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The fuzzy logical model of perceptidi-LMP, MassaroPerceiving Talking Faces: From Speech
Perception to a Behavioral PrincipléMIT Press, Cambridge, MA, 1998 has been extremely
successful at describing performance across a wide range of ecological domains as well as for a
broad spectrum of individuals. Because the model predicts optimal or maximally efficient
integration, an important issue is whether this is the case for most individuals. Three databases are
evaluated to determine to what extent a significant quantitative improvement in predictive ability
can be obtained if integration is assumed to be somewhat inefficient. For the most part, there were
no significant signs of inefficient integration. The previous differences found by Grant and Beitz
Acoust. Soc. Am.104, 2438—-2450(1998] must be due to their measures of efficiency, which
appear to be invalid and/or conflate information with integration efficiency. Finally, the descriptive
ability of the FLMP is shown to be theoretically informative and not simply the model’s ability to
describe any possible outcome. Z00 Acoustical Society of Amerid&0001-4966)0)01008-7

PACS numbers: 43.71.An, 43.71.N@WT]

|. TESTS OF AUDITORY-VISUAL INTEGRATION ever, this measure is influenced by both the amount of visual
WITHIN THE FRAMEWORK OF THE FLMP information and the efficiency of integrating it with the au-
ditory information. Thus, this measure is necessarily con-

_ Grant and Seit21998 should be applauded for initiat- 5 nded with the amount of visual information the subject
ing an important study of the individual’s ability to integrate 5 gyajlable. Given these limitations, we propose that the

auditory and visualAV) information. As pointed out in their Grant and Seit£1998 analyses do not provide valid mea-
discussion, this assessment has important implications fQi,reg of integration efficiency.

treatment of hearing-impaired and even visual-impaired sub-

jects (see Grant and Walden, 1995; Grant, Walden, and

Seitz, 1998. Howevgr, befpre we can reach any conclusion;; A FORMAL MODEL OF INFORMATION
about a person’s ability to integrate, a more precise treatmenyTEGRATION

within a validated model of integration must be carried out.

Grant and Seitz propose four measures of AV integra- We argue that any measure of integration efficiency re-
tion efficiency. The first is an integration efficiendyE) quires a formal model of performance that specifies exactly
measure from Braida’$1991) Pre-Labeling ModelPRE). how integration takes place. Performance of a given indi-
From what we can tell, however, this measure uses on|yidua| can then be assessed within the framework of the
correct responses rather than all of the cells of the bimoddnodel to address the question of integration efficiency. We
confusion matrix. We believe that all of the data should bepropose the fuzzy logical model of percepti¢iLMP) as an
used in measuring IE. The McGurk susceptibility measure isdeal model for this type of analysis. The assumptions central
confounded with the quality of the auditory and visual infor- to the model are1) each source of information is evaluated
mation. A person will be more susceptible to McGurk effectsto determine the degree to which that source specifies vari-
to the extent she has poor auditory information and good®us alternatives;2) the sources of information are evaluated
visual information, independently of her iassaro, 1998, independently of one anothe®) the sources are integrated
pp. 12—-14. The two measures of auditory delay are alsoto provide an overall degree of support for each alternative,
debatable in that we might expect better integrators to be les@d (4) perceptual identification and interpretation follows
susceptible to asynchrony of the two sources rather thathe relative degree of support among the alternatives. In a
more susceptible. two-alternative task withba/ and Ha/ alternatives, the de-

Their two measures of AV benefit certainly reflect the gree of auditory support ford4/ can be represented lay,
quality of the auditory and visual information. The measuresand the support foiba/ by (1—a;). Similarly, the degree of
AV —A and (AV—A)/(1—A) are measures of the benefit Visual support for da/ can be represented hy;, and the
gained from the addition of visible speech. The measuréupport for ba/ by (1—v;). The probability of a response to
(AV —A)/(1—A) adjusts for overall performance level and the unimodal stimulus is simply equal to the feature value.
provides a coarse measure of the visual contribution. HowFor bimodal trials, the predicted probability of a response,

P(/da/) is equal to

dElectronic mail: massaro@fuzzy.ucsc.edu P(/da/)= ajvj/[av;+(1—a)(1-v))]. (1)
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TABLE |. The amount of support for each of the three alternatives as aThis somewhat surprising outcome can be true for overall

function of the auditory and visual sources of information. These degrees Oi)erformance in the tasksee Table)l This theoretical dem-

support illustrate that overall performance on the bimodal conditions can b . . . . .

