tactful. The judgments involved a 20-point rating along a scale 
between likable and dislikable. An ANOVA was performed on 
the judgments of  individual subjects to assess the contribution 
of  each factor and any interaction among the factors. As ex- 
pected, there were large effects of  likableness value for each fac- 
tor, but, surprisingly, there was no interaction among the factors 
for 9 of  the 12 subjects. The interaction for the other 3 subjects 
was relatively small and accounted for very little of  the variance. 

Implementation of  Adding Rule 

According to an adding model, evaluation (called valuation 
by Anderson) involves the processes that transform the physical 
stimulus to its psychological representation (Anderson, 1981). 
Integration involves a linear combination of  scale values made 
available by evaluation. The decision (called response function) 
is assumed to be linear; that is, the integrated value can be 
mapped linearly into a rating scale. This decision process is 
equivalent to the RGR. For categorical responses, either the RGR 
or a CR is assumed. 

We first derive the predictions for the addition of values rep- 
resenting the different sources of information along with the 
RGR. The integration is computed by the addition of  the values 
representing the evaluation of each source of  information (An- 
derson, 1965; Anderson & Cuneo, 1978). I fc  represents the de- 
gree to which the oval is closed and o represents the degree to 
which the straight line is oblique, the outcome of  integration 
would be: 

and 

aQ=c+o 

aG=(1  - c) + (1 - o ) .  

I f Q  and G are the only valid response alternatives, the decision 
operation would determine their relative merit under the RGR, 
leading to the prediction that both the two-choice classification 
judgments and the rating judgments would be equal to 

c+o  c+o  
P(A°IC=Ci 'O=Oj)  c + o + [ ( l - c ) + ( l - o ) ]  2 ' 

(12) 

where P(Ao]C = Ci, 0 = Oj) would be the proportion of  Q 
judgments or a rating of  Q-ness on a scale of  O to I, given the 
test letter C~Oj. 

Implementation of  Averaging Rule 

An averaging rule derived from the domain of personality im- 
pression is a viable and intuitively plausible candidate for pat- 
tern recognition and decision making (Anderson, 1973). Given 

continuous and independent evidence from the information 
sources, the perceiver might simply average the sources of evi- 
dence and classify or rate the pattern on the basis of  the com- 
puted average. Given the averaging rule, the Q-ness of  a test 
le t ter ,  aQ, can be assumed to be an average of  its two component 
features: 

c+o  
- .  (13) 

aq= 2 

An extension of  the averaging rule is a weighted averaging 
rule, in which one of the features would receive more weight 
than the other (Anderson, 1981; Massaro, 1985). For example, 
the oval might contribute more to the judgment than the line. 
In the present formulation of  the model, however, the scale val- 
ues may be viewed as already incorporating weights so that the 
two models are not identifiably different. Although the general- 
ized TSD also assumes integration by a weighted averaging pro- 
cess (Anderson, 1974), the ci and oj values are first subjected to 
a Z(,) transform, and their weighted average is subjected to an 
N(.) transform. 

In Anderson's theory of averaging, no explicit decision stage 
was deemed to be necessary given that the rating judgment was 
taken to be a direct reflection of  outcome of  the integration pro- 
cess. At first glance, this assumption seems reasonable when 
graded rating judgments are used. As noted by Anderson 
(1974), a discrete judgment would necessarily demand an ex- 
plicit decision operation. Once the operation is admitted for dis- 
crete judgments, it might be argued that it is also involved in 
continuous rating judgments. What is revealing in this regard 
is how the explicit decision operation changes the interpretation 
of the averaging results observed by Anderson and others. Com- 
paring Equations 12 and 13, we see that the results of averaging 
imply an additive integration rule when the model is imple- 
mented with the RGR for the decision stage. 

Optimality Properties Of LIM and Relation to TSD 

The adding rule with an RGR and the averaging rule are non- 
optimal models of information integration. The response given 
two sources of  information supporting the same alternative is a 
compromise between the responses given to the separate 
sources presented in isolation. Optimal integration (i.e., Bayes's 
theorem) dictates that the response given two independent 
sources be more extreme than either of  the responses given the 
separate sources supporting the same alternative. According to 
optimal integration, our opinion of  someone should always be- 
come more favorable with additional positive information, even 
if the new information is not as favorable as some of the old. 
Averaging, on the other hand, predicts that our overall opinion 
is diminished if the new positive information is less positive 
than the old. 

In the context of  general categorical-response experiments, 
Anderson (1974) appears to have viewed his algebraic (linear) 
integration model as conceptually equivalent to the extension 
of  TSD we described in the graded factorial designs section. In 
particular, his Equation 18, which incorporates a CR decision 
process, coincides with our Equation 11 in the case of  equal 
weights and an unbiased criterion. Hence, we regard the CR ver- 
sion of  the linear integration model (LIM-CR), in its adding, av- 
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eraging, or weighted versions, as observationally equivalent to 
our extension of the TSD endowed with the same number of  free 
parameters, for any categorical response experiment. Given an 
interpretation of responses as subjective probabilities, this alge- 
braic (linear) integration model is inefficient (nonoptimal) ex- 
cept in the special case of evaluation degraded by equal-vari- 
ance normal noise processes. 

Two-Layer  Connec t ion i s t  M o d e l  o f  Percep t ion  (CMP) 

There has been a tremendous revival of  models based on the 
metaphor of  neural information processing. In these connec- 
tionist models, information is represented in terms of the acti- 
vations and inhibitions of neuraUike units (Minsky & Papert, 
1969/1988; Rosenblatt, 1958; Rumelhart  & McClelland, 
1986). These units are assumed to exist at different layers; for 
example, the TRACE model of speech perception (McClelland 
& Elman, 1986) consists of units at the feature, phoneme, and 
word levels. The units interact with one another via connections 
with positive or negative weights that are either specified in ad- 
vance or learned through feedback. 

Numerous layers and adjustable weights make possible many 
varieties of connectionist models (see Golden, 1988, for a par- 
tial survey). We consider here only a specific two-layer connec- 
tionist model of perception (CMP) that is most comparable with 
the alternative models such as the TSD and FEMP. The two layers 
correspond to an input and an output layer. Connectionist 
models with more than two layers may be more powerful but 
are usually much less parsimonious; that is, they require many 
free parameters. Models with an intermediate (hidden) layer of 
units, for example, can describe results that are not linearly sep- 
arable (Massaro, 1988b). In effect, a hidden layer of units vio- 
lates our independence assumption in information evaluation 
and falls outside our conceptual framework. 

The CMP is assumed to have input and output layers of neural 
units, with all input units connected to all output units. For 
ease of exposition, we assume that each level of each source of 
information is represented by a unique unit at the input layer. 
Each response alternative is represented by a unique unit at the 
output layer. Figure 8 gives a schematic representation of two 
input units connected to two output units. 

An input unit has zero input, unless its corresponding level 
of the stimulus dimension is presented. This constraint ensures 
that only one input unit is activated per given presentation of a 
source of information. Presentation of an input unit 's target 
stimulus gives an input of I. The activation of an output unit 
by an input unit is given by the multiplicative combination of 
the input activation and a weight w. With two active inputs X~ 
and Yj, the activation entering output unit al is x~ + y~, where 
x~ = wXi and yl = vYj. Analogous to the use of negation in the 
FLMP, the weight on the activation entering output unit a2 can 
be assumed to be the negative of the weight entering a, (Massaro 
& Cohen, 1987). In this case, the activation entering output unit 
a2 is x2 + Y2, where x2 = -wX~ and Y2 = -vYj .  The total activa- 
tion leaving an output unit is given by the sum of the input 
activations passed through a sigmoid-squashing function 
(Rumelhart, Hinton, & Williams, 1986). Therefore, for an Xi Yj 
stimulus, 

O U T P U T  
a2 

Xl/ , 
I N P U T  X Y 

Figure 8. Illustration of connectionist model with two input units, X 
and Y, and two output units, a~ and a2. (The activations entering a~ from 
X and Y are x~ and y~, and analogously for a2 .) 

and 

a !  = 
l 1 

1 + e -Ixl+rl] 1 + e -Ix+r] ' 

l 1 
a2 1 + e-tX2+y21 1 + e -l(-x)+(-y)I" 

The neural processing of a eonnectionist model does not 
specify completely the stimulus-response function. The activa- 
tions at the output layer have to be mapped into a response, and 
an RGR is usually assumed to describe this mapping (McClel- 
land & Elman, 1986). Taking this tack, the activation al trans- 
formed into a response probability by the RGR gives 

1 
1 + e -Ix+y] 

P(AI I xY )  = 1 1 (14) 
+ 

1 + e -ix+r] 1 + e -lf-x)+t-r)I 

In summary, evaluation in the CMP consists of  the activation 
of neurallike units. Integration involves the summation of the 
separate activations passed through the sigmoid-squashing 
function. Decision follows the RGR. 

