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The fuzzy logical model of perception@FLMP, Massaro,Perceiving Talking Faces: From Speech
Perception to a Behavioral Principle~MIT Press, Cambridge, MA, 1998!# has been extremely
successful at describing performance across a wide range of ecological domains as well as for a
broad spectrum of individuals. Because the model predicts optimal or maximally efficient
integration, an important issue is whether this is the case for most individuals. Three databases are
evaluated to determine to what extent a significant quantitative improvement in predictive ability
can be obtained if integration is assumed to be somewhat inefficient. For the most part, there were
no significant signs of inefficient integration. The previous differences found by Grant and Seitz@J.
Acoust. Soc. Am.104, 2438–2450~1998!# must be due to their measures of efficiency, which
appear to be invalid and/or conflate information with integration efficiency. Finally, the descriptive
ability of the FLMP is shown to be theoretically informative and not simply the model’s ability to
describe any possible outcome. ©2000 Acoustical Society of America.@S0001-4966~00!01008-0#

PACS numbers: 43.71.An, 43.71.Ma@CWT#
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I. TESTS OF AUDITORY–VISUAL INTEGRATION
WITHIN THE FRAMEWORK OF THE FLMP

Grant and Seitz~1998! should be applauded for initiat
ing an important study of the individual’s ability to integra
auditory and visual~AV ! information. As pointed out in their
discussion, this assessment has important implications
treatment of hearing-impaired and even visual-impaired s
jects ~see Grant and Walden, 1995; Grant, Walden, a
Seitz, 1998!. However, before we can reach any conclus
about a person’s ability to integrate, a more precise treatm
within a validated model of integration must be carried o

Grant and Seitz propose four measures of AV integ
tion efficiency. The first is an integration efficiency~IE!
measure from Braida’s~1991! Pre-Labeling Model~PRE!.
From what we can tell, however, this measure uses o
correct responses rather than all of the cells of the bimo
confusion matrix. We believe that all of the data should
used in measuring IE. The McGurk susceptibility measur
confounded with the quality of the auditory and visual info
mation. A person will be more susceptible to McGurk effe
to the extent she has poor auditory information and go
visual information, independently of her IE~Massaro, 1998,
pp. 12–14!. The two measures of auditory delay are a
debatable in that we might expect better integrators to be
susceptible to asynchrony of the two sources rather t
more susceptible.

Their two measures of AV benefit certainly reflect t
quality of the auditory and visual information. The measu
AV2A and (AV2A)/(12A) are measures of the bene
gained from the addition of visible speech. The meas
(AV2A)/(12A) adjusts for overall performance level an
provides a coarse measure of the visual contribution. H

a!Electronic mail: massaro@fuzzy.ucsc.edu
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ever, this measure is influenced by both the amount of vis
information and the efficiency of integrating it with the a
ditory information. Thus, this measure is necessarily c
founded with the amount of visual information the subje
has available. Given these limitations, we propose that
Grant and Seitz~1998! analyses do not provide valid mea
sures of integration efficiency.

II. A FORMAL MODEL OF INFORMATION
INTEGRATION

We argue that any measure of integration efficiency
quires a formal model of performance that specifies exa
how integration takes place. Performance of a given in
vidual can then be assessed within the framework of
model to address the question of integration efficiency.
propose the fuzzy logical model of perception~FLMP! as an
ideal model for this type of analysis. The assumptions cen
to the model are:~1! each source of information is evaluate
to determine the degree to which that source specifies v
ous alternatives,~2! the sources of information are evaluate
independently of one another,~3! the sources are integrate
to provide an overall degree of support for each alternat
and ~4! perceptual identification and interpretation follow
the relative degree of support among the alternatives. I
two-alternative task with /"~/ and /$~/ alternatives, the de-
gree of auditory support for /$~/ can be represented byai ,
and the support for /"~/ by (12ai). Similarly, the degree of
visual support for /$~/ can be represented byv j , and the
support for /"~/ by (12v j ). The probability of a response t
the unimodal stimulus is simply equal to the feature val
For bimodal trials, the predicted probability of a respon
P(/$~/) is equal to

