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Abstract. Visible speech reading was studied to determine which features are functional and to
test several models of pattern recognition. Nine test syllables differing in their initial consonant
were presented in intact form or under various levels of spatial quantization. Performance
decreased in increasing quantization but remained relatively good at moderate levels of degrada-
tion. Different models were tested against the confusion matrices. Six features were identified as
functional in distinguishing among the nine consonant—vowel syllables. These features were
used as sources of information in a fuzzy-logical model of perception and an additive model.
The fuzzy-logical model provided a significantly better description of the confusion matrices,
showing that speech reading is analogous to other domains of pattern recognition such as face
recognition and facial-affect perception.

1 Introduction

The talker’s face as well as his or her voice convey linguistic information in face-to-face
communication. This contribution of visible speech has been shown in various speech-
perception contexts; namely, with auditory speech that is conflicting (McGurk and
McDonald 1976), ambiguous (Massaro and Cohen 1990), or degraded (Sumby and
Pollack 1954). In the absence of audible speech subjects with normal hearing have been
shown to speech read reliably without any systematic training (Heider and Heider
 1940; Massaro and Cohen 1995). Research has also demonstrated that subjects with
normal hearing (Massaro et al 1993) and hearing-impaired subjects (Walden et al 1977)
can be trained to discriminate nine classes of visible consonant phonemes (visemes)
without the aid of audible speech. In addition, eight vowel-viseme categories can also
be speech read reliably (Montgomery and Jackson 1983).

In further inquiry into visible-speech perception it has been asked what features
of the face convey the perceptually functional information for speech reading. Not
surprisingly, studies have shown that functional features reside in the lower half of the
face. For example, experiments by Erber (1974) with 3-facial views indicate that jaw
rotation and cheek movement are important. Functional features have also been shown
to reside in the lips. Summerfield (1979) presented subjects with different lip represen-
tations in four conditions to determine their contribution to perception when the
acoustic speech was distorted with interfering prose: (a) a control in which the entire
face was shown; (b) lips isolated by painting with phosphorescent paint and filming in
ultraviolet lighting; (c) a point-light display of the lips similar to that of Johansson
(1974); (d) 2 moving-ring representation of the lips. In all conditions, the visual display
was shown in synchronization with auditory speech. Correct responding was increased
by 42.6% when the entire face was shown relative to hearing the distorted auditory
speech alone. With only the painted lips, correct responding was improved by 31.3%.
The third and fourth conditions, however, did not significantly improve performance.
Summerfield concluded that untrained subjects use the functional features of the lips
to perceive speech. It was speculated that these features may include lip occlusion,
horizontal lip extension, and oral area. Benoit et al (1996) found that a view of the
jawbone enhanced speech reading relative to just a view of the lips. Including the skin
around the jaw improved speech reading even more.
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In a seminal study H W Campbell (1974) evaluated the contribution of phonetic
features by using the hierarchical clustering analysis of confusion matrices (for a
published example of this analysis, see Walden et al 1977). In this type of analysis,
phonemes are organized in steps into a hierarchy of groups on the basis of their
similarity. The similarity of two phonemes is given by the degree of their mutual
confusions: two phonemes are similar to the extent that they are confused with one
another. Subjects identified consonant—vowel syllables under conditions of auditory,
visible, and bimodal speech presentation. The auditory syllables had one of three levels
of noise distortion added. The hierarchical analysis of various phonetic features
showed that the visible features from most salient to least salient were coronal, contin-
uant, and voicing. Coronal is a feature that distinguishes place of articulation and
accounts for our ability to speech read the difference between labial (/b/, /p/) and
nonlabial (/d/, /t/) consonants. Continuant describes manner of articulation and
accounts for our ability to speech read the difference between stops (/d/) and fricatives
(/s/). Voicing describes the difference between voiced (/b/) and voiceless (/p/) cognates
that are otherwise identical. The salience of the auditory features had just the opposite
ordering: voicing, continuant, and coronal. This hierarchical analysis helped identify
potentially functional features of visible and audible speech and simultaneously revealed
their complementary relationship. A salient feature in one modality is less salient in
the other.

Other classification schemes have been proposed for visible speech. Binnie et al
(1974) suggested five articulation sets based on phonetic theory: bilabials, labiodentals,
interdentals, rounded labials, and linguals. The Jena method provides a simpler classifica-
tion scheme in which three visible structures of the face define the functional features.
These facial structures are the lips, tongue, and tongue—palate (Bunger 1952). Most
descriptions of speech reading, however, group phonemes into categories called
visemes (Berger 1972). Viseme classes are constructed to maximize the visual similarity of
phonemes within the class while minimizing the visual similarity between viseme
classes. Several viseme classifications have been developed; some with as few as four
visemes and others with as many as twelve (Berger 1972). This lack of agreement
arises from the noncrisp or fuzzy nature of visible speech. Phonemes, for example, do
not fit into viseme classes in an all-or-none fashion but, rather, they fit to various
degrees. Thus, any number of viseme classes can be defined based on the criterion level
of performance for class membership and the quality of the test stimulus. In our
studies, we test nine consonant phonemes corresponding to the nine viseme categories
of Walden et al (1977). Given our concern with the features used in visible-speech
perception, we now look to the literature in face recognition to determine if research
in that domain can inform our study.