Implementa t ion  o f  the CMP 

Given a test letter in our prototypieal task, there are two ac- 
tive input units corresponding to the closedness and oblique- 
ness dimensions. The CMP does not specify the psychophysical 
relationship between the physical stimulus and its sensory 
transformation. Analogous to the other models, the CMP re- 
quires free parameters to specify this relationship. A unique 
weight is assumed for each level of  each source of information 
in the CMP. The number of  free parameters is equal to the num- 
ber of levels of the closedness dimension plus the number of  
levels of the obliqueness dimension. Although an additional 
threshold unit is sometimes assumed in connectionist models, 
no such unit is assumed herein. 

Presentation of  a test letter would activate two input units, 
corresponding to the appropriate levels of the obliqueness and 
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closedness dimensions. Presentation of an input unit 's target 
stimulus gives an input of  1 ; otherwise, the input unit has an 
input of 0. For a test letter in our prototypical task, the activa- 
tion of  output unit by an input unit is given by the multiplica- 
rive combination of  the input activation and a weight. The acti- 
vation entering the output unit corresponding to the alternative 
Q would be c + o, where c = wC~ and o = vOj. Given our nega- 
tion normalization, the activation entering output unit corre- 
sponding to the alternative G would be - ( c  + o). Thus, the total 
activation leaving output units Q and G are 

and 

1 
ao 1 + e -lc+°l 

1 
aa 

1 + e - [ ( - c ) + ( - ° ) ]  " 

These activations are transformed into response probabilities 
by the RGR SO that 

1 + e -[c+°l 
P(QIC, Oj) = 1 1 (15) 

+ 
1 + e -[c+°] 1 + e -[(-c)+(-°)] 

Comparison  o f  the CMP and  FLMP 

A comparison between the FLMP and CMP reveals that the 
two models, couched in different theoretical frameworks, can 
make identical predictions in practice (Massaro & Cohen, 
1987). In this case, a formal equivalence between the two 
models exists if adding the weighted activations at input and 
transformed by the sigmoid-squashing function is mathemati- 
cally equivalent to multiplying fuzzy-truth values. We now 
demonstrate that such an equivalence holds in the case of  a sim- 
ple categorical-response experiment. That is, if an experiment 
allows subjects only two response alternatives, then in their 
standard implementations, the CMP and FLMP are observation- 
ally equivalent. 

For notational simplicity, we consider two sources of  infor- 
mation, denoted X and Y; the argument remains valid but re- 
quires more complex notation when more than two informa- 
tion sources are present. Let Pi (or Qj) denote the observed re- 
sponse probabilities for the first response alternative (e.g., the G 
response in our prototypical task) in single-factor trials with X 
set at level i (or Yset at level j ) .  Let S(t) = 1/(1 + e -t) denote 
the sigmoid-squashing function mapping t c ( - ~ ,  Go) to u E 
(0, 1), and let S-l(u) = - ln(1/u - 1) denote its inverse. Note 
that the weights V~ = S-I(P~) and Wj = S-I(Qj) will be chosen 
for the CMP from data that generate P~ and Qj under the conven- 
tion that input units have a value of  I if activated and 0 if  not 
activated. In view of Equations 10 and 14, the demonstration 
reduces to verifying that 

PiQ¢ S(V,. + Wj) 
~b, Qj+  (1 - P i ) ( 1 - Q j ) = S ( ~ ' i +  W j ) ' k - g ( - v i -  Wj) (16) 

for all values ofP~, Qj in [0, 1]. First note that S(t) + S ( - t )  = 1 

for all t because multiplying both the numerator and denomina- 
tor by e t gives 

l I e t 1 
S(t) + S( - t )  = 1 + e---------' + 1 + e +--------' = e' + 1 + ~ 1. 

It follows that the denominator of  the right-hand side of  Equa- 
tion 16 is equal to 1, so we can expand the right,hand side as 
follows: 

1 1 
S(V, + Wj)= 1 + e-V,-% _v[1 + eV~\ _w[1 + e%~ 

1 + e ~ / , - - - - - -~v / e  : JI~---"~-~W.I 
~1 + e  'l ~1 + e  Jl 

1 

+ [1 + e-Vi~[1 + e-Wj~ 

1 1 + 1 1 

= s ( v ~ ) s ( ~ )  + [1 - s(v,.)][1 2_ S(~-) l  ' 

which of course corresponds to the left-hand side of  Equation 
16, and the verification is complete. 

It is important to recognize that the observational equiva- 
lence between CMP and FLMP as models of  information integra- 
tion does not extend to experiments allowing more than two 
response alternatives. For example, suppose that the probabili- 
ties of responses A~, A2, and A 3 are .6, .2, and .2, respectively, 
given information source X (at some specified level i) in isola- 
tion, whereas the corresponding probabilities for Y are .7 , .  1, 
and .2. Then the weights for X are S-t( .6) ..~ .405, S-l( .2) ~ 
-1.386,  and S-l( .2) ~ -1.386,  whereas the weights for Y are 
.847, -2.197,  and - 1.386. The CMP prediction for response A t 
given both sources is 

S(.405 + .847) 

S(.405 + .847) + S ( - 1 . 3 8 6  - 2.197) + S ( - 1 . 3 8 6  - 1.386) 

.778 
(.778 + .027 + .059) 

The FLMP prediction is 

= .9004. 

(.6)(.7) = .8750. 
(.6)(.7) + (.2)(. 1) + (.2)(.2) 

Although the difference between these predictions is not strik- 
ing in this example, it does establish the nonequivalence of the 
two models for three or more response alternatives. 

M u l t i d i m e n s i o n a l  Scal ing (MDS) 

A related but different attack on the problem of assessing the 
influence of  multiple sources of  information is multidimen- 
sional scaling (MDS), developed by Shepard (1962, 1988), his 
colleagues, and others (Kruskal, 1964). MDS has been applied 
to both similarity judgments and recognition judgments. Tradi- 
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tionally, these researchers have not manipulated the properties 
of test objects in pattern-recognition tasks. Usually, investiga- 
tors use only the endpoint categories (a categorical design in 
our framework) and examine the pattern of  errors that subjects 
make when they identify the patterns (Bouma, 1971; Loomis, 
1982; Shepard, 1988). To induce a reader to make errors, for 
example, letter stimuli are degraded by presenting them for a 
short duration or at a great distance. The responses of the sub- 
jects are entered into a confusion matrix that indicates the iden- 
tification frequencies for each letter stimulus. For example, sub- 
jects might be given the set of 26 lowercase letters in the English 
alphabet and respond with one of  the 26 alternatives on each 
trial. These results are then used to distinguish among various 
descriptions of the properties of the letters. The goal has been 
to find the smallest number of dimensions that best describes 
the responses (Gilmore, Hersh, Caramazza, & Griffin, 1979; 
Shepard, 1988; Townsend, 1971). The usual MDS approach 
differs from the other approaches to information integration, 
which all specify the sources of information in advance, and 
then describe various ways in which the values obtained from 
the evaluation of each source are combined. In its standard ap- 
plication, MDS envisages the reverse process: One seeks to infer 
the number of  independent sources (and perhaps their specifi- 
cation) from an analysis of response data. 

