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15.1 Introduction
Most of the chapters in this book describe probabilistic multidimensional models of perceptual

and cognitive tasks. This fact acknowledges several important properties of human information pro-
cessing. First, performance is not deterministic, but is variable or probabilistic. A subject responds
in one way to a stimulus on one trial and responds in another way on another trial. Thus, perfor-
mance is often characterized by some probability value representing overall response probability to
a repeated presentation of a stimulus. Probabilistic performance might result from probabilistic
differences in processing, probabilistic differences in the physical stimulus information from trial to
trial, or probabilistic representations of prototype items in memory. Second, the term multidimen-
sional refers to the multiple sources of information that influence perception and cognition (Massaro
& Cohen, submitted; Massaro & Friedman, 1990).

In a previous paper, Massaro & Friedman (1990) presented and compared various existing
models of how multiple sources of information influence perception and decision. The question
they addressed was how individuals process two or more sources of information that may reinforce
or conflict to various degrees. The models were analyzed in terms of a prototypical pattern recogni-
tion task and the application of extant models to this task. The central concerns were the processes
assumed by the models, the similarities and differences in predictions of the models, their optimality
properties, and empirical validity.

Our goal in this chapter is to extend the analyses carried out by Massaro and Friedman (1990)
by comparing several additional classes of models. The models analyzed and tested by Massaro and
Friedman were the Fuzzy Logical Model of Perception (FLMP), a two-layer Connectionist Model
(CMP), a model derived from the Theory of Signal Detection (TSD), a Linear Integration Model
(LIM) derived from results of Functional Measurement, and a model based on multidimensional
scaling (MDS). The goal of these analytical and descriptive exercises was to lay the groundwork for
valid experimental tests of the models. Simulations of the models and predictions of the results by
the same models were carried out to provide a measure of identifiability or the extent to which the
models can be distinguished from one another. The models were also contrasted against empirical
results from tasks with two and four response alternatives and with graded responses. The results
indicated FLMP was optimal (mathematically equivalent to Bayes’s theorem), and was the only
psychological model to provide an adequate account of performance in these tasks.

The goal of the present paper is to attempt to formulate the models previously shown to be
inadequate, in such a manner to bring them in line with the predictions of the FLMP and with empir-
ical results. In contrast to our general research strategy of strong inference (Platt, 1964) and com-
petition between models, we attempt here a reconciliation of current models. We will see that, in
some cases, there are straightforward formulations that give equivalence among some models and
the FLMP. In other cases, an additional free parameter or some other modification is necessary to
bring a model in line with the desired predictions. The model classes that we will consider are:
Fuzzy Logical Model of Perception (FLMP), Gaussian MDS Model (GMM), Exponential MDS
Model (EMM), Theory of Signal Detection (TSD), Feed-forward Connectionist Model (FCM), and
Interactive Activation and Competition (IAC). Some of these models are based on spatial represen-
tations, others are grounded in probability or truth value, and others are described in activation of
neural-like units. Each of these different representational foundations is referred to as a model’s
currency (Massaro & Friedman, 1990). As in Massaro and Friedman (1990), we will first present
each of these models theoretically in the context of a prototypical pattern recognition task combin-
ing two sources of stimulus information and allowing two possible responses. We will then consider
how the models compare in a four-response task. For both the two- and four-response situations, we
derive predictions of the models, compare these predictions to those of other models, and test the
models against one another with both hypothetical FLMP data and experimental data, using model
fitting techniques. We do not completely describe here the psychological theory underlying each
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model because adequate summaries are available elsewhere (Massaro & Friedman, 1990, Shepard,
1987).

15.2 Prototypical Two-Response Categorization Task
We use a letter-processing task carried out by Massaro and Hary (1986) with the two

categories, G and Q, as the response alternatives. Two sources of information were manipulated
with a number of levels of each source of information. A range of letters between G and Q was
created by independently varying the obliqueness of the straight line and the closedness of the gap in
the letter (Figure 15.1). Seven levels of closedness were made by removing 0, 2, 3, 4, 7, 9 and 10
points from the right side of the oval of a capital letter Q. Similarly, the obliqueness of the line
varied between the horizontal and 11, 21, 29, 38, 51, and 61 degrees of obliqueness measured from
the horizontal. The resultant 49 test letters make up the factorial design.

Figure 15.1. Forty-nine test letters, varying between G and Q, created by varying the
obliqueness of the straight line (row factor) and the closedness of the gap in the oval
(column factor) (after Massaro & Hary, 1986).

Nine subjects saw each of the test letters (shown in Figure 15.1) for 400 msec 12 times in ran-
dom order (Massaro & Hary, 1986). On each trial they labeled the test letter as a Q or a G. Figure
15.2 gives the observed performance for two typical subjects. The probability of a Q response given
each test letter is the dependent variable. Because the Q and G identifications sum to one, the proba-
bility of a Q response to each test letter, P (Q ), completely represents the identification judgments.
Thus we have 49 independent observations to describe performance given the 49 test letters.

15.3 Fuzzy Logical Model of Perception (FLMP)
We initiate our derivation of specific models with the fuzzy logical model of perception

(FLMP). We begin with this model because it has proven successful in accounting for a wide range
of categorization results (Massaro, 1987a; Massaro & Friedman, 1990; McClelland, in press). Thus,
the model’s predictions serve as a standard for the predictions of other models.

Underlying the FLMP is the assumption that well-learned patterns are recognized in accor-
dance with a general algorithm, regardless of the modality or particular nature of the patterns (Mas-
saro, 1984, 1987b; Oden, 1981, 1984). The model consists of three operations in perceptual recog-
nition: feature evaluation, feature integration, and pattern classification. Continuously-valued
features are evaluated, integrated, and matched against prototype descriptions in memory, and an
identification decision is made on the basis of the relative goodness of match of the stimulus infor-
mation with the relevant prototype descriptions.
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Figure 15.2. Observed probability of Q responses for the forty-nine test letters presented
in Figure 15.1 (created by varying the obliqueness of the straight line and the closedness
of the gap in the oval) The results are for two typical subjects (from Massaro & Hary,
1986).

Given multiple features, it is useful to have a common metric representing the degree of match
of each feature. Two features which define a prototype can be related to one another more easily if
they share a common currency. To serve this purpose, fuzzy truth values (Goguen, 1969; Zadeh,
1965) are used because they provide a natural representation of the degree of match. Fuzzy truth
values lie between zero and one, corresponding to a proposition being completely false and com-
pletely true. The value .5 corresponds to a completely ambiguous situation whereas .7 would be
more true than false and so on. Fuzzy truth values, therefore, not only can represent continuous
rather than just categorical information, they also can represent different kinds of information.

C

O

Evaluation

c

o

Integration

an

Decision

An

Figure 15.3. Schematic representation of the three stages of processing in the FLMP.
The three stages are illustrated for the sources of information closedness C and oblique-
ness O in the G-Q task. The evaluation of the degree to which the oval is closed and the
straight line is oblique produce values c and o that are made available to the integration
process. Integration of the values gives an overall value an indicating the degree of sup-
port for alternative n . The decision process maps the information made available to it into
a response An .

The three operations between presentation of a pattern and its categorization, as illustrated in
Figure 15.3, can be formalized mathematically. Feature evaluation gives the degree to which a
given dimension supports each test alternative. Given a test letter in the QG task, the featural
evaluation stage determines the degree to which each of the alternatives An (in this case Q and G)
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are supported by each feature of the visual information. The physical input (represented in upper-
case) is transformed to a psychological value (represented in lowercase), e.g., Closedness C would
be transformed to c , and analogously for dimension Obliqueness O . The notation used in the
present article is described in the Appendix. Each dimension provides a feature value at feature
evaluation. Using fuzzy truth values, a value between zero and one is assigned to the closedness and
obliqueness dimensions, indicating the degree to which these features support the Q and G alterna-
tives. To develop hypothetical predictions of the FLMP model the following feature values were
used: for closedness, going from open to closed: .01, .10, .30, .50, .70, .90, .99, and for obliqueness,
going from horizontal to oblique: .03, .20, .40, .60, .80, .92, .95.

These features values are then integrated within the Q and G prototypes. The prototypes are
defined by:

Q: Closed Oval & Oblique Line
G: Open Oval & Horizontal Line

Given a prototype’s independent specifications for the oval and straight-line features, the value
of one of these features cannot change the value of the other feature at feature integration. Given a
two-alternative forced-choice task and the opposing features being manipulated, it is reasonable to
assume that closed and open are opposites (or negations) of one another, as are oblique and horizon-
tal. Using the definition of fuzzy negation as 1 minus the feature value (Zadeh, 1965), we can
represent the prototypes in terms of the degree to which the oval is closed and the line is oblique:

Q: Closed & Oblique
G: (1 - Closed) & (1 - Oblique)

The integration of the features defining each prototype can be represented by the product of the
feature values. Feature integration consists of a multiplicative combination of feature values sup-
porting a given alternative. These products are represented in Figure 15.3 by the lowercase an . If cj

and ok are the hypothetical feature values from stimulus level j of closedness and k of obliqueness
supporting alternative Q, then the total support is given by the product of cj and ok . Similarly, the
support for G, the other alternative, is given by the product of (1−cj ) and (1−ok ). Figure 15.4 shows
the total support for alternatives G and Q given the hypothetical feature values. The linear results
reflect the multiplicative integration of the feature values.

The third operation is decision which uses a relative goodness rule (RGR) based on the support
for each of the test alternatives to give the probability that a given alternative is selected. In this
case, the probability of response Q given a specific stimulus Cj Ok is

P (Q | Cj and Ok ) = cj ok + (1−cj )(1−ok )
cj ok

� ��������������������������������� (15.1)

where the denominator is equal to the sum of the merit of all relevant alternatives. Figure 15.5
shows the probability of selecting alternative Q given the support for each alternative shown in Fig-
ure 15.4.

To summarize, evaluation in the FLMP involves the representation of each source of informa-
tion in terms of a truth value, between zero and one, indicating the merit of a particular alternative.
Integration consists of a multiplicative combination of truth values. The decision utilizes an RGR.

15.4 Bayesian Probability Model (BPM)
The Bayesian approach to combining multiple sources of information has at its core a theorem

derived independently by Reverend Thomas Bayes (about 1701-1761) and Pierre Laplace (1749-
1827) (Stigler, 1986). This theorem states that
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Figure 15.4. Total support for alternative Q and G prototypes based on hypothetical
closedness and obliqueness features given in the text. The locations on the abscissa are
scaled according to the value of the obliqueness feature.

Figure 15.5. Probability for alternative Q based on the total support for the Q and G pro-
totypes shown in Figure 15.4. The locations on the abscissa are scaled according to the
value of the obliqueness feature.