1.1 Face recognition

Perceptual information has also been a topic of study in the face-recognition and
general-visual-perception domains. Unlike the speech reading domain, however, face-
recognition research is focused more directly on the nature of perceptual information
and the methodology used in exploring perceptual information. Current research in
face recognition gives the impression that faces are perceived as both a set of individual
features and the structural relations among features. Faces in general are thought to
be perceived in a more configural manner than nonface patterns (Tanaka and Farah
1993). Diamond and Carey (1986) distinguish between two types of structural relations
in object-perception tasks, first order and second order. Second-order structural relations
are those that remain constant across a class of stimuli whereas first-order structural
relations do not. For faces as a class of stimuli, the relations of the nose, mouth,
and eyes are fixed and therefore are second-order relations. For landscapes, however,
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the relations of the trees, mountains, and river are first order because they can vary
considerably across specific instances. Configural processing is used not only in face-
recognition tasks but also in any task in which one has acquired a certain level of
expertise (Diamond and Carey 1986). Given that configural processing develops
through experience, then the amount of configural processing involved in the percep-
tion of a face is thought to increase as experience with the face increases (Carey et al
1980). Highly learned patterns like familiar faces contain greater perceptual information
" about the stiuctural relations among features than unfamiliar faces.

Although some investigators have advocated that faces are processed differently
from other domains of visual perception (eg Farah 1995), we operate on the assumption
of a continuity across these different domains. Thus, the methodologies and theoretical
distinctions of face-recognition research are useful in understanding perceptual infor-
mation in speech-reading tasks.

In research on general visual perception roughly the same view of feature organization
is held as in face-recognition research with the primary difference being terminology.
Features are generally classified as local and global instead of featural and configural
(Bruce 1988). Although clear definitions are scarce in the literature, local and global
features refer to the size of elements in relation to a larger image. The feature/configural
distinction is used to focus more on features as points of reference for the description
of structural relations in an image. In most cases, local features are isolated features
and global features are the structural relations among features. However, this is not
always the case. In face recognition, for example, the eye is considered a local feature,
yet the eye has many potential configural properties of its own. Some of these include
the relation of the upper lid to the lower, the right corner to the left, and the roundness
of the eye opeming. Likewise, global properties need not necessarily depend on the
relations among elements (Kimchi 1992). Some global aspects of the face, hairstyle for
example, are not made up of the spatial arrangements of components. Rather, hairstyle
18 more like a global feature or form that occupies a large proportion of the face.

1.2 Spatial-frequency information

Research in visual perception has demonstrated that global and local features are
processed somewhat independently in the visual system (Navon 1977, 1981; Lagasse
1993). It has been proposed that the visual system performs a spatial-frequency analysis
whereby global features are processed by low-spatial-frequency channels and local
features are processed by high-spatial-frequency channels (DeValois and DeValois
1988). Support for multiple spatial-frequency channels comes from early psychophysical
experiments. For example, adaptation to specific spatial frequencies was demonstrated
by using square-wave (Pantle and Sekuler 1968) and sine-wave (Blakemore and Campbell
1969) gratings. These experiments showed that the sensitivity to specific spatial frequen-
cies decreased after adaptation to gratings of the same frequency. Also, adaptation to a
specific spatial frequency has been found to affect the subsequent viewing of gratings
of different spatial frequency (Blakemore and Sutton 1969). Generally, a contrast
effect is observed in which the gratings at lower spatial frequencies than the adaptor
are judged as even lower than the adapting frequency and gratings at higher spatial
frequencies are judged higher. A more recent spatial-frequency-adaptation experiment
supports the idea that global and local information is processed independently
through channels of low and high spatial frequency (Shulman et al 1986). Subjects in
this experiment were required to judge the orientation of small or large ‘C’ character(s)
after exposure to an adapting sine-wave grating. Results showed that response time
and errors increased for local-orientation judgments as the frequency of the adapting
sine-wave grating increased. Likewise, response time and errors increased for global-
orientation judgments as the frequency of the adapting sine-wave grating decreased.
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Riedl and Sperling (1988) in an impressive experiment demonstrated that multiple
spatial-frequency bands provide redundant perceptual information for American Sign
Language (ASL) stimuli. The ASL stimuli used were initially 512 x 512 pixels per frame
samples at 30 frames s™'. One hundred of these ASL signs were randomly assigned to
one of four frequency bands and then band-pass filtered. The range of the adjusted
frequency bands in cycles per frame width were (a) 0-4.2, (b) 4.8-6.5, (c) 93176,
(d) 21.5 and above. The results showed that intelligibility was roughly comparable
across the four frequency bands, with somewhat better performance on the higher
frequencies. The mean percentage correct from the first band to the fourth was 66, 68,
88, and 80. In a follow-up experiment, Riedl and Sperling were able to selectively
mask each frequency band with dynamic Gaussian noise of the same frequency. The
results of Riedl and Sperling (1988) provide an explanatory basis for results from
other experiments in ASL perception demonstrating high levels of intelligibility at low
information rates (Sperling 1980; Tartter and Knowlton 1981; Pearson 1986).