Nevertheless, MDS can also be implemented as a model of 
information integration, and indeed, Ashby and Gott  (1988, p. 
34) do so explicitly (see also Ashby & Perrin, 1988). To imple- 
ment MDS, one takes the identity (and number, that is, dimen- 
sionality) of the sources of information as given, and regards 
the evaluation of all information sources for some stimulus as 
defining a point in a vector space of the given dimension. Each 
possible response is defined as a point in the same vector space. 
Given a distance function for the vector space such as the Eu- 
clidean or the "city-block" metric, one assumes a decision rule 
based on minimum distance between the point and the proto- 
type: The individual chooses the response nearest the evaluated 
stimulus. The result is an integration model that uses a distance 
metric as its integration function. Such models are particularly 
well adapted to discrete-response experiments using a factorial 
design. We take the liberty in what follows of  referring to them 
as MDS models. 

Implementation Of MDS 

Assume that n independent variables, or sources of informa- 
tion, are used, and construct a vector space of dimension n with 
axes that refer to evaluation scale values for these sources. S u p -  
pose also that the design allows several responses, each of which 
can be assigned to a point in this vector space. For example, in 
our G -Q recognition task, we have a two-dimensional space in 
which the horizontal axis measures the degree of closedness of 
a circle and in which the vertical axis measures the degree of 
obliqueness of the line. If the allowable responses consist only 
of G and Q, then the two allowable responses might have recog- 
nizable locations at the points Aa = (10, 0) and A o = (0, 61) for 
G and Q, respectively. In the simplest implementation of MDS, 
we take the evaluation process to be essentially a noiseless scal- 
ing of the two sources of  information, so x = degree of closed- 
ness and y = obliqueness of line in degrees from horizontal of 

the stimulus presented. Alternatively, one can assume that some 
specified noise process degrades evaluation; for example, multi- 
variate normal noise in the general Gaussian model of Ashby 
and Perrin (1988). 

To define an MDS integration function, we need to specify a 
metric, or distance function, on the vector space. All examples 
in the MDS literature use the Minkowski r metric, defined for 
pairs o fn  vectors x = (xl . . . . .  xn) andA = (A~ . . . . .  An) by the 
formula 

n 

[ x - A I ,  .= [ ~  [x i -A~lr]  I/r, (17) 
i=l  

where the exponent r is a number between 1 and 0o. Observe 
that in the r = I case, the vector distance between two points is 
the sum of the component factor distances. This case is known 
as the city-block metric because the overall distance one must 
cover when traveling on a grid of city streets is the sum of the 
north-south and east-west distances. The case most often en- 
countered, r = 2, is known as Euclidean distance, because (ac- 
cording to Pythagoras's ancient theorem) it measures distance 
"as the crow flies" in standard (Euclidean) geometry. Some- 
times positive weights w~ are assumed to multiply the terms in 
Equation 17, but little further generality is so achieved: The 
same result can be achieved by changing the scale i in propor- 
tion w//~, that is, by a change in units for each information 
source. For specified r, the integration function in MDS is given 
by ak = IX -- Akl r, where Ak is the vector corresponding to re- 
sponse alternative k, and x is the vector defined by the evaluated 
stimulus. 

One possible decision rule in an MDS model is a generaliza- 
tion of the CR: response k is selected if ak = min{a~ . . . . .  an }. 
That is, we assume that an individual selects the response alter- 
native closest to the perceived stimulus. Recall that the basic CR 
in a simple, unbiased two-response case defines a point that is 
equidistant from the two alternatives. In the present case of n 
dimensions, this would correspond to the locus of points equi- 
distant from the two response alternatives. For example, in the 
G-Q letter-recognition task, the r = 2 (Euclidean distance) met- 
ric defines the perpendicular bisector of  the line segment con- 
necting the points A6 = (10, 0) and A e = (0, 6 l) as the general- 
ized criterion: Evaluated stimuli that fall on the Q side of this 
bisector generate Q responses, and evaluated stimuli on the 
other side generate G responses. 

The separating boundaries between the response regions can 
be more complex than straight lines (or n - 1 dimensional hy- 
perplanes for n information sources). For example, in Ashby 
and Gott 's  (1988) general Gaussian model, the boundaries are 
conic sections. Even the simplest city-block case has boundaries 
that consist of three connected lines, two oriented along an axis 
and the third a connecting diagonal. However, in every case, the 
generalized CR partitions the vector space into m regions, one 
for each allowable response, and evaluated stimuli that lie in a 
given region all produce the same response. 

To summarize, MDS can be implemented as an information- 
integration model in which the currency is distance. The evalu- 
ation of stimuli can be assumed to be noiseless or to be degraded 
by a specific noise process. The integration function is defined 
by the Minkowski r metric for some specified r. The decision 
rule is usually a generalized CR. 
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Table 1 
Summary of the Currency and Processes Assumed by the Integration Models 

Model Currency Evaluation Integration Decision 

FLMP Truth values Noise f r e e  Multiplication RGR 
TSD Sensory information Normal noise Summation CR 
LIM-RGR Valuations Noise free Addition RGR 
LIM-CR Valuations Normal noise Addition CR 
CMP Activations Noise f r e e  Addition/sigmoid transform RGR 
MDS Distance Normal noise Euclidean or city-block metric CR 

Note. FLMP = fuzzy-logical model of perception; TSD = theory of signal detectability; LIM-RGR = linear 
integration model-relative goodness rule; LIM-CR = linear integration model-criterion rule; CMP = connec- 
tionist model of perception; MDS = multidimensional scaling. 

Relation to Other Integration Models 

Clearly, one implementation of MDS i s  closely related to the 
TSD model. Indeed, one obtains precisely the standard TSD 
model that we presented earlier under the following assump- 
tions (Ashby & Gott, 1988): (a) Noise at evaluation comes from 
the same multivariate normal distribution for each stimulus, 
the distribution having a mean and correlation of 0 across fac- 
tors; (b) the integration function is Euclidean (r = 2) distance; 
and (c) the decision rule is generalized criterion (the closest re- 
sponse alternative is always chosen). This equivalence of MDS 
and TSD provides a geometric interpretation of the key Equa- 
tion 9 for TSD: The d's for each factor represent distances along 
perpendicular axes, and the overall distance for two factors is 
the length of the hypotenuse, so Equation 9 is just the Pythago- 
rean theorem. 

Another implementation Of MDS is based on a city-block inte- 
gration function (r = 1). This model turns out to be equivalent 
to a TSD model in which the separate d's are added. As Fidell 
(1970) pointed out, noise processes that are perfectly correlated 
across factors (or sources) leads to an overall d' that is the sum 
of the individual factor d's, as in the city-block (r = 1) metric. 
If the d's arise from logistic rather than normal noise, then the 
city-block MDS model appears to be equivalent to the FLMP for 
two response alternatives. 

In conclusion, the MDS approach yields some valuable in- 
sights into the geometry of information integration and allows 
several integration models to be constructed once the r metric 
(and the noise process at evaluation and the decision rule) are 
specified. However, the two most natural specifications yield a 
model equivalent to TSD and one similar to the FLMP. The more 
general specifications introduced by Ashby and Perrin (1988) 
involve many additional free parameters (e.g., for the covari- 
ance matrix). For present purposes, then, MDS does not provide 
any additional simple models to be compared with those al- 
ready introduced, and thus MDS models are not included in our 
empirical assessment of models of integration. 

Empir ica l  Predic t ions  and  Tests of the Models 

In the last five sections, we have developed several models of 
information integration. The critical features of the models are 
summarized in Table 1. Our analysis revealed differences and 
similarities among the models. Given two response alternatives, 

both the CR implementation of the L I M  ( L I M - C R )  and the basic 
Euclidean version of MDS are observationally equivalent to the 
TSD. Although the FLMP and CMP are observationally equivalent 
for two response alternatives, they differ for three or more re- 
sponse alternatives. Hence, four distinct models remain for 
comparison: F L M P ,  T S D ,  L I M - R G R ,  and CMP. We have already 
discussed the optimality properties and demonstrated the math- 
ematical nonequivalence of these models. Given this set of plau- 
sible models, the real basis of comparison is the predictive 
power of the models. Reliable assessments will be possible only 
after the models have been contrasted in a broad range of exper- 
imental tasks. We initiate this project by generating specific pre- 
dictions and providing some simple illustrative empirical com- 
parisons. 