P (h 1 | e ) =

i
Σ P (e | hi ) P (hi )

P (e | h 1) P (h 1)
����������������������������� (15.2)

where P (hi | e ) is the probability that some hypothesis hi is true given that some evidence e is
observed; P (e | hi ) is the probability of the evidence e , given that the hypothesis hi is true, and P (hi )
is the a priori probability of the hypothesis hi . The probability of hypothesis h 1 given some evi-
dence e is equal to the probability of the evidence given the hypothesis times the a priori probability
of the hypothesis, divided by the sum of analogous products for all possible hypotheses. If the a
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priori probabilities of all possible hypotheses are equal, Bayes theorem reduces to

P (h 1 | e ) =

i
Σ P (e | hi )

P (e | h 1)������������������� (15.3)

Bayes theorem specifies how different sources of evidence are combined. Given two indepen-
dent pieces of evidence e 1 and e 2 and equal a priori probabilities, the probability of a hypothesis h 1

is equal to

P (h 1 | e 1 and e 2) =

i
Σ P (e 1 and e 2 | hi )

P (e 1 and e 2 | h 1)� ������������������������������� (15.4)

=

i
ΣP (e 1 | hi ) P (e 2 | hi )

P (e 1 | h 1) P (e 2 | h 1)� ����������������������������������� (15.5)

Equation 15.5 has a direct correspondence to our evaluation and integration processes. This
equation describes optimal information integration in the currency of probability under two assump-
tions. First, the prior probabilities of all relevant response alternatives are equal. Second, it is
assumed that the sources of evidence are evaluated independently of one another, as was earlier
assumed for the FLMP. Following our QG paradigm example above, and analogous to Equation
15.5, Equation 15.6

P (Q | Cj and Ok ) =
P (Cj | Q ) P (Ok | Q ) + P (Cj | G ) P (Ok | G )

P (Cj | Q ) P (Ok | Q )����������������������������������������������������������������������� (15.6)

gives the probability of selecting Q based on the two sources of information C and O , with P (C | Q )
representing evaluation of the closedness source (in terms of the subjective probability "currency")
and P (O | Q ) representing separate evaluation of the obliqueness source. Comparing Equations 15.1
and 15.6 we see a direct correspondence between the fuzzy feature values in the FLMP and the pro-
babilities of evidence given hypotheses in the BPM, as well as the common use of an RGR.

One difference between the FLMP and the Bayesian predictions is that the two alternatives are
defined as negations of their sources of information in the FLMP. Thus, closed and open are
assumed to be negations as are oblique and horizontal. The probabilities P (e | h 1) and P (e | h 2) in
Bayes’s theorem need not sum to one as do the corresponding fuzzy features. When applied to a
factorial design with two response alternatives, however, we should note that the predictions of the
BPM, given in Equation 15.6, can be rearranged (by dividing top and bottom by P (Cj | Q ) P (Ok | Q ))
to give the form:

P (Q | Cj andOk ) =

1 +

��
� P (Cj | Q )

P (Cj | G )�����������������
� �
	

��
� P (Ok | Q )

P (Ok | G )�
���������������
� �
	

1����������������������������������������������������� . (15.7)

or the equivalent:

=
1 + lGQ (Cj ) lGQ (Ok )

1� ��������������������������������� (15.8)

where

lGQ (Cj ) = P (Cj | Q )
P (Cj | G )����������������� (15.9)

is the likelihood ratio of category G to Q given evidence Cj and

lGQ (Ok ) = P (Ok | Q )
P (Ok | G )����������������� (15.10)
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is the likelihood ratio of category G to Q given evidence Ok . Given that each fraction on the right
side of the denominator of Equation 15.8, is indexed by a single subscript, a single value of likeli-
hood ratio is sufficient for each source of evidence. We shall call equations like 15.8 the canonical
likelihood product form and note that it is an instance of the more general form given in Green and
Swets (1966) Appendix 1-A, Equation 1.A.7:

P (hj | e 1, e 2, . . . ei
. . . en ) =

1 + P (hj )
P (hk )� ���������

i =1
Π

n
lkj (ei )

1��������������������������������� (15.11)

where e 1, e 2, ..., en are n events (sources of evidence) concerning hypotheses hj and hk and lkj (ei ) is
the likelihood ratio of hypothesis hk to hj for evidence ei . The likelihood product form for the
FLMP can be obtained from Equation 15.1 by dividing top and bottom by (cj ok ):

P (Q | Cj andOk ) =

1 +

��
� cj

1−cj� �������
� �
�
��
� ok

1−ok�	�������
� �
�

1� ����������������������������������� (15.12)

from which we obtain

lGQ (Cj ) = cj

1- cj� ������� (15.13)

lGQ (Ok ) = ok

1−ok�	������� (15.14)

for the likelihood ratios in the FLMP. Comparing Equations 15.8 and 15.12, the BPM and FLMP
(and any other that can be put in this form) are mathematically equivalent. We will call any model
which can be put in likelihood product form a member of the class of likelihood product models
(LPM).

15.5 Gaussian MDS Model (GMM)
This model considers perceptual features as dimensions in a multidimensional psychological

space. Figure 15.6 illustrates the model using our QG categorization example. In the figure, the
center of each prototype distribution is denoted by a symbol (e.g. Q in the upper right quadrant), sur-
rounded by concentric circles indicating 1, 2, and 3 standard deviations from the center. Feature
analysis locates a stimulus event at a particular point in the space. In our notation,
[obliqueness , closedness ] indicates a specific location as a coordinate pair in the multidimensional
space. For expositional simplicity rather than theoretical necessity, we assume that the prototypes
are symmetrically centered at [P , P ] and [−P , −P ]. In the example shown in Figure 15.6, P =1.
Given a pair of perceptual features associated with a stimulus (denoted by S in Figure 15.6), the per-
ceiver evaluates the similarity of S to each of the prototypes by transforming the distance between S
and each prototype according to the Gaussian e −d 2 (Nosofsky, 1986; Ennis, 1988). We will examine
two forms of the GMM using different metrics: a Euclidean GMM (GMM-E) and a city-block
GMM (GMM-CB). For the GMM-E, the Euclidean distances d (S , Q ) and d (S , G ) from stimulus S
at [ok , cj ] to the center of the Q and G prototype distributions are given by

d (S , Q ) = √
�
�
�
�
�
�
�
�
�
�
�
(P −ok )2 + (P −cj )2 (15.15)

and

d (S , G ) = √


�
�
�
�
�
�
�
�
�
�
�
�
(−P −ok )2 + (−P −cj )2. (15.16)

Transforming these Euclidean distances by the Gaussian function, we arrive at the similarities:

s (S , Q ) = e −[(P −ok )2 + (P −cj )2] (15.17)
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Figure 15.6. Gaussian multidimensional model of QG paradigm. The letters G and Q
represent the center of the of the probabilistic prototype distributions corresponding to G
and Q, respectively. The concentric circles indicate 1, 2, and 3 standard deviations from
the center, as described by the Gaussian. The letter S represents a stimulus input with
coordinates [o , c ].

and

s (S , G ) = e −[(−P −ok )2 + (−P −cj )2) (15.18)

Given these similarities, the perceiver uses an RGR (Shepard, 1957, Nosofsky, 1986) to decide
among alternatives. Putting the similarities in an RGR, we have:

p (Q | cj , ok ) =
e −[(P −ok )2 + (P −cj )2] + e −[(−P −ok )2 + (−P −cj )2]

e −[(P −ok )2 + (P −cj )2]
��������������������������������������������������������������� . (15.19)

Because e a + b = e a e b we can factor Equation 15.19 as follows:

p (Q | cj , ok ) =
e −(P −ok )2

e −(P −cj )2 + e −(−P −ok )2

e −(−P −cj )2

e −(P −ok )2

e −(P −cj )2

��������������������������������������������������������������� . (15.20)

With the factoring of the exponential terms into products, we see clearly the multiplicative combina-
tion of the two sources of information in the model. Given this factoring we can draw the
equivalences:

P (c | Q ) = e −(P −cj )2

(15.21)

P (c | G ) = e −(−P −cj )2

(15.22)

P (o | Q ) = e −(P −ok )2

(15.23)

P (o | G ) = e −(−P −ok )2

(15.24)

For the likelihood product form of the model (viz Equation 15.8) we have:

lGQ (Cj ) = e [(P −cj )2 − (−P −cj )2] = e −4 P cj (15.25)

lGQ (Ok ) = e [(P −ok )2 − (−P −ok )2] = e −4 P ok (15.26)
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Figure 15.7 shows how the hypothetical QG stimuli whose response probabilities are shown in Fig-
ure 15.5 are arranged in the two-dimensional space.

Figure 15.7. Gaussian multidimensional model of QG paradigm showing location of hy-
pothetical stimuli assuming Euclidean distance metric.

To summarize, the GMM-E conceptualizes the representation of stimuli and prototypes as
occurring in a multidimensional space, with the perceiver using the Gaussian transformed Euclidean
distances as similarities which are then translated to response probabilities with an RGR. Theoreti-
cal analysis shows that the model is a member of the LPM class.

An interesting note regarding the use of a Euclidean distance measure here is that it is what
makes the GMM-E consistent with the FLMP which is based on the assumption of independent
fuzzy feature values. This runs contrary to the common belief that the Euclidean distance is more
appropriate for integral dimensions, while the alternate city-block distance measure,

d (S , Q ) = | P −ok | + | P −cj | (15.27)

is more appropriate for separable dimensions (Shepard, 1984). For the GMM-CB in which the latter
measure is used, the similarity (e.g. to Q) using a Gaussian function is

s (S , Q ) = e −((P −ok )2 + 2 | P −cj | | P −ok | + (P −cj )2) , (15.28)

which is not factorable into two parts containing c and o independently, and thus not a member of
the LPM class. Another way to look at this situation would be to say that the the critical factor here
for independence is that the exponent α in the similarity function e −d α equals the exponent r in the
Minkowski distance equation.

Although the original derivation of MDS stressed similarities of stimuli to response alternatives
(and functions relating distances to similarities) in the MDS space, the model is mathematically
equivalent to one based on probabilities of stimuli belonging to response categories. In this view,
each alternative would be represented by a bivariate normal probability distribution (reflecting the
variability of category instances in the world) centered at a particular location in the space, rather
than by a single point. The MDS models discussed here can be considered relatively simple models,
subsumed by the more general formalization called General Recognition Theory (Ashby & Gott,
1988; Ashby & Perrin 1988; Ashby & Townsend, 1986). Ashby and Perrin (1988) offer a general
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Gaussian recognition model as an alternative to traditional MDS models. In that model, similarity is
a function of the overlap of perceptual distributions. They argue that similarity judgments between
two stimuli result from a judgment of the degree to which a pair of perceptual distributions overlap.
The decision process divides the similarity space into response regions, one associated with each
response. Identification judgments are not constrained by any distance axioms. Ashby and Gott
(1988) found evidence for integration and for an optimal noise-free decision process in that subjects
did not make independent decisions on each component or use the distance to each prototype. See
chapters 6 and 16 for a more thorough discussion of General Recognition Theory.