P~ /$~/ !5 aiv j /@aiv j1~12ai !~12v j !# . ~1!
78408(2)/784/6/$17.00 © 2000 Acoustical Society of America
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In the course of our research, we have found that
FLMP accurately describes human pattern recognition.
have learned that people use many sources of informatio
perceiving and understanding speech, emotion, and othe
pects of the environment. The experimental paradigm
we have developed also allows us to determine which of
many potentially functional cues are actually used by hum
observers~Massaro, 1998, Chap. 1!. This paradigm has al
ready proven to be effective in the study of audible, visib
and bimodal speech perception~Massaro, 1987, 1998; Mas
saro and Cohen, 1976; Oden and Massaro, 1978!.

How can the FLMP be used to assess integration e
ciency? As can be seen in Eq.~1!, the auditory and visua
sources of support are multiplied to give an overall degree
support for each response alternative. The valueai represent-
ing the degree of auditory support is assumed to be the s
on both unimodal auditory and bimodal trials. This sam
property holds for the visual support. This property and
multiplicative integration rule, followed by the relative goo
ness rule~RGR!, entail the process to be optimal and th
maximally efficient~see Massaro, 1998, pp. 115–117; Ma
saro and Stork, 1998; Massaro and Friedman, 1990!.

Grant and Seitz~1998! express an ‘‘apparent belief tha
a second source of information can only improve ove
performance.’’ Although it seems unintuitive with an op
mal integration rule, a second source can indeed lower
formance, even though~in fact because! integration is oper-
ating efficiently. In order to demonstrate this possibil
within the context of the FLMP, assume three alternativ
/"~/, /3~/, and /$~/, which are differentially supported by th
auditory and visual sources by the parameter values give
Table I. Assume that a bimodal /$~/ is presented and aud
tory /$~/ supports /$~/ 0.7, /3~/ 0.1, and /"~/ 0.2. Visual /$~/
supports /$~/ 0.5, /3~/ 0.4, and /"~/ 0.2. Correcting identify-
ing /$~/ on unimodal auditory and on unimodal visual tria
would be 0.7 and 0.5, respectively. As shown in Table
performance on bimodal trials would be equal to 0.50, wh
is well below performance of 0.7 on unimodal auditory tria

TABLE I. The amount of support for each of the three alternatives a
function of the auditory and visual sources of information. These degree
support illustrate that overall performance on the bimodal conditions ca
significantly worse than overall performance on the auditory conditions

Support for
alternative

Auditory
/"~/

Auditory
/3~/

Auditory
/$~/

Visual
/"~/

Visual
/3~/

Visual
/$~/

/"~/ 0.7 0.1 0.2 0.3 0.2 0.5
/3~/ 0.3 0.6 0.1 0.3 0.3 0.4
/$~/ 0.1 0.2 0.7 0.5 0.3 0.2

P(/"~/uAbVb)5
0.730.3

(0.730.3)1(0.330.3)1(0.130.5)

50.21/0.3550.60,

P(/3~/uAvVv)5
0.630.3

(0.630.3)1(0.130.2)1(0.230.3)
50.18/0.2650.69,

P(/$~/uAdVd)5
0.730.2

(0.730.2)1(0.230.5)1(0.130.4)
50.14/0.2850.50,

Average auditory unimodal5~0.710.610.7!/352.0/350.67,
Average bimodal50.610.6910.5050.60.
785 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
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This somewhat surprising outcome can be true for ove
performance in the task~see Table I!. This theoretical dem-
onstration, which is also found in empirical results, ch
lenges Grant and Seitz’s apparent belief that the FLMP p
dicts that a second source of information can only impro
overall performance.