Hypothetical predictions were generated from each model for 
the results of an expanded two-factor design with two and with 
four categorical-response alternatives. Recall that the expanded 
design tests each of the two sources of information presented in 
isolation, as well as the factorial combination of the two sources 
of information. The design provides a more powerful data base 
to assess models of human performance than do standard facto- 
rial designs (Massaro, 1987b). There were seven levels of each 
of the two independent variables. To generate each model's pre- 
dictions, hypothetical parameter values were assigned to each 
of the single-source conditions. These values are given in Table 
2. The hypothetical parameter values in Table 2 were chosen to 
be asymmetric around .5 and to cover different ranges between 
0 and 1. (Curves generated from symmetric parameter values 
are redundant, and real stimulus continua seldom turn out to 
be symmetric or to cover the same range.) Each model predicts 
that the probability of a particular response is some combina- 

Table 2 
Hypothetical Parameter Values for the 14 Single-Source 
Conditions for Models with Expanded 
Two-Factor (X and Y) Design 

Level 

Factor 1 2 3 4 5 6 7 

X .01 .10 .30 .50 .70 .90 .99 
Y .03 .20 .40 .60 .80 .92 .95 
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tion of unique parameter values associated with each of the lev- 
els of the two independent variables. 

The predictions of the models under consideration can be fit 
to data with a parameter-estimation program such as STEPIT 
(Chandler, 1969). A model is defined in STEPIT as prediction 
equations that contain a set of unknown parameters. STEPIT 
minimizes the deviations between the observed and predicted 
values of the models by iteratively adjusting the parameters of 
the equations. Root mean square deviation (RMSD) values in- 
dex the overall goodness of fit of the model, and their use en- 
sures a maximum likelihood fit. The RMSD value is the square 
root of the average squared deviation between the predicted and 
observed values. The smaller the RMSD value, the better the fit 
of the model. 

RMSD values are used because these specify directly the cor- 
respondence between a model and data or the correspondence 
between the predictions of two models. That is, an RMSD value 
of 0.05 means that the observations and predictions are within 
roughly 0.05 of one another on the average. More important, 
we are evaluating similarities and differences among different 
models from which predictions are in terms of probabilities, 
not actual frequencies. Other measures of goodness of fit, in- 
cluding chi-square, require knowledge about the actual fre- 
quencies in each cell. We know that with large enough fre- 
quency, any model- -no matter how good the fit to data--can 
be rejected. Although other statistical tests might be useful in 
other contexts, an RMSD goodness of fit seems most appropri- 
ate for our purposes. 

Two Response Alternatives 

We first consider the case in which there are two possible re- 
sponses in the task. We generated hypothetical data as follows. 
For all five of the models, the probability of an Ak response, 
P(Ak), to the single-source conditions was assumed to be equal 
to the corresponding parameter value in Table 2. The P(Ak) 
values to the factorial conditions were then generated from the 
values in Table 2. The currency of the FLMP and LIM-RGR are 
values between 0 and 1, and their predictions follow directly 
from these values. For the TSD and LIM-CR, the parameter val- 
ues must be transformed into z scores before integration, and 
the outcome of integration must be transformed back into 
P(Ak) values. The currency of the CMP is activation weights that 
can vary between large negative and large positive values, but 
after the sigmoid transformation, we again obtain normalized 
values between 0 and 1. Given the constraints on the generation 
of the hypothetical results, identical predictions are made by all 
of the models for the single-source conditions. The similarities 
and differences among the models can thus be seen directly by 
contrasting the predictions for the factorial condition. 

Evaluating how much the five models differ from one another 
is informative. Logically, one model might mimic the results of 
another simply with a change in parameter values. To explore 
this issue, the five models were fit to the five sets of predictions 
generated by these same models (Table 3). In all cases, 14 pa- 
rameter values (2 variables × 7 levels for each variable) were 
estimated to minimize the RMSDs between the observed and 
predicted data. 

Each model can describe data generated by itself and by 

Table 3 
Root Mean Square Deviation Values for Fits of the Five 
Models to the Five Sets of Predictions 

Model 

Data LIM-RGR FLMP CMP TSD LIM-CR 

LIM-RGR .000 .068 .068 .084 .084 
FLMP . 159  .000 .000 .041 .041 
CMP .159 .000 .000 .041 .041 
TSD .191 .033 .033 .000 .000 
LIM-CR .191 .033 .033 .000 .000 

Note. The predictions are for an expanded two-factor design with two 
response alternatives given the parameter values in Table 2. LIM-RGR = 

linear integration model-relative goodness rule; FLMP = fuzzy-logical 
model of perception; CMP = connectionist model of perception; TSD = 
theory of signal detectability; LIM-CR = linear integration model-crite- 
rion rule. 

models that are mathematically equivalent to it. As expected 
from the mathematical analyses of the models, the FLMP and 
CMP made identical predictions to one another, as did TSD and 
LIM-CR (Table 3). The LIM-RGR predictions were unique. 
Thus, there are three different sets of predictions. The predic- 
tions for the factorial condition by these three classes of models 
are given in Figure 9. As can be seen in the figure, the three 
classes of models make noticeably different predictions from 
one another. Especially noticeable is the difference between the 
LIM-RGR and the other two classes of models. Linear integra- 
tion followed by the RGR produces additive results that plot as 
parallel curves. The predictions for the other two classes of 
models are clearly elliptical, with the distances among the 
curves much greater in the middle of the range of parameter 
values than at the extremes. Even the other two classes differ 
significantly, however, in the fine structure of their predictions. 
The FLMP and CMP class is more continuously graded across 
the continuum relative to the TSD and L1M-CR class. The three 
classes of models shown in Figure 9 are identifiably different 
from one another. That is, the models cannot accurately de- 
scribe predictions generated by each other by simply assuming 
another set of parameter values. It is not possible to find a set 
of parameter values for one model that will produce predictions 
that will mimic the results generated by another model. For the 
identifiably different models, the RMSD values are sufficiently 
large to warrant the belief that these models could be distin- 
guished from one another in practice. 

The models were also tested against real data from the Mas- 
saro and Hary (1986) task described in the Taxonomy of Exper- 
iments section. Table 4 gives the RMSD values. As expected, 
the FLMP and CMP gave equivalent descriptions, as did the TSD 
and LIM-CR models. Figure 10 gives the observed results along 
with the predictions of the three classes of models. As can be 
seen in the figure, the L I M - R G R  gives a poor description of the 
results relative to the good description of the FLMP and CMP and 
the TSD and L1M-CR classes of models. Although the fit of the 
latter two classes of models were both fairly good, an ANOVA 
performed on the RMSD values revealed that the FLMP and CMP 
class of models gave a significantly better fit of the results than did 
the TSD and LIM-CR class of models,/7(1, 8) = 79.46, p < .001. 
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connectionist model of perception, and the right panel gives the predictions for the theory of signal detect- 
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Graded Responses 

The predictions of the models for graded responses are identi- 
cal to those predicted for categorical responses. Thus, the pre- 
dictions shown in Figure 9 can be tested against both categori- 
cal and graded responses (assuming that subjects use a linear 
response scale in the graded task). In Massaro and Hary's 
(1986) rating task, 6 subjects rated the Q-ness-G-ness of a test 
letter from the G-Q continuum by using a rating scale displayed 

Table 4 
Root Mean Square Deviation Values for the Fits of the Three 
Classes of Models to the G - Q  Categorical-Response 
Task of Massaro and Hary (1986) 

Model 

Subject LIM-RGR F L M P / C M P  TSD/LIM-CR 

1 .247 .035 .032 
2 .154 .064 .072 
3 .157 .097 .110 
4 .202 .044 .048 
5 .226 .031 .044 
6 .229 .054 .050 
7 .236 .049 .057 
8 .238 .028 .030 
9 .192 .054 .081 

M .209 .051 .058 

Note. LIM-RGR = linear integration model-relative goodness rule; 
F L M P / C M P  = fuzzy-logical model of perception and connectionist 
model of perception; T S D / L I M - C R  = theory of signal detectability and 
linear integration model-criterion rule. 

on the computer terminal monitor. The scale was a straight hor- 
izontal line made up of 51 divisions, although it was displayed 
as a continuous line on the monitor screen. The left end of the 
scale was labeled Q and the right end G. Subjects were able to 
move a pointer along the scale but were not told that the scale 
had 51 divisions. The pointer was represented as a black box on 
the rating scale, and subjects manipulated the pointer using left 
and right arrow keys on the terminal keyboard. Subjects were 
instructed to "tell us where the test letter falls on the scale from 
Q to G by moving the pointer on the screen in front of you . . . .  
We want you to use the whole Q-G scale to respond with, not 
just the two endpoints and middle, for example. For the letters 
you will see in this study, you should use the entire scale and all 
of the points in it." 

