
There seems to be a little bit of confusion about this, so I thought a brief note might help.
Let Ψt be the time-t flow of some vector field v on a manifold M . Let α be a differential
form on M .

In symplectic geometry, we are often interested in the expression

d

dt
(Ψ∗tα).

One nice way to evaluate this is via “Cartan’s magic formula”. We first define the Lie
Derivative

(1) Lvα =
d

dt
(Ψ∗tα)|t=0.

We show that this satisfies the relation

(2) Lvα = dιvα + ιvdα,

and we show that

(3)
d

dt
(Ψ∗tα)|t=t0 = (Ψt0)

∗Lvα.

This works very well when v is independent of time, but when vt is dependent on time
there is a minor subtlety that needs to be addressed. There are several reasonable ways to
address it, but one should be aware of the subtlety.

The issue. First, let us say what does not work. The word-for-word repeat of the above
story, with vt replacing v, does not quite work. The issue is, if we let Ψt be the time-t-flow of
the time-varying vector field vt, then the expression d

dt
(Ψ∗tα)|t=0 is not really what we want.

Indeed, it has no real way to access vt0 for general t0 at all, and so we definitely should not
denote it Lvt and assert that it satisfies the Cartan equation (2), with vt substituted for v.

Along these lines, strictly speaking the exercise in Canas da Silva (see homework assign-
ment) is not quite correct, in the case where v depends on time. Actually, the Cartan magic
formula is only stated for vector fields that do not depend on time there; however, with the
definition of the Lie Derivative there, the equation labeled (*) there is neither correct, nor
what we would anyways want to use in our arguments, because it would lead to the wrong
vector field being present in the Cartan magic formula.

Fixes. What we really want is for the formula

(4)
d

dt
(Ψ∗tα) = (Ψt)

∗[dιvtα + ιvtdα],

where Ψt denotes the time-t flow of vt, to hold. This is a correct formula, but we’d like to
see why it is true.

There are now several ways to think about this.
We could still interpret the bracketed expression in the right hand side of the above

equation as a Lie derivative, but we should think of it as the Lie derivative for the time-
independent vector field vt. That is, let Ψ′s denote the time s-flow of vt, regarded now as a
time-independent vector field, and define Lvtα by (1), with Ψ′ instead of Ψ and s instead of
t. Then, everything will work just as we want, and we can derive (4) from this point of view.
This is essentially the approach taken in McDuff-Salamon, see for example the first line in
the proof of Proposition 3.1.5. One just has to be aware that at each t, Lvt is computed
with respect to a different isotopy, namely the one, denoted Ψ′ above, which is the flow of
the vector field vt, regarded as a time independent vector field.
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This is a perfectly fine approach, in a way probably the best (it can be proved by essentially
the same argument as in the time-independent case). From an expository point of view, one
just has to be careful when reading it to keep track of what is going on: there is a lot that
is depending on t, and we introduced the parameter s to help with this.

Alternatively, if one wanted to stick with a fixed vector field on a manifold, rather than
a time-varying one, so as to be able to quote the Canas da Silva exercise directly and not
worry about any subtleties, one could regard vt as a vector field on the manifold R ×M ,
consider the flow of X := ∂t + vt, and consider α as a form on R×M that annihilates the R
direction. In this way, one can apply the equations from the time-independent case directly
and derive (4).

Both ways are completely fine. I just wanted to clarify the relevant mathematics, which
are slightly subtle.

Time-varying differential forms. In applications (e.g. Moser’s trick), one sometimes
also wants to understand expressions of the form

d

dt
(Ψ∗tαt),

in other words where the forms α themselves depend on time. In this case, there is another
term in the analogue of (4), coming from the variation in α itself. That is, we have

(5)
d

dt
(Ψ∗tα) = (Ψt)

∗[
d

dt
αt + dιvtαt + ιvtdαt].

This is stated, for example, in the equation between (3.2.3) and (3.2.4) in the McDuff-
Salamon book.

To derive this, one can apply the multivariate chain rule in combination with (4). Alter-
natively, in the spirit of what was written above, one could regard αt as a single differential
form on R×M (annihilating the R direction), and restrict d

dt
(Ψ∗tαt) to the M direction.

Derivation of (5). Here is one derivation of the desired equation. Let us now assume
that we have verified the Cartan formulas for autonomous (i.e. time-independent) vector
fields, and derive (5).

As suggested above, we consider the flow ψt of the vector field X = ∂t + vt, which we
regard as an autonomous vector field on R ×M , and we regard αt as a form on R ×M ,
which we denote by β. Then, we have ψt(t0, x) = (t0 + t, ψ′t+t0

(x)), where ψ′t is the flow along
the time-varying vector field vt. In particular, the map M → M sending x → π(ψt(0, x)),
where π denotes the canonical projection, is exactly the flow ψ′t.

On the other hand, by the Cartan formula, we have

LXβ = dιXβ + ιXdβ = dιvtαt + ιX(
d

dt
αt)dt+ ιvtdαt.

If we restrict to tangent vectors along M , then ιX( d
dt
αt)dt = d

dt
αt, hence (5) in view of the

expression for ψ′ in terms of ψ above.
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