In our previous work, we have contrasted a fuzzy logic
model of perception with a single-channel model~SCM! of
perception. These represent integration and nonintegra
models, respectively, and therefore a test between these m
els at the individual subject level indicates whether a per
integrates the auditory and visual speech. The SCM is m
ematically equivalent to a weighted averaging mod
~WTAV !, which is an inefficient algorithm for combining th
auditory and visual sources. This model predicts that t
sources can never be more informative than one. Thus,
vious contrasts of the two models have addressed the issu
integration efficiency. Given that the FLMP has consisten
provided a significantly better description of a variety of r
sults from several different types of experiments, people g
erally must be fairly efficient information integrators. In fu
ther simulations of the two-alternative task~Massaro, 1998,
Chap. 10!, however, we found that the fit of the FLMP fe
slightly shy of a benchmark criterion indicating a perfec
accurate fit. The addition of decision noise~noise added at
the response selection stage! with a standard deviation of 0.1
was necessary to bring the FLMP in line with what would
expected from the data being generated by this model. T
there is some hint that the perceivers might not be perfe
efficient integrators. In this letter, we pursue this issue m
directly.

A direct way to measure integration efficiency in th
FLMP is to determine whether there is any loss of inform
tion on bimodal trials relative to unimodal trials. A poten
tially inefficient integration model can be formalized with
the FLMP framework. One simply assumes that reduced
formation from the auditory and visual sources can
present on bimodal trials relative to unimodal trials. In th
case, the degree of auditory support on bimodal trials,aiB , is
compromised by the function

aiB5waaiU1~12wa!0.5. ~2!

An analogous function describes the visual informati

v jB5wvv jU1~12wv!0.5, ~3!

wherewa andwv correspond to the weights given the aud
tory and visual feature values, respectively.

For tasks with two response alternatives or for mod
with features that lie between 0 and 1, the feature val
represent more support for an alternative to the extent
value is greater than 0.5. The value 0.5 is completely a
biguous. Because the weights can lie between 0 and 1,
smaller the weight value the less the support is controlled
the unimodal feature value and the more it is controlled
0.5 ~complete ambiguity!. A weight value of 1 makes the
same prediction as the original FLMP.

Tests of efficiency, therefore, simply involve testing th
new model and determining the weight values and also
what extent this model gives a better description of perf

a
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e
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mance compared to the standard FLMP. We apply
model and two related models to two data sets given in M
saro ~1998, Chaps. 2, 6, 10!, and the data set described b
Grant and Seitz~1998!.

III. EXPANDED FACTORIAL DESIGN WITH TWO
RESPONSE ALTERNATIVES

A typical manipulation is to systematically vary the am
biguity of each of the sources of information. We used s
thetic speech to cross five levels of audible speech vary
between /"~/ and /$~/ with five levels of visible speech vary
ing between the same alternatives in an expanded fact
design~Massaro, 1998!. There were 24 observations at ea
of the 35 unique experimental conditions. Eighty-two su
jects were instructed to listen and to watch the speaker,
to identify the syllable as /"~/ or /$~/.

The mean observed proportion of /$~/ identifications
was computed for each subject for the 35 unimodal and
modal conditions. Both the auditory and the visual source
information had a strong impact on the identification jud
ments in both the unimodal and bimodal conditions. M
importantly, the auditory and visual effects were not addit
in the bimodal condition, as demonstrated by a signific
auditory–visual interaction. This result is consistently o
tained in this type of experiment. It means that the influen
of one source of information is greatest when the ot
source is neutral or ambiguous.

The FLMP gave a better description than the WTA
model for 94% of these 82 participants, with average ro
mean-square deviations~RMSDs! of the individual model
fits of 0.051 and 0.097, respectively. To further address
issue of efficiency, we tested the weighted bimodal FLM
given by Eqs.~2! and ~3! against these same results. T
average RMSD was 0.0449, smaller than the standard fi
0.051. An analysis of variance on the RMSDs from the t
models showed that this difference was significant,p
,0.001. This statistical result should not be surprising
cause the weighted bimodal FLMP is identical to the st
dard FLMP, but with two additional free parameters. Rat
than conclude that some of the observers are inefficient,
better fit may simply reflect the addition of two free para
eters rather than a real loss of information in the bimo
condition. We are confident that a goodness-of-fit meas
which takes into account model flexibility~Myung and Pitt,
1997; Massaroet al., in press! would not find a significant
advantage of the inefficient integration model relative to
FLMP.

Given this possibility, we felt that a more appropria
model would be one that simply compromises the outco
of integration rather than the separate information values
this case, the predicted compromised probability of a
sponse,P(/$~/) on bimodal trials is equal to

P~ /$~/ !5wP~ /$~/ !1~12w!0.5, ~4!

whereP(/$~/) is equal to Eq.~1!, and theai andv j values
are identical to those on the unimodal trials.

