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Summary of Part �

Here we survey some recent theoretical results on the e�ciency of machine learning algorithms�

The main tool described is the notion of Probably Approximately Correct �PAC� learning� intro�

duced by Valiant� We de�ne this learning model and then look at some of the results obtained in it�

We then consider some criticisms of the PAC model and the extensions proposed to address these

criticisms� Finally� we look brie�y at other models recently proposed in computational learning

theory�

Introduction

It�s a dangerous thing to try to formalize an enterprise as complex and varied as machine

learning so that it can be subjected to rigorous mathematical analysis� To be tractable� a formal

model must be simple� Thus� inevitably� most people will feel that important aspects of the activity

have been left out of the theory� Of course� they will be right� Therefore� it is not advisable to

present a theory of machine learning as having reduced the entire �eld to its bare essentials� All

that can be hoped for is that some aspects of the phenomenon are brought more clearly into focus

using the tools of mathematical analysis� and that perhaps a few new insights are gained� It is in
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this light that we wish to discuss the results obtained in the last few years in what is now called

PAC �Probably Approximately Correct� learning theory 
���

Valiant introduced this theory in 	
�� 
	��� to get computer scientists who study the compu�

tational e�ciency of algorithms to look at learning algorithms� By taking some simpli�ed notions

from statistical pattern recognition and decision theory� and combining them with approaches from

computational complexity theory� he came up with a notion of learning problems that are feasible�

in the sense that there is a polynomial time algorithm that �solves� them� in analogy with the class

P of feasible problems in standard complexity theory� Valiant was successful in his e�orts� Since

	
�� many theoretical computer scientists and AI researchers have either obtained results in this

theory� or complained about it and proposed modi�ed theories� or both�

The �eld of research that includes the PAC theory and its many relatives has been called

computational learning theory� It is far from being a monolithic mathematical edi�ce that sits at

the base of machine learning� it�s unclear whether such a theory is even possible or desirable� We

argue� however� that insights have been gained from the varied work in computational learning

theory� The purpose of this short monograph is to survey some of this work and reveal those

insights�

De�nition of PAC Learning

The intent of the PAC model is that successful learning of an unknown target concept should

entail obtaining� with high probability� a hypothesis that is a good approximation of it� Hence the

name Probably Approximately Correct� In the basic model� the instance space is assumed to be

f�� 	gn� the set of all possible assignments to n Boolean variables �or attributes� and concepts and

hypotheses are subsets of f�� 	gn� The notion of approximation is de�ned by assuming that there

is some probability distribution D de�ned on the instance space f�� 	gn� giving the probability of

each instance� We then let the error of a hypothesis h w�r�t� a �xed target concept c� denoted

error�h� when c is clear from the context� be de�ned by

error�h� �
X

x�h�c

D�x��

where � denotes the symmetric di�erence� Thus� error�h� is the probability that h and c will

disagree on an instance drawn randomly according to D� The hypothesis h is a good approximation
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of the target concept c if error�h� is small�

How does one obtain a good hypothesis� In the simplest case one does this by looking at

independent random examples of the target concept c� each example consisting of an instance

selected randomly according to D� and a label that is ��� if that instance is in the target concept

c �positive example�� otherwise ��� �negative example�� Thus� training and testing use the same

distribution� and there is no �noise� in either phase� A learning algorithm is then a computational

procedure that takes a sample of the target concept c� consisting of a sequence of independent

random examples of c� and returns a hypothesis�

For each n � 	 let Cn be a set of target concepts over the instance space f�� 	gn� and let

C � fCngn��� Let Hn� for n � 	� and H be de�ned similarly� We can de�ne PAC learnability

as follows� The concept class C is PAC learnable by the hypothesis space H if there exists a

polynomial time learning algorithm A and a polynomial p��� �� �� such that for all n � 	� all target

concepts c � Cn� all probability distributions D on the instance space f�� 	gn� and all � and ��

where � � �� � � 	� if the algorithm A is given at least p�n� 	��� 	��� independent random examples

of c drawn according to D� then with probability at least 	 � �� A returns a hypothesis h � Hn

with error�h� � �� The smallest such polynomial p is called the sample complexity of the learning

algorithm A�

The intent of this de�nition is that the learning algorithm must process the examples in poly�

nomial time� i�e� be computationally e�cient� and must be able to produce a good approximation

to the target concept with high probability using only a reasonable number of random training

examples� The model is worst case in that it requires that the number of training examples needed

be bounded by a single �xed polynomial for all target concepts in C and all distributions D in

the instance space� It follows that if we �x the number of variables n in the instance space and

the con�dence parameter �� and then invert the sample complexity function to plot the error � as

a function of training sample size� we do not get what is usually thought of as a learning curve

for A �for this �xed con�dence�� but rather the upper envelope of all learning curves for A �for

this �xed con�dence�� obtained by varying the target concept and distribution on the instance

space� Needless to say� this is not a curve that can be observed experimentally� What is usually

plotted experimentally is the error versus the training sample size for particular target concepts on

instances chosen randomly according to a single �xed distribution on the instance space� Such a

curve will lie below the curve obtained by inverting the sample complexity� We will return to this
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point later�

Another thing to notice about this de�nition is that target concepts in a concept class C may

be learned by hypotheses in a di�erent class H� This gives us some �exibility� Two cases are of

interest� The �rst is that C � H� i�e� the target class and hypothesis space are the same� In this

case we say that C is properly PAC learnable� Imposing the requirement that the hypothesis be

from the class C may be necessary� e�g� if it is to be included in a speci�c knowledge base with a

speci�c inference engine� However� as we will see� it can also make learning more di�cult� The other

case is when we don�t care at all about the hypothesis space H� so long as the hypotheses in H can

be evaluated e�ciently� This occurs when our only goal is accurate and computationally e�cient

prediction of future examples� Being able to freely choose the hypothesis space may make learning

easier� If C is a concept class and there exists some hypothesis space H such that hypotheses in H

can be evaluated on given instances in polynomial time and such that C is PAC learnable by H�

then we will say simply that C is PAC learnable�

There are many variants of the basic de�nition of PAC learnability� One important variant

de�nes a notion of syntactic complexity of target concepts and� for each n � 	� further classi�es

each concept in Cn by its syntactic complexity� Usually the syntactic complexity of a concept

c is taken to be the length of �number of symbols or bits in� the shortest representation of c

in a �xed concept representation language� In this variant of PAC learnability� the number of

training examples is also allowed to grow polynomially in the syntactic complexity of the target

concept� This variant is used whenever the concept class is speci�ed by a concept representation

language that can represent any boolean function� for example� when discussing the learnability of

DNF �Disjunctive Normal Form� formulae or decision trees� Other variants of the model let the

algorithm request examples� use separate distributions for drawing positive and negative examples�

or use randomized �i�e� coin �ipping� algorithms 
���� It can be shown that these latter variants

are equivalent to the model described here� in that� modulo some minor technicalities� the concept

classes that are PAC learnable in one model are also PAC learnable in the other 
���� Finally�

the model can easily be extended to non�Boolean attribute�based instance spaces 
�
� and instance

spaces for structural domains such as the blocks world 
���� Instances can also be de�ned as strings

over a �nite alphabet so that the learnability of �nite automata� context�free grammars� etc� can

be investigated 
	����
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Outline of Results for the Basic PAC model

A number of fairly sharp results have been found for the notion of proper PAC learnability� The

following summarizes some of these results� For precise de�nitions of the concept classes involved�

the reader is referred to the literature cited� The negative results are based on the complexity

theoretic assumption that RP �� NP 
	�	��

	� Conjunctive concepts are properly PAC learnable 
	���� but the class of concepts in the form

of the disjunction of two conjunctions is not properly PAC learnable 
	�	�� and neither is the

class of existential conjunctive concepts on structural instance spaces with two objects 
����

�� Linear threshold concepts �perceptrons� are properly PAC learnable on both Boolean and

real�valued instance spaces 
���� but the class of concepts in the form of the conjunction

of two linear threshold concepts is not properly PAC learnable 
���� The same holds for

disjunctions and linear thresholds of linear thresholds �i�e� multilayer perceptrons with two

hidden units�� In addition� if the weights are restricted to 	 and � �but the threshold is

arbitrary�� then linear threshold concepts on Boolean instances spaces are not properly PAC

learnable 
	�	��

�� The classes of k�DNF� k�CNF� and k�decision lists are properly PAC learnable for each �xed

k 
	��� 			�� but it is unknown whether the classes of all DNF functions� all CNF functions�

or all decision trees are properly PAC learnable�

Most of the di�culties in proper PAC learning are due to the computational di�culty of �nding

a hypothesis in the particular form speci�ed by the target class� For example� while Boolean

threshold functions with ��	 weights are not properly PAC learnable on Boolean instance spaces

�unless RP � NP�� they are PAC learnable by general Boolean threshold functions� Here we

have a concrete case where enlarging the hypothesis space makes the computational problem of

�nding a good hypothesis easier� The class of all Boolean threshold functions is simply an easier

space to search than the class of Boolean threshold functions with ��	 weights� Similar extended

hypothesis spaces can be found for the two classes mentioned in �	�� above that are not properly

PAC learnable� Hence� it turns out that these classes are PAC learnable 
	�	� ���� However� it

is not known if any of the classes of DNF functions� CNF functions� decision trees� or multilayer

perceptrons with two hidden units are PAC learnable�
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It is a much stronger result to show that a concept class is not PAC learnable than it is to show

that it is not properly PAC learnable� since the former result implies that the concept class is not