The claim that different spatial-frequency bands convey redundant perceptual infor-
mation has also been suggested by researchers in face recognition (Bruce 1988). Current
research suggests that because faces are overlearned stimuli then subjects are sensitive to
structural relations among features which are transmitted through low-spatial-frequency
bands. According to this view, high-spatial-frequency information can be considered
to be redundant (Ginsburg 1978, 1980). It has been demonstrated, however, that high
spatial frequencies are themselves sufficient for face recognition (Fiorentini et al 1983).
Thus, one could also conclude that low-spatial-frequency information is redundant.
Given the complexity of these results, it is clear that spatial-frequency analysis provides
only a partial account of performance on perceptual tasks (eg Uttal et al 1995a, 1995b).
It is also necessary to understand pattern recognition as a set of processes that occur
after the spatial-frequency analysis of the visual system. Spatial-frequency analysis is a
biological constraint that determines what type of information or features are available to
the pattern-recognition system. This fits with our general findings that there are multiple
sources of information supporting perception and pattern recognition (Massaro, in
press). Further, how these sources of information are evaluated and integrated is one
of the main concerns of the present paper.

The stimulus-distortion method chosen for this experiment is the spatial-quantization
method first used by Harmon (1973) and later elaborated by Costen et al (1994, 1996)
and Uttal et al (1995a, 1995b). Spatial quantization is the process of reducing the resolu-
tion of an image through the local averaging of pixels into larger blocks. This process
is sometimes referred to as pixelization. These blocks act to eliminate spatial-frequency
information depending on block size. These blocks eliminate the relatively high-spatial-
frequency information in the image while preserving the relatively low-spatial-frequency
information. Also, the edges of these blocks introduce high-spatial-frequency components
into the image that are not representative of the original image. Owing to the fact
that spatial quantization introduces nonrepresentative high-frequency components, it
tends to be more devastating to performance than other image-degradation methods
such as low-pass Fourier transform or Gaussian blurring. However, it has been shown
that spatial quantization has a comparable response function to either of these two
image-degradation methods in face-recognition tasks (Costen et al 1994, 1996). This
view implies that spatial quantization is reducible to low-pass Fourier transform and
Gaussian blurring. However, it has been argued that spatial quantization may be
more complex than originally thought (Uttal et al 1995b).

Spatial quantization was first used to study recognition processes in face-recognition
research. Harmon (1973), using this method, was able to show that natural faces without
high-spatial-frequency information were still easy to recognize. Faces were recognizable
with only 16 x 16 pixels or about 8 cycles per face. The same results were obtained in
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a more recent experiment by Bachmann (1991), who distorted natural faces by using
the spatial-quantization method and measured accuracy of face identification. Identifica-
tion performance remained highly accurate with increased quantization across conditions
up to 18 horizontal pixels per face, which corresponds to 9 cycles per face, but fell off
sharply at 15 pixels per face.

Another experiment by Costen et al (1994) showed that increases in image informa-
tion above 21 horizontal pixels (10.5 cycles per face) does not improve accuracy or
decrease response time in an identification task. Performance deteriorated only when
information in lower—mid and lower spatial frequencies was not available. All three
experiments taken together indicate that spatial frequencies below roughly 10 cycles per
face convey adequate information for face recognition. v

Perception of facial affect has also been shown to be highly robust to spatial
quantization. For example, Wallbott (1992) measured facial-emotion identification for
natural faces with fourteen basic emotional states: euphoria, happiness, fear, terror,
contempt, shame, sadness, despair, cold anger, hot anger, interest, boredom, disgust,
and pride. The four conditions included one control and three levels of quantization:
150 x 150, 75 x 75, and 38 x 38 pixels per face. These three levels conform to about 75,
375, and 19 horizontal cycles per face. Mean identifications from control to the third
level were 66%, 65%, 47%, and 35% correct. These results show a high level of resistance
to distortion but not as high as that seen in face-recognition experiments.

The purpose of the present investigation was to extend the analysis of spatial-
frequency information used in face-perception research to the domain of visible-speech
perception. It was hoped that this method would clarify the perceptual importance
of information from the local to the global level in the general task of visible-speech
recognition and in the task of disambiguating individual viseme classes. Spatial informa-
tion was manipulated by varying the block size of the display in the presentation of the
visible speech. As block size is increased, relatively lower spatial frequencies are elimi-
nated. This effect is appropriate for addressing the ecological concerns of speech readers.
In natural speech reading situations, high-spatial-frequency information is usually lost
first, leaving only low-spatial-frequency information for recognition. Such situations occur
when the speaker is at a distance (Small and Infante 1988), the speaker is in the peripheral
viewing area, the speaker’s face is obscured as when viewed through a screen, or the speech-
reader suffers from reduces contrast sensitivity due to old age (Thorn and Thorn 1989).