15.6 Exponential MDS Model (EMM)
The Exponential MDS model (Shepard, 1957) is essentially equivalent to the Gaussian MDS

model discussed in section 5, except that distance is translated into similarity by the negative
exponential e −d rather than the Gaussian e −d 2. As with the GMM, we examine two different metrics:
a Euclidean EMM (EMM-E) and a city-block EMM (EMM-CB). For the EMM-E, distances are
computed in the same way as the GMM-E, given in Equations 15.15 and 15.16:

s (S , Q ) = e −√
���������������������

(P −ok )2 + (P −cj )2

(15.29)

and

s (S , G ) = e −√
� �����������������������

(−P −ok )2 + (−P −cj )2

. (15.30)

Putting these similarities in an RGR, we have

p (Q | cj , ok ) =
e −√

���������������������

(P −ok )2 + (P −cj )2 + e −√
� �����������������������

(−P −ok )2 + (−P −cj )2

e −√
���������������������

(P −ok )2 + (P −cj )2

��������������������������������������������������������������� . (15.31)

Because of the √
���

term in the exponentials, the support (similarities) for the two alternatives cannot
be factored into two parts containing c and o independently. Thus, this model makes different
mathematical predictions from those of the LPM class.

If a city-block rather than Euclidean distance is used, however, then the EMM model falls
within the LPM. For the EMM-CB, the distances to each prototype are:

d (S , Q ) = | P −ok | + | P −cj | (15.32)

and

d (S , G ) = | −P −ok | + | −P −cj | (15.33)

and corresponding similarities, instead of Equations 15.29 and 15.30, will be:

s (S , Q ) = e −( | P −ok | + | P −cj | ) (15.34)

and

s (S , G ) = e −( | −P −ok | + | −P −cj | ) (15.35)

Putting these similarities in an RGR, we have

p (Q | cj , ok ) =
e −( | P −ok | + | P −cj | ) + e −( | −P −ok | + | −P −cj | )

e −( | P −ok | + | P −cj | )
� ��������������������������������������������������������������� (15.36)

which can be factored into

p (Q | cj , ok ) =
e − | P −ok | e − | P −cj | + e − | −P −ok | e − | −P −cj |

e − | P −ok | e − | P −cj |
� ��������������������������������������������������������������� . (15.37)

We can then draw the equivalences:
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P (c | Q ) = e − | P −cEMM | (15.38)

P (c | G ) = e − | −P −cEMM | (15.39)

P (o | Q ) = e − | P −oEMM | (15.40)

P (o | G ) = e − | −P −oEMM | . (15.41)

and construct the likelihood ratios:

lGQ (Cj ) = e ( | P −cj | − | −P −cj | ) (15.42)

lGQ (Ok ) = e ( | P −ok | − | −P −ok | ) (15.43)

for the likelihood product form. Figure 15.8 shows how the QG stimuli whose response probabili-
ties are shown in Figure 15.5 are arranged in the two-dimensional space given the city-block metric.
For this solution P was set to 6.

Figure 15.8. EMM multidimensional space for QG task showing location of hypothetical
stimuli assuming a city block metric.

Thus, this EMM-CB is an LPM class member, and, at least for identification performance with two
prototypes, the EMM-CB is equivalent to the GMM-E, both of which are LPM class members. This
equivalence exists even though the two distance metrics make different predictions regarding order-
ing of distances between pairs of stimuli. When there are more than two prototype locations on a
given dimension, however, the constraints imposed by the different similarity and distance functions
between prototypes cause the EMM-CB and the GMM-E to make different predictions. Nosofsky
(1985, 1987) proved this result for two dimensional data sets in which there are 16 prototypes, with
4 prototype locations equally spaced on each dimension. Given only two prototypes locations on
each dimension, however, the locations of stimuli on each dimension are not constrained in this
fashion.
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15.7 Theory of Signal Detection (TSD)
The original TSD model (Green & Swets, 1966; Peterson, Birdsall, & Fox, 1954) offers a

framework for a categorization model. This model also serves as a foundation for the multivariate
TSD model General Recognition Theory (Ashby & Townsend, 1986). The multivariate TSD model
is illustrated in Figure 15.9, as applied to our QG two response categorization task. As in the GMM
model we have Q and G prototypes defined as distributions located symmetrically at [P , P ] and
[−P , −P ] (with P=1) in a multidimensional feature space. We assume equal uncorrelated variance
for each prototype (and stimulus) distribution. In terms of the notation of this volume we would say
that the covariance matrix of the model is the identity matrix (ones on the main diagonal and zero
elsewhere). We assume that the perceiver establishes a decision rule based on the use of a criterion
at the line of equal likelihood between the two alternatives Q and G. This decision rule is equivalent
to the minimum distance bound described by Ashby and Gott (1988). Given the symmetric loca-
tions of the alternative distributions, the criterion lies on the main anti-diagonal (c + o = 0).

Figure 15.9. Multidimensional TSD model of QG task. The Q and G prototypes are
defined as distributions located symmetrically in a multidimensional feature space, indi-
cated by G and Q corresponding to the centers. In addition, a criterion (C) at the line of
equal likelihood between the two prototype distributions is shown.

In this model it is assumed that stimuli are noisy, varying in location from trial to trial, with
bivariate normal distributions. The distributions for three stimuli are shown in the center of the two-
dimensional space in Figure 15.10. On a given trial, if the stimulus falls in the Q region, above and
to the right of the criterion line, then a Q response is made. Similarly, for the G region below and to
the left of the criterion line, a G response is made. Given that the stimuli are noisy, however, the
two-dimensional location of a particular stimulus will sometimes fall in one region and sometimes
in the other. To predict response probabilities, it is necessary to determine what volume of each
stimulus distribution (what proportion) falls into each region. These proportions are related to the
distance of the center of the distribution from the criterion line. Taking a hypothetical stimulus on
the main diagonal centered at [c , o ] (e.g. the stimulus in Figure 15.10 at [.33, .33]), we can see that
the Euclidean distance d back along the main diagonal to the criterion line is given by:

d = √
� �������

x 2+x 2 = √
� �����

2 x 2 = √
� �

2 x (15.44)
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Figure 15.10. Multidimensional TSD model of QG task. Three stimulus distributions,
eqidistant from the criterion line, are shown in the multidimensional space.

where x = c = o . Given that x = (c + o )/2, we arrive at

d = √
� �

2 2
(c + o )
������������� =

√
� �

2
1

����� (c + o ) (15.45)

when the stimulus falls on the main diagonal. We can also see that the other two hypothetical
stimuli which lie on the same anti-diagonal have the same distance to the criterion line, since an
anti-diagonal line has an equation of the form c + o = k , with the result that the distance must always
be k /√

� �

2. If we assume equal variance, uncorrelated normal distributions, then the probability of a Q
response is given by:

P (Q | Cj and Ok ) = Φ(
√
� �

2
1

����� (cj + ok )). (15.46)

where Φ(x ) is the cumulative standard normal distribution (see Chapter 1). We call this model the
normal TSD (TSD-N). The predictions of this model are mathematically different from the LPM (to
what degree, we will evaluate later).

Rather than the cumulative normal area Φ, suppose we substitute the similar corrected logistic
cumulative function

L (x ) =
1 + e −k x

1
��������������� (15.47)

(with correction factor k =
√
� �

3
π

����� to equate for the variance
3
π2
� ��� of the logistic) in Equation 15.46. We

then obtain:

P (Q | Cj and Ok ) =
1 + e

−
√
�

2
k
�	�
� (cj + ok )

1
� ������������������������� =

1 + e
−

√
�

6
π
�	�
� (cj + ok )

1
� ������������������������� (15.48)

=
1 + e

−
√
�

6
π
�	�
� cj

e
−

√
�

6
π
�	�
� ok

1
������������������������������� . (15.49)

We call this model the logistic TSD (TSD-L). This model is equivalent to the likelihood product
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form with the assignments:

lGQ (Cj ) = e
−

√
�
6

π����� cj

(15.50)

and

lGQ (Ok ) = e
−

√
�
6

π����� ok

(15.51)

and we can also draw the equivalences:

e
−

√
�
6

π����� cGMM = cFLMP

1−cFLMP��������������� (15.52)

e
−

√
�
6

π����� oGMM = oFLMP

1−oFLMP��������������� (15.53)

or going in the other direction,

cGMM = π
−√

� �

6������� ln

	

� cFLMP

1−cFLMP���������������
� 


 (15.54)

oGMM = π
−√

� �

6������� ln

	

� oFLMP

1−oFLMP���������������
� 


 (15.55)

Given these relationships, Figure 15.11 shows how the QG stimuli whose hypothetical response pro-
babilities are shown in Figure 15.5 are arranged in the two-dimensional space given the logistic TSD
model. To summarize, we find a mathematical equivalence between the TSD-L and the LPM class
of models, and a strong similarity (due to the similarity of the cumulative normal and the corrected
logistic) to those theories for the TSD-N.

Figure 15.11. Multidimensional TSD-L model of QG task showing location of hypotheti-
cal stimuli assuming a logistic cumulative function.

Massaro and Friedman (1990) derived a somewhat different formulation of TSD. Their start-
ing point was the derivation of Green and Swets (1966, Appendix 9-A) for the optimal combination
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of two observations in a detection task. With both observations in the detection task taken into
account, the d ′ value for the two-observation task was proven to be

d ′ = √�����������������(d ′1)2 + (d ′2)2 (15.56)

where d ′1 and d ′2 are the d ′s of the single observations. This solution was extended by Massaro and
Friedman to take into account the directions of the component distances by adjusting the signs in
Equation 15.56 to preserve direction. The current implementation of the TSD, however, places the
observations in a multidimensional space, and derives the predictions on the basis of their location
with respect to a criterion line. Thus, the model departs from the TSD framework as described by
Green and Swets (1966), and has many of the same properties of the MDS models.

15.8 Feed-Forward Connectionist Model (FCM)
Network models are to some extent grounded in the metaphor of neural information process-

ing. These models are usually referred to as connectionist, because information is represented in
terms of the connections among the neural-like units (Minsky & Papert, 1968, 1988; Rosenblatt,
1958; Rumelhart & McClelland, 1986). These units are assumed to exist at different layers; for
example, NETtalk (Sejnowski & Rosenberg, 1987) consists of units at the input, hidden, and output
layers. The units interact with one another via connections with positive or negative weights that are
either specified in advance or learned through feedback. Because of the extreme power of models
with hidden units, we will consider here only a specific two-layer connectionist model that is most
comparable to the alternative models that we have considered.

The FCM is assumed to have input and output layers of neural units, with all input units con-
nected to all output units. It is assumed that each source of information and each response alterna-
tive is represented by a single unit at the input layer. Figure 15.12 gives a schematic representation
of two input units connected to two output units for our QG task.