This more direct model of efficiency gave an avera
RMSD of 0.0491, which was very little improvement ov
the standard FLMP. Most of the estimated weight valu
786 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
is
s-

-
g

ial

-
nd

i-
of
-
t
e
t

-
e
r

t-

e

of

-
-
r

he
-
l

re

e

e
In
-

e

s

were close to 1, indicating that there was very little loss
information in the bimodal condition relative to the unimod
conditions. It appears that only 6 or 8 of the 82 subje
appear to be inefficient integrators.

IV. EXPANDED FACTORIAL DESIGN WITH EIGHT
RESPONSE ALTERNATIVES

For the second database, we replicated this same ex
ment with 36 subjects, given eight rather than just two
sponse alternatives. Subjects were instructed to listen to
watch the talker, and to identify the syllable as /"~/, /$~/,
/"$~/, /$"~/, /#*~/, /3~/, /,~/, or ‘‘other.’’ The category other
was to be used by the subject whenever none of the o
seven responses seemed suitable. Although the test con
were between /"~/ and /$~/, we obtained several other re
sponse alternatives~see Massaro, 1998, pp. 184–188!. These
judgments reflect the contribution of both auditory and vis
speech, even when observers are permitted a larger per
sible set of response alternatives.

The FLMP is tested against results with multiple r
sponse alternatives in the same manner as with just two
sponse alternatives. With more than two alternatives, i
necessary to estimate a unique parameter to represen
degree to which each source of information supports e
alternative. The fit of this model requires 5ai and 5v j param-
eters for each of the 8 response alternatives, for a total o
free parameters. This might seem like a large amount but
number of data points to be predicted has increased by
same factor. We are now predicting 35385280 data points.
The fit of this model to each of the 36 subjects produced
average RMSD of 0.0507. To assess whether the FL
maintains its advantage with multiple response alternativ
we compared this fit with that of a single-channel model~or
equivalently, a weighted averaging model!. The fit of this
competing model was about two times poorer, giving
RMSD of 0.1049. The FLMP gave a better description th
the WTAV model for all but one of the 36 subjects.

To address the issue of efficiency, we tested the t
weighted bimodal FLMPs against these same results.
predictions are made in the same way except now the ne
response probability is 1/8. For the two-weight model, t
average RMSD was 0.0501, very close to the original av
age RMSD of 0.0507. The weight values were equal to 1
most of the subjects and close to 1 for the others. For
one-weight model, the average RMSD was 0.0500. Th
weight values were equal to 1 for most of the subjects a
close to 1 for the others.

V. IDENTIFICATION CONFUSION MATRIX WITH 18
ALTERNATIVES

Finally, we analyzed Grant and Seitz’s~1998! 40 sub-
jects in the vCv consonant identification task. We have c
ried out two different types of model descriptions of this ty
of experiment with A, V, and AV confusion matrices: mo
dality analysis and feature analysis~Massaro and Cohen
1999!.
786D. W. Massaro and M. M. Cohen: Auditory–visual integration
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A. Modality-analysis implementation

As in the eight-alternative task, it is necessary to e
mate a unique parameter to represent the degree to w
each source of information supports each alternative. We
aBi to represent the degree to which the audible speech
ports the alternative /"~/. The termvD j would represent the
degree to which the visible speech supports the alterna
/$~/, and so on for the other response alternatives. Gi
both audible and visible speech, the total support for
alternative /"~/, s(/"~/), would be

s~ /"~/ !5aBivB j , ~5!

and so on for the other test conditions and the other alte
tives.

As in the case of just two alternatives, the probability
a particular categorization is assumed to be equal to the
tive goodness of match of that alternative relative to the s
of the goodness-of-match values of all possible response
ternatives. With 18 stimulus–response alternatives, each
stimulus provides different degrees of support for each al
native. It is necessary to estimate 18 free parameters for
of the 18 test stimuli in each modality. Thus, 324 free p
rameters are required for the auditory modality and 324
the visual modality. We are able to test the model by p
dicting 33324 data points with 23324 free parameters.