1.3 Models of pattern recognition

Another purpose of this investigation was to use the pattern of viseme confusions
(confusion matrices) to test the fuzzy-logical model of perception (FLMP) (Massaro
and Friedman 1990). The FLMP has been previously shown to describe performance
better than alternative models in several domains of perception, including facial-affect,
audible-speech, and bimodal-speech experiments (Massaro and Cohen 1990; Ellison and
Massaro 1997). In the case of bimodal speech, for example, Massaro and Cohen (1990)
tested the perception of audible and visible speech in an expanded factorial design using a
/ba/ to /da/ continuum. The subjects’ identification responses were used to test the FLMP
and additive model of perception (AMP). The primary difference between these two
models is that the FLMP predicts multiplicative integration and the AMP predicts
additive integration of features. The FLMP produced a much better fit to the responses
than the AMP.

In the present study, the FLMP was again tested against the AMP. The AMP was
chosen because it is currently a proposed mechanism of information integration in
perception (Cutting et al 1992; Massaro and Cohen 1993). The AMP was chosen also
because it is mathematically equivalent to several theories of psychological processes
including the single-channel model, the categorical model, and the weighted-averaging
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model of perception. The single-channel model predicts that the subject attends to
only one source of information (one feature) on each trial. In the categorical model it
is assumed that each feature is categorized and then an alternative is chosen by taking
into account a bias factor for each alternative. The weighted-averaging model holds
that the value of each feature is weighted according to a bias factor and the result is
averaged to support a given alternative.

2 General procedure

2.1 Subjects

Eighteen undergraduates served as subjects as an option to fulfill a class requirement.
All were native speakers of English and showed normal or corrected vision.

2.2 Apparatus and materials

A computer-generated synthetic head with face was used to produce the visible-speech
stimuli in all conditions. The synthetic head was generated with a polygon topology
and animation was controlled through a set of parameters (Cohen and Massaro 1990).
The polygon topology was made up of approximately 900 surfaces connected at the
edges to create the three-dimensional head with eyes, pupil, iris, sclera, eyebrows, nose,
skin, lips, tongue, teeth, and meck (see figure 1). In the present study, the synthetic
head did not have ears or hair. Animation of the synthetic head was generated in real
time (approximately 30 frames s™'). The real-time animation was generated by a Silicon
Graphics Crimson Reality Engine with 96 megabytes of RAM and an R400 100 MHz
microprocessor. Speech was controlled by eighteen parameters, such as jaw rotation
and thrust, horizontal mouth width, moving the corners of the lips, protruding the
lips, lower-lip “f* tuck, raising the upper and lower lips, horizontal and vertical teeth
offset, and tongue angle, width, and length. Prior experiments by Cohen et al (1996)
and Massaro (in press) have shown that visible speech produced by the synthetic head
is almost comparable to that of a real human. The spatial-quantization filtering was
performed by using the Mosaic effect of a Panasonic MX-50 mixing/special-effects
board. Examples of the stimuli are given in figure 1.

Figure 1. The synthetic head in the control condition (323 cycles per face) at far left through the
highest level of distortion (4 cycles per face) at the far right. Extreme articulations are shown
for two visemes,/va/ (top) and /wa/ (bottom).
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2.3 Design and procedure

Spatial quantization was varied at five steps from level 0 (normal display) to level 16
of the Mosaic effect on the MX-50 mixer. These five levels were equivalent to the
following cycles per face: level 0, 323 cycles per face; level 2, 31 cycles per face; level 4,
16 cycles per face; level 8, 8 cycles per face; level 16, 4 cycles per face. Cycles per face
were calculated by dividing the number of quantized blocks that run horizontally at
the face’s eye level by two. Cycles per face or cycles per image is a common measure
in spatial-frequency research and is claimed to be independent of viewing distance
(Riley and Costall 1980). Figure 1 shows the synthetic head from the control condition
(323 cycles per face) to the highest level of distortion (4 cycles per face) for the two
visemes /va/ (top) and /wa/ (bottom). The five levels were crossed with nine visemes:
/bal, /va/, /tha/, /da/, /ra/, la/, /za/, /ja/, /wa/, for a total of forty-five conditions.
A random sequence of trials was determined for each test by sampling the forty-five
conditions randomly without replacement within a block of 45 trials. There were fifteen
test blocks for a total of 675 trials. There were three sessions of 225 trials each with a
5 min break between sessions.

Subjects were instructed to watch a video monitor (NEC 12 inch C12-202A),
choose the one out of the nine visemes that was articulated by the synthetic head,
respond as quickly as possible on each trial with the first answer that came to mind,
and use the feedback given after each trial to improve their performance. Each subject
was tested in small (5 ft x 6 ft) soundproofed room with a door at one end and
sound-absorption material covering part of the walls. Subjects were seated about 1 m
from a video monitor which was at eye level. At this distance, the synthetic head was
presented at a constant size of 16.95 vertical and 13.42 horizontal deg of visual angle.
The lower half of the face was measured from the tip of the nose to the bottom of
the chin. Spatial quantization from level 1 (control) to level 5 comprised the following
cycles deg™' for the lower half of the face: 48.7, 5.2, 2.7, 1.3, 0.7. The spatial resolution
of the lower half of the synthetic face for the quantization conditions fell largely
within an optimal range of contrast sensitivity which is highest between about 0.5 and
10 cycles deg™' of visual angle (cited in Wandell 1995).