C OINPUT

Q GOUTPUT

Figure 15.12. An FCM model for the QG task. The two layers of units contain input un-
its corresponding to the features Closedness (C) and Obliqueness (O), and output units for
the alternatives Q and G. Solid arrows indicate connections with weight 1, and dashed ar-
rows indicate connections with weight -1.
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The output units accumulate the sums of input activations. Each of these is given by the multi-
plicative combination of an input activation and a weight w which we assume is either 1 or -1. With
two inputs cj and ok , the activation entering output unit Q is (cj + ok ), Analogous to the use of nega-
tion in the FLMP, it can be assumed that the weight on the activation entering output unit G is the
negative of the weight entering Q (Massaro & Cohen, 1987). In this case, the activation entering
output unit G is (−cj + −ok ). Although an additional "threshold" unit connected to each output unit
is sometimes assumed in connectionist models, its use with just two response alternatives is not
necessary to bring the model into line with the FLMP. The total activation leaving an output unit is
given by the sum of the input activations, passed through a sigmoid squashing function (Rumelhart,
Hinton, & Williams, 1986) (which is, incidently, equivalent to the logistic function):

actQ =
1 + e −(cj + ok )

1��������������������� (15.57)

actG =
1 + e −(−cj + −ok )

1� ����������������������� . (15.58)

The "neural processing" of a connectionist model does not specify completely the stimulus-
response function. The activations at the output layer have to be mapped into a response, and a
RGR has been assumed to describe this mapping (Rumelhart et al., 1986):

P (Q | Cj and Ok ) =

1 + e −(cj + ok )
1��������������������� +

1 + e −(−cj + −ok )
1� �����������������������

1 + e −(cj + ok )
1���������������������

� ��������������������������������������������������� . (15.59)

Noting the fact that

1 + e −x
1������������� +

1 + e x
1����������� = 1 , (15.60)

the denominator of Equation 15.59 is equal to one, and we can simplify Equation 15.59 to:

P (Q | Cj and Ok ) =
1 + e −(cj + ok )

1��������������������� =
1 + e −cj e −ok

1��������������������� . (15.61)

This is equivalent to the likelihood product form with the assignments:

lGQ (Cj ) = e −cj (15.62)

and

lGQ (Ok ) = e −ok (15.63)

and we can also draw the equivalences:

e −cFCM = cFLMP

1−cFLMP��������������� (15.64)

e −oFCM = oFLMP

1−oFLMP��������������� (15.65)

or going in the other direction,

cFCM = − ln

	

� cFLMP

1−cFLMP���������������
� 


 (15.66)

oFCM = − ln

	

� oFLMP

1−oFLMP���������������
� 


 . (15.67)
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To summarize, evaluation in the FCM consists of the activation and inhibition of neural-like
units. Integration involves the summation of the separate activations which are then passed through
the sigmoid squashing function. Decision follows the RGR. Mathematical analysis of this FCM
reveals that it is also an LPM (for the case of two response alternatives).

15.9 Interactive Activation and Competition (IAC) Models
Interactive activation models are similar in spirit and design to feed forward models. However,

IAC models assume that processing occurs over many processing cycles rather than just one. Furth-
ermore, there are inhibitory lateral connections among units within a layer and two-way connections
between units in different layers as illustrated in Figure 15.13.

CL OPGAP OB HZ ANGLE

Q GMEMORY

Figure 15.13. An IAC model for the QG task. The three layers of units contain input un-
its corresponding to the gap and angle features, respectively, and to the "prototypes" or
memory of G and Q. Units between layers have bidirectional excitatory connections indi-
cated by solid arrows. Units within a layer have bidirectional inhibitory connections indi-
cated by dashed arrows.

According to interactive activation, the information from one source can modify the processing (and
representation) of other information sources (McClelland & Rumelhart, 1981; McClelland & Elman,
1986). Presentation of stimulus information from one source activates (and laterally inhibits) input
units associated with that source, as illustrated in Figure 15.13. In this IAC model network, the two
units for a given input layer receive complementary inputs. For example, if the CL unit receives .8
then the OP unit receives .2. These input units in turn activate the memory units of the top layer,
which in turn feed backward and also activate the input units associated with the other input source,
and so on during several cycles of processing. It should be noted that, contrary to most uses of the
IAC, we are taking the activations of the highest level units as determinate of the response.

The formal algorithm of the IAC model is as follows (McClelland & Rumelhart, 1988). Ini-
tially, for each unit i , the activation acti is set to the resting level rest . Then, on each computation
cycle of the model for each unit i , the excitatory input exci and inhibitory input inhi are computed
from the product of the activation of the sending units acti , and path weights, wij as follows:

exci =
j
Σ max(0, wij ) max(0, act j ) (15.68)

inhi =
j
Σ min(0, wij ) max(0, act j ) (15.69)

All weights wij are either +1 or -1, so Equation 15.68 adds up all the activations on positive path-
ways and Equation 15.69 adds up all the activations on negative pathways. Activations less than 0
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are ignored in these summations. Next, for each unit i , the summed net input neti is computed from
the weighted sum of the exci , inhi , and external inputs exti :

neti = α exci + γ inhi + estr exti (15.70)

where α is the weight on excitatory connections, γ is the weight on inhibitory connections, and estr
is the weight on external inputs. Next, the change of activation for each unit for the upcoming cycle
∆acti is computed as:

if neti >0, ∆acti = neti (M −acti ) − decay (acti −rest ) (15.71)

if neti <0, ∆acti = neti (acti −m ) − decay (acti −rest ) (15.72)

where M is the maximum allowed activation, m is the minimum allowed activation, and decay is the
rate of activation decay. Then each acti is adjusted by adding the ∆acti :

acti = acti + ∆acti (15.73)

Finally, each acti is adjusted, if necessary, to remain in the interval m to M :

if acti >M , acti = M (15.74)

if acti <m , acti = m (15.75)

In most simulations, the IAC model has been used with the following standard set of control param-
eters: estr =.1, α=.1, γ =.1, decay =.1, M =1., m =-.2, and rest =-.1 (McClelland, 1990). In some simu-
lations of the IAC model, running averages across cycles have been used rather than those directly
computed at the cycle of interest (McClelland, 1990). We utilize the latter. Typically, 60 cycles of
processing are carried out.

In McClelland and Rumelhart’s (1981) original formulation of the model which we will call
the IAC-RGR, the activations were translated into strengths by the exponential function:

Si = e k acti (15.76)

(with k commonly equal to 5) and these strengths were evaluated by an RGR to obtain the probabil-
ity of a particular response. For the QG task, the form would be:

P (Q ) = SQ +SG

SQ
� ����������� . (15.77)

Due to certain incorrect predictions of the IAC model pointed out by Massaro (1989) (which will be
further discussed in Section 15.10), the IAC model was revised to instead use a best-one-wins
(BOW) decision rule applied directly to the activations, with normal noise being added to the input
feature values. We call this model the IAC-BOW. We will examine both the original and revised
IAC model.

The IAC model is basically additive with nonlinearities introduced by the change in additivity
as activation boundaries are approached (Equations 15.71 and 15.72), by nonlinear decay (Equations
15.71 and 15.72), and by the activation and competition processes over time. Given the nonlinear
characteristics of the model, it is unfortunately impossible to exactly examine the mathematical
behavior of this model by a general closed form analysis, and we will have to be content with our
simulations and empirical analysis given in Sections 15.10 and 15.11.

We note, however, an important demonstration by McClelland (1990) that a model closely
related to the IAC-BOW — the Boltzmann machine (Hinton and Sejnowski, 1983, 1986) — at its
equilibrium state can be reduced to multiplicative terms each representing a single source of infor-
mation and is thus equivalent to the FLMP.
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15.10 Model tests with hypothetical two-response data
The predictions of each model were fit to the predictions of the FLMP (the hypothetical 49 data

points shown in Figure 15.5) using the program STEPIT (Chandler, 1969). A model is represented
to the analysis program STEPIT as an algorithm for computing the sum of squared deviations
between the observed and predicted data as a function of a set of parameters. By iteratively adjust-
ing the parameters of the model, STEPIT minimizes the deviations between the observed and
predicted points. Thus, STEPIT finds a set of parameter values which when put in the model, come
closest to predicting the observed data. The metric of goodness of fit used is the root mean squared
deviation (RMSD) between the observed and predicted data. Although many of these models are
expected to fit the hypothetical data perfectly, it is of interest to examine the the parameter values
from the fits. For some of these models we could directly compute the parameters from those found
for the FLMP, but not all models have exact transforms possible, and it is worthwhile to carry out
the fitting procedures for all models. It also may be, for example, that some of the parameter esti-
mates are illogical or not meaningful, and so even though mathematically equivalent, models could
be distinguished on the basis of the reasonableness of the parameter estimates. For the most part, the
estimated parameters are presented in figure form.

For the fit of the FLMP, 14 parameters were used, 7 for the c feature values and 7 for the o
features. There was a perfect fit to the data. The fit of the FLMP model to the data is shown in Fig-
ure 15.5.

For the fit of the BPM, 28 parameters were used, 7 each for the P (c | Q ), P (c | G ), P (o | Q ), and
P (o | G ) probabilities. As expected, there was a perfect fit to the FLMP predictions.

For the fit of the GMM models, 14 parameters were used, 7 for the spatial c coordinates and 7
for the o coordinates. Figure 15.7 gives the locations of the best fitting stimulus locations for the
GMM-E (a perfect fit). Although theoretically different, the GMM-CB provided an extremely close
fit (RMSD=.0060) with a slightly different arrangement of the stimuli.

The EMM models also used 14 parameters for spatial coordinates. Figure 15.8 gives the loca-
tions of the best fitting stimulus locations for the EMM-CB (a perfect fit). Interestingly, the EMM-E
gave an almost perfect fit of (RMSD=.0002). This similarity of models has been previously noted
by Indow (1974) and Ennis (1988), who reported a number of cases in which city-block data is well
fit by Euclidean distance.

The TSD models also used 14 parameters for spatial coordinates. Figure 15.11 gives the loca-
tions of the best fitting stimulus locations for the TSD-L (a perfect fit). Although theoretically dif-
ferent from the FLMP, the TSD-N did a respectable (RMSD=.0064) job at mimicking the FLMP
predictions.

The fit of the IAC models is somewhat more complex. We begin with a fit of the IAC-RGR
with the typical k value of 5. This model used 14 parameters representing the 7 c and 7 o input
feature values. To fit this model, the IAC algorithm (McClelland & Rumelhart, 1988) (recoded in
FORTRAN (f77) for use with STEPIT) was run to compute the target activations after 60 time
cycles. The fit of this model was relatively poor (RMSD=.0457). To understand the nature of the
problem the IAC-RGR has in mimicking the FLMP predictions, we plot in the left panel of Figure
15.14 the fit transformed by the inverse logistic. In the figure, we can see that while the inverse
logistic of the FLMP hypothetical data is additive, five of the seven IAC-RGR predicted lines tend
to converge at both ends. This nonadditivity of the effects of the two variables was originally
pointed out by Massaro (1989) in an analysis of the combination of phonological context and
stimulus information in the TRACE model (McClelland & Elman, 1986), which is closely related to
the IAC. This nonadditivity disagrees with the classically observed additivity

To improve the fit of the IAC-RGR, we set the k value to 15. The right panel of Figure 15.14
gives the inverse logistic of the predicted probability of a Q response for the FLMP and the IAC-
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Figure 15.14. Inverse logistic transform of the predicted probability of a Q response ac-
cording to the FLMP (points) and IAC-RGR model (lines) for k =5 (left panel) and k =15
(right panel).