With the assumption of a linear response scale, the rating task 
provides a direct test between linear and nonlinear integration. 
Linear integration (Anderson, 1981, 1982) makes strong pre- 
dictions about the average rating response in an integration 
task: Ira subject rates a test letter on an interval scale that varies 
on two factors, then the plot of the ratings versus the factors 
should produce parallel lines. The additive rule assumes that 
the contribution of one factor to integration is the same regard- 
less of the ambiguity of the other factor. This rule is not optimal 
in that averaging an ambiguous source of information with an 
informative source will tend to neutralize the judgment relative 
to the informative source presented alone. In contrast, the FLMP 
predicts American-football-shaped curves when the average 
ratings are plotted in a two-factor graph. These curves reflect 
the larger impact of the less ambiguous source of information. 
A test between these different predictions was carried out by 
fitting the respective models to the individual rating judgments 
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of the Massaro and Hary (1986) study. Figure 11 illustrates the 
model fits averaged over subjects. The parallel lines predicted 
by the L1M-RGR do a rather poor job in fitting the data points. 
The FLMP does much better than the additive model. The RM- 
SDs for the individual subjects are presented in Table 5. 

Four Response Alternatives 

Given that some of the models make mathematically equiva- 
lent predictions in tasks with two response alternatives, tasks 
with a larger number of alternatives need to be considered to 
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obliqueness of the line (after Massaro & Hary, 1986). (The left panel gives the predictions for the linear 
integration model-relative goodness rule, the center panel gives the predictions for the fuzzy-logical model 
of perception and connectionist model ofperception, and the right panel gives the predictions for the theory 
of signal detectability and linear integration model-criterion rule.) 
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Table 5 
Root Mean Square Deviation Values for the Fits o f  the Three 
Classes o f  Models to the G - Q  Graded-Response Task 
o f  Massaro and Hary (1986) 

Model 

Subject LIM-RGR F L M P / C M P  TSDttLIM-CR 

1 .071 .036 .049 
2 .164 .037 .047 
3 .065 .051 .049 
4 .104 .032 .049 
5 .083 .042 .057 
6 .050 .034 .053 

M .090 .039 .051 

Note. LIM-RGR = linear integration model-relative goodness rule; 
FLMP/CMP fuzzy-logical model of perception and connectionist model 
of perception; TSD/L1M-CR = theory of signal detectability and linear 
integration model-criterion rule. 

differentiate among these models. To this end, results predicted 
by the models were also generated for the same expanded two- 
factor design, but now with four response alternatives. To illus- 
trate this design, we modify the prototypical G-Q design in Fig- 
ure 1 to include the response alternatives C and O. In this case, 
the two sources of  information are seven levels ofclosedness of 
the oval and seven levels of  the length of  a somewhat oblique 
line (for example, the third or fourth level of obliqueness illus- 
trated in Figure 1). Given two sources of  information, a natural 
summary description of  the four alternatives is 

C: not closed oval and no line, 

and 

O: closed oval and no line, 

G: not closed oval and line, 

Q: closed oval and line. 

I fc  represents the degree to which the oval is closed and l the 
degree to which a straight line is present, the goodness of  match 
with a C, O, G, or Q alternative can be represented by the con- 
junction of  these feature values: 

ac= (1 - c)/x (1 - l) 

ao= e A ( l - l) 

aG=(1  - e )  A l  

a e = c m l ,  

where ac, ao, at ,  and a o represent the goodness of  match of  a 
test letter to the C, 0 ,  G, and Q alternatives, respectively. 

Integration of  the two sources of  information would give an 
absolute goodness of  match for each of  the four alternatives. 
Decision might consist of  either a choice based on a generalized 
CR or one based on the RGR. With more than two response alter- 
natives, the natural implementation Of CR is to choose the alter- 
native with the largest goodness of  match. On the other hand, 
the RGR decision operation determines the relative merit of  the 

alternatives. In the case of  RGR, the probability of  a response 
Ac would be equal to 

P(Acl c&) = ac (18) 
ac + ao + aG + ao '  

where P(Ac I C~Ls) is the predicted probability of an A~ response 
to a particular combination of  the two sources of  information 
Ci and Lj. 

With seven levels of  each factor, an expanded two-factor de- 
sign with four response alternatives generates 252 data points. 
These data points were generated with the same parameter val- 
ues as for two response alternatives (see Table 2). With four re- 
sponse alternatives, the probability of  a response given just one 
source of information was equal to one half the parameter value 
for that source of information. 

Given the constraints on the generation of  the hypothetical 
results, identical predictions are made by all of  the models for 
the single-source conditions. The similarities and differences 
among the models can thus be seen directly by contrasting the 
factorial conditions. The FLMP, CMP, and L|M-RGR make 
straightforward and unique predictions for the four-alternative 
task. (The implementation of TSD for four alternatives is rela- 
tively complex and is not presented herein.) The form of the 
predictions is apparent in the functions for just one of the four 
response alternatives. Thus, the predictions of  the three models 
for just one response are given in Figure 12. 

As can be seen in the figure, these three models make differ- 
ent predictions from one another. The FLMP predicts a fan- 
shaped set of  curves varying between 0 and 1. The CMP and the 
LIM-RGR, on the other hand, predict results between 0 and .5. 
The CMP predicts nonadditive results, whereas linear integra- 
tion followed by the RGR produces additive results that plot as 
parallel curves. 

The application of  these models to a task with four alterna- 
tives reveals an important difference between linear and nonlin- 
ear integration that was not apparent in the task with just two 
alternatives. The probability of any response cannot exceed .5 
for either the LIM-RGR or the CMP, both of which specify addi- 
tive integration. Multiplicative integration in the FLMP predicts 
response probabilities between 0 and 1. The problem with addi- 
tive integration can be understood by referring to a test stimulus 
in the hypothetical QGOC task. Assume that a source of  infor- 
mation gives one unit of  support when it matches the alternative 
and 0 when it does not. If the stimulus is a C, then the response 
alternative C receives two units of  support. However, the re- 
sponse alternatives O and G receive one unit of support each 
for no line and not closed, respectively. That is, with an additive 
integration rule, each of  the O and G alternatives receives sub- 
stantial support (approximately half of  the support for the alter- 
native C). Because the RGR is used for decision, then the proba- 
bility o f a  C response cannot be greater than the sum of  the O 
and G response probabilities. In our example, the probability 
of  a C response is approximately.5. (This limitation is also true 
of  the TSD model for four responses.) On the other hand, the 
alternatives O and G receive little support given multiplicative 
integration because the poor match on one feature cancels the 
good match on the other. 