Responses were input on a TV1950 keyboard positioned between the subject and
the video monitor. There were nine keys on the bottom row (from ‘x’; to °/’) marked
with labels for each of the nine visemes. These labels were explained to all the subjects
before the experiment and could be considered intuitively appropriate. The viseme
labels were BA, VA, THA, DA, RA, LA, ZA, JA, and WA. On each trial, subjects
were required to respond within 5000 ms of the stimulus presentation or they were
prompted by a 100 Hz beep sound. A total of four subjects could take part at the same
time and advancement from one trial to another could not occur until all subjects
responded. After all subjects responded, they received feedback in the form of the
written label without the face in the bottom left corner of the video monitor.

3 Results

The mean proportion of correct identification was defined for each subject for each
quantization condition as the total number of correct viseme classifications divided by
the total number of trials. Figure 2 gives the mean proportion of correct identification
across subjects as a function of spatial quantization. A positively decelerated curve
best represents the functional relationship between identification performance and
spatial quantization. This curve spans the entire stimulus range from asymptote at the
control condition to chance performance with nine response alternatives (11% correct)
at the highest level of distortion (4 cycles per face). A two-factor within-subject analysis
of variance indicated that spatial quantization reduced correct identification from 68%
to 12.5% (F, ¢ = 113.52, p < 0.001). Multiple comparisons by means of the Tukey HSD
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method with « = 0.05 and df = 765 showed that each change in spatial quantization
produced a significant change in performance.

Figure 3 gives the proportion of correct performance for each of the eighteen subjects,
averaged over all visemes as a function of the five levels of spatial quantization. Inspection
of individual performance shows that the function given in figure 2 was not merely the
result of averaging but that spatial quantization had a similar effect on the performance of
each subject. Although subjects differed in overall performance, the performance of each
subject is best described by a monotonically decreasing function of spatial quantization.

Figure 4 gives the mean proportion of correct identification for each viseme and each
level of quantization. Speech-reading performance differed significantly for the different
visemes (Fy 135 = 30.14, p < 0.001). Consistent with other speech-reading experiments
(eg Walden et al 1977), correct identification was higher for /ba/, /va/, /tha/, /la/,
/ja/, and /wa/ than for /da/, /za/, and /ra/. Spatial quantization differentially influenced
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Figure 3. The proportion of correct performance (P) for each of eighteen subjects averaged over
all visemes at each of the five levels of spatial quantization (control at far left to most degraded
at far right). Spatial quantization is on a logarithmic scale.
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Figure 4. The mean proportion of correct identifications (P) across subjects for each viseme and
each level of distortion. Spatial quantization is on a linear scale.

- speech reading of the different visemes, as indicated by an interaction between viseme
and distortion (F3, 54 = 15.77, p < 0.001). Most of the visemes were influenced similarly
and it can be seen that performance is largely resistant to spatial quantization up to and
including 16 cycles per face. However, the visemes /tha/ and /la/ are exceptions because
performance degraded quickly with increasing spatial quantization. Performance for /da/
and /za/, on the other hand, was fairly poor at the control level and therefore could not be
further degraded by spatial quantization.

Confusion matrices for each level of spatial quantization are given 1in figures 5a - Se.
The diagonal line of circles with crosses show the proportion of correct responses
whereas the off-diagonal circles show confusions. Circle size depicts the proportion of
responses in a given cell; the greater the proportion of responses, the larger the circle.
Without any distortion (figure 5a), the proportion of responses on the diagonal is very
large, showing a high degree of correct responding along with a small rate of confusions.
The visemes /da/ and /za/ violate this trend, however. The test viseme /da/ was often
identified as /la/ and to a lesser extent /za/, /tha/, and /ra/. The viseme /za/ was
most highly confused with /da/ and somewhat less with /ja/, /tha/, /la/, and /ra/.
The confusions do not appear completely symmetric. For example, the visible syllable
/da/ was called /la/ much more often than the visible syllable /la/ was called /da/.

Across levels of increasing quantization, the correct identifications on the diagonal
decrease to chance performance at 4 cycles per face and proportions of confusions
increase. This decrement in performance is not the same for all visemes. At the first level
of distortion (32 cycles per face) only /tha/, /la/, and /za/ showed any substantial
decrease in mean proportion of correct identifications across subject. The visemes
/va/ and /ja/ began to break down at the second level (16 cycles per face), followed by
/ra/, /wa/, and /ba/ as distortion was further increased.
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A more formal examination of the confusion matrices was performed with an
information-transmission analysis, similar to that used by Miller and Nicely (1955). This
analysis gives the degree of covariance between the input and output in a stimulus—
response system. Information transmission (7°) is defined as the maximum uncertainty
In a stimulus - response system minus the actual uncertainty (H) of the responses:

Tiy) = Hox — H, M
where

Hppo == pilog,p,+— > plog, p, @)
and

H=-Y"pp;log, pp;. ©)