RGR with k =15. As can be seen in this figure, the IAC-RGR with k =15 gave a good much better fit
(RMSD=.0007), although there was still a slight nonadditivity. Table 15.1 gives the best fitting
feature values found by STEPIT for the k =5 and k =15 cases. Although using larger k values allows
better mimicking of the FLMP, this is an unattractive solution because the input feature values take
on unrealistic values.

Table 15.1. The estimated input feature values for the two IAC-RGR models (with k =5
and k =15) for the best fit of the hypothetical data.

� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������
LEVEL� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������

FEATURE k 1 2 3 4 5 6 7 RANGE� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������
CLOSEDNESS 5 .0001 .4869 .4946 .4993 .5038 .5112 .9999 .9998
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OBLIQUENESS 5 .2636 .4932 .4986 .5029 .5085 .5145 .5173 .2537

15 .4896 .4932 .4949 .4963 .4980 .4998 .5006 .0110� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������
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For the IAC-RGR to mimick the FLMP predictions, the input features must be very close to
neutral values, with a very small range of feature values. In fact, a small range of feature values also
occurred for the interior five levels of the k =5 case. Thus, the IAC-RGR model can only mimick the
FLMP predictions by having the activations of the response units fall in a relatively neutral, non-
asymptotic range. The left and right panels of Figure 15.15 give the response activations for the Q
and G units for the k =5 and k =15 cases respectively. Within the relatively neutral range, the activa-
tion values are less susceptible to the nonlinearities of the IAC and therefore can better approximate
the hypothetical data. Thus the model involves something closer to an addition of individual effects,
transformed at the end by an exponential — that is, more like the multiplication of the two effects
(which is what happens in the FLMP and related models). Figure 15.16 illustrates how the activa-
tions from the two cases are shaped by transforming them into strength values. The difference in the
strength scales on the two graphs should be noted; the strengths resulting from k =15 are about 15
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Figure 15.15. Activation of the G and Q units for the IAC-RGR model with k =5 (left
panel) and k =15 (right panel) given the hypothetical parameter values in Table 15.1.

times larger. Comparing the right panel of Figure 15.16 with Figure 15.4, we see that the IAC-RGR
with k =15 is able to replicate to some extent the multiplicative fan predicted by the FLMP. In sum-
mary, the IAC-RGR can apparently mimic the noninteractive nature of the LPM, but only by staying
in a restricted linear parameter range. The small range of feature values is particularly damaging to
a neural network interpretation because neurons are unlikely to represent activations to this fine
level of resolution.

We now evaluate the IAC-BOW model with its alternative decision process of choosing the
response with the highest activation. To compute the model’s predictions, we first set the 49 proba-
bilities of a Q response given the 7 closedness times 7 obliqueness conditions to 0 and reset the ran-
dom number generator. Then for each of the 49 conditions 1000 simulated trials occurred. On each
simulated trial random deviates, from a normal (Gaussian) distribution computed by the Box-Muller
method (Press, Flannery, Teukolsky, & Vetterling, 1988; see also Chapter 1) with a standard devia-
tion (which was allowed to vary) initially set at .14142, were added to each of the current pair of
parameters (for closedness and obliqueness). Then the IAC algorithm (McClelland & Rumelhart,
1988) was run to compute the target activations after 60 time cycles. If the final activation of the Q
unit was greater than or equal to the final activation of the G target, then 1/1000 was added to the
probability of a Q response. In order for the parameter estimation routine to operate properly it was
necessary to employ the same sequence of random numbers on each overall computation run. This
allowed STEPIT to make reliable adjustments in the parameter values, even though noise was being
added to the input.

The IAC with the BOW decision rule gave a good fit to the FLMP predictions (RMSD=.0090)
with the noise standard deviation at .1251. Figure 15.17 shows the fit of the model in terms of the
inverse logistic of the proportion of Q responses. We note some deviations from additivity, but
those are mostly due to the problem of computing the inverse logistic for 0 and 1. In those cases, the
value was set at minus or plus 10.

Table 15.2 summarizes the fits of the various models, giving the root mean squared deviations
(RMSDs) between the FLMP predictions and the predicted data for each model. As can be seen in
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Figure 15.16. The strengths of the G and Q response alternatives for the IAC-RGR model
with k =5 (left panel) and k =15 (right panel) given the activations in Figure 15.15. Note
difference in response strength scales for the two panels.

Figure 15.17. Inverse logistic transform of the predicted probability of a Q response ac-
cording to the FLMP (points) and IAC-BOW model (lines).

the table, the FLMP, BPM, GMM-E, EMM-CB, TSD-L, and FCM models all had perfect fits to the
FLMP hypothetical data, as predicted by the theoretical analysis. Of the models not exactly
equivalent to the FLMP, the GMM-CB, EMM-E, TSD-N, IAC-RGR15 did a good job at mimicking
the FLMP, the latter model doing so with unrealistic parameter values. Only the IAC-RGR5 made
different predictions.
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Table 15.2. Model fits of hypothetical FLMP data.
�����������������������������������������
MODEL RMSD����������������������������������������������������������������������������������
FLMP .0000�����������������������������������������
BPM .0000�����������������������������������������
GMM-E .0000
GMM-CB .0060�����������������������������������������
EMM-E .0002
EMM-CB .0000�����������������������������������������
TSD-L .0000
TSD-N .0064�����������������������������������������
FCM .0000�����������������������������������������
IAC-RGR5 .0457
IAC-RGR15 .0007
IAC-BOW .0090�����������������������������������������
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15.11 Model tests with experimental QG data
Given the subtle differences between the LPM class and most of the others (and the large

difference for the IAC-RGR5) observed for the pure hypothetical data, it is of interest to see whether
we can discriminate between these models with real experimental data. Of course, we expect all the
LPM class to give the same goodness of fit and predictions, but it is worthwhile to present the fits so
that the parameters of the models can be examined. Table 15.3 gives the RMSD for each model for
each of the nine subjects in the QG task, a fit of a mean subject, and the mean of the subject fits. We
will graph the observed and predicted data for the two typical subjects shown in Figure 15.2.

Table 15.3. RMSDs for model fits of QG experimental data for 9 individual subjects, the
fit of the mean subject, and the average of the 9 subject fits.

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
MODEL S1 S2 S3 S4 S5 S6 S7 S8 S9 SM AVE������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
FLMP .0346 .0637 .0973 .0444 .0312 .0543 .0487 .0284 .0539 .0369 .0507���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
BPM .0346 .0637 .0973 .0444 .0312 .0543 .0487 .0284 .0539 .0369 .0507���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
GMM-E .0346 .0637 .0973 .0444 .0312 .0543 .0487 .0284 .0539 .0369 .0507

GMM-CB .0432 .0637 .0974 .0449 .0290 .0629 .0485 .0302 .0542 .0371 .0527���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
EMM-E .0346 .0636 .0973 .0444 .0312 .0543 .0487 .0284 .0539 .0369 .0507

EMM-CB .0346 .0637 .0973 .0444 .0312 .0543 .0487 .0284 .0539 .0369 .0507���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
TSD-L .0346 .0637 .0973 .0444 .0312 .0543 .0487 .0284 .0539 .0369 .0507

TSD-N .0354 .0624 .0961 .0446 .0322 .0561 .0483 .0292 .0542 .0384 .0509���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
FCM .0346 .0637 .0973 .0444 .0312 .0543 .0487 .0284 .0539 .0369 .0507���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
IAC-RGR5 .0518 .0719 .1014 .0610 .0482 .0569 .0645 .0487 .0611 .0445 .0628

IAC-RGRK .0327 .0634 .0991 .0445 .0297 .0493 .0476 .0286 .0536 .0350 .0498

IAC-BOW .0358 .0604 .0968 .0487 .0329 .0571 .0480 .0296 .0525 .0378 .0513���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

For the fit of the FLMP, 14 parameters were used, 7 for the c feature values and 7 for the o
features. The average RMSD for the model was .0507. Figure 15.18 shows the observed and
predicted data for the typical subjects with the abscissa scaled according to the obtained obliqueness
parameters. Table 15.3 shows that all models of the LPM class achieved the same goodness of fit.
The related GMM-CB, EMM-E, TSD-N, IAC-RGR15 did not give a significantly different fit. Of
particular interest is the goodness of fit of the IAC-RGR5 — the only model different from the
FLMP and related models in fitting the hypothetical data in Section 15.10. The RMSDs of the IAC-
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Figure 15.18. Observed (points) and predicted (lines) probability of Q responses for the
forty-nine test letters presented in Figure 15.1 for two typical subjects. The predictions are
for the FLMP model and the locations on the abscissa are scaled according to the estimat-
ed value of the obliqueness feature.

RGR5 were compared with those of the FLMP using an ANOVA for the 9 subject fits and found to
be significantly worse for the IAC-RGR5, (F (1,8)=30.64, p =.001). Therefore, at least one of the
models can be distinguished on the basis of actual results and the IAC-RGR5 is falsified by the fit of
the data from the QG experiment of Massaro and Hary (1986).

15.12 Prototypical Four-Response Categorization Task
Given the successful reconciliation of a number of models for the two response task, it is

worthwhile to extend our analysis to a prototypical four response alternative task, carried out by
Massaro, Tseng, and Cohen (1983). The four responses in the experiment were four words in Man-
darin Chinese. The experiment used a factorial design with seven levels of each of two factors.
These factors were the formant structure of the vowel in the monosyllabic words and the fundamen-
tal frequency (F 0) contour (tone) during the vowel. Mandarin Chinese is a tone language and both
of these sources of information are functional to distinguish different words. The formant structure
was varied to make a continuum of vowel sounds between /i/ and /y/. (The vowel /y/ is articulated
in the same manner as /i/, except with the lips rounded.) The F 0 contour varied between falling-
rising to falling during the vowel. Six native Chinese speakers participated for four days, with each
subject giving a total of 48 responses to each of the 49 test stimuli. The subjects identified each of
the 49 test stimuli as one of the four words. Figure 15.19 shows the data for a single typical subject
as a function of vowel and tone level for the four responses.