As in the case with two alternatives, each model was fit to the 
predictions of  all of  the models to address the issue of  identifi- 
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Figure 12. Predicted probability ofA ! responses for the factorial conditions of the expanded factorial design 
with four responses given the parameter values in Table 2. (The left panel gives the predictions for the fuzzy- 
logical model of perception, the center panel give the predictions for the con nectionist model of perception, 
and the right panel gives the predictions for the linear integration model-relative goodness rule.) 

ability. Table 6 gives the RMSD values for the fits of the three 
models to the three sets of data. Each model can describe data 
generated by itself. The LIM-RGR and CMP are much more sim- 
ilar in their predictions than are the predictions of either of 
these models to those of the FLMP. The RMSD values are suffi- 
ciently large enough to warrant the belief that the FLMP could 
be distinguished from the LIM-RGR and CMP in practice. 

A graded factorial experiment with four response alternatives 
was carried out by Massaro, Tseng, and Cohen (1983). The four 
responses in the experiment consisted of four words in Manda- 
rin Chinese. The experimental task was a graded factorial de- 
sign with seven levels of each of two factors. The factors were 
the formant structure of the vowel in the monosyllabic words 
and the fundamental frequency (F0) contour (tone) during the 
vowel. Mandarin Chinese is a tone language, and both of these 

Table 6 
Root Mean Square Deviation Values for the Fits of Three 
Models to the Three Sets of Data Generated 
with the Parameter Values in Table 2 

Model 

Data L I M - R G R  F L M P  C M P  

LIM-RGR .000 .024 .011 
FLMP . 1 4 2  .000 .130 
CMP .087 .082 .000 

Note. The data are for an expanded two-factor design with four re- 
sponse alternatives. LIM-RGR = linear integration model-relative good- 
ness rule; FLMP = fuzzy-logical model of perception; CMP = connec- 
tionist model of perception. 

sources of information are functional to distinguish different 
words. The formant structure was varied to make a continuum 
of vowel sounds be tween/ i /and/y / .  (The phoneme/y/ is  artic- 
ulated in the same manner as/i/ ,  except with the lips rounded.) 
The F0 contour varied from falling-rising to falling during the 
vowel. Six native Chinese speakers participated for 4 days, giv- 
ing a total number of 48 responses to each of the 49 test stimuli. 
The subjects identified each of the 49 test stimuli as one of the 
four words. 

Figure 13 gives the observed results and the predictions of 
the FLMP, CMP, and LIM-RGR. Table 7 gives the corresponding 
RMSD values. As can be seen in the figure, the CMP and LIM- 
RGR fail catastrophically primarily because they cannot predict 
a probability of a response greater than .5. The FLMP, on the 
other hand, captures the results reasonably well. The success of 
the FLMP is due to the multiplicative integration of the two 
sources of information. A perfect match of a stimulus with a 
given response alternative on just one source does not necessar- 
ily mean that this alternative should qualify as a reasonably 
good alternative. Linear integration, however, guarantees that a 
perfect match of a response alternative with just one source of 
information will carry significant influence even if the other 
source of information mismatches the response alternative 
completely. 

In conclusion, we have been relatively successful in testing 
among the predictions of the models in graded factorial designs 
with two and four response alternatives and with a graded re- 
sponse. The TSD and LIM-CR class of models and the FLMP and 
CMP class of models could be discriminated in a graded facto- 
rial with just two response alternatives. The LIM-RGR could be 
rejected in both categorical-response and graded-response 
tasks. Finally, the FLMP and CMP could be distinguished from 
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one another in a graded factorial design with four response al- 
ternatives. The FLMP gave a much better description of the re- 
sults than did the CMP. We caution that the observed advantage 
of the FLMP i s  only tentative in that both new results and more 
refined models could alter the predictive power of the models. 

Rela t ion to Other  Models 

Our presentation of information-integration models is by no 
means exhaustive. Although we have presented five important 
models and discussed their optimality and validity properties, 
we have not covered all variations of the models or discussed 

Table 7 
Root Mean Square Deviation Values for the Fits of the Three 
Models to the Chinese Word-Identification Task 
of Massaro, Tseng, and Cohen (I 983) 

Mode l  

Sub j ec t  LIM-RGR FLMP CMP 

1 .244 .033 .239 
2 .209 .040 .199 
3 .227 .030 .220 
4 .264 .045 .261 
5 .259 .036 .256 
6 .248 .072 .242 

M .242 .043 .236 

Note. LIM-RGR = linear integration model-relative goodness rule; 
FLMP = fuzzy-logical model of perception; CMP = connectionist model 
of perception. 

other possible models. In the next two sections, we fill in some 
of these gaps. We then summarize our results. 

First-Order Versus Second-Order Integration 

Shaw (1982) distinguished between first-order and second-or- 
der integration models (see also Green & Swets, 1966). In first- 
order models, the information from the separate sources is inte- 
grated prior to making a decision. In second-order models, a 
categorical decision is made for each source before integration 
takes place. The separate decisions are then integrated to make 
a response. The separate decisions in second-order models are 
categorical and do not preserve the goodness of match of the 
information leading to the decision. Shaw tested the predictions 
of these two classes against the results of several different experi- 
ments. In the task, one or more stimuli are targets, and a differ- 
ent set of one or more stimuli are nontargets. The stimuli were 
either brief flashes of light presented to different spatial loca- 
tions or bursts of sound, and the task was energy detection. In 
other experiments, the task was letter detection in which the 
target could appear or not appear in one or more locations. The 
probability of a detection response under the various experi- 
mental conditions was used to test the models. Shaw concluded 
that second-order decision models gave superior accounts of the 
results. 

The conclusion reached from Shaw's (1982) task appears to 
conflict with our framework, in which we assumed that all 
sources of information are integrated prior to any decision. 
However, an analysis of the experimental tasks reveals that 
different results in the two domains should not be unexpected. 
Our tasks involve multiple sources of information specifying 
the same object. Shaw's tasks, on the other hand, involved deci- 
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sions about the simultaneous occurrence of  multiple objects. 
That is, targets or nontargets occurring at different locations 
in the visual display were considered to be different sources of 
information. Given Shaw's findings, integration of continuous 
information across objects does not appear to occur in the same 
manner as integration of information sources specifying the 
same object. Given multiple objects, subjects apparently cate- 
gorize each object and then use these categorizations to make a 
more global decision about the experimental question. That is, 
an experimental task is not necessarily isomorphic to categori- 
zation of an object but could require information derived from 
multiple categorizations. The G - Q  task, on the other hand, 
equates the experimental task with categorization of  an object. 
When this is the case, we expect to find that independent deci- 
sions do not occur before integration. Ashby and Gott (1988) 
also found evidence against independent decisions in a percep- 
tual identification of  a horizontal and a vertical line segment 
attached at an upper left-hand comer. Thus, our conclusions 
about integration appear to apply to the situation in which mul- 
tiple sources of  information specify a single object. More gener- 
ally, whether or not integration occurs might be used to deter- 
mine whether a perceiver treats multiple sources of information 
as specifying a single object or as specifying multiple objects 
(Massaro & Cohen, 1988). 

E x e m p l a r  M o d e l s  

The models we have discussed in this article belong to a gen- 
eral class of summary-description models, as opposed to exem- 
plar models. Summary-description models are characterized 
by having each response category defined in terms of  a simple 
conjunction of  attributes, features, properties, or dimensions. 
Exemplar models, on the other hand, define categories in terms 
of  descriptions of several exemplars of  the relevant category. 
The goodness of match of a test item with a category is some 
function of the goodness of  match of all the exemplars that 
make it up. One of the most influential exemplar models has 
been the context model developed by Medin and Schaffer (1978) 
and extended by Nosofsky (1986) and Estes (1986). 

The context model is mathematically equivalent to the FLMP 
if each category is represented by one exemplar. The reason is 
that the context model and the FLMP contain essentially identi- 
cal evaluation, integration, and decision operations. In the con- 
text model, a test stimulus acts as a retrieval cue for exemplar 
representations in memory. Exemplars in the context model are 
represented by a set of attributes. Evaluation produces a good- 
ness-of-match value of each attribute of the test item with the 
corresponding attribute of each exemplar of each category. This 
goodness of match is represented by a value between 0 and 1, 
corresponding to the similarity of  an attribute of the test item 
and the corresponding representation of the attribute in mem- 
ory. The integration of  the goodness-of-match values across the 
different attributes is assumed to be multiplicative (as it is in 
the FLMP). Finally, decision is accomplished via the RGR in the 
same manner as in the FLMP. The two models make equivalent 
predictions in the case in which only one exemplar is assumed 
in the context model, and the representation of the exemplar is 
equivalent to the summary description in the FLMP. 