The variable p; is the probability of the stimulus i, p; is the probability of the response j,
and p; is the probability of the response j given the stimulus i. Logarithms are taken
to base 2 so that information is scaled in bits per stimulus or the number of binary
decisions needed to discriminate the input alternatives. The proportion of information
transmitted from x to y in bits per stimulus is given by

T
];el x; T
(x:9) I‘I(x)
Figure 6 shows the normalized covariance measure or proportion of information
transmitted at each level of distortion. The relationship between normalized covariance
and distortion is given by a positively decelerated function similar to the overall accuracy
performance shown in figure 2. This functional similarity indicates that the observed
function was not an artifact of the accuracy scale. It can be seen from figure 6 that
at the control level a relatively moderate amount of information was transmitted
(53%) by the synthetic face for the visemes overall. This result suggests that faces in
general and the synthetic face specifically are reasonably informative for nonexpert
speech readers. If the reduction in the quality of the test syllable is assumed to be a
linear function of spatial quantization, the positively decelerated function of figure 6
indicates that information transmission is fairly resistant to degradation and speech-
reading is robust across a fairly substantial amount of degradation. (The term ‘data’ is
defined as a physical dimension such as photons or frequency while ‘information’ is a
psychological dimension that depends on the importance of data for a given task.
Thus, if a segment of data is used to decide between two possible alternatives in a
particular task, then that segment of data is information.)
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4 Tests of models

Given our experience with the analysis and synthesis of visible speech, it was possible
to construct a set of visible features that should distinguish among nine consonant
visemes in English. Six features were deemed to be necessary information and our goal
1s to test the psychological validity of these proposed features. Table 1 summarizes the
feature assignments for the nine visemes used in our experiment. The duration feature
differentiates visible phonemes that have a long versus a short duration: /za/ is long
and /ba/ is short. The visible-tongue-tip-movement feature distinguishes whether or
not movement of the tip of the tongue is visible during articulation. For example, the
tip of the tongue can be seen in /tha/ and /la/ but not in /ba/ or /ja/ (as in judge).
Lip rounding distinguishes the ‘rounded’ visible consonants /ra/, /wa/, and /ja/ from
others. Within the rounded consonants, horizontal mouth narrowing distinguishes
/wa/ in which there is a small distance between the corners of the mouth from /ra/
and /ja/ with a large distance. Dental adduction distinguishes consonants in which
the teeth can be seen to come together from those in which the teeth are either not
visible or seem to be apart; thus, /tha/, /za/, and /ja/ versus the others. Last, lower-lip

tuck refers to the lower lip elevating and tucking under the upper teeth. This is a highly
distinctive feature of /va/.

Table 1. Feature set describing the nine consonant visemes in English.

Feature Viseme

foa/ vaj [tha/ [da] [za/ [la/ [ra [ja [wal

Duration - — — — + + + + +
Tongue-tip movement - - + + + 3+~ - -
Lip rounding - - - — — ~ + + +
Mouth narrowing - - - - — - — - +
Dental adduction - - + - + - — + —
Lower-lip tuck — + — — — — — — —

It should be noted that this specification does not imply an all-or-none (categorical)
definition of features. The binary specification of features in table 1 only represents
the direction of the feature property for each viseme. A plus means that the feature is
present whereas a minus means the absence of the feature. The feature should not be
interpreted as being present or absent but rather as the direction of the continuous
feature value it assumes with the corresponding viseme. For example, the value for
the feature ‘rounded’ might be 0.8. In this case, presentation of a viseme with the
rounded feature supports all rounded visemes to degree 0.8. Nonrounded visemes
would receive support (1 —0.8) or 0.2. Thus, the lips are described as rounded and
the lower lip not occluded for /ja/ whereas the lips are described as unrounded and the
lower lip occluded for /va/.

A feature analysis of the confusion matrices was performed to predict the pattern
of responses given in the confusion matrices. The feature analysis was conducted by
first specifying, a priori, one set of features used by subjects in speech reading. This
feature set is a priori because it is specified prior to analysis, similar to independent
variables chosen prior to a discriminant analysis. If the feature set was a posteriori,
then it would be the result of analysis as is the case in multidimensional-scaling
modeling or principle-components analysis, or would be tailored to the correct results
by using information from the model fits with various feature sets. The feature set
defines the expected direction of the prototype representation for each viseme and thus
is binary specifying either a feature or its complement. Referring to the feature set
shown in table 1, an example of the prototype for /va/ would be:
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/va/: short duration, no tongue-tip movement, no lip rounding, no mouth narrowing,
no dental adduction, lower-lip tuck.

Similarly, the features for the /wa/ prototype would be:

/wa/: long duration, no tongue-tip movement, lip rounding, mouth narrowing, no
dental adduction, no lower-lip tuck.

Even though each feature is defined as a specific value or its complement, its
influence in the perception of visible speech is represented by a value between 0 and 1.
In the simple model there is one parameter for each feature and the parameter values
range from 0 to 1. The parameter value for the feature indicates the amount of influence
that feature has. Therefore, if the /va/ prototype is expected to have a short-duration
feature and the calculated parameter value for this feature is 0.90 then the dura-
tion feature is highly functional in the expected direction. Alternatively, if the calculated
parameter value for the duration feature is 0.50, then the conclusion would be that the
duration feature is not functional at all. Because of the definition of negation as one
minus the feature value, a feature value of 0.5 would give the same degree of support
for a viseme that has the feature as it would for a viseme that does not have the
feature. Last, if the calculated parameter value is 0.20 then the duration feature is
functional but in the direction opposite from the expected. In this case the /va/ proto-
type should have been defined as having a long duration instead of a short duration.