significantly worse than overall performance on the auditory conditions. onstration, which is ,also found in empmcal results, chal-
lenges Grant and Seitz’s apparent belief that the FLMP pre-

Support for Auditory  Auditory Auditory Visual Visual Visual dicts that a second source of information can only improve

alternative /bal Ival /da/ /bal Ival /dal overall performance.
Ibal 07 0.1 0.2 03 0.2 05 In our previous work, we have contrasted a fuzzy logical
Ival 0.3 0.6 0.1 0.3 0.3 0.4  model of perception with a single-channel mod8CM) of
Idal 0.1 0.2 0.7 05 03 02  perception. These represent integration and nonintegration
0703 models, respectively, and therefore a test between these mod-
P(/bal|AVo) = 15.750.3)+ (0.3%0.3)+ (0.1X0.5) els at the individual subject level indicates whether a person
integrates the auditory and visual speech. The SCM is math-
=0.21/0.35-0.60, ematically equivalent to a weighted averaging model
P(val|AV,) = 0.6x0.3 (WTAV), which is an inefficient algorithm for combining the

(0.6x0.3)+ (0.1X0.2)+ (0.2<0.3)

auditory and visual sources. This model predicts that two
=0.18/0.26=0.69,

sources can never be more informative than one. Thus, pre-

0.7X0.2 ) .
P(/dal|AdVe) = (5750 2)% (0.2 0.5)+ (0.1X0.4) vious contrasts of the two models have addressed the issue of
=0.14/0.28=0.50, integration efficiency. Given that the FLMP has consistently
Average auditory unimodal(0.7+0.6+0.7)/3=2.0/3=0.67 provided a significantly better description of a variety of re-
Average bimoda#0.6+0.69+0.50=0.60. sults from several different types of experiments, people gen-

erally must be fairly efficient information integrators. In fur-

éher simulations of the two-alternative ta@dassaro, 1998,
hap. 10, however, we found that the fit of the FLMP fell

Tc,llightly shy of a benchmark criterion indicating a perfectly

In the course of our research, we have found that th
FLMP accurately describes human pattern recognition. W

have learned that people use many sources of information i ’ " - L
perceiving and understanding speech, emotion, and other & ccurate fit. The addition of decision noig®ise added at

pects of the environment. The experimental paradigm thal e response selection stagéth a standard deviation of 0.1

we have developed also allows us to determine which of th&/as nfcde?sarytf b(;intg tt?e. FLMP in "tn?j Vk\)/itrlr:'.\/hat v(\;oqurEe

many potentially functional cues are actually used by humafy XPected from the data being generated by this model. Thus,
observersMassaro, 1998, Chap).1This paradigm has al- there is some hint that the perceivers might not be perfectly
ready proven to be, effecti’ve in the study of audible, visible efficient integrators. In this letter, we pursue this issue more

and bimodal speech percepti@dassaro, 1987, 1998; Mas- d|recAt‘IyC.i. . . ffici in th
saro and Cohen, 1976: Oden and Massaro, 1978 irect way to measure integration efficiency in the

How can the FLMP be used to assess integration efﬁ_FLMP is to determine whether there is any loss of informa-

ciency? As can be seen in EQ), the auditory and visual tion on bimodal trials relative to unimodal trials. A poten-

sources of support are multiplied to give an overall degree oFa"y inefficient integration mpdel can be formalized withip
support for each response alternative. The vajuepresent- the FI;_MP irame\;\;]ork. o dnte S|mpl)(/j as§um|e s that reduced tl)n-
ing the degree of auditory support is assumed to be the San{grma lon from ne audiiory and visual sources can be
on both unimodal auditory and bimodal trials. This samePresent on bimodal tna_ls relative to “””T‘Oda' tna_ds. Ir_1 this
property holds for the visual support. This property and the"aSe the.degrﬁe (t); aldeltotry support on bimodal trégjs, is
multiplicative integration rule, followed by the relative good- compromised by the function

ness ruIe(RG_R)_, entail the process to be optimal and thus aig=W,ay +(1—w,)0.5. 2)
maximally efficient(see Massaro, 1998, pp. 115-117; Mas-
saro and Stork, 1998; Massaro and Friedman, 1990 An analogous function describes the visual information