Medin and Schaffer (1978) also pointed out the value of mul- 

tiplicative relative to additive integration in their description of  
the combination of  dimensions to determine overall similarity. 
Given a multiplicative integration, the overall similarity of  a 
yellow circle and a blue triangle would not be much less than the 
overall similarity of a yellow circle and a yellow triangle because 
similarity along color would have very little influence on perfor- 
mance given the gross mismatch on shape. Given additive inte- 
gration, on the other hand, the overall similarity of a yellow cir- 
cle and a blue triangle would be significantly less than the over- 
all similarity of a yellow circle and a yellow triangle because 
similarity of color would add to the goodness of  match regard- 
less of  the gross mismatch on shape. In a multiplicative combi- 
nation rule, a single dimension of  difference can overrule sev- 
eral dimensions of sameness. 

Summary-description models are easily extended to include 
multiple descriptions of a given category. The most natural ex- 
tension is to use the summary description in memory that gives 
the best match with the test item. In this case, integration would 
involve the goodness of match of the best fitting exemplar of  
the category of  interest. This computation corresponds to the 
computation of disjunction. Given a definition of conjunction, 
disjunction can be computed with DeMorgan's law. Given two 
e x e m p l a r s  gk! and Ek2 making up the description of  category 
k, the goodness-of-match ak of a test item with category k would 
be given by the disjunction of  the goodness-of-match values of 
the test item with the exemplars Ek~ and Ek2: 

ak = t(Ekl or Ek2) = t(Ek2) + t(Ek2) -- t(EkO × t(Ek2). (19) 

With this definition of disjunction, the context model and the 
FLMP with multiple summary descriptions are no longer mathe- 
matically equivalent. Consider a situation with two contrasting 
categories with two exemplars in each category. Define akj as 
the goodness of match of a test item with exemplarj from cate- 
gory k. Thus, a~ and a~2 are the goodness of match of the test 
item with Exemplars 1 and 2 from Category 1. The support for 
Category 1, notated a~, would be given by 

al = at~ + a l2  - -  (a~t × a12). 

Analogously, the support for category 2 is given by 

a2 = a2t + a22 - (a2t × a22). 

In the context model, on the other hand, the degree of  support 
for a given category is the simple sum of the degree of  support 
of all exemplars within that category: 

a~ = a l l  + a12 

and 

a2 -- a21 + a22. 

At a quantitative level, the models differ on how all of the exem- 
plars in memory contribute to the overall goodness of  match of 
a test stimulus to a category. Thus, in principle, this extension 
of the FLMP could be tested against the context model. To do 
so, however, lies outside the scope of  this article. 

Estes (1986) has also shown a close correspondence between 
exemplar and summary-description models. Estes (1986) did 
not address the integration question directly but concentrated 
instead on the retrieval of exemplar representations, the use of  
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feature and pattern frequencies, and the existence of proto- 
types. In addition, we have not addressed the learning of catego- 
ries. Perhaps people use exemplar-based categorization early in 
learning before a reliable summary description is developed 
(Estes, 1986). 

Discussion 

Previous Rejections of Optimal Behavior 

Our analyses in the Empirical Predictions and Tests of  the 
Models section provide preliminary support for the FLMP, an 
optimal model of pattern recognition. There is also a history of 
study of  the psychological validity of  normative (optimal) 
models in decision making and judgment (Anderson & Shan- 
teau, 1970; Arkes & Hammond, 1986). In contrast to our con- 
clusions, the consensus from the research is that normative 
models are invalid. Previous research has rejected Bayes's theo- 
rem in various judgmental situations (Kahneman & Tversky, 
1972). As an example, tests of Bayes's theorem have required 
estimates of  probability in some variant of  the two-urn task 
(Slovic & Lichtenstein, 1971). Subjects see two urns and are 
told the proportion of red and blue beads in each urn. One urn 
is picked with some probability, and a sample of  beads is drawn. 
Given the sample, the subject estimates which urn was, in fact, 
picked. The probability of  picking an urn, the relative propor- 
tion of beads in each urn, the sample size, and the sample 
makeup can be varied. The typical result is that subjects behave 
less optimally than predicted by Bayes's theorem (e.g., Leon & 
Anderson, 1974). 

Our impression is that the rejections of  the Bayesian model 
have been premature. The rejection of  Bayes's theorem in many 
experiments has been a rejection of  the normative form of the 
model rather than a psychological form of the model. Predic- 
tions have been derived on the basis of the objective rather than 
the subjective sources of information. Our implementations of  
the models, on the other hand, allow for subjective values for 
the various objective sources of information. Consider a test of  
the Bayesian model in situations in which subjective base rates 
are assumed to be equal to objective base rates. In these cases, 
performance falls short of the predictions of Bayes's theorem 
(Leon & Anderson, 1974). Central to the current theoretical 
framework, however, is the evaluation stage that transforms the 
objective source of  information into some subjective value. 
Thus, performance could still fall short of the optimally objec- 
tive prediction but might still be described by the same optimal 
algorithm if subjective values are assumed. 

Given the mathematical correspondence between Bayes's 
theorem and the FLMP, the question arises whether one can be 
justified over the other. Deciding between the models boils down 
to beliefs about the psychological reality of  the currency as- 
sumed by the models. For Bayes's theorem, the currency is 
probability; for the FLMP~ it is truth value. Traditionally, the use 
of  probabilities in psychology has been associated with thresh- 
old or categorical models (Massaro, 1975). Thus, the use of  
fuzzy-truth values represents a shift away from these models to 
continuously valued states of  information. 

Bayes's theorem could easily be interpreted as the subject 
having only categorical information about a given hypothesis 

(response alternative). Research has proved, however, that peo- 
ple have information about the goodness of  match of an in- 
stance with a category (Rosch, 1975). As an example, a sparrow 
provides a better match to the concept of bird than does a pen- 
guin. Within a model based on Bayes's theorem, the probability 
of bird given sparrow would have to be greater than the proba- 
bility of bird given penguin. With probability interpreted as rel- 
ative frequency, the difference would imply that the proportion 
of  sparrows that are birds is greater than the proportion of pen- 
guins that are birds. However, this difference in probability is 
not what is meant when people say that a sparrow is a better 
bird than is a penguin. Differences in truth value appear to cap- 
ture the difference between penguin and sparrow more accu- 
rately. The proposition that a sparrow is a bird is more true than 
the proposition that a penguin is a bird. The representation of 
birdness in terms of  truth values appears more reasonable than 
a representation in terms of  probabilities. 

Relationship Between Luce's Choice Rule and 
Thurstone's Case V 

The RGR and the CR encompass significant aspects of Luce's 
(1959, 1977) choice axiom and Thurstone's (1927) theory of  
comparative judgment, respectively. In the choice axiom, the 
choice objects are represented by scale values (analogous to the 
discriminal processes of  Case V of Thurstone). The choice ax- 
iom holds if and only if (a) the RGR holds, (b) the scale value 
representing an object does not change with changes in the re- 
sponse alternatives used in the choice task, and (c) the response 
alternatives defined as irrelevant do not enter into the RGR. 
Mathematical psychologists have been aware of  a close relation- 
ship between Thurstone's theory of  comparative judgment and 
Luce's (1959) choice axiom since the latter's development. Luce 
(1959) proved that the choice axiom is equivalent to a version 
of  Thurstone's theory in which the differences between the dis- 
criminal processes have a logistic distribution instead of the 
normal distribution implied by Case V (Adams & Messick, 
1957). There is equivalence between the two models if and only 
if the differences between the discriminal processes are logistic 
random variables. 