The overall match of the feature set to the prototype was calculated by combining
the features according to the constraints of the FLMP. These constraints dictate that
features are sources of information that are evaluated independently of one another
and the features are integrated multiplicatively (conjoined) to give the overall degree of
support for a viseme alternative. Thus, the overall degree of support for /va/, S(/val/),
given the presentation of a /va/ syllable, is

S(/va/lfva)) = fifffafske » ©)

where f indexes a match between the feature in the stimulus and the corresponding
feature in the /va/ prototype. A mismatch between the feature in the stimulus and the
corresponding feature in the prototype would be indexed by (1 — £ ). Thus, the support
for the /wa/ prototype, given presentation of a /va/ syllable, is

S(/waflfva/) = (1 - )L -£)A =LA~ %), ©)

where (1 —f) indexes a mismatch between the feature in the stimulus and the corre-
sponding feature in the /va/ prototype.

After the overall degree of support for each viseme is calculated, the stimulus is
categorized according to the relative-goodness rule, which states that the relative prob-
ability of choosing an alternative is the goodness of match of that alternative divided

by the sum of the goodness of match of all alternatives. The probability of responding
/va/ given a /va/ stimulus is

p(/vaflfva) ~AEERER, )

where f indexes a match between the feature in the stimulus and the denominator
1s the sum of the overall degree of support, s,, for each of the nine alternatives. The
probability of responding /wa/ given the same /va/ stimulus is

1- 1-£)1— 1 -
p(jwa/| vafy — LAV =)0 A0 —f) ®
25 :
The confusion matrix observations of this experiment are shown in figures 5a—5e.

There are five confusion matrices, one for each level of spatial quantization, with
81 cells each for a total of 405 observed points to be predicted. Our set of six features
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was used to model the confusion matrices with six, eleven, and thirty parameters. In
the simple-model fit, there was one parameter for each feature, regardless of the
spatial-quantization condition. That is, the model predicts equivalent performance
across the five stimulus presentation conditions. We expect this model to give a poor fit.

The full-model fit included one parameter for each feature at each level of spatial
quantization. Thus, the change in features across levels of spatial quantization is fully
specified by this thirty-parameter model.

The reduced (eleven-parameter) fit included one parameter for each feature and
one weight parameter for each level of spatial quantization. The weights (w;) were
added to simulate increasingly poor feature resolution of feature values as the spatial
quantization increased. Poor resolution means the feature value approaches 0.5:

f=wf+(1—w)05. ©9)

These FLMP models were fit to the results of each of the eighteen subjects. The
program STEPIT (Chandler 1969) was used to iteratively adjust the parameter values
to minimize the squared deviations between the predicted and observed points. The
output of this process is a set of parameter values which maximize the accuracy of the
model. The goodness of fit of a model to the results is reported as the root mean
squared deviation (RMSD) between observed and predicted points.

We tested three variants of the FLMP. A simple FLMP predicts no effect of the
quantization condition. In this simple model, our feature set with six parameters gave
an average RMSD of 0.137. This represents a moderate description of the observed
data when the ratio of parameters to predicted points (about 1 to 67) is taken into
account. As a general rule of thumb, the fewer parameters the poorer fit of a model. It
i1s not surprising that this six-parameter model performed only moderately if one
considers that the model does not account for changes in the features across level of
spatial quantization.

The full model with thirty parameters allows changes in the feature values
over distortion levels. With this model the average RMSD was 0.111. Since this
thirty-parameter model allows a unique feature value for each quantization condition,
it gives the best possible fit of this feature set to the data.

The third model that was tested was a reduced model. This eleven-parameter model
was an attempt to reduce the parameters by assuming the feature values are neutralized
(moved closer to 0.5) across levels of spatial quantization. The average RMSD for this
model was 0.117. This model was largely successful because its average RMSD is
almost as small as the average RMSD for the full model. Thus, the reduced model
appears to be the preferred model because it gives a relatively good fit with few free
parameters. This fit of the reduced FLMP with just eleven parameters was only
slightly poorer than the fit of the full FLMP with thirty parameters (0.117 versus 0.111).
The mean parameter values for the six features are 0.64 for duration, 0.81 for tongue-
tip movement, 0.74 for lip rounding, 0.98 for horizontal mouth narrowing, 0.78 for
dental adduction, and 0.92 for lower-lip tuck.

The mean parameter values for the five weights are 0.98, 0.93, 0.74, 0.49, and 0.09
across the five levels of increasing degradation. These weights are relatively large for
the control and the conditions with 32 and 16 cycles per face. These weights seem to
confirm the results of the information-transmission analysis by showing that the infor-
mation in the stimuli does not degrade linearly but rather is robust to moderate levels
of distortion.