Grant and Seit21998 express an “apparent belief that
a second source of information can only improve overall
performance.” Although it seems unintuitive with an opti- wherew, andw, correspond to the weights given the audi-
mal integration rule, a second source can indeed lower petery and visual feature values, respectively.
formance, even thougfin fact becauseintegration is oper- For tasks with two response alternatives or for models
ating efficiently. In order to demonstrate this possibility with features that lie between 0 and 1, the feature values
within the context of the FLMP, assume three alternativesrepresent more support for an alternative to the extent the
/bal, Ival, and Ha/, which are differentially supported by the value is greater than 0.5. The value 0.5 is completely am-
auditory and visual sources by the parameter values given ibiguous. Because the weights can lie between 0 and 1, the
Table I. Assume that a bimodadd/ is presented and audi- smaller the weight value the less the support is controlled by
tory /da/ supportsda/ 0.7, ka/ 0.1, and ba/ 0.2. Visual la/  the unimodal feature value and the more it is controlled by
supportsda/ 0.5, ka/ 0.4, and lha/ 0.2. Correcting identify- 0.5 (complete ambiguity A weight value of 1 makes the
ing /da/ on unimodal auditory and on unimodal visual trials same prediction as the original FLMP.
would be 0.7 and 0.5, respectively. As shown in Table |,  Tests of efficiency, therefore, simply involve testing this
performance on bimodal trials would be equal to 0.50, whichtnew model and determining the weight values and also to
is well below performance of 0.7 on unimodal auditory trials. what extent this model gives a better description of perfor-

vig=W,vjy+(1-w,)0.5, 3
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mance compared to the standard FLMP. We apply thisvere close to 1, indicating that there was very little loss of
model and two related models to two data sets given in Masinformation in the bimodal condition relative to the unimodal
saro (1998, Chaps. 2, 6, 10and the data set described by conditions. It appears that only 6 or 8 of the 82 subjects
Grant and Seit21998. appear to be inefficient integrators.

IIl. EXPANDED FACTORIAL DESIGN WITH TWO

RESPONSE ALTERNATIVES IV. EXPANDED FACTORIAL DESIGN WITH EIGHT

A typical manipulation is to systematically vary the am- RESPONSE ALTERNATIVES

biguity of each of the sources of information. We used syn-  For the second database, we replicated this same experi-

thetic speech to cross five levels of audible speech varyingnhent with 36 subjects, given eight rather than just two re-

betweenta/ and ta/ with five levels of visible speech vary- sponse alternatives. Subjects were instructed to listen to and

ing between the same alternatives in an expanded factorigjatch the talker, and to identify the syllable as// /da/,

design(Massaro, 1998 There were 24 observations at each/hda/, /dbal, /thal, Ival, Igal, or “other.” The category other

of the 35 unique experimental conditions. Eighty-two sub-was to be used by the subject whenever none of the other

jects were instructed to listen and to watch the speaker, angeven responses seemed suitable. Although the test continua

to identify the syllable asbé/ or /da/. were betweenba/ and Ha/, we obtained several other re-
The mean observed proportion ada/ identifications sponse alternativesee Massaro, 1998, pp. 184—18Bhese

was computed for each subject for the 35 unimodal and bijudgments reflect the contribution of both auditory and visual

modal conditions. Both the auditory and the visual sources ngeech, even when observers are permitted a |arger permis_
information had a Strong impaCt on the identification judg'sib|e set of response alternatives.