As in the previous tests, the standard FLMP and
two-weighted bimodal FLMPs were fit to the results. T
predictions are made in the same way except that the ne
response probability is 1/18. The average RMSD for the tw
weight model was equal to the average RMSD of the st
dard FLMP~0.0111!. The weight values were equal to 1 fo
all of the subjects. For the one-weight model, the aver
RMSD was 0.0110. The weight values were equal to 1
most of the subjects and close to 1 for the others.

B. Feature analysis implementation

The model test we have just presented makes no
sumptions about the psychophysical relationship among
different test items. A unique parameter is estimated for e
possible stimulus–response pairing. For example, a un
parameter is estimated to represent the amount of supp
visual /"/ provides for the response alternative /$/. To test the
psychological reality of various linguistic features and to
duce the number of free parameters, we have articulated
FLMP in terms of audible and visible support for these fe
tures~Massaro and Cohen, 1999!. This formulation has the
potential to save a large number of features, because
assumed that a given feature in a given modality has
same impact regardless of what segment it is in. Follow
the tradition begun with Miller and Nicely~1955!, we can
define the 18 consonants by five features: voicing, nasa
place, duration, and frication~see Massaro and Cohe
1999!.

We assume that features for the 18 consonants are
ply sensory primitives that distinguish speech categories.
though the features used in the following tests are chose
be equivalent to the linguistic features, they should
thought of simply as handy labels for the underlying sens
787 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
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features. Thus, for example, the auditory feature for pla
would not necessarily be equivalent to the parameter va
for the visible feature for place. In fact, the feature values
one modality should be independent of the feature values
another modality. For example, we would expect that vo
ing and nasality would have informative feature values
auditory speech and relatively neutral feature values for
ible speech. The place feature, on the other hand, would
relatively informative values for visible speech. Thus, t
features at the evaluation stage are not linguistic, but perc
tual.

Thus, each of the 18 syllables would be described by
conjunction of five features for unimodal speech and the c
junction of ten features for bimodal speech. Even thou
each feature is defined as a specific value or its complem
~e.g., voiced or voiceless!, its influence in the perception o
visible speech is represented by a value between 0 and 1.
parameter value for the feature indicates the amount of
fluence that feature has. Therefore, if the /&~/ and /'~/ pro-
totypes are each expected to have a nasal feature and
calculated parameter value for this feature is 0.90, then
nasal feature is highly functional in the expected directio
Alternatively, if the calculated parameter value for the na
feature is 0.50, then the nasal feature is not functional at
Because of the definition of negation as 1 minus the fea
value, a feature value of 0.5 would give the same degre
support for an alternative that has the feature, as it should
an alternative that doesn’t have the feature. Finally, if
calculated parameter value is 0.20 then the nasal featu
functional but the opposite of the expected direction. Fina
it should be noted that the features are not marked in
formulation: absence of nasality is as informative as prese
of nasality. Thus, if a nasal stimulus supports a nasal
sponse alternatives to the degree 0.9, then a non-nasal s
lus also supports a non-nasal alternative to the degree 0

The overall match of a test stimulus to each syllab
prototype was calculated by combining the feature matc
according to the assumptions of the FLMP. These constra
dictate that~1! the features are the sources of informati
that are evaluated independently of one another, and~2! the
features are integrated multiplicatively to give the over
degree of support for a syllable alternative. Thus, the ove
degree of support for /"~/, s(/"~/), given the presentation o
a /"~/ syllable, is

s~ /"~/u/"~/ !5avanapadafvvvnvvvdv f , ~6!

where each feature value indexes a match between the
ture in the stimulus and the corresponding feature in the /"~/
prototype. The featureav correspond to auditory voicing,vn

to visual nasality, and so on. A mismatch between the fea
in the stimulus and the corresponding feature in the pro
type would be indexed by (12 f i), where f i corresponds to
the modality’s feature value. Thus, the support for the /%~/
prototype given presentation of a /"~/ syllable, is

s~ /%~/ !5~12av!an~12ap!adaf~12vv!