15.13 Four-response FLMP
In the four response version of the FLMP the prototypes are defined by:
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Figure 15.19. Mean observed proportion of responses for a typical subject as a function
of vowel and tone level for the four responses. (After Massaro, Tseng & Cohen, 1983).

i-FR: vowel /i/ & falling-rising tone
i-F : vowel /i/ & falling tone
y-FR: vowel /y/ & falling-rising tone
y-F : vowel /y/ & falling tone

In the implementation of the model, it is assumed that the vowel /i/ and vowel /y/ features are
opposites (or negations) of one another, as are falling-rising and falling tones. Thus, we can
represent the prototypes’ goodnesses in terms of the degree to which the vowel is /y/ (y) and the tone
is falling (F), and with the multiplicative definition of conjunction:

i-FR: (1-y) × (1-F)
i-F : (1-y) × F
y-FR: y × (1-F)
y-F : y × F

These prototypes are then evaluated by a RGR. The probability of an y-F response, for example, is
given by:

P (y −F | Yj and Fk ) = (1−yj ) (1−f k ) + (1−yj ) (f k ) + (yj ) (1−f k ) + (yj ) (f k )
(yj ) (f k )

������������������������������������������������������������������������������������� . (15.78)

Noting that the denominator of Equation 15.78 is always the quantity 1, we can simplify the
response predictions to:

P (i −FR | Yj and Fk ) = (1−yj ) (1−f k ) (15.79)

P (i −F | Yj and Fk ) = (1−yj ) (f k ) (15.80)

P (y −FR | Yj and Fk ) = (yj ) (1−f k ) (15.81)

P (y −F | Yj and Fk ) = (yj ) (f k ) (15.82)

To generate the FLMP predictions, the following hypothetical feature values were used for vowel
/y/, going from /i/ to /y/: .01, .10, .30, .50, .70, .90, .99, and for tone falling, going from falling-rising
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to falling: .03, .20, .40, .60, .80, .92, .95. Figure 15.20 shows the support for the four alternatives
given these hypothetical feature values (and also the probability of responding with those alterna-
tives since the denominator of the RGR is one).

Figure 15.20. Support for alternative i-FR, i-F, y-FR, and y-F prototypes based on hy-
pothetical vowel and tone features given in the text. The locations on the abscissa are
scaled according to the y-ness of the vowel feature.

15.14 Four-response BPM
For the four response BPM, the probabilities of the four responses are computed from the pro-

babilities of evidence P (Yj | Y ), P (Yj | I ), P (Fk | FR ), P (Fk | F ). The probability of a y-F response, for
example would be given by:

P (y −F | Y j and Fk ) = P (Y j | I ) P (Fk | FR ) + P (Y j | I ) P (Fk | F ) + P (Y j | Y ) P (Fk | FR ) + P (Y j | Y ) P (Fk | F )
P (Y j | Y ) P (Fk | F )� ��������������������������������������������������������������������������������������������������������������������������������������������� . (15.83)

As with the 2 response case, the FLMP and the BPM differ in that for the FLMP the alterna-
tives are defined as using complementary features. Thus, in the FLMP, i and FR are assumed to be
complements of y and F, respectively. For the BPM, however, the probabilities P (e | h 1) and
P (e | h 2) need not sum to one. Let us consider again Equation 15.83 which, by dividing top and bot-
tom by P (Yj | Y ) P (Fk | F ) can be rewritten as:

P (y −F | Y j and Fk ) = ��
� P (Y j | Y ) P (Fk | F )

P (Y j | I ) P (Fk | FR )� ���������������������������������
� �
� +

��
� P (Y j | Y ) P (Fk | F )

P (Y j | I ) P (Fk | F )� �������������������������������
� �
� +

��
� P (Y j | Y ) P (Fk | F )

P (Y j | Y ) P (Fk | FR )� ���������������������������������
� �
� + 1

1� ������������������������������������������������������������������������������������������������������������������������������������� (15.84)

= ��
� P (Y j | Y )

P (Y j | I )� ���������������
� �
�
��
� P (Fk | F )

P (Fk | FR )� �����������������
� �
� +

��
� P (Y j | Y )

P (Y j | I )� ���������������
� �
�
��
� P (Fk | F )

P (Fk | F )� ���������������
� �
� +

��
� P (Y j | Y )

P (Y j | Y )� ���������������
� �
�
��
� P (Fk | F )

P (Fk | FR )� �����������������
� �
� + 1

1� �������������������������������������������������������������������������������������������������������������������������������������������������������

= ��
� P (Y j | Y )

P (Y j | I )� ���������������
� �
�
��
� P (Fk | F )

P (Fk | FR )� �����������������
� �
� +

��
� P (Y j | Y )

P (Y j | I )� ���������������
� �
� +

��
� P (Fk | F )

P (Fk | FR )� �����������������
� �
� + 1

1� �����������������������������������������������������������������������������������������������������������

or the equivalent:

=
lIY (Yj ) lFR F (Fk ) + lIY (Yj ) + lFR F (Fk ) + 1

1�	�
�
���
�
�
�
�
���
�
�
�
�
���
�
�
�
�
���
�
�
�
�
���
�
�
�
�
��� . (15.85)
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where lIY (Yj ) is the likelihood ratio of vowel i to vowel y given evidence Yj and lFR F (Fk ) is the likel-
ihood ratio of tone FR to tone F given evidence Fk . The likelihood product form (i.e. Equation
15.85) for other responses also requires lYI (Yj ) which is the reciprocal of lIY (Yj ), and lF FR (Fk ) which
is the reciprocal of lFR F (Fk ). Thus, for each combination of closedness and obliqueness conditions,
only two likelihood ratios (one for each source of evidence) are needed. For the BPM, the likeli-
hood ratios are given by:

lIY (Yj ) = P (Yj | Y )
P (Yj | I )
� ��������������� (15.86)

and

lFR F (Fk ) = P (Fk | F )
P (Fk | FR )
������������������� . (15.87)

Similarly, for the FLMP, the likelihood ratios are given by:

lIY (Yj ) = yj

1−yj
� ������� (15.88)

and

lFR F (Fk ) = f k

1−f k
��������� (15.89)

As in the two-alternative case, both the FLMP and BPM are members of the LPM class.

15.15 Four-response GMM
The GMM for the four response task is similar to that for two responses except that there are

four prototype locations. We assume that the prototypes are symmetrically centered in a multidi-
mensional space with dimensions vowel and tone, at [P , P ] for y-F, at [P , −P ] for y-FR, at [−P , P ]
for i-F, and at [−P , −P ] for i-FR. Figure 15.21 shows the arrangement of the prototype distributions
in the multidimensional space. The Euclidean distances from stimulus S at [yj , f k ] to the four proto-
type locations are given by:

d (S , y −F ) = √
� �����������������������

(P −yj )2 + (P −f k )2 (15.90)

d (S , y −FR ) = √
�������������������������

(P −yj )2 + (−P −f k )2 (15.91)

d (S , i −F ) = √
�������������������������

(−P −yj )2 + (P −f k )2 (15.92)

and

d (S , i −FR ) = √
�	�������������������������

(−P −yj )2 + (−P −f k )2 . (15.93)

Given the Gaussian similarity function, we can compute the similarities

s (S , y −F ) = e −[(P −yj )2 + (P −f k )2] (15.94)

s (S , y −FR ) = e −[(P −yj )2 + (−P −f k )2] (15.95)

s (S , i −F ) = e −[(−P −yj )2 + (P −f k )2] (15.96)

s (S , i −FR ) = e −[(−P −yj )2 + (−P −f k )2] . (15.97)

These similarities can then be factored into:

s (S , y −F ) = e −(P −yj )2

e −(P −f k )2

(15.98)

s (S , y −FR ) = e −(P −yj )2

e −(−P −f k )2

(15.99)
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Figure 15.21. Gaussian multidimensional model of four response paradigm. The labels
y-F, y-FR, i-F and i-FR represent the center of the of the probabilistic prototype distribu-
tions corresponding to the four response categories. The concentric circles indicate 1, and
3 standard deviations from the center, as described by the bivariate normal.

s (S , i −F ) = e −(−P −yj )2

e −(P −f k )2

(15.100)

s (S , i −FR ) = e −(−P −yj )2

e −(−P −f k )2

. (15.101)

from which we can draw, using the terminology of the FLMP and BPM:

p (Yj | Y ) = e −(P −yj )2

(15.102)

p (Yj | I ) = e −(−P −yj )2

(15.103)

p (Fk | F ) = e −(P −f k )2

(15.104)

p (Fk | FR ) = e −(−P −f k )2

(15.105)

With these probabilities obtained, we can use Equation 15.83 for the rest of the derivation. For the
likelihood product form we derive the likelihood ratios:

lIY (Yj ) = e [(P −yj )2 − (−P −yj )2] = e −4 P yj (15.106)

lFR F (Fk ) = e [(P −f k )2 − (−P −f k )2] = e −4 P f k (15.107)

Figure 15.22 shows how our 49 hypothetical stimuli are arranged in the multidimensional space.
For the alternate GMM-CB model with the city-block distance measure, the distance between

the stimulus S and, for example, y-F would be:

d (S , y −F ) = | P −yj | + | P −f k | (15.108)

for which the similarity function would be:

s (S , y −F ) = e −((P −f k )2 + 2 | P −yj | | P −f k | + (P −yj )2) (15.109)

As with the two-response case, these similarities are not factorable, and thus the GMM-CB is not a
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Figure 15.22. Gaussian multidimensional model of four response paradigm. The labels
y-F, y-FR, i-F and i-FR represent the center of the of the probabilistic prototype distribu-
tions corresponding to the four response categories. The concentric circles indicate 1, and
3 standard deviations from the center, as described by the bivariate normal. The small cir-
cles give the locations of the hypothetical stimuli.

member of the LPM class.

15.16 Four-response EMM
The derivation of the EMM for four responses is very similar to that for the four response

GMM, except that the exponential similarity function is used. For the EMM-CB, the city-block dis-
tances from stimulus S at [yj , f k ] to the four prototype locations are given by:

d (S , y −F ) = | P −yj | + | P −f k | (15.110)

d (S , y −FR ) = | P −yj | + | −P −f k | (15.111)

d (S , i −F ) = | −P −yj | + | P −f k | (15.112)

d (S , i −FR ) = | −P −yj | + | −P −f k | (15.113)

Given the exponential similarity function, we can compute the similarities

s (S , y −F ) = e −( | P −yj | + | P −f k | ) (15.114)

s (S , y −FR ) = e −( | P −yj | + | −P −f k | ) (15.115)

s (S , i −F ) = e −( | −P −yj | + | P −f k | ) (15.116)

s (S , i −FR ) = e −( | −P −yj | + | −P −f k | ) . (15.117)

These similarities can then be factored into:

s (S , y −F ) = e − | P −yj | e − | P −f k | (15.118)

s (S , y −FR ) = e − | P −yj | e − | −P −f k | (15.119)

s (S , i −F ) = e − | −P −yj | e − | P −f k | (15.120)
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s (S , i −FR ) = e − | −P −yj | e − | −P −f k | . (15.121)

from which we can draw:

p (Yj | Y ) = e − | P −yj | (15.122)

p (Yj | I ) = e − | −P −yj | (15.123)

p (Fk | F ) = e − | P −f k | (15.124)

p (Fk | FR ) = e − | −P −f k | (15.125)

Given these probabilities, we can return to Equation 15.83 in the BPM section for the rest of the
derivation. For the likelihood product form we can derive the likelihood ratios:

lIY (Yj ) = e ( | P −yj | − | −P −yj | ) (15.126)

lFR F (Fk ) = e ( | P −f k | − | −P −f k | ) (15.127)

For the alternate EMM-E model with the Euclidean distance measure, the distance between the
stimulus S and, for example, y-F is:

d (S , y −F ) = √
� �����������������������

(P −yj )2 + (P −f k )2 (15.128)

for which the similarity function is:

s (S , y −F ) = e −√
���������������������

(P −yj )2 + (P −f k )2

(15.129)

As with the two-response case, these similarities are not factorable, and thus the EMM-E is not a
member of the LPM class.