ments in both the unimodal and bimodal conditions. Most  The FLMP is tested against results with multiple re-
importantly, the auditory and visual effects were not additivesponse alternatives in the same manner as with just two re-
in the bimodal condition, as demonstrated by a significanponse alternatives. With more than two alternatives, it is
aUditOfy—Visual interaction. This result is ConSiStently Ob-necessary to estimate a unique parameter to represent the
tained in this type of experiment. It means that the influencjegree to which each source of information supports each
of one source of information is greatest when the othegjternative. The fit of this model requires5sand &, param-
source is neutral or ambiguous. eters for each of the 8 response alternatives, for a total of 80
The FLMP gave a better description than the WTAV free parameters. This might seem like a large amount but the
model for 94% of these 82 participants, with average rootnymber of data points to be predicted has increased by the
mean-square deviation®RMSDs of the individual model same factor. We are now predicting38=280 data points.
fits of 0.051 and 0.097, reSpectiVEly. To further address thq’he fit of this model to each of the 36 Subjects produced an
issue of efficiency, we tested the weighted bimodal FLMPaverage RMSD of 0.0507. To assess whether the FLMP
given by Egs.(2) and (3) against these same results. Themaintains its advantage with multiple response alternatives,
average RMSD was 0.0449, smaller than the standard fit qfe compared this fit with that of a single-channel mog!
0.051. An analysis of variance on the RMSDs from the tWoequivalently, a weighted averaging modeThe fit of this
models showed that this difference was significapt, competing model was about two times poorer, giving an

<0.001. This statistical result should not be surprising beRMSD of 0.1049. The FLMP gave a better description than
cause the weighted bimodal FLMP is identical to the stanthe WTAV model for all but one of the 36 subjects.

dard FLMP, but with two additional free parameters. Rather To address the issue of efficiency, we tested the two

than conclude that some of the observers are inefﬁcient, thﬁ/e|ghted bimodal FLMPs against these same results. The
better fit may simply reflect the addition of two free param-predictions are made in the same way except now the neutral
eters rather than a real loss of information in the bimoda"esponse probabmty is 1/8. For the two_Weight mode'i the

condition. We are confident that a goodness-of-fit measurgyerage RMSD was 0.0501, very close to the original aver-
which takes into account model flexibiligMyung and Pitt,  age RMSD of 0.0507. The weight values were equal to 1 for

1997; Massaret al,, in pres$ would not find a significant  most of the subjects and close to 1 for the others. For the
advantage of the inefficient integration model relative to thepne-weight model, the average RMSD was 0.0500. These

FLMP. . o ~ weight values were equal to 1 for most of the subjects and
Given this possibility, we felt that a more appropriate ¢|ose to 1 for the others.

model would be one that simply compromises the outcome
of integration rather than the separate information values. In

this case, the predicted compromised probability of a rey, \pENTIEICATION CONEUSION MATRIX WITH 18
sponseP(/da/) on bimodal trials is equal to ALTERNATIVES

P(/da/)=wP(/da/)+(1-w)0.5, ) Finally, we analyzed Grant and Seit24'$998 40 sub-
whereP(/da/) is equal to Eq(1), and thea; andv; values jects in the vCv consonant identification task. We have car-
are identical to those on the unimodal trials. ried out two different types of model descriptions of this type

This more direct model of efficiency gave an averageof experiment with A, V, and AV confusion matrices: mo-
RMSD of 0.0491, which was very little improvement over dality analysis and feature analysisassaro and Cohen,
the standard FLMP. Most of the estimated weight valuesl999.
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A. Modality-analysis implementation features. Thus, for example, the auditory feature for place
would not necessarily be equivalent to the parameter value

As in the eight-alternative task, it is necessary to esti- the visible feature for bl In fact. the feat I ;
mate a unique parameter to represent the degree to Whiéﬂr € visible fealure for place. In tact, the fealure values for
e modality should be independent of the feature values for

each source of information supports each alternative. We usd! . .
ag; to represent the degree to which the audible speech Suﬁ\pother moda!lty. For examplg, we W.OU|d expect that voic-
ports the alternativeba/. The termvp; would represent the ng gnd nasality would hgve informative feature values fgr
degree to which the visible speech supports the altematiV’%udltory speech and relatively neutral feature values for vis-
/da/, and so on for the other response alternatives. Give le §peec_h. The p_Iace feature, on j[h_e other hand, would give
elatively informative values for visible speech. Thus, the

both audible and visible speech, the total support for th . U
alternative ba/, s(/ba/), would be eatures at the evaluation stage are not linguistic, but percep-

tual.
s(/bal) =agjvg;, (5) Thus, each of the 18 syllables would be described by the
and so on for the other test conditions and the other alterngzoniunction of five features for unimodal speech and the con-
tives. junction of ten features for bimodal speech. Even though