3vn~12vp!vdv f , ~7!
787D. W. Massaro and M. M. Cohen: Auditory–visual integration
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where (12 f i) indexes a mismatch between the feature in
/"~/ stimulus and the corresponding feature in the /%~/ pro-
totype. This same formulization is used for the place feat
which has six levels rather than just two.

After the overall degree of support for each syllable
calculated, the stimulus is categorized according to the R
which states that the relative probably of choosing an al
native is the goodness of match of that alternative divided
the sum of the goodness of match of all alternatives. Th
this model implementation parallels the previous one in
aspects except in terms of the featural description of
stimulus and response alternatives. The FLMP can thus
tested against the confusion matrix by estimating the amo
of information in each feature and the featural corresp
dence between the stimulus and response prototypes. T
five parameters are necessary to describe the auditory in
mation and the same number to describe the visual.

The standard FLMP and the two weighted bimod
FLMPs were fitted to the results in the same manner, w
the neutral feature value of 0.5. The average RMSD of
standard FLMP fit was 0.1001. For the two-weight and o
weight models, the average RMSDs were equal to 0.1
and 0.1001, respectively, essentially equal to the fit of
standard FLMP. The auditory and visual weight values
each subject for the two-weight model are given in Fig.
These weights were equal to one for most of the subjects
close to one for the others. The distribution of the weig
values for the one-weight model is shown in Fig. 2. The
values were also very close to one.

In summary, our test of integration efficiency reveal
very little support for the thesis that some individuals mig
be less-efficient integrators than others. This result cle
held for seven of eight model tests across three different
sets. The only hint of inefficient integration was for the da
set of 82 subjects from our expanded factorial design w
two response alternatives. Possible explanations for this
come are given in Massaro~1998, pp. 313–318!.

FIG. 1. The estimated auditory and visual weight values for the two-we
model for each of the 40 subjects in the Grant and Seitz~1998! 18-
alternative task, for the feature-analysis implementation.
788 J. Acoust. Soc. Am., Vol. 108, No. 2, August 2000
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VI. SENSITIVITY OF THE FLMP

A second important issue is raised by Grant and Sei
~1998! claim that ‘‘the consistently excellent fits achieved b
the FLMP may also suggest that the model is less sensitiv
recognizing subtle changes in integration efficiency’’~p.
2439!. To support their claim, Grant and Seitz fit the FLM
to two data sets, one original set of data and a second
involved some modification of the first data set to give 16
better AV performance. The RMSDs of the fit to the tw
data sets were 0.013 and 0.020, respectively. Although
authors interpreted this small difference as a nonsignific
one, there was no justification for this conclusion and
believe that the observed difference is significant. To pur
this possibility, we made a similar modification of each
their 40 data sets and tested the FLMP against these two
of data. To achieve the new hypothetical data sets, we g
erated a new set of bimodal results for each subject by
ferentially modifying the correct and incorrect proportions
the bimodal confusion matrix. Every correct cell along t
negative diagonal was multiplied by 1.8. For the other ce
we multiplied their proportions by 0.2. Each entry in the fin
bimodal matrix was determined by normalizing each c
value by the total of all 18 cells in that row. The overa
accuracy of this new set of bimodal results for each sub
averaged about 14% more accurate than the original data
Thus, the new data set has the original unimodal results
hypothetical bimodal results that are more accurate t
would be expected from the FLMP.

If Grant and Seitz are correct, then the FLMP should
these hypothetical results about as well as the original
sults. We have already reported the RMSD of the origi
data set, which was 0.0112. The average RMSD for
simulated data set was 0.0130, significantly larger that th
to the original data,F(1,28)58.28, p50.008. As an addi-
tional test of sensitivity, we carried out the same contrast
with a parameter-free test in which the unimodal respo
probabilities were used to predict the bimodal judgmen
The RMSD values for the original data set and the enhan
data set were 0.0522 and 0.0658, a significant differencp
,0.001. Thus, we can conclude that the FLMP is inde
sensitive to small differences in categorization behavior, a

t

FIG. 2. The distribution of weight values for the one-weight model for t
40 subjects in the Grant and Seitz~1998! 18-alternative task, for the feature
analysis implementation.
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as demonstrated, provides a powerful framework for eva
ating the efficiency of integration.
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