Yellott (1977) observed that knowing the distribution of  the 
discriminal processes themselves, not simply the distribution 
of  the differences, is important. In addition, can the relationship 
between the two models be generalized to sets of alternatives 
greater than two? If the discriminal processes are assumed to 
have the double-exponential distribution, then the differences 
will be logistic, and the two models are equivalent for any choice 
experiment, not simply for pair comparisons (Yellott, 1977). 
Also, for pair comparisons, distributions other than the double- 
exponential type yield equivalence between the two models. For 
three or more alternatives, however, the double-exponential dis- 
tribution is unique. 

Information Manipulation Versus Use 

The approach that we have taken in this article involves the 
systematic manipulation of the properties of patterns. Subjects 
identify patterns modified in systematic ways, and their re- 
sponses are used to test quantitative models of the identification 
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process (Naus & Shillman, 1976; Oden, 1979). An important 
distinction must be made between the stimulus characteristics 
of  the patterns that are manipulated in the experiment and the 
features that the perceiver actually uses in the identification of 
the patterns (Massaro & Schmuller, 1975, p. 209). Patterns can 
be described by an almost endless number of  characteristics or 
properties (Palmer, 1978), and only a small set of  these will be 
psychologically real. Thus, manipulation of  a particular charac- 
teristic does not ensure that it is a feature that is used in pattern 
recognition (Cheng & Pachella, 1984; Sattath & Tversky, 1987). 
Estes (1986) observed that the researcher needs to know the 
sources of information actually being used by the subjects in 
order to provide valid tests of  models of categorization. Which 
characteristics function as features remains a psychological 
question to be answered. 

The paradigm that we have proposed, however, also allows 
the experimenter to test which sources of  information are being 
used by the perceiver. In speech perception, a voicing distinc- 
tion allows us to perceive a difference between the verb in the 
phrase "to use" and the noun in the phrase "the use." Speech 
scientists believed that consonant duration relative to vowel du- 
ration (called the C/V ratio) was the critical cue to the voicing 
judgments (Denes, 1955; Port & Dalby, 1982). However, Mas- 
saro and Cohen (1977, 1983) showed that this cue is invalid, 
when the results are analyzed in the manner developed in this 
article. A model based on C/V ratio gives a much poorer de- 
scription of  existing results than does a model based on the as- 
sumption of  independent consonant and vowel duration cues 
(Derr & Massaro, 1980). Thus, the research strategy developed 
here not only addresses how different sources of information 
are evaluated and integrated, it can uncover what sources of  
information are actually used. We believe that the research par- 
adigm confronts both the important psychophysical question of 
the nature of  information and the process question of  how the 
information is transformed and mapped into behavior. 

Equivalence of Models Under Currency Transformation 

The distinctions we have drawn between the various integra- 
tion models rely on the assumption that the psychological val- 
ues can be measured on valid interval scales. Some psycholo- 
gists are unwilling to accept this assumption and believe that 
only ordinal data are meaningful (Krantz, Luce, Suppes, & 
Tversky, 197 l). If the currency or scale values are defined up to 
only a monotone transformation, then one cannot distinguish 
among the different integration functions, and indeed, the inte- 
gration function can always be taken to be summation. For ex- 
ample, a logarithmic transformation applied to the evaluation 
outputs of  the FLMP can be integrated by summation rather 
than multiplication, and then transformed back by an exponen- 
tial transformation before the RGR decision process, to obtain 
an additive integration model that is observationaUy equivalent 
to the FLMP. Because transformations of  a similar sort can be 
made for any of  the models, the integration function is not 
unique when arbitrary transformations are permitted. 

Our position is that implementable models must specify 
transformations of  the currency as part of  the evaluation, inte- 
gration, and decision processes; that is, they must be psychologi- 
cally motivated. If these processes are only defined ordinally, 

then there are infinitely many degrees of  freedom because the 
space of  monotone transformations is infinitely dimensional. 
Such excessive lack of parsimony precludes most meaningful 
empirical comparisons. 

The quantitative models described in Table 1 were all moti- 
vated by the underlying psychological processes assumed by the 
models. For example, the z transformation in the TSD model is 
based on the assumption of  normal noise. This assumption is 
not only psychologically plausible, it can be tested against em- 
pirical data. The particular transformations and integration 
functions we have developed and tested, of course, are not 
unique. For example, we discovered that the same TSD model 
results from (a) an additive integration function applied to 
noise-free inputs followed by a noisy criterion rule (as in L1M- 
CR) or (b) a Euclidean distance integration function applied to 
z-transformed inputs (as in MDS). The point is that some spe- 
cific transformations must be assumed to compare the models 
empirically, and we have sought the simplest and most natural 
specification for each model. 

S u m m a r y  

Our main analytical results are as follows. (a) The FLMe, with 
truth values estimated from the data, is observationally equiva- 
lent as a model of  information integration to an optimal model 
with Bayesian integration and subjective probabilities esti- 
mated from the data. (b) A two-level connectionist model (the 
CMP) is mathematically equivalent to the ln_Mp for experiments 
with two response alternatives. Experiments with three or more 
response alternatives can distinguish between these two models. 
In this case, the CMP model is prescriptively inferior (i.e., non- 
optimal) and descriptively inadequate. (c) A LIM-RGR predicts 
additive results in both categorical-response and graded-re- 
sponse experiments. This prediction is not only nonoptimal, it 
gives a poor description of actual behavior. (d) The TSD and a 
LIM-CR are observationally equivalent in two-alternative cate- 
gorical response experiments. TSD and  LIM-CR are no t  observa- 
tionally equivalent to the FLMP but are optimal only under the 
further restrictions that the information-evaluation process in- 
volves constant-variance normal noise. Multidimensional scal- 
ing (MDS) can be formalized to mimic either TSD or the FLMP, 
depending on the assumptions that are made about noise and 
the distance-integration function. 

The point of our analytical and descriptive exercises is to lay 
the foundation for valid experimental tests of  the models. It 
should now be clear that several experimental tasks are incapa- 
ble of distinguishing among some of  these models. On the other 
hand, factorial and expanded factorial experiments with four 
response alternatives can distinguish among the models. We 
were also successful in distinguishing among the models' de- 
scriptions of actual empirical results. The experimental tasks 
included factorial designs with two categorical responses, four 
categorical responses, and graded responses. This analysis sug- 
gested that the FLMP is not only optimal but provides an ade- 
quate account of  performance in all of  these tasks. 

We caution to add that predictive superiority in one experi- 
mental domain (e.g., G-Q pattern recognition) does not neces- 
sarily imply superiority in another domain (e.g., judgment). 
Also, predictive power is not the only criterion by which psy- 
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chologists choose models; certainly, conceptual appeal also 
matters. Nevertheless, we trust that  our  analysis will help guide 
the assessment o f  the information-integrat ion models we have 
presented and ultimately encourage the formulat ion o f  more 
refined models. 
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Appendix 

Description of Notation Used in the Analysis of Tasks and Models 

Notation Description Notation Description 

Y~ Y~ , . .  

x ,y , . . .  
Ak 
ak 
C 
c 

0 
o 

L 

l 
Pr(Ak IX = Xi, 

Sources of information 
ith, jth, • - • levels of)(, Y, • - • 
Scale values given by evaluation of X, Y, - . .  
Response alternative k 
Scale value given by integration, support for Ak 
Closed property of oval of G-Q test letters 
Evaluation of C 
Oblique property of line of G-Q test letters 
Evaluation of O 
Degree of presence of line in G-Q-C-O test 

letters 
Evaluation of L 
Probability ofk response given the ith level of X 

and thejth level of Y. Also written as 
e(k lXi  Yj) or e (k  I XY) 

S, 
d' 
d~. 
d'co 
Ekj 
akj 

RGR 

CR 

FLMP 

TSD 

LIM 

CMP 

MDS 

Test stimulus i 
d' of theory of signal detectability 
d' given the source of information C 
d' given the two sources of information Cand O 
Exemplarj from category k 
Goodness of match of test item with exemplarj 

from category k 
Relative goodness rule 
Criterion rule 
Fuzzy-logical model of perception 
Theory of signal detectability 
Linear integration model 
Connectionist model of perception 
Multidimensional scaling 
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