PAC learnable by any reasonable hypothesis space� Methods for determining the PAC learnability of

concept classes have been developed by Pitt and Warmuth 
	���� These methods involve reductions

of one learning problem to another� and notions of learning�completeness for learning problems that

are analogous to the corresponding notions in the theory of complexity classes and reducibilities

for general computational problems �e�g� 
		����

Using this framework of Pitt and Warmuth� in conjunction with the results of Goldreich� Gold�

wasser� and Micali 
���� it can be shown that certain learning problems are learning�complete for P

�see 
	��� �	��� and that the concept classes associated with these problems are not PAC learnable

�even in an extremely weak sense� assuming the existence of any cryptographically secure pseudo�

random bit generator� which is equivalent to the existence of a certain type of one�way function 
����

While such an assumption is stronger than the assumption that RP �� NP� there is still convincing

evidence for its validity�

Simpler problems can also be shown not to be PAC learnable based on stronger cryptographic

assumptions� In particular� Kearns and Valiant 
��� show that a polynomial�time learning algorithm

for Deterministic Finite Automata �DFAs� can be used to invert certain cryptographic functions�

This is done by �rst showing that inverting these cryptographic functions reduces to learning

arbitrary Boolean formulas �i�e� Boolean expressions using the operators �and�� �or� and �not���

Then� since it can be shown that learning Boolean Formulas reduces to learning DFAs� it follows

that DFAs are not polynomially learnable� based the assumption that these cryptographic functions

are not e�ciently invertible�

Kearns and Valiant also obtain some strong negative results for multilayer perceptrons� In

particular� by the same methods� they show there exists some constant d and polynomial p�n� such

that the class of concepts represented by feedforward neural networks with n Boolean inputs and

d hidden layers with at most p�n� hidden units in all� in which each hidden unit computes a linear

threshold function� is not polynomially learnable based on the same cryptographic assumptions

as above �Theorem � of 
����� The smallest value of the depth d for which this result holds has

not been determined� As mentioned above� it is possible that this strong result already holds for

multilayer perceptrons with just two hidden units�
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Methods for Proving PAC Learnability� Formalization of Bias

All of the positive learnability results above are obtained by

	� showing that there is an e�cient algorithm that �nds a hypothesis in a particular hypothesis

space that is consistent with a given sample of any concept in the target class and

�� that the sample complexity of any such algorithm is polynomial�

By consistent we mean that the hypothesis agrees with every example in the training sample� An

algorithm that always �nds such a hypothesis �when one exists� is called a consistent algorithm�

It should be noted that this PAC usage of the term �consistent� has no relation to the notion of

consistency for methods of parameter estimation� etc� in statistics�

As the size of the hypothesis space increases� it may become easier to �nd a consistent hypoth�

esis� but it will require more random training examples to insure that this hypothesis is accurate

with high probability� In the limit� when any subset of the instance space is allowed as a hypothesis�

it becomes trivial to �nd a consistent hypothesis� but a sample size proportional to the size of the

entire instance space will be required to insure that it is accurate� Hence� there is a fundamental

tradeo� between the computational complexity and the sample complexity of learning�

Restriction to particular hypothesis spaces of limited size is one form of bias that has been

explored to facilitate learning 
���� In addition to the cardinality of the hypothesis space� a param�

eter known as the Vapnik�Chervonenkis �VC� dimension of the hypothesis space has been shown

to be useful in quantifying the bias inherent in a restricted hypothesis space 
	��� 

� �
�� The VC

dimension of a hypothesis space H� denoted dimV C�H�� is de�ned to be the maximum number d

of instances that can be labeled as positive and negative examples in all �d possible ways� such

that each labeling is consistent with some hypothesis in H 
��� 	��� 	���� Let H � fHngn�� be a

hypothesis space and C � fCngn�� be a target class� where Cn � Hn for n � 	� Then it can be

shown 
	�� that any consistent algorithm for learning C by H will have sample complexity at most

	

��	�p��
�
�dimV C�Hn�ln

�

�
� ln

�

�

�
�

This improves on earlier bounds given in 
���� but may still be a considerable overestimate�
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In terms of the cardinality of Hn� denoted jHnj� it can be shown 
	��� �
� ��� that the sample

complexity is at most
	

�

�
lnjHnj� ln

	

�

�
�

For most hypothesis spaces on Boolean domains� the second bound gives the better bound� In

contrast� most hypothesis spaces on real�valued attributes are in�nite� so only the �rst bound is

applicable� Neural networks� and in particular linear threshold functions are a notable exception�

The VC dimension of the class of linear threshold functions on n Boolean inputs is n�	� while the

logarithm of the cardinality of this class is quadratic in n 
���� so it is better to use the �rst bound

in this case� even though the hypothesis space is �nite� In general� the VC dimension of the class

of functions represented by multilayer perceptrons with a �xed architecture but variable weights

is upper bounded by a quantity that is close to �but slightly higher than� the number of variable

weights� whether the inputs are real�valued or Boolean 
�	� 	��� If the weights are represented with

very high or in�nite precision� then it may be better to use these estimates of the VC dimension

in conjunction with the �rst bound� However� when concepts are represented by neural networks

of a �xed size with only a few bits of precision per weight� the hypothesis space is �nite even for

real�valued inputs� so the second bound is applicable� and it is often better� Unfortunately� in either

case the bounds are likely to be overly pessimistic in practice�

Extensions of these results for the case of noisy training data and more complex learning prob�

lems are described in the second part of this chapter� and in the chapter by Vapnik�

Criticisms of the PAC Model

The two criticisms most often leveled at the PAC model by AI researchers interested in empirical

machine learning are

	� the worst�case emphasis in the model makes it unusable in practice �e�g� 
��� 		��� and

�� the notions of target concepts and noise�free training data are unrealistic in practice �e�g�


�� 	
���

We take these in turn�

There are two aspects of the worst case nature of the PAC model that are at issue� One is the

use of the worst case model to measure the computational complexity of the learning algorithm�
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the other is the de�nition of the sample complexity as the worst case number of random examples

needed over all target concepts in the target class and all distributions on the instance space� Little

work has been done on the former issue �with the notable exception of 
	�	��� so here we address

only the latter issue�

As pointed out in the section �De�nition of PAC Learning� above� the worst case de�nition of

sample complexity means that even if we could calculate the sample complexity of a given algorithm

exactly� we would still expect it to overestimate the typical error of the hypothesis produced as

a function of the training set size on any particular target concept and particular distribution on

the instance space� This is compounded by the fact that we usually cannot calculate the sample

complexity of a given algorithm exactly even when it is a relatively simple consistent algorithm�

Instead we are forced to fall back on the upper bounds on the sample complexity that hold for

any consistent algorithm� given in the previous section� which themselves may contain overblown

constants�

The upshot of this is that the basic PAC theory is not good for predicting learning curves�

Some variants of the PAC model come closer� however� One simple variant is to make it distribu�

tion speci�c� i�e� de�ne and analyze the sample complexity of a learning algorithm for a speci�c

distribution on the instance space� e�g� the uniform distribution on a Boolean space 
	�� 		��� There

are two potential problems with this� The �rst is �nding distributions that are both analyzable

and indicative of the distributions that arise in practice� The second is that the bounds obtained

may be very sensitive to the particular distribution analyzed� and not be very reliable if the actual

distribution is slightly di�erent�

A more re�ned� Bayesian extension of the PAC model is explored in 
���� Using the Bayesian

approach involves assuming a prior distribution over possible target concepts as well as training

instances� Given these distributions� the average error of the hypothesis as a function of training

sample size� and even as a function of the particular training sample� can be de�ned� Also� 	 � �

con�dence intervals like those in the PAC model can be de�ned as well� Experiments with this

model on small learning problems are encouraging� but further work needs to be done on sensitivity

analysis� and on simplifying the calculations so that larger problems can be analysed� Some success

in tackling the di�cult computations involved in certain Bayesian approaches to learning theory

has been obtained by using the tools from statistical physics 
��� 	�	� ��� 		�� 
��� This work�

and the other distribution speci�c learning work� provides an increasingly important counterpart






to PAC theory��

Another variant of the PAC model designed to address these issues is the �probability of mis�

take� model explored in 
��� 
��� and 

��� This model is designed speci�cally to help understand

some of the issues in incremental learning� Instead of looking at sample complexity as de�ned

above� the measure of performance here is the probability that the learning algorithm incorrectly

guesses the label of the mth training example in a sequence of m random examples� Of course� the

algorithm is allowed to update its hypothesis after each new training example is processed� so as m

grows� we expect the probability of a mistake on example m to decrease� For a �xed target concept

and a �xed distribution on the instance space� it is easy to see that the probability of a mistake

on example m is the same as the average error of the hypothesis produced by the algorithm from

m� 	 random training examples� Hence� the probability of mistake on example m is exactly what

is plotted on empirical learning curves that plot error versus sample size and average several runs

of the learning algorithm for each sample size�

In 
��� the focus is on the worst case probability of mistake on the mth example� over all

possible target concepts and distributions on the training examples� In 
��� and 

�� the probability

of mistake on themth example is examined when the target concept is selected at random according

to a prior distribution on the target class and the examples are drawn at random from a certain

�xed distribution� This is a Bayesian approach� The former we will call the worst case probability

of mistake and the latter we will call the average case probability of mistake� The results can be

summarized as follows� Let C � fCngn�� be a concept class and dn � dimV C�Cn� for all n � 	�

First� for any concept class C and any consistent algorithm for C using hypothesis space C� the

worst case probability of mistake on example m is at most O��dn�m�ln�m�dn��� where m � dn�

Furthermore� there are particular consistent algorithms and concept classes where the worst case

probability of mistake on example m is at least ���dn�m�ln�m�dn��� hence this is the best that

can be said in general of arbitrary consistent algorithms�

Second� for any concept class C there exists a �universal� learning algorithm for C �not neces�

sarily consistent or computationally e�cient� with worst case probability of mistake on example m

at most dn�m� On the other hand� any learning algorithm for C must have worst case probability

of mistake on example m at least ��dn�m�� so this universal algorithm is essentially optimal�

�There has been a recent surge of interest in Bayesian approaches to neural network learning� see e	g	 
��
 ���	
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Third� if we focus on average case behavior� then there is a di�erent universal learning algorithm�

which is called Bayes optimal learning algorithm �or the weighted majority algorithm 
���� and there

is a closely related� more e�cient algorithm called the Gibbs �or randomized weighted majority�

algorithm that have average case probability of mistake on example m at most dn�m and �dn�m�

respectively� Furthermore� there are particular concept classes C� particular prior probability

distributions on the concepts in these classes� and particular distributions on the instance spaces of

these classes� such that the average case probability of mistake on example m is at least ��dn�m�

for any learning algorithm �with constant � 	���� This indicates that the above general bounds are

tight to within a small constant� Even better forms of these upper and lower bounds can be given

for speci�c distributions on the examples� speci�c target concepts� and even speci�c sequences of

examples�

These results show two interesting things� First� certain learning algorithms perform better

than arbitrary consistent learning algorithms in the worst case and average case� therefore� even in

this restricted setting there is de�nitely more to learning than just �nding any consistent hypothesis

in an appropriately biased hypothesis space� Second� the worst case is not always much worse than

the average case� Some recent experiments in learning perceptrons and multilayer perceptrons

have shown that in many cases dn�m is a rather good predictor of actual �i�e� average case�

learning curves for backpropagation on synthetic random data 
	�� 	���� However� it is still often

an overestimate on natural data 
		��� and in other domains such as learning conjunctive concepts

on a uniform distribution 
		��� Here the distribution �and algorithm� speci�c aspects of the

learning situation must also be taken into account� Thus� in general we concur that extensions

of the PAC model are required to explain learning curves that occur in practice� However� no

amount of experimentation or distribution speci�c theory can replace the security provided by a

distribution independent bound�

The second criticism of the PAC model is that the assumptions of well�de�ned target concepts

and noise�free training data are unrealistic in practice� This is certainly true� However� it should

be pointed out that the computational hardness results for learning described above� having been

established for the simple noise�free case� must also hold for the more general case� The PAC model

has the advantage of allowing us to state these negative results simply and in their strongest form�

Nevertheless� the positive learnability results have to be strengthened before they can be applicable

in practice� and some extensions of the PAC model are needed for this purpose� Many have been

		



proposed �see e�g� 
	�� �����

Since the de�nitions of target concepts� random examples and hypothesis error in the PAC

model are just simpli�ed versions of standard de�nitions from statistical pattern recognition and

decision theory� one reasonable thing to do is to go back to these well�established �elds and use

the more general de�nitions that they have developed� First� instead of using the probability of

misclassi�cation as the only measure of error� a general loss function can be de�ned that for every

pair consisting of a guessed value and an actual value of the classi�cation� gives a non�negative real

number indicating a �cost� charged for that particular guess given that particular actual value�

Then the error of a hypothesis can be replaced by the average loss of the hypothesis on a random

example� If the loss is 	 if the guess is wrong and � if it is right �discrete loss�� we get the PAC

notion of error as a special case� However� using a more general loss function we can also choose

to make false positives more expensive than false negatives or vice�versa� which can be useful� The

use of a loss function also allows us to handle cases where there are more than two possible values

of the classi�cation� This includes the problem of learning real�valued functions� where we might

choose to use jguess� actualj or �guess� actual�� as loss functions�

Second� instead of assuming that the examples are generated by selecting a target concept and

then generating random instances with labels agreeing with this target concept� we might assume

that for each random instance� there is also some randomness in its label� Thus� each instance will

have a particular probability of being drawn and� given that instance� each possible classi�cation

value will have a particular probability of occurring� This whole random process can be described

as making independent random draws from a single joint probability distribution on the set of all

possible labeled instances� Target concepts with attribute noise� classi�cation noise� or both kinds

of noise can be modeled in this way� The target concept� the noise� and the distribution on the

instance space are all bundled into one joint probability measure on labeled examples� The goal of

learning is then to �nd a hypothesis that minimizes the average loss when the examples are drawn

at random according to this joint distribution�

The PAC model� disregarding computational complexity considerations� can be viewed as a

special case of this set�up using the discrete loss function� but with the added twist that learning

performance is measured with respect to the worst case over all joint distributions in which the

entire probability measure is concentrated on a set of examples that are consistent with a single

target concept of a particular type� Hence� in the PAC case it is possible to get arbitrarily close to
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zero loss by �nding closer and closer approximations to this underlying target concept� This is not

possible in the general case� but one can still ask how close the hypothesis produced by the learning

algorithm comes to the performance of the best possible hypothesis in the hypothesis space� For

an unbiased hypothesis space� the latter is known as Bayes optimal classi�er 
����

Some recent PAC research has used this more general framework� By using the quadratic

loss function mentioned above in place of the discrete loss� Kearns and Shapire investigate the

problem of e�ciently learning a real�valued regression function that gives the probability of a ���

classi�cation for each instance 
���� A more general approach� which also links the learning model

with the minimum description length framework of Rissanen 
	�
�� is given by Yamanishi in 
	����

In the second part of this chapter we show how the VC dimension and related tools� originally

developed by Vapnik� Chervonenkis� and others for this type of analysis� can be applied to the

more general study of learning in neural networks� Here no restrictions whatsoever are placed on

the joint probability distribution governing the generation of examples� i�e� the notion of a target

concept or target class is eliminated entirely� Using this method� speci�c sample complexity bounds

are obtained for learning with feedforward neural networks under various loss functions� Further

results along these and related lines are given in the chapters by Vapnik and White�

Indeed� viewed in the larger context of statistics� the basic PAC model is really only a �toy�

model� useful as an introduction to some of the important ideas in machine learning� and as a

clean framework in which questions of computational complexity can be addressed �and answered

negatively in their strongest form�� but not nearly rich enough to capture the range of machine

learning practice� Some other� more sophisticated union of statistics� computer science and possibly

other disciplines will be required for this task� While no comprehensive model of this type has

been suggested in the computational learning theory literature� a number of other aspects of� and

approaches to machine learning have been explored� A few of these are discussed in the next section�

Other Theoretical Learning Models

A number of other theoretical approaches to machine learning are �ourishing in recent compu�

tational learning theory work� One of these is the total mistake bound model 
���� Here an arbitrary

sequence of examples of an unknown target concept is fed to the learning algorithm� and after seeing

each instance the algorithm must predict the label of that instance� This is an incremental learning

model like the probability of mistake model described above� however here it is not assumed that
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the instances are drawn at random� and the measure of learning performance is the total number

of mistakes in prediction in the worst case over all sequences of training examples �arbitrarily long�

of all target concepts in the target class� We will call this latter quantity the �worst case� mistake

bound of the learning algorithm� Of interest is the case when there exists a polynomial time learning

algorithm for a concept class C � fCngn�� with a worst case mistake bound for target concepts in

Cn that is polynomial in n� As in the PAC model� mistake bounds can also be allowed to depend

on the syntactic complexity of the target concept�

The perceptron algorithm for learning linear threshold functions in the Boolean domain is a good

example of a learning algorithm with a worst case mistake bound� This bound comes directly from

the bound on the number of updates given in the perceptron convergence theorem �see e�g� 
�����

The worst case mistake bound of the perceptron algorithm is polynomial �and at least linear� in

the number n of Boolean attributes when the target concepts are conjunctions� disjunctions� or any

concept expressible with ��	 weights and an arbitrary threshold 
���� A variant of the perceptron

learning algorithm with multiplicative instead of additive weight updates was developed that has

a signi�cantly improved mistake bound for target concepts with small syntactic complexity 
����

The performance of this algorithm has also been extensively analysed in the case when some of the

examples may be mislabeled 
����

It can be shown that if there is a polynomial time learning algorithm for a target class C with

a polynomial worst case mistake bound� then C is PAC learnable� General methods for converting

a learning algorithm with a good worst case mistake bound into a PAC learning algorithm with

a low sample complexity are given in 
���� Hence� the total mistake bound model is actually not

unrelated to the PAC model�

Another fascinating transformation of learning algorithms is given by the weighted majority

method 
���� �See also the general methods in 
	����� This is a method of combining several in�

cremental learning algorithms into a single incremental learning algorithm that is more powerful

and more robust than any of the component algorithms� This method extends the Bayesian�style

weighted majority algorithm mentioned in the previous section� The idea is simple� All the com�

ponent learning algorithms are run in parallel on the same sequence of training examples� For

each example� each algorithm makes a prediction and these predictions are combined by a weighted

voting scheme to determine the overall prediction of the �master� algorithm� After receiving feed�

back on its prediction� the master algorithm adjusts the voting weights for each of the component
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algorithms� increasing the weights of those that made the correct prediction� and decreasing the

weights of those that guessed wrong� in each case by a multiplicative factor� It can be shown that

this method of combining learning algorithms is very robust with regard to mislabeled examples�

More importantly� the method produces a master algorithm with a worst case mistake bound that

approaches the worst case mistake bound of the best component learning algorithm 
���� Thus

the performance of the master algorithm is almost as good as that of the best component algo�

rithm� This is particularly useful when a good learning algorithm is known but a parameter of the

algorithm has to be tuned for the particular application 
�	�� In this case the weighted majority

method is applied to a pool of component algorithms� each of which is a version of the original

learning algorithm with a di�erent setting of the parameter� The master algorithm�s performance

approaches the performance of the component algorithm with the best setting of the parameter�

The weighted majority method can also be adapted to the case when the predictions of the

component algorithms are continuous 
���� This leads to a method for designing a master algorithm

whose worst case loss approaches the worst case loss of the best linear combination of the component

learning algorithms 
�
�� Here instead of the total number of mistakes� the loss is the total squared

prediction error� Finally� a version of the weighted majority method can also be used to obtain

good mistake bounds in the case when the best component algorithm changes in various sections

of the trial sequence� More general learning problems for �drifting� target concepts have been

investigated as well 
��� �
�� This represents an interesting new direction in computational learning

theory research�

Both the PAC and total mistake boundmodels can be extended signi�cantly by allowing learning

algorithms to perform experiments or make queries to a teacher during learning 
��� The simplest

type of query is a membership query� in which the learning algorithm proposes an instance in the

instance space and then is told whether or not this instance is a member of the target concept� The

ability to make membership queries can greatly enhance the ability of an algorithm to e�ciently

learn the target concept in both the mistake bound and PAC models� It has been shown that

there are polynomial time algorithms that make polynomially many membership queries and have

polynomial worst case mistake bounds for learning

	� monotone DNF concepts �Disjunctive Normal Form with no negated variables� 
���

�� ��formulae �Boolean formulae in which each variable appears at most once� 
���

�� deterministic �nite automata 
��� and
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�� Horn sentences �propositional PROLOG programs� 
���

In addition� there is a general method for converting an e�cient learning algorithm that makes

membership queries and has a polynomial worst case mistake bound into a PAC learning algorithm�

as long as the PAC algorithm is also allowed to make membership queries� Hence� all of the concept

classes listed above are PAC learnable when membership queries are allowed� This contrasts with

the evidence from cryptographic assumptions that classes ��� and ��� above are not PAC learnable

from random examples alone 
����

Surprisingly� it can be shown� based on cryptographic assumptions� that slightly richer classes

than those listed above list are not PAC learnable even with membership queries 

�� These include�

	� non�deterministic �nite automata and

�� intersections of deterministic �nite automata�

This is shown by generalizing the notion of polynomial�time learning�preserving reduction from


	��� to the case when membership queries are allowed� and then reducing known cryptographically

secure problems to the above learning problems�

Conclusion

In this brief survey we were able to cover only a small fraction of the results that have been

obtained recently in computational learning theory� For a glimpse at some of these further results

we refer the reader to 
��� 		�� ��� 	���� However� we hope that we have at least convinced the reader

that the insights provided by this line of investigation� such as those about the di�culty of searching

hypothesis spaces� the notion of bias and its e�ect on required training size� the e�ectiveness of

majority voting methods� and the usefulness of actively making queries during learning� have made

this e�ort worthwhile�

Part �� Decision Theoretic Generalizations of the PAC Model for Neural Net

Applications

	�



Summary of Part �� We describe a generalization of the PAC learning model that is based

on statistical decision theory� In this model the learner receives randomly drawn examples� each

example consisting of an instance x � X and an outcome y � Y � and tries to �nd a decision rule

h � X � A� where h � H� that speci�es the appropriate action a � A to take for each instance

x� in order to minimize the expectation of a loss L�y� a�� Here X� Y � and A are arbitrary sets� L

is a real�valued function� and examples are generated according to an arbitrary joint distribution

on X 	 Y � Special cases include the problem of learning a function from X into Y � the problem

of learning the conditional probability distribution on Y given X �regression�� and the problem of

learning a distribution on X �density estimation��

We give theorems on the uniform convergence of empirical loss estimates to true expected loss

rates for certain decision rule spaces H� and show how this implies learnability with bounded sample

size� disregarding computational complexity� As an application� we give distribution�independent

upper bounds on the sample size needed for learning with feedforward neural networks� Our

theorems use a generalized notion of VC dimension that applies to classes of real�valued functions�

adapted from Vapnik and Pollard�s work� and a notion of capacity and metric dimension for classes

of functions that map into a bounded metric space� A fuller version of this part of the chapter

appears in 
����

� Introduction

The introduction of the Probably Approximately Correct �PAC� model 
	��� 
�� of learning from

examples has done an admirable job of drawing together practitioners of machine learning with

theoretically oriented computer scientists in the pursuit of a solid and useful mathematical foun�

dation for applied machine learning work� These practitioners include both those in mainstream

arti�cial intelligence and in neural net research� However� in attempting to address the issues that

are relevant to this applied work in machine learning� a number of shortcomings of the model have

cropped up repeatedly� Among these are the following�

	� The model is de�ned only for f�� 	g�valued functions� Practitioners would like to learn func�

tions on an instance space X that take values in an arbitrary set Y � e�g� multi�valued discrete

functions� real�valued functions and vector�valued functions�
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�� Some practitioners are wary of the assumption that the examples are generated from an

underlying �target function�� and are not satis�ed with the noise models that have been

proposed to weaken this assumption �e�g� 
	�� 
		�� 
		���� They would like to see more

general regression models investigated in which the y component in a training example �x� y� �
X 	 Y is randomly speci�ed according to a conditional distribution on Y � given x� Here the

general goal is to approximate this conditional distribution for each instance x � X� In the

computational learning theory literature� a model of this type is investigated in 
���� with

Y � f�� 	g� and in a more general case in 
	�
��

�� Many learning problems are unsupervised� i�e� the learner has access only to randomly drawn�

unlabeled examples from an instance space X� Here learning can often be viewed as some form

of approximation of the distribution that is generating these examples� This is usually called

density estimation when the instance space X is continuous and no speci�c parametric form

for the underlying distribution on X is assumed� It is often called parameter estimation when

speci�c parametric probability models are used� One example of this in the computational

learning theory literature is the recent investigation of Abe and Warmuth into the complexity

of learning the parameters in a hidden Markov model 
	��

Our purpose here is twofold� First� we propose an extension of the PAC model� based on the work

of Vapnik and Chervonenkis 
	�
� and Pollard 
	��� 	���� that addresses these and other issues�

Second� we use this extension to obtain distribution�independent upper bounds on the size of the

training set needed for learning with various kinds of feedforward neural networks�

��� Overview of the proposed framework

To extend the PAC model� we propose a more general framework based on statistical decision

theory �see e�g� Ferguson 
���� Kiefer 
��� or Berger 
����� In this general framework we assume the

learner receives randomly drawn training examples� each example consisting of an instance x � X

and an outcome y � Y � where X and Y are arbitrary sets called instance and outcome spaces�

respectively� These examples are generated according to a joint distribution on X 	 Y � unknown

to the learner� This distribution comes from a �known� class P of joint distributions on X 	 Y �

representing possible �states of nature�� After training� the learner will receive further random

examples drawn from this same joint distribution� For each example �x� y�� the learner will be

shown only the instance x� Then he will be asked to choose an action a from a set of possible
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actions A� called the decision space� Following this� the outcome y will be revealed to the learner�

In the case that we examine here� the outcome y depends only on the instance x and not on the

action a chosen by the learner� For each action a and outcome y� the learner will su�er a loss� which

is measured by a �xed real�valued loss function L on Y 	 A� We assume that the loss function is

known to the learner� The learner tries to choose his actions so as to minimize his loss�

Here we look at the case in which� based on the training examples� the learner develops a

deterministic strategy that speci�es what he believes is the appropriate action a for each instance

x in X� He then uses this strategy on all future examples� Thus we look at �batch� learning rather

than �incremental� or �on�line� learning 
���� The learner�s strategy� which is a function from the

instance space X into the decision space A� will be called a decision rule� We assume that the

decision rule is chosen from a �xed decision rule space H of functions from X into A� For example�

instances in X may be encoded as inputs to a neural network� and outputs of the network may be

interpreted as actions in A� In this case the network represents a decision rule� and the decision

rule space H may be all functions represented by networks obtained by varying the parameters of

a �xed underlying network� The goal of learning is to �nd a decision rule in H that minimizes the

expected loss� when examples are drawn at random from the unknown joint distribution on X	Y �

This learning framework can be applied in a variety of situations� We now give several illustra�

tions� For further discussion� we refer the reader to the excellent surveys of White 
	���� Barron


	��� Devroye 
���� and Vapnik 
	�
�� to which we are greatly indebted� Further discussion also

appears in the chapters of Vapnik and White� We also recommend the text by Kiefer 
��� for a

general introduction to statistical inference and decision theory�

����� Betting Example

For our �rst example� consider the problem of learning to maximize pro�t �or minimize loss�� at

the horse races� Here an instance x in X is a race� an action a in A consists of placing or not

placing a certain bet� and an outcome y in Y is determined by the winner and the second and

third place �nishers� The loss L�y� a� is the amount of money lost when bet a is placed and the

outcome of the race is y� A negative loss is interpreted as gain� The joint distribution on X 	 Y

represents the probability of various races and outcomes� This joint distribution is unknown to

the learner� he only has random examples �x�� y��� � � � � �xm� ym�� each consisting of a race outcome

pair generated from this distribution� From these examples� the learner develops a deterministic

	




betting strategy �decision rule�� The best decision rule h is one that speci�es a bet a for each race

x that minimizes the expectation of the loss L�y� a�� when y is chosen randomly from the unknown

conditional distribution on Y given x� which is determined by the underlying joint distribution on