15.17 Four-response TSD
The TSD model is illustrated for the four response task in Figure 15.23. As in the four

response GMM model the prototypes are defined as distributions located symmetrically at [P , P ],
[P , −P ], [−P , P ], and [−P , −P ] (with P=1) in a multidimensional feature space. We assume the
covariance matrix associated with each prototype (and stimulus) distribution is the same scaler mul-
tiple of the identity matrix. We also assume that the perceiver establishes a decision rule based on
the use of criterion lines of equal likelihood which separate the space into four regions, one for each
response. Given the symmetric locations of the alternative distributions, the criterion lines lie on the
main axes of the space, as shown in Figure 15.23.

On each trial, the subject simply determines what region the stimulus has occurred in and
responds accordingly. As in the previous TSD model, we assume that stimuli are noisy. Figure
15.24 shows a typical bivariate normal stimulus distribution centered at [.7, .7]. Given a stimulus
distribution S centered at [yj , f k ], we can simply determine what volume (proportion) falls in each
response region. Looking at the figure, we can see that the area to the right of the vertical axis is
Φ(yj ). Similarly, the area above the horizontal axis is Φ(f k ). Since the area in the upper right qua-
drant is that fraction of the distribution to the right, times the fraction above (and similarly for the
other quadrants), we arrive at the following formulae:

P (i −FR | S ) = [1−Φ(yj )] [1−Φ(f k )] (15.130)

P (i −F | S ) = [1−Φ(yj )] Φ(f k ) (15.131)

P (y −FR | S ) = Φ(yj ) [1−Φ(f k )] (15.132)

P (y −F | S ) = Φ(yj ) Φ(f k ) (15.133)

Comparing Equations 15.130-15.133 with Equations 15.79-15.81 of the FLMP, we can draw the
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Figure 15.23. Multidimensional TSD model of four response task. The four prototypes
are defined as distributions located symmetrically in a multidimensional feature space, in-
dicated by y-F, y-FR, i-F, and i-FR corresponding to the centers. The main axes divide the
space into four response regions.

simple equivalences:

yFLMP = Φ(yTSD ) (15.134)

and

f FLMP = Φ(f TSD ) (15.135)

Similarly, for the likelihood product form, we have the likelihood ratios:

lIY (Yj ) = Φ(yj )
1−Φ(yj )
� ������������� (15.136)

and

lFR F (Fk ) = Φ(f k )
1−Φ(f k )
��������������� (15.137)

The hypothetical four response stimuli are arranged in the multidimensional space in Figure 15.25.
To summarize, we find an exact mathematical equivalence between the TSD and the FLMP when
using an equal variance, uncorrelated bivariate normal stimulus distribution. To put things another
way, we can interpret the fuzzy feature values to be the cumulative normal areas of the multidimen-
sional scale values.

15.18 Four-response FCM
At first glance, the FCM for four responses appears quite similar to that for two. In a recent

report, however, Massaro and Friedman (1990) demonstrated that an FCM becomes nonequivalent
to the FLMP when 3 or more response alternatives exist. This FCM has a strong constraint on its
predicted response probabilities when more than 2 response alternatives exist. In the 4 response task,
for example, the maximum predicted probability for any response is limited to .5.
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Figure 15.24. Multidimensional TSD model of four response task with space divided into
four response regions. A stimulus distribution indicated by S is centered at [.7, .7].

Figure 15.25. Multidimensional TSD model of four response task with space divided into
four response regions. Small circles show locations of hypothetical stimuli.

To overcome this constraint, a threshold unit can be added to the network, as illustrated in Fig-
ure 15.26. This unit is connected to each of the output units with a positive weight of one—as with
other excitatory connections. The revised FCM with a threshold is called the FCM-T. In this
model, the additional free threshold parameter is sufficient to bring the model into close correspon-
dence with the LPM class of models. The parameter functions in somewhat the same way as the k
value in the IAC model in that it alters the effect of the function producing the response strengths in
the RGR. Figure 15.27 provides a demonstration of how the threshold works for the FCM. To see
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y FR

TH

OUTPUT

INPUT

i-FR i-F y-FR y-F

Figure 15.26. FCM-T for the four response task. Input and output layers are shown and
also an additional threshold unit (TH). Solid arrows indicate connections with weight 1,
and dashed arrows indicate connections with weight -1.

Figure 15.27. Sigmoid activation curve showing unbiased (threshold = 0.0) and negative-
ly biased (threshold = -2.3) activations. See text for details.

more clearly the problem that the threshold corrects, let us first consider the overall pattern of
predicted responses for a hypothetical pair of input features. Suppose the y and f features for the
FLMP are both .9. The resulting goodnesses for y-F, y-FR, i-F, and i-FR prototypes in the FLMP
would then be .810, .090, .090, and .010, respectively. For the FCM with no threshold and with the
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y and f input features both at 3.7, the resulting activations for y-F, y-FR, i-F, and i-FR would then
be .976, .500, .500, and .024, respectively as illustrated by the first four symbols in Figure 15.27.
Two differences between the FLMP and FCM are apparent. First, while the FLMP prototype
goodnesses sum to 1, the activations of the FCM sum to 2. This follows from the additive combina-
tion of the separate activations for the FCM. Since these sums are in the denominator of the RGR,
and the numerator for the FCM can be at most 1, the highest proportion of response that the FCM
can predict is .5 which is clearly incorrect. The second difference between the models concerns the
goodness of the two responses with conflicting information. For the FCM, the goodness of the two
responses are centered on the scale at .5 (because the opposing features sum to 0). For the FLMP,
however, the goodness of the responses are both at .09.

Now consider what happens when we add a threshold value of -2.3 to each response unit in the
FCM. The arrows in the figure indicate this leftward shift of 2.3 which results in the second set of
four points in Figure 15.27. In this case, the resulting activations for y-F, y-FR, i-F, and i-FR would
then be .802, .091, .091, and .002, respectively. These sum to .986 and have the center activation
asymmetry (not at .5 activation for conflicting input values) of the FLMP. This biasing effect of the
threshold thus allows the FCM to mimic the overall characteristics of the FLMP.

The mathematics of the four response FCM-T are not as tractable as the two response case. For
the network shown in Figure 15.26 we have the activations:

ay −F =
1 + e −(yj + f k +th )

1
������������������������� (15.138)

ay −FR =
1 + e −(yj − f k +th )

1
������������������������� (15.139)

ai −F =
1 + e −(−yj + f k +th )

1
��������������������������� (15.140)

ai −FR =
1 + e −(−yj − f k +th )

1
��������������������������� (15.141)

Given an RGR decision rule we have (e.g. for y-F):

P (y −F | Y j and Fk ) =

1 + e
−(y

j
+ f

k
+th )

1
� ������������������������� +

1 + e
−(y

j
− f

k
+th )

1
� ������������������������� +

1 + e
−(−yj + f

k
+th )

1
� ��������������������������� +

1 + e
−(−yj − f

k
+th )

1
� ���������������������������

1 + e
−(y

j
+ f

k
+th )

1
� �������������������������

� ����������������������������������������������������������������������������������������������������������������������������� . (15.142)

If th = 0, we get an ordinary FCM, in which the denominator always sums to 2, producing predictions
no greater than .5 — clearly an incorrect result. If th ≠ 0, we get the FCM-T, which cannot be fac-
tored and is thus mathematically different from the LPM.

15.19 Four-response IAC models
The application of the IAC to the four-response task is straightforward. Figure 15.28 shows the

network we used which contains layers for vowel and tone feature inputs and a layer of memory
units for the four response alternatives. Within each layer, although not shown in the figure, there is
mutual inhibition. Each of the memory units receives support from (and sends support back to) one
unit in each input layer. The y-F memory unit, for example, is connected to the y vowel unit and the
F tone unit.

For the IAC-RGR, each activation after 60 cycles was transformed by Equation 15.76 to a
strength value. For the IAC-RGR5, k was fixed at 5. For the IAC-RGRK, k was an additional free
parameter allowed to vary. For both of these models, the resulting strengths were evaluated for a
decision using a RGR. For a y-F response, for example, the probability of a response was:

P (y −F ) = Sy −F +Sy −FR +Si −F +Sy −FR

Sy −F
� ����������������������������������������� . (15.143)
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i-FR i-F y-FR y-FMEMORY

i yVOWEL FR F TONE

Figure 15.28. An IAC model for the four response task. The three layers of units contain
input units corresponding to the vowel and tone features, respectively, and to the "proto-
types" or memory of i-FR, i-F, y-FR, and y-F. Units between layers have bidirectional ex-
citatory connections indicated by arrows. Bidirectional inhibitory connections exist
between all unit pairs within each layer but have been omitted from the figure for clarity.

For the IAC-BOW model, 1000 simulated trials with Gaussian noise added to the inputs were
run with 60 cycles and the response on each trial was made on the basis of which memory unit had
the highest activation on each trial.

15.20 Model tests with hypothetical four-response data
The predictions of each model were fit to the predictions of the FLMP (the hypothetical 196

data points shown in Figure 15.20) using STEPIT. For the fit of the FLMP, 14 parameters were
used, 7 for the y feature values and 7 for the f features. The predictions of this model are shown in
Figure 15.20. Table 15.4 summarizes the fits of the various models, giving the RMSDs between the
observed and predicted data for each model. As can be seen in the table, the FLMP, BPM, GMM-E,
EMM-CB, and TSD-N models all had perfect fits, as predicted by the theoretical analysis. Relative
to the two-response task, the alternative metric MDS model versions GMM-CB (RMSD=.0205 vs
.0060 for two-response) and EMM-E (RMSD=.0093 vs .0002 for two-response) models provided
slightly different predictions. As expected, the non-threshold FCM did very poorly (RMSD=.2721)
while the FCM-T gave a good fit (RMSD=.0002) mimicking the FLMP with th =−8. For the IAC
models, the IAC-RGR5 once again gave different predictions (RMSD=.0457) while the IAC-RGRK
had a good fit to the FLMP predictions (RMSD=.0030) with k =80 and an extremely small range for
the feature values. The IAC-BOW provided a good fit (RMSD=.0091) with the noise standard devi-
ation at .1466.