As in the case of just two alternatives, the probability ofeach feqture is defined as a.specific vglue or its complement
a particular categorization is assumed to be equal to the rel4€-9~ Voiced or voicelessits influence in the perception of
tive goodness of match of that alternative relative to the sunYiSIDle speech is represented by a value between 0 and 1. The
of the goodness-of-match values of all possible response aparameter value for the feature |nd|_cates the amount of in-
ternatives. With 18 stimulus—response alternatives, each telfence that feature has. Therefore, if thea/ and ha/ pro-
stimulus provides different degrees of support for each alterlOlyPes are each expected to have a nasal feature and the
native. It is necessary to estimate 18 free parameters for ea@iiculated parameter value for this feature is 0.90, then the
of the 18 test stimuli in each modality. Thus, 324 free pa_nasal fe.ature.|s highly functional in the expected direction.
rameters are required for the auditory modality and 324 forAIternat!ver, if the calculated parameter value for the nasal
the visual modality. We are able to test the model by pre_feature is 0.50, then 'Fhe nasal feat.ure is not functlonal at all.
dicting 3x324 data points with 2324 free parameters. Because of the definition of negatlon.as 1 minus the feature

As in the previous tests, the standard FLMP and thevalue, a feature value_of 0.5 would give the same degree of
two-weighted bimodal FLMPs were fit to the results. TheSupport for_an alternative that has the feature, asit shogld for
predictions are made in the same way except that the neutr@[! alternative that doesn't have the feature. Finally, if the
response probability is 1/18. The average RMSD for the twofalculated parameter value is 0.20 then the nasal feature is
weight model was equal to the average RMSD of the Stan!junctlonal but the opposite of the expected direction. Fllnally_,
dard FLMP(0.0112. The weight values were equal to 1 for it should_ be noted that the f(.aat.ures are not.marked in this
all of the subjects. For the one-weight model, the aVera(‘:l‘gormulatlon: absence of nasality is as informative as presence

RMSD was 0.0110. The weight values were equal to 1 foof nasality. Thus, if a nasal stimulus supports a nasal re-
most of the subjects and close to 1 for the others. sponse alternatives to the degree 0.9, then a non-nasal stimu-

lus also supports a non-nasal alternative to the degree 0.9.
The overall match of a test stimulus to each syllable
B. Feature analysis implementation prototype was calculated by combining the feature matches

The model test we have just presented makes no a@_ccording to the assumptions of the FLMP. These constraints

sumptions about the psychophysical relationship among thﬁ"Ctate that(1) the features are the sources of information

different test items. A unique parameter is estimated for eac atare evalu.ated mdependgnt_ly O.f one ano.ther,(ahthe
%atures are integrated multiplicatively to give the overall

ossible stimulus—response pairing. For example, a uniqu .
P P P g P d gree of support for a syllable alternative. Thus, the overall

parameter is estimated to represent the amount of support ; fobi/. S(/ba/). ai h . f
visual b/ provides for the response alternatidé /To test the ae/t?;iﬁlasblljgpic;rt obh/, s(/bal), given the presentation o

psychological reality of various linguistic features and to re-
duce the number of free parameters, we have articulated the
FLMP in terms of audible and visible support for these fea-  S(/ba/|/bal)=a,a,a,a4av,0z0, V0¥, (6)
tures(Massaro and Cohen, 1999This formulation has the
potential to save a large number of features, because it ighere each feature value indexes a match between the fea-
assumed that a given feature in a given modality has theure in the stimulus and the corresponding feature inthaé /
same impact regardless of what segment it is in. Followingrototype. The featura, correspond to auditory voicing,,
the tradition begun with Miller and Nicely1959, we can  to visual nasality, and so on. A mismatch between the feature
define the 18 consonants by five features: voicing, nasalityin the stimulus and the corresponding feature in the proto-
place, duration, and fricatiorisee Massaro and Cohen, type would be indexed by (4f;), wheref; corresponds to
1999. the modality’s feature value. Thus, the support for the /

We assume that features for the 18 consonants are sifyrototype given presentation of ba/ syllable, is
ply sensory primitives that distinguish speech categories. Al-
though the features used in the following tests are chosen to
be equivalent to the linguistic features, they should be
thought of simply as handy labels for the underlying sensory Xvp(l-vpvguyg, (7)

s(/kal)=(1-a,)a,(1—-ap)aga;(1-v,)
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40 subjects in the Grant and Se(t998 18-alternative task, for the feature-

Auditory Weight L
analysis implementation.