X 	 Y � This �not necessarily unique� best decision rule minimizes the expected loss on a random

example �x� y�� It is known as Bayes optimal decision rule� The learner tries to approximate Bayes

optimal decision rule as best he can using decision rules from a given decision rule space H �e�g�

decision rules that can be represented by a particular kind of neural network��

����� classi�cation

As a second example� consider the problem of medical diagnosis� Here an instance x is a vector

of measurements from medical tests conducted on the patient� an action a is a diagnosis of the

patient�s disease state� and an outcome y may be de�ned as the actual disease state of the patient�

Here A � Y � i�e� the possible diagnoses are the same as the possible disease states� To specify the

loss function L� we may stipulate that there is zero loss for the correct diagnosis a � y� but for each

pair �y� a� with diagnosis a di�ering from disease state y there is some positive real loss L�y� a��

depending on the severity of the consequences of that particular misdiagnosis� Here a decision rule

is a diagnostic method� and Bayes optimal decision rule is the one that minimizes the expected loss

from misdiagnosis when examples �x� y� of test results and associated disease states occur randomly

according to some unknown �natural� joint distribution�

This medical diagnosis situation is a typical example of a classi�cation learning problem in the

�eld of pattern recognition �see e�g� 
����� The problem of learning a Boolean function from noise�

free examples� as investigated in the PAC model� is a special case of classi�cation learning� Here

the outcome space Y is f�� 	g and only the instance x in an example �x� y� is drawn at random�

The outcome y is f�x� for some unknown Boolean target function f � rather than being determined

stochastically� As above� the decision space A is the same as the outcome space Y � and the action

a can be interpreted as a prediction of the outcome y� Hence� a decision rule h maps from the

instance space X into the outcome space Y � just as the target function does� In much of AI� and

in PAC learning in particular� it is common to refer to h as a hypothesis in this case� and to H as

the hypothesis space�

This same setup� where the outcome y is a function of the instance x� can be applied to any

function learning problem by letting X and Y be arbitrary sets� In the general function learning

��



problem� the loss function L�y� a� usually measures the distance between the prediction a and the

actual value y in some metric� In the PAC model� L is the discrete metric� L�y� a� � � if a � y�

else L�y� a� � 	� Thus the expected loss of the decision rule �or hypothesis� is just the probability

that it predicts incorrectly� the usual PAC notion of the error of the hypothesis� In general� Y may

be a set of strings� graphs� real vectors� etc�� in which case other distance metrics or more general

kinds of loss functions may be more appropriate�

����� regression

The general problem of regression has a di�erent character from that of classi�cation learning�

but can also be addressed in the decision theoretic learning framework� To illustrate this� as a

third example consider a variant of the medical diagnosis situation in which the doctor provides an

estimate of the probability that the patient has each of several diseases� rather than predicting that

he has one speci�c disease or asserting that he is healthy� �Here we assume that the actual disease

state includes at most one disease�� For example� the doctor may say �Given these test results

x� I would say you have disease 	 with probability ��!� disease � with probability �!� and no

disease at all with probability ��!�� Here the doctor is actually trying to estimate the conditional

distribution on disease states Y given the test results x� Her action a entails providing a vector of

parameters that determine that estimated distribution� e�g� ������ ����� ����� The decision space A

is the set of all such parameter vectors�

Now let Y be an arbitrary discrete outcome space� Keeping the instance x �xed� for each

parameter vector a in A and outcome y in Y let bP �y� a� denote the probability of outcome y with

respect to the distribution on Y de�ned by the parameter vector a� Thus when we take action a

on instance x� we are asserting that� given the instance x� we estimate the conditional probability

of outcome y to be bP �y� a� for each outcome y in Y � Let P �y� denote the actual conditional

probability of outcome y� given the instance x� with respect to the unknown joint distribution on

X 	 Y � �The distributions P and bP can be replaced by densities when Y is continuous�� Let

us de�ne� the loss function L by setting L�y� a� � �log bP �y� a�� This is called the �negative� log

likelihood loss function� If we de�ne loss in this way� then the expected loss resulting from action

a has a natural information theoretic interpretation�� it is the Kullback�Leibler divergence 
�	� �or

�We assume bP �y�a� � � for all y in Y 	
�The Kullback�Leibler divergence from P to bP 
 denoted I�P jjbP �
 is de�ned as

P
y�Y

P �y�log P �y�bP�y�a�
for countable

�	



information gain 
	���� from the actual conditional probability distribution P to the estimated

conditional distribution bP � plus the entropy of P �

For a given x� the entropy of the true conditional distribution P is a constant� independent of the

action a� Thus choosing the action a for each instance x that minimizes the expected log likelihood

loss is equivalent to choosing the action a that gives the closest estimate bP to the true conditional

distribution P over possible outcomes in Y as measured by the Kullback�Leibler divergence� given

that instance x� It is well known that the Kullback�Leibler divergence is minimized when bP � P �

This is Bayes optimal decision rule in regression�

In the regression version of our medical diagnosis situation� the de�nition of the log likelihood

loss function depends on the interpretation of the components of the parameter vector a� If there are

k possible diseases and the patient can have at most one of these� then we might have k�	 possible

mutually exclusive disease states y�� � � � � yk��� where yk�� means healthy� Hence Y � fy�� � � � � yk��g�
Then we might specify that an action a takes the form

a � �a�� � � � � ak����

where ai � bP �yi� a�� the estimated probability of disease state yi� Here the components of the

vector a must be positive and sum to one� In this case the log likelihood loss would be L�yi� a� �

�logai � �log bP �yi� a��

Often the constraints on the components of a are a nuisance� so other interpretations of a are

used� e�g� that ai � log bP �yi� a�� log bP �yk��� a� for each i� 	 � i � k�	� In this case the a�� � � � � ak

are arbitrary real numbers and ak�� � �� and hence can be ignored� Since bP �yi� a� � eai�
Pk��

j�� e
aj �

the log likelihood loss is L�yi� a� � �ai� log
Pk��

j�� e
aj � �ai� log�	�

Pk
j�� e

aj �� This is known as

the logistic loss 
��� 	��� A third interpretation would be to allow the possibility that the patient

may have more than one disease� and assume� for the purposes of estimation� that diseases occur

independently� Then the disease state y might be de�ned as a binary vector of length k� where the

ith bit yi is 	 if and only if the ith disease is present� Hence Y � f�� 	gk � Similarly� the vector a

would be a vector of independent probabilities �a�� � � � � ak�� where ai is the estimated probability

Y 	 The entropy of P 
 denoted H�P �
 is �
P

y�Y
P �y�logP �y�	 Thus I�P jjbP � �H�P � � �

P
y�Y

P �y�logbP �y�a�

which is the expectation of the �negative� log likelihood loss	 Analogous results hold for densities when the relevant
quantities are �nite 
��� �see the chapter by White�	
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of the patient having the ith disease� In this case

bP �y� a� �
kY
i��

ayii �	� ai�
���yi�

and the log likehood loss is

L�y� a� � �
kX
i��

�yilogai � �	� yi�log�	� ai�� �

which we will call the cross entropy loss�

In the medical diagnosis example� the outcome space Y is discrete� However� in most uses of

regression Y is real valued� e�g� the outcome y is the measurement of some real valued quantity�

and the instance x represents the experimental conditions under which this quantity was measured�

In this case regression is usually de�ned as estimating the conditional expectation of Y given the

instance x� Thus A 
 �� and the action a � A for a given instance x consists of an estimate of the

mean of the various outcomes y that would typically be observed for that instance x� It is easy to

show that by using the quadratic loss function L�y� a� � �a � y��� the expected loss is minimized

when a is the true mean� and hence this version of regression also �ts naturally� into the decision

theoretic framework� An alternate approach is to use the L� loss function L�y� a� � ja�yj� in which

case the expected loss is minimized when a is the median of the conditional distribution Y given

the instance x� �See e�g� 
	���� 
�	� and the chapters by White and Vapnik for further discussion��

����� density and parameter estimation

Finally� the problems of parameter estimation and density estimation can also be viewed as special

cases of this decision theoretic framework� For parameter estimation� note that when the instance

�In fact
 the standard version of regression
 de�ned as estimating the conditional mean of Y given instance x

using the quadratic loss function
 is actually a special case of the general version of regression de�ned above
 where
for continuous outcome spaces Y 
 the object is to estimate the parameters specifying the conditional density of Y
given instance x
 using the log likelihood loss function	 To see this
 assume that we represent the conditional density

on Y with a Gaussian density �p�y��� �� � ����������e����y������ 
 where � is the mean and �� the variance	 Let
the variance be �xed
 independent of x
 so that the estimate �p�y��� ��
 of the conditional density on Y given x is
completely determined by the mean �	 Thus the decision space A � �
 and each action a in A is interpreted as
specifying the mean of a Gaussian density	 Substituting � � a and evaluating �log�p�y��� ��
 the log likelihood loss is
seen to be L�y� a� � �

���
�a�y��� �

�
log������	 For �xed variance ��
 this is equivalent
 for learning
 to the quadratic

loss �a � y��
 since additive and multiplicative constants in the de�nition of L only rescale it without changing the
value of a that minimizes its expectation	 A more general treatment of these ideas appears in the chapter of White	
There he discusses how both � and �� can be estimated conditionally for the Gaussian density and other members
of the exponential family of densities	
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space X has only one element then the particular instance x can be ignored entirely� Thus the

regression problem reduces to the problem of estimating the parameters of a single distribution on

the outcome space Y from a sample of random outcomes y from Y � i�e� to the simpler problem

of parameter estimation� Here the decision rule is not a function but merely a single vector of

parameters� and the decision rule space H is the same as the decision space A�

For density estimation� we can consider the dual case in which the outcome space Y has only

one element� and hence can be ignored� Thus examples are unlabeled instances x drawn randomly

from some density p�x� on X� Let the decision set A be the positive real numbers and each decision

rule h in H be a density on X� Then� as above� information theoretic considerations suggest the

the loss function L�y� a� � L�a� � �loga� Again� as above� the expected loss of h is minimized

when h is the true density p� Further� if p is not a member of H� then the best decision rule in H�

in terms of minimizing the expected loss� is the one with the smallest Kullback�Leibler divergence

from the true density p 
�	�� In the chapter of White �section ��� on unsupervised networks�� a more

detailed exposition of this approach is given� along with some indication of how neural networks

can be used to represent densities� Here� perhaps the simplest example is the representation of a

mixture of Gaussian densities by a neural network with one hidden layer� as described in 
	��� 
���

Many more methods of density estimation are discussed in Vapnik�s work�

When the instance space X is discrete� we are not estimating a density on X but rather a

probability distribution� The same ideas as above carry over� except that we let the decision space

A � ��� 	� and each decision rule h in H represent a probability distribution on X� Here we can

also use the same loss function� and it has the same properties�

These examples illustrate the diversity of the learning problems that can be cast in the proposed

decision theoretic framework� even under the restrictive assumptions we make here� i�e� that the

outcome y does not depend on the action a� and that the learner always observes both the outcome

and the loss� By weakening these assumptions� we can model other types of learning as well�

including associative reinforcement learning 
	�� ��� and the theory of learning automata �with

static environment� 
���� However� we will not pursue this here�

��� Summary and discussion of the results presented here

There are three major practical issues in this decision theoretic view of learning� The �rst is the

number of random examples needed in order to be able to produce a good decision rule in the
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decision rule space H� i�e� a decision rule whose expected loss is near the minimum of all decision

rules in H� If too few examples are used� we run into the problem of over�tting� where the decision

rule produced performs well on the training data� but not on further random examples drawn from

the same joint distribution that generated this training data� The second is the adequacy of the

decision rule space H� If H does not contain any decision rule with expected loss close to that of

Bayes optimal decision rule for the particular joint distribution we are dealing with� then we can

never hope to achieve near optimal performance using this decision rule space� Choosing the right

decision rule space often requires considerable insight into the particular problem domain� Finally�

the third practical problem is the computational complexity of the method we use to produce our

decision rule from the training examples� This issue has been addressed extensively in the PAC

literature� and is also addressed in 
��� 	�� Of these three important issues� here we examine only

the �rst� This issue is referred to as the problem of estimating the �sample complexity� of the

learning problem in the PAC literature 
����

The number of random training examples needed to avoid over�tting depends critically on the

nature of the decision rule space used� Di�erent kinds of decision rule spaces are used in di�erent

areas of learning research� partly because di�erent kinds of instance and outcome spaces are used�

In pattern recognition and statistics� the instance space X is usually a �nite dimensional real

vector space� i�e� each instance consists of a vector of real valued measurements of some attributes�

In density estimation� a decision rule represents a density on X� and many choices are possible�

One common choice is a mixture of Gaussian densities �e�g� 
���

���� In standard regression�

the outcome and decision spaces Y and A are identical and real valued� and linear functions are

most often used as decision rules� For more complex outcome spaces such as those in the medical

diagnosis example given above� the decision rule space for regression is usually de�ned using a

generalized linear model 
���� Similarly� in binary classi�cation� where there are only two possible

outcomes in Y as in the PAC model� linear threshold functions are most often used as decision rules�

and there are straightforward generalizations for the case of k�ary classi�cation �see e�g� 
����� This

�linear bias� in pattern recognition and statistics is in contrast to that in the PAC model and other

AI areas� including work in neural networks� in which a rich variety of decision rule spaces are used

�see e�g� 
	��� 	��� �
� ����� Our main goal here is to develop analytic tools to help understand the

problem of over�tting in these more complex decision rule spaces�

In order to focus on the problem of over�tting� we take a simpli�ed view of learning� in which

��



the learner chooses a decision rule space H� and then tries to �nd a decision rule in H with near

minimal expected loss� To do this� the learner looks for a decision rule that minimizes the observed

average loss on the training examples� which is called empirical loss or empirical risk �see chapter by

Vapnik�� For example� in standard linear regression	 the learning algorithm is the method of least

squares� i�e� we �nd the linear function h that minimizes the average of L�y� h�x�� � �h�x��y�� over
all examples �x� y� in our training set� It is well known that if we have too few training examples�

then we tend to over�t them� and the function we �nd does not come close to minimizing the actual

expected quadratic loss� which would be obtained by integrating over all possible �mostly unseen�

examples with respect to the unknown joint distribution on them� This same situation occurs with

all nontrivial decision rule spaces� including the nonlinear regression models de�ned by feedforward

neural nets�

Using certain measures of the �dimension� or �capacity� of the decision rule space H and classes

derived from H �see below�� we obtain general upper bounds on the number of random training

examples needed so that with high probability� any decision rule in H that has small empirical

loss on the training examples will have small actual expected loss� i�e� we get uniform convergence

results for empirical estimates like those in 
	���
���
	��� 	���� We show how these give upper

bounds on su�cient training sample size like those derived in 
��� and elsewhere using the notion

of the VC dimension� and generalize those results�

As an application� we give speci�c bounds on the number of training examples needed to avoid

over�tting when learning with the decision rule space of feedforward neural nets 
		��� extending

previous work in 
	�� and 
	��� �see also related work in 
	���� These are the nets most widely used

in current neural net learning research� Our model for feedforward neural nets is quite general in

that it allows many types of units in the nets� including quasi�linear units 
		��� radial basis units


	���� and product units 
����

In our general setting� successful learning means �nding a decision rule with average loss close

to minimal over all decision rules in the given decision rule space� rather than loss close to zero

as in the PAC model� In addition to using an additive model as in 
���� we also de�ne �close

to� using a measure of relative di�erence �the d� metric� similar to the standard multiplicative

measure of approximation used in combinatorial optimization� This allows us to state the relevant

uniform convergence bounds as generalized �Cherno��style� 
		� bounds� as in 
	����
��� �chapter

�For general regression with the negative log likelihood loss function
 the principle of minimizing empirical loss is
the same as the principle of maximum likelihood 
��
 ���	

��



	��� rather than �Hoe�ding�style� bounds �as in Pollard�s results 
	����� giving better bounds on

su�cient training sample size in some important cases� These two types of bounds are analogous to

the two types of bounds that Vapnik gives his work in that one uses a measure of absolute di�erence

and the other a measure of relative di�erence� However� both of our bounds are �two�sided�� i�e�

they bound deviations both above and below the mean�

We give these upper bounds on required sample size only to give some indication of the order�

of�magnitude dependence of sample size on certain critical parameters of the learning problem� and

to illustrate the theory� They are still too crude to be used directly in practice� e�g� as explicit

formulae for choosing an appropriate sample size� Cross validation techniques� in which some of the

training examples are held in reserve and used instead to test the performance of the decision rules

produced by the learning algorithm� are likely to perform better for this task in practice �see e�g�


	��� 	����
� Nevertheless� cross validation is only a means of estimating the amount of over�tting

in the learning method in particular cases� i�e� it is only an engineering trick and provides no

scienti�c explanation of the phenomenon� Our goal is to understand and explain over�tting in

general decision rule spaces� from a scienti�c rather than an engineering viewpoint�

Finally� we should note that in practice� many learning algorithms do more than just search

for a decision rule in a �xed decision rule space that minimizes empirical loss� For example� it

is common to let the decision rule space depend on the number of training examples available�

using richer and richer decision rule spaces as more examples become available �see e�g� 
	��� �����

This can allow the learning algorithm to produce a sequence of decision rules with expected losses

that approach the loss of Bayes optimal decision rule in the limit of in�nite training sample size

for a large class of possible joint distributions� The results given here can be used to estimate

the appropriate rate at which the decision rule space should grow relative to the sample size to

avoid over�tting� Other approaches� e�g� the method of structural risk minimization introduced

by Vapnik 
	���� and the Bayesian 
��� ��� ��� and minimum description length �MDL� approaches


	�� 	�
�� try to �nd a decision rule that minimizes some function of empirical loss and decision

rule complexity� These can also achieve expected loss approaching that of Bayes optimal decision

rule in the limit� and may be more e�ective in practice� Although uniform convergence results such

as those we develop here are also used in the analysis of such methods 
	��� �and in the analysis

�In Vapnik�s work
 he argues that by reducing the constants on his bounds
 criteria are obtained that can provide
useful guidance for the practitioner in choosing sample or network size
 either in place of
 or in conjunction with cross
validation	 Recent empirical studies from his group at Bell Labs support this claim	 Hence these types of bounds
may �nd direct use in practice after all	

��



of cross�validation methods 

���� the full treatment of such approaches is beyond the scope of the

present chapter� These issues are dealt with more fully in Vapnik�s chapter� It should also be noted

that Bayesian methods and structural risk minimization can be applied even when the decision rule

space includes only neural networks of a �xed size� An example is the recent work using weight

penalty functions in neural net training 
	��� ��� 
�� ��� ���� Such approaches may signi�cantly

reduce the training sample size needed to avoid over�tting in practice�

��� Overview of methods used

We now brie�y discuss the methodology and previous work used in obtaining our results� Our

work builds directly on the work of Vapnik and Chervonenkis� Pollard� and Dudley on the uniform

convergence of empirical estimates 
	���
	���
��� and its application to pattern recognition 
	��� 	�
�


���� It also builds on the work of Benedek and Itai on PAC learnability with respect to speci�c

probability distributions 
	��� and is related to the work of Natarajan and Tadepalli on extensions

of the VC dimension to multi�valued functions 

�� 

	� and PAC learnability with respect to classes

of probability distributions 
��� 

��� In addition� Quiroz and Kulkarni have each independently

generalized the PAC model in a related manner 
	��� ����

One of the key ideas we use is the notion of an ��cover of a metric space 
��� 
	��� 
	�� 

��


	��� and the associated idea of metric dimension 
��� �also called the fractal dimension 
�	��� This

notion of dimension has played an important role in the now very active study of fractals in nature


���� especially in connection with chaos in dynamical systems 
�	�
���� Here we build further on the

beautiful results of Vapnik and Chervonenkis 
	���� Dudley 
��� and Pollard 
	���� which relate a

type of generalized VC dimension for a decision rule space to the number of balls of radius � required

to cover the space� with respect to certain metrics� The sizes of the smallest such covers determine

the metric dimension of the space� Our treatment closely parallels the approach given in 
	����

It is interesting to note that related results connecting ��covers with the VC dimension have also

been independently developed in 
	�� and in recent computational geometry work 
	����� This work

seems to lead to a potentially rich area of investigation that combines elements of combinatorics�

topology and geometry� and probability and measure in a novel framework� We feel that this area

is not only fascinating from a purely mathematical standpoint� but also potentially very useful in

	Speci�cally
 Lemma �	�� of 
��� is nearly equivalent to Lemma �	� of 
���� �using the primal space instead of the
dual�	 This result also gives a stronger version of Theorem �
 part��� of 
���	 We give a still stronger version of this
result in Theorem �� below	

��



machine learning and other applied �elds�

��� Organization of the results

The remainder of the chapter is organized as follows� The learning framework we have described

above in section 	�	 is de�ned more formally in section �� There we also look at the question of

evaluating the performance of learning algorithms in terms of the number of training examples they

use� This question is also formalized from a decision theory perspective� We then provide a lemma

�Lemma 	� that can be used to evaluate the performance of learning algorithms that work by

minimizing empirical loss� To use this lemma� we need bounds on the rate of uniform convergence

of empirical loss estimates to true expected losses� These are given in section �� The key bound is

given in Theorem � in section �� and in a more general version in Theorem ��

To use the bound from Theorem � we need bounds on the �random covering numbers� associated

with the decision rule space H� the loss function L and the distribution P � These are related to

the idea of an ��cover described above� Tools for bounding the random covering numbers in the

worst case over all distributions P are developed in section �� Here we introduce the notion of the

capacity of the decision rule space H �for a particular loss function L�� and the related notion of the

metric dimension of H� In section � we use these notions� along with Pollard�s generalization of the

VC dimension �the pseudo dimension�� described in section ��� of the appendix� to obtain bounds

on the performance �in terms of the number of training examples used� of learning algorithms that

use multilayer feedforward neural networks� and work by minimizing empirical loss �Corollary ���

Finally� some further discussion of our results is given in the conclusion� section �� Many of the

more technical proofs and de�nitions have been omitted to simplify the presentation� They can be

found in 
����

��� Notational conventions

We denote the real numbers by � and the non�negative real numbers by ��� By log and ln we

denote the logarithm base � and the natural logarithm� respectively� We use E��� to denote the

expectation of a random variable� and Var��� to denote the variance of a random variable� When

the probability space is de�ned implicitly from the context� we use Pr��� to denote the probability

of a set� However� usually the measure on the underlying probability space will be de�ned explicitly

using the symbol P �

�




Here� P will usually denote a probability measure on some appropriate� ��algebra over the set

Z � X 	 Y � where X is the instance space and Y is the outcome space� We use Pm to denote the

m�fold product measure on Zm� Functions on Z and subsets of Z mentioned in what follows will

be assumed to be measurable without explicit reference� Alternately� we will also view X and Y as

random variables on some other� unspeci�ed� probability space� e�g� when they are viewed as real

valued measurements� In this case P is viewed as a joint distribution on X and Y � In either case�

the probability of a set T 
 Z is de�ned by

P �T � �

Z
T
dP �z�

�where z � �x� y� with x � X and y � Y � and the expectation of function f on Z is denoted by

E�f� �

Z
Z
f�z�dP �z��

When Z is countable we will� with some abuse of notation� also use P for the probability mass func�

tion� i�e� for z � Z� P �z� denotes P �fzg�� Hence P �T � �
P

z�T P �z� and E�f� �
P

z�Z f�z�P �z�

in this case� When Z is continuous� a density associated with P �if it exists� is denoted by p�

When Z is countable we use P �yjx� to denote the probability that Y � y given that X �

x �viewing X and Y as random variables� and similarly for P �xjy�� Hence P ��jx� denotes the

conditional distribution on Y � given X � x� The marginal distribution inX is de�ned by
 PjX �x� �P
y�Y P �x� y�� Here and elsewhere� we abbreviate P ��x� y�� by P �x� y��

Finally� we list some other notation that is used several places in the text� indicating which

section it is de�ned in�


If Z is countable then we assume this ��algebra contains all subsets of Z
 otherwise we assume that Z is a
complete
 separable metric space �see section �	�� and that this ��algebra is the smallest ��algebra that contains the
open sets of Z �i	e	 the ��algebra of Borel sets�	

�When Z is uncountable
 the marginal and conditional distributions are de�ned so thatZ
Z

f�x� y�dP �x� y� �

Z
X

�Z
Y

f�x� y�dP �yjx�

�
dPjX �x�

for every bounded measurable function f 	

��



X�Y �A�H and L sections 	�	 and ��	

P section ��	

rh�L�P �� rh�P � �true risk� section ���

r�
L
�P �� r��P � �optimal risk� section ���

brh�	z� �empirical risk� section ���

br��	z� �optimal empirical risk� section ���

d� section ���

L� L�� L��� �regret functions� section ���

R �big "L� risk� section ���

m��� ��� m�
� �� �� �sample complexity� section ���

N �covering number� sections ��	 and ���

M �packing number� section ��	

dim �metric dimension� section ��	

dimC �pseudo dimension� section ���

C �capacity� section �

�L section �

lH section �

Fj�z section �bE �empirical expectation� section �

dL� �L� distance for vectors� section ���

dL��P � �L
� distance for functions� section ���

dL��P��� �L
� distance for functions� section �

� Learning and optimization

We now further formalize the basic problem of learning� as introduced in section 	�	� We will

introduce a formal notion of a learning algorithm� and a higher level loss function� which we will

call a regret function� that measures how well the learning algorithm performs� The regret function

will be de�ned in terms of the low level loss function L discussed in the previous section� Finally�

we will show how an algorithm can solve the learning problem by solving a related optimization

problem�

�	



��� The basic components X� Y�A�H�P and L

We �rst review and further formalize the six components of the basic learning problem introduced

in the previous section� X� Y � A� H� P and L� The �rst four components are the instance� outcome�

decision and decision rule spaces� respectively� The �rst three of these are arbitrary sets� and the

fourth� H is a family of functions from X into A� These have been discussed extensively in the

previous section�

The �fth component� P� is a family of joint probability distributions on X	Y � These represent

the possible �states of nature� that might be governing the generation of examples� The set

Z � X 	 Y will be called the sample space� We assume that examples are drawn independently

at random according to some probability distribution P � P on the sample space Z� A sequence

of examples will be called a sample� In what follows�� we will usually assume that P includes all

probability distributions on Z� Hence our results will be distribution independent�

The last component� the loss function L� is a mapping from Y 	A into �� In this paper we will

assume that L is bounded and nonnegative� i�e� � � L �M for some real M � When Y and A are

�nite it is always possible to enforce this condition by simply adding a constant to L� which doesn�t

change the learning problem in any essential way� When either Y or A is in�nite� the learning

problem sometimes needs to be restricted to meet this condition� For example� in regression�� we

might restrict the possible parameter vectors in A and or the possible outcomes in Y such that

for every y � Y and a � A� bP �y� a� � b for some constant b� We can then take M � �logb� In

density estimation� the same thing can be accomplished by restricting the instance space X to a

bounded subset of �n on which all densities in H have values uniformly greater than b and less

than B for constants � � b � B� We can then add logB to the loss function to make it positive�

The same method works for estimating distributions on discrete spaces� we restrict ourselves to a

�nite instance space X and demand that for all x � X and all probability distributions h � H�

h�x� � b � � �see e�g� 
	� 	�
��� These restrictions are often reasonable in practice� e�g� most

�
It is
 however
 possible and in fact common to assume that P is a very speci�c class of probability distributions
on Z	 For example
 let X � �n	 Then if we are doing classi�cation learning and Y is discrete we may assume that y
is selected according to an arbitrary distribution on Y 
 and for each y
 P �xjy� is a multi�variate Gaussian distribution
on X 
���	 On the other hand
 if we are doing linear regression
 then Y is real�valued and we might assume that x
is selected according to an arbitrary distribution on X
 and y is a linear function of x with additive Gaussian noise	
In PAC learning theory we have a discrete analog of the latter case	 Here we usually have X � f�� �gn
 Y � f�� �g

and y a Boolean function of x of a particular type �e	g	 de�ned by a small disjunctive normal form formula�
 possibly
plus random noise	

��Note that to get bounded loss in linear regression
 X must a bounded subset of �n as well
 since we can�t bound
Y without bounding X	 The coe�cients of the functions in H must also be bounded	