15.21 Model tests with experimental four-response data
As with the two-response experimental data, it is of interest to see whether we can discriminate

between these models with real experimental data. Table 15.5 gives the RMSD for each model for
each of the six subjects in the QG task, a fit of a mean subject, and the mean of the subject fits. The
FLMP and theoretically equivalent (BPM, GMM-E, EMM-CB, TSD) models all had fits of about
RMSD=.0426. Figure 15.29 shows the fit of the FLMP for the typical subject earlier shown in Fig-
ure 15.19. Of the remaining models, none differed significantly from the FLMP in goodness of fit,
except the non-threshold FCM (RMSD=.2364), F (1,5)=371.1, p <.001 and the IAC-RGR5
(RMSD=.0804), F (1,5)=111.5, p <.001. For the IAC-RGRK model, the additional k parameter
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Table 15.4. Model fits of hypothetical FLMP data.
� ���������������������������������������

MODEL RMSD� ���������������������������������������� ���������������������������������������
FLMP .0000� ���������������������������������������
BPM .0000� ���������������������������������������
GMM-E .0000
GMM-CB .0205� ���������������������������������������
EMM-E .0093
EMM-CB .0000� ���������������������������������������
TSD-N .0000� ���������������������������������������
FCM .2712
FCM-T .0002� ���������������������������������������
IAC-RGR5 .0521
IAC-RGRK .0030
IAC-BOW .0091� ���������������������������������������
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Figure 15.29. Observed (points) and predicted (lines) proportion of i-FR, i-F, y-FR, and
y-F responses for a typical subject. Predictions are for the FLMP and locations on the
abscissa are scaled according to the y-ness of the vowel feature parameters.

averaged 9.2 and for the IAC-BOW model the standard deviation of the input noise averaged .133.

15.22 Summary
Several models of categorization were developed and analyzed within the context of prototypi-

cal pattern recognition tasks. These tasks involve the independent manipulation of two sources of
information. The subject categorizes the stimulus event by choosing among two or four response
alternatives. This task has been used in a variety of empirical settings, and a set of prototypical
results has been observed. Given that a fuzzy logical model of perception (FLMP) has consistently
provided a good description of results in this paradigm, the model’s predictions were used as the tar-
get predictions for the other models. Evaluation, integration, and decision processes are considered
for each model. Important features are whether evaluation is noisy, whether integration follows
Bayes’s theorem, and whether decision consists of a criterion rule or a relative goodness rule.
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Table 15.5. RMSDs for model fits of four response experimental data for 6 individual
subjects, the fit of the mean subject, and the average of the 6 subject fits.

� �����������������������������������������������������������������������������������������������������������������������������������������������

MODEL S1 S2 S3 S4 S5 S6 SM AVE� ������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������
FLMP .0331 .0397 .0300 .0450 .0360 .0715 .0265 .0426

� �����������������������������������������������������������������������������������������������������������������������������������������������

BPM .0326 .0393 .0295 .0449 .0359 .0714 .0262 .0423
� �����������������������������������������������������������������������������������������������������������������������������������������������

GMM-E .0331 .0397 .0300 .0450 .0360 .0715 .0265 .0426

GMM-CB .0322 .0387 .0319 .0433 .0348 .0693 .0273 .0417
� �����������������������������������������������������������������������������������������������������������������������������������������������

EMM-E .0333 .0373 .0293 .0435 .0353 .0705 .0254 .0415

EMM-CB .0331 .0397 .0300 .0450 .0360 .0715 .0265 .0426
� �����������������������������������������������������������������������������������������������������������������������������������������������

TSD .0331 .0397 .0300 .0450 .0360 .0715 .0265 .0426
� �����������������������������������������������������������������������������������������������������������������������������������������������

FCM .2392 .1994 .2203 .2609 .2561 .2423 .2210 .2364

FCM-T .0309 .0388 .0300 .0425 .0362 .0664 .0264 .0408
� �����������������������������������������������������������������������������������������������������������������������������������������������

IAC-RGR5 .0770 .0686 .0605 .0927 .0816 .1018 .0714 .0804

IAC-RGRK .0394 .0379 .0300 .0521 .0375 .0776 .0455 .0458

IAC-BOW .0329 .0395 .0283 .0455 .0358 .0723 .0291 .0424
� �����������������������������������������������������������������������������������������������������������������������������������������������
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The models developed and compared to the FLMP include a model based on Bayes’s theorem
(BPM), models based on multidimensional scaling (MDS), the Theory of Signal Detection (TSD), a
feed-forward two-layer Connectionist Model (FCM), and an interactive activation connectionist
model (IAC). Theoretical analysis of the models reveals that most can be reduced to a canonical
likelihood product form. We call this class of models Likelihood Product Models (LPM). The
required likelihood ratios for this form are given in Tables 15.6 and 15.7, for the two- and four-
response tasks, respectively. Additionally, model fits were carried out to determine to what extent
the non-equivalent models can make similar predictions.

With two response alternatives, the results show that all of the models, except the IAC-RGR
model, can be brought into line with the predictions of the FLMP and the observed results. Even the
IAC model can be saved if activations are multiplied by a very large constant which has the effect of
making activations additive when transformed to logistic values or if a BOW decision rule is used
instead of a RGR. With four response alternatives, similar outcomes are observed except for the
FCM. The FCM cannot match the target results unless an additional threshold unit is assumed. The
additional free parameter given by the threshold unit makes it possible for a FCM-T to predict the
target results.

Given the equivalences found among the models, simple predictions of response probabilities
in these categorization tasks are not sufficient to distinguish among the models. Some of these
models (e.g. the EMM-CB and GMM-E) can be discriminated when more complex prototype struc-
tures are considered (Nosofsky, 1985, 1987). Other dependent measures, such as ratings, similarity
judgments and reaction times, might also permit tests among the models. For example, it has been
shown that the FLMP can account for the dynamics or time-course of processing when a categoriza-
tion task is embedded in a backward masking task (Massaro & Cohen, submitted). The IAC model
had difficulty predicting these same results. To date, the other models have not been systematically
developed to make predictions about the time course of processing. Future work should address this
issue because psychologists should be concerned with differentiating among models of human per-
formance (Townsend, 1990). Many of the models presented here assumed equal, uncorrelated dis-
tributions. We acknowledge that this is not always the case (e.g. with the correlated stimulus dimen-
sions used by Ashby and Gott, 1988), and the theoretical comparison of models should be extended
to more general distributional models (see Chapter 16).
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Table 15.6. Table of likelihood ratios for likelihood product form of two-response models
� �����������������������������������������������������������������������������������������

MODEL lGQ (Cj ) lGQ (Ok )� ������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������

FLMP cj

1−cj� �������
ok

1−ok���������
� �����������������������������������������������������������������������������������������

BPM P (Cj | Q )
P (Cj | G )�����������������

P (Ok | Q )
P (Ok | G )�����������������

� �����������������������������������������������������������������������������������������
GMM-E e −4P cj e −4P ok

GMM-CB — —� �����������������������������������������������������������������������������������������
EMM-E — —
EMM-CB e ( | P −cj | − | −P −cj | ) e ( | P −ok | − | −P −ok | )

� �����������������������������������������������������������������������������������������
TSD-N — —

TSD-L e
−

√
�
6

π�	�
� cj

e
−

√
�
6

π�	�
� ok

� �����������������������������������������������������������������������������������������
FCM e −cj e −ok

� �����������������������������������������������������������������������������������������
IAC-RGR — —
IAC-BOW — —� �����������������������������������������������������������������������������������������
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Table 15.7. Table of likelihood ratios for likelihood product form of four-response
models

�����������������������������������������������������������������������������������������
MODEL lIY (Yj ) lFR F (Fk )����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

FLMP yj

1−yj� �������
f k

1−f k���������
�����������������������������������������������������������������������������������������

BPM P (Yj | I )
P (Yj | Y )� ���������������

P (Fk | F )
P (Fk | FR )�
�����������������

�����������������������������������������������������������������������������������������
GMM-E e −4P yj e −4P f k

GMM-CB — —�����������������������������������������������������������������������������������������
EMM-E — —
EMM-CB e ( | P −yj | − | −P −yj | ) e ( | P −f k | − | −P −f k | )

�����������������������������������������������������������������������������������������

TSD-N Φ(yj )
1−Φ(yj )� �������������

Φ(f k )
1−Φ(f k )�
�������������

�����������������������������������������������������������������������������������������
FCM — —
FCM-T — —�����������������������������������������������������������������������������������������
IAC-RGR — —
IAC-BOW — —�����������������������������������������������������������������������������������������
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Appendix of Symbols
� �������������������������������������������������������������������������������������������������������������������������������������������������������������

acti activation of unit i
an support for prototype n in FLMP
α excitatory strength parameter in IAC
An degree of support for response n in FLMP
BPM Bayesean Probability Model
cEMM closedness coordinate in EMM
cFCM closedness activation in FCM
cFLMP closedness feature value in FLMP
cGMM closedness coordinate in GMM
cTSD closedness coordinate in TSD
Cj closedness stimulus level j
cj closedness feature value of Cj

d (a ,b ) distance from a to b in space
decay rate of activation decay parameter in IAC
d ′ d prime metric
e 2.71828
e event or source of evidence
estr external strength parameter in IAC
EMM-CB Exponential Multidimensional Model - City Block Metric
EMM-E Exponential Multidimensional Model - Euclidean Metric
exci excitatory inputs to unit i in IAC
exti external inputs to unit i in IAC
F 0 fundamental frequency or pitch
FCM Feed-forward Connectionist Model
FCM-T Feed-forward Connectionist Model with Threshold
F chinese falling tone
FR chinese falling-rising tone
Fk falling-tone stimulus level k
f k falling-tone feature value from Fk

FLMP Fuzzy Logical Model of Perception
f FLMP falling tone feature value of FLMP
f TSD falling tone coordinate of TSD
γ inhibitory strength parameter in IAC
GMM-CB Gaussian Multidimensional Model - City Block Metric
GMM-E Gaussian Multidimensional Model - Euclidean Metric
hi hypothesis i
i vowel /i/ as in "she"
IAC-BOW Interactive Activation and Competition Model - Best One Wins Rule
IAC-RGR Interactive Activation and Competition Model - Relative Goodness Rule� �������������������������������������������������������������������������������������������������������������������������������������������������������������
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� �������������������������������������������������������������������������������������������������������������������������������������������������������������

inhi inhibitory inputs to unit i in IAC
L (x ) cumulative logistic function of x
lkj likelihood ratio of hypothesis k to hypothesis j
LPM Likelihood Product Model
M maximum activation level parameter in IAC
m minimum activation level parameter in IAC
neti summed input activation to unit i in IAC
oEMM obliqueness coordinate of EMM
oFCM obliqueness activation of FCM
oFLMP obliqueness feature value of FLMP
oGMM obliqueness coordinate of GMM
oTSD obliqueness coordinate of TSD
Ok obliqueness stimulus level k
ok obliqueness feature value from Ok

Φ(x ) cumulative normal function of x
rest resting activation level parameter in IAC
s (a ,b ) similarity of a and b
Si strength of response i in IAC
TSD-L Theory of Signal Detection Model - Cumulative Logistic Distribution
TSD-N Theory of Signal Detection Model - Cumulative Normal Distribution
wij weight to unit i from unit j in IAC
y chinese vowel /y/, rounded version of /i/
yFLMP y-ness feature value of FLMP
Yj y-ness stimulus level j
yj y-ness feature value from Yj

yTSD y-ness coordinate of TSD� �������������������������������������������������������������������������������������������������������������������������������������������������������������
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