FIG. 1. The estimated auditory and visual weight values for the two-weight
model for each of the 40 subjects in the Grant and S¢i@9§ 18- VI. SENSITIVITY OF THE FELMP
alternative task, for the feature-analysis implementation.

A second important issue is raised by Grant and Seitz’'s
(1998 claim that “the consistently excellent fits achieved by
where (1-f;) indexes a mismatch between the feature in thehe FLMP may also suggest that the model is less sensitive in
/bal stimulus and the corresponding feature in tke pro-  recognizing subtle changes in integration efficienc{p.
totype. This same formulization is used for the place featur@439. To support their claim, Grant and Seitz fit the FLMP
which has six levels rather than just two. to two data sets, one original set of data and a second that
After the overall degree of support for each syllable isinvolved some modification of the first data set to give 16%
calculated, the stimulus is categorized according to the RGRyetter AV performance. The RMSDs of the fit to the two
which states that the relative probably of choosing an alterdata sets were 0.013 and 0.020, respectively. Although the
native is the goodness of match of that alternative divided byuthors interpreted this small difference as a nonsignificant
the sum of the goodness of match of all alternatives. Thusone, there was no justification for this conclusion and we
this model implementation parallels the previous one in alP€lieve that the observed difference is significant. To pursue
aspects except in terms of the featural description of th&his possibility, we made a similar modification of each of
stimulus and response alternatives. The FLMP can thus b@€ir 40 data sets and tested the FLMP against these two sets
tested against the confusion matrix by estimating the amourfll data. To achieve the new hypothetical data sets, we gen-
erated a new set of bimodal results for each subject by dif-

of information in each feature and the featural correspon- fiall difving th tandi ¢ ’ .
dence between the stimulus and response prototypes. ThL]c ’ren_la y mo |fy|ng € correct and INCorrect proporuons In
e bimodal confusion matrix. Every correct cell along the

five parameters are necessary to describe the auditory infor- . . L
P y ) . y negative diagonal was multiplied by 1.8. For the other cells,
mation and the same number to describe the visual.

The standard FLMP and the two weighted bimodalwe multiplied their proportions by 0.2. Each entry in the final

) ) .. bimodal matrix was determined by normalizing each cell
FLMPs were fitted to the results in the same manner, Wltrllalue by the total of all 18 cells in that row. The overall

the neutral feature value of 0.5. The average RMSD of th%ccuracy of this new set of bimodal results for each subject

standard FLMP fit was 0.1001. For the two-weight and One'averaged about 14% more accurate than the original data set.

weight models, the average RMSDs were equal t0 0.100Q ;¢ “the new data set has the original unimodal results and

and 0.1001, respectively, essentially equal to the fit of thg, ,oihetical bimodal results that are more accurate than
standard FLMP. The auditory and visual weight values for,q 14 he expected from the FLMP.

each subject for the two-weight model are given in Fig. 1. |t Grant and Seitz are correct, then the FLMP should fit

These weights were equal to one for most of the subjects anflese hypothetical results about as well as the original re-
close to one for the others. The distribution of the weightg|ts. We have already reported the RMSD of the original
values for the one-weight model is shown in Fig. 2. Thesejata set, which was 0.0112. The average RMSD for the
values were also very close to one. simulated data set was 0.0130, significantly larger that the fit

In summary, our test of integration efficiency revealedto the original dataF(1,28)=8.28, p=0.008. As an addi-

very little support for the thesis that some individuals mighttional test of sensitivity, we carried out the same contrast but
be less-efficient integrators than others. This result clearlyith a parameter-free test in which the unimodal response
held for seven of eight model tests across three different datgrobabilities were used to predict the bimodal judgments.
sets. The only hint of inefficient integration was for the dataThe RMSD values for the original data set and the enhanced
set of 82 subjects from our expanded factorial design withdata set were 0.0522 and 0.0658, a significant differepce,

two response alternatives. Possible explanations for this out0.001. Thus, we can conclude that the FLMP is indeed
come are given in Massafd998, pp. 313-318 sensitive to small differences in categorization behavior, and
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as demonstrated, provides a powerful framework for evalumassaro, D. W(1987). Speech Perception by Ear and Eye: A Paradigm for

ating the efficiency of integration. Psychological Inquiry(Erlbaum, Hillsdale, N)
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