It 1s possible that the FLMP assumption of multiplicative feature integration is not
accurate. To test this, an AMP was fit to the observed data in the same manner as
the FLMP. The difference between these two models is simply the conjunction rule:
multiplicative versus additive. A full AMP with thirty free parameters gave an average
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RMSD of 0.173. This fit of 0.173 was significantly poorer than the 'fit of the reduced
eleven-parameter FLMP 0f 0.117 (F, ;; = 90.96, p < 0.001). We can conclude that the
FLMP produced a better fit to the data than the AMP.

5 Discussion

The results of this experiment showed that overall speech-reading performance is
resistant to the effects of image degradation caused by spatial quantization. Subjects
differed in speech-reading ability but all produced the same monotonically decreasing
response function. Additionally, the effects of spatial quantization varied across viseme
with some visemes being more robust than others.

Similar to both face-identification and facial-affect-perception experiments, perfor-
mance in speech reading appears somewhat robust to stimulus degradation resulting
from spatial quantization. This indicates that both structural and featural information
is used by subjects in these three perceptual tasks. The only difference in these tasks,
however, is the amount of structural/featural information and the specific features
that are used. As was described by Costen et al (1994), an increase in spatial frequencies
above 10.5 cycles per face does not significantly improve face identification. Thus,
lower frequencies carry a large amount of information. In the present investigation,
however, increases in spatial frequencies above 8, 16, and 32 cycles per face do result
in a significant and much reduced increase in correct viseme identifications. There-
fore, higher-frequency bands are carrying some amount of necessary information
for speech reading. It 1s generally held that structural information is carried in the low
frequencies and featural information is carried in the high frequencies. It can be con-
cluded, then, that face recognition seems to involve the use of more structural informa-
tion than does speech reading.

The interpretation given here implies that face recognition is different from speech
reading only because of the information used, not because of the type of processing
performed on that information. Alternatively, some have argued that face recognition,
speech reading, and gender identification are all specialized systems that have distinct
processes (Bruce 1988). Support for this comes from studies showing a face-inversion
effect in which face recognition is disrupted with inverted (upside-down) faces. Yin
(1969) explored the face-inversion effect by testing recognition memory for faces,
houses, airplanes, and schematic men-in-motion pictures in two conditions, upright
and inverted. It was found that recognition memory was best for faces in the upright
condition and worst for faces in the inverted condition. Inversion had no effect for
the houses and airplanes. This result has been taken as evidence for a specialized
processing system for face recognition.

An experiment by Diamond and Carey (1986), however, showed that other objects
besides faces are vulnerable to the inversion effect. In this experiment, the effects of
inverting pictures of faces and dogs was tested with control subjects and dog experts.
Results showed that the accuracy of the dog experts was more disrupted than the
accuracy of controls when viewing the inverted dog pictures. This suggests that face
recognition is not special but that expert object perception may be. According to this
interpretation, then, we are all face experts and thus there must have been a time
when we were face novices.

An experiment by Carey et al (1980) showed support for differences in face recogni-
tion for children and adults. The results of this experiment indicate that face inversion
reduces accuracy for adults more than for children under 10 years of age. This was
interpreted to mean that children lack expertise with faces and therefore fail to use
structural information in face recognition (Diamond and Carey 1986). However, this
does not imply a difference in information processing (Massaro and Cohen 1996).
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Developmental changes in perception might stem from changes in information
value instead of changes in information processing. This was in fact shown in an
experiment by Massaro et al (1986). In this experiment adults and children were tested
for their ability to identify /ba/ and /da/ syllables given visible alone or bimodal
(visible and auditory) sources of information. Adults were better at speech reading and
showed a greater influence of the visible tokens on performance in the bimodal condition.
The FLMP was then fit to both the adults’ and the children’s responses. If children are
processing information differently from adults, then the FLMP would not be expected
to give an equally good description of the performance of both groups. However, fits
of the FLMP to the two groups was the same, indicating that the FLMP gave an
equally good description of performance for both groups. Alternative models (eg the
AMP) gave equally poor fits for both groups. Differences in information account for
the differences in performance, not changes in information processing. The children
simply know less about audible and visible speech than do adults.

There is behavioral evidence that face recognition and speech reading are not
specialized processes but rather are simply different instances of pattern recognition
(Massaro, in press). Therefore, speech reading is both similar to and different from
face recognition. Different visual information is used in the two domains. We cannot
expect the features used in face recognition to be functional in speech reading, and vice
versa. Given different features, these two domains might also be differentially sensitive
to the orientation (upright or inverted) of the face. The features in one domain might
be more disrupted by inversion than those in the other. The degree of expertise or
experience with the task is important in both domains. In both situations, the perceiver
acquires more sensitivity to the potential information in the face with experience. The
number of discriminable categories might also differ in the two domains. The larger
the number of categories and the more similar, the more information required to perform
accurate identification. Speech reading requires the discrimination and identification
of relatively few speech segments whereas face recognition involves many thousands of
individual faces. All of these differences can lead to performance differences in the
two domains. However, our operating assumption is that both domains can be

described by the same algorithm for pattern recognition (Ellison and Massaro 1997;
Massaro, in press).
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