��



measurements naturally have bounded ranges� but they can be annoying �see 
	�
�� 
	���� 
	��� for

alternative approaches for unbounded loss functions��

��� Measuring distance from optimality with the d� metric

For a given decision rule h � H and distribution P on the sample space Z� the expected loss of h

is the average value of L�y� h�x��� when the example �x� y� is drawn at random according to P � It

is de�ned by

rh�L�P � � rh�P � � E�L�y� h�x��� �

Z
Z
L�y� h�x��dP �x� y�

�the subscript L will be omitted when the loss function is clear from the context�� Since L is

bounded this expectation is �nite for every distribution P � In decision theory the expected loss

rh�P � is called the risk of h when P is the true underlying distribution� This quantity generalizes

the notion of the error of h used in computational learning theory�

In section 	�	 we stated the goal of learning quite informally� Given examples chosen indepen�

dently at random from some unknown probability distribution P � P� �nd a decision rule #h in H
that comes �close to� minimizing the risk rh�P � over all h � H� Let r�

L
�P � �or r��P � when L is

clear from the context� denote the in�mum of rh�P � over all h in the decision rule space H� To

formalize our notion of a basic learning problem� we �rst need to say what we mean that r�h�P � is

�close to� r��P ��

Let r � r�h�P � and s � r��P �� One natural interpretation is to demand that jr � sj � � for

some small � � �� However� we will see in section ��	 that sometimes it is better to use a relative

measure of distance� For any real � � �� let d� be the function de�ned by

d��r� s� �
jr � sj

� � r � s

for any non�negative reals r and s� It is straightforward but tedious to verify that d� is a metric

on ��� The d� metric is similar to the standard function

jr � sj
s

used to measure the di�erence between the quality r of a given solution and the quality s of an

optimal solution in combinatorial optimization� However� our measure has been modi�ed to be

well�behaved when one or both of its arguments are zero� and to be symmetric in its arguments �so

��



that it is a metric�� Three other properties of d� are also useful�

	� For all non�negative reals r and s� � � d��r� s� � 	�

�� For all non�negative r � s � t� d��r� s� � d��r� t� and d��s� t� � d��r� t��

�� For � � r� s �M � jr�sj
���M � d��r� s� � jr�sj

� �

We will refer to the second property by saying that d� is compatible with the ordering on the reals�

��� The regret function L and the big �L� risk R

Once we have speci�ed how we measure closeness to optimality� we still need to specify our criteria

for a successful learning algorithm� Do we need to have the risk of the decision rule found close to

the optimum r�
L
�P � with high probability� or should its average distance from r�

L
�P � be small� Do

we measure success in terms of the performance of the algorithm on the worst case distribution in

P� or do we use some average case analysis over distributions in P� These questions lead us right

back to decision theory again� but this time at a higher level in the analysis of learning�

To see this� consider the structure of a learning algorithm L� For any sample size m� the

algorithm Lmay be given a sample $z � ��x�� y��� � � � � �xm� ym�� drawn at random from Zm according

an unknown product distribution Pm� where P � P� For any such $z it will choose a decision rule

L�$z� � H� Thus abstractly� the algorithm de�nes a function L from the set of all samples over Z

into H� i�e� L �
S
m�� Z

m � H� Since we are not requiring computability here� we will call such L a

learning method� When P � P is the actual �state of nature� governing the generation of examples�

and the algorithm produces the decision rule h � H� let us say that we su�er a nonnegative real�

valued regret L�P� h�� Thus� formally L � P 	H � ��� In our treatment here� the regret function

L will be derived from the loss function L� and will measure the extent to which we have failed

to produce a near optimal decision rule� assuming P is the true state of nature �i�e� the amount

of �regret� we feel for not having produced the optimal decision rule�� Finally� for each possible

state of nature P � the average regret su�ered by the algorithm� over all possible training samples

$z � Zm� is the big �L� risk of that algorithm under P for sample size m� This big "L� risk is de�ned

formally by

RL�L�m�P � �

Z
�z�Zm

L�P�L�$z��dPm�$z��

The goal of learning is to minimize big "L� risk�

��



We illustrate these de�nitions with a few examples� First suppose we want to capture the

notion of successful learning that is used in the PAC model� Then one possibility is to introduce

an accuracy parameter � � � and de�ne the regret function L � L� by letting L��P� h� � 	 if

rh�L�P � � r�
L
�P � � �� and L��P� h� � � otherwise� This we su�er regret only when the decision

rule h produced by the learning algorithm has risk that is more than � from optimal� measured by

the absolute di�erence metric� For this de�nition of regret� the big "L� risk RL��L�m�P � measures

the probability that the decision rule produced by L has risk more than � from optimal� when L is

given m random training examples drawn according to P � We then demand that this big "L� risk

be small� i�e� smaller than some given con�dence parameter � � ��

In the PAC model it is commonly assumed that the examples given to the algorithm L are

noise�free examples of some underlying target function f � H� In this case the risk r��P � of the

optimal decision rule in H is zero� and hence L��P� h� � 	 � rh�L�P � � �� Hence demanding big

"L� risk at most � gives the usual PAC criterion that the risk of the decision rule �or �hypothesis��

produced by L be greater than � with probability at most ��

The regret function L can also be de�ned similarly� but using the d� metric to measure distance

from optimality� instead of the absolute di�erence� Speci�cally� for every � � � and � � 
 � 	�

we can de�ne the regret function L��� by letting L����P� h� � 	 if d��rh�L�P �� r�
L
�P �� � 
� and

L����P� h� � � otherwise� In this case the big "L� risk RL��� �L�m�P � measures the probability that the

risk of the decision rule produced by the algorithm L has distance more than 
 from optimal in the

d� metric� when the algorithm is given m random training examples drawn according to P � We will

see in sections ��� and ��	 why this sometimes gives a more useful and �exible de�nition of regret� In

fact� in this paper� we will give our main results in terms of the family fL��� � � � � and � � 
 � 	g
of regret functions� and show how corresponding results may be derived as corollaries for the family

fL� � � � �g of regret functions�

Other regret functions are also possible and lead to di�erent learning criteria� For example�

another� perhaps simpler� way to de�ne regret is to let L�P� h� � rh�L�P ��r�
L
�P �� When r�

L
�P � � ��

as it does in the standard noise�free PAC model� this de�nition makes the regret L equal to the risk

rL�P �� i�e� the expectation of the underlying loss L� In this case the big "L� risk RL�L�m�P � measures

the expectation of the loss incurred by the learning algorithm L when it is given m random training

examples drawn according to P � forms a decision rule h� and then uses h to determine the action on

one further independent random example drawn according to P � This gives a generalization of the

��



learning criterion studied in 
���� When r�
L
�P � �� �� then the big "L� risk gives the expectation of

the amount of such loss above and beyond the expected loss that would be su�ered if the optimal

decision rule were used� In particular� in density estimation� where P and h are both densities

on the instance space X� if P � H then de�ning the regret by L�P� h� � rh�L�P � � r�
L
�P � makes

it equal to the Kullback�Leibler divergence from P to h� Hence the big "L� risk is the expected

Kullback�Leibler divergence of the decision rule h returned by the algorithm from the true density

�see sections 	�	�� and 	�	����

It is also possible to de�ne the regret function L directly� without using an underlying loss

function L� For example� in density estimation it is possible to use other measures of the distance

between two densities� e�g� the Hellinger distance or the total variational distance� as in 
	�� 	�
��

The criterion from 
��� for inferring a good model of probability can also be de�ned using an

appropriate regret function� without de�ning an underlying loss L�

��� Full formalization of the basic learning problem

Having de�ned the regret function� and thereby the big "L� risk function� we still face one last issue�

do we want to minimize big "L� risk in the worst case over all possible states of nature P in P� or do
we want to assume a prior distribution on possible distributions in P� so that we can de�ne a notion

of �average case� big "L� risk to be minimized� The former goal is know as minimax optimality�

and has been used in the PAC model� The later is the Bayesian notion of optimality 
��� ����

and has been used in several approaches to learning in neural nets based on statistical mechanics


��� 	�	� ��� 		�� 
�� 
��� Unfortunately this last question has no clear cut answer� and leads us

directly into a longstanding unresolved debate in statistics �see e�g� 
��� and following discussion���

Since we have set out to generalize the PAC model� and since our results are best illustrated in

the minimax setting� we will formalize the notion of a basic learning problem using the minimax

criterion� In subsequent work we hope to further explore this Bayesian setting� �For recent work in

Bayesian approaches to neural network learning see 
��� ���� and for Bayesian versions of the PAC

model see 
��� �����

We can now de�ne exactly what we mean by a basic learning problem� and what it means for

a learning method to solve this problem in this minimax setting�

De�nition � A basic learning problem is de�ned by six components X� Y � A� H� P� and L� where
the �rst �ve components are as de�ned in section ��	� and the last component� L� is a family of regret

��



functions as de�ned in section ��
 �e�g� L � fL��� � � � � and � � 
 � 	g� or L � fL� � � � �g
for some loss function L�� Let L be a learning method as de�ned in section ��
� We say that L
solves the basic learning problem if for all L � L and all � � � � 	 there exists a �nite sample size

m � m�L� �� such that

for all P � P� RL�L�m�P � � ��

The sample complexity of the learning method L is the smallest such integer valued functionm�L� ���

When L � fL��� � � � � and � � 
 � 	g we will denote m�L��� � �� by m�
� �� �� and when

L � fL� � � � �g we will denote m�L�� �� by m��� ���

As discussed above� this de�nition generalizes the PAC criterion� and several others as well� In

fact� this de�nition is quite generous� in that sample size needed to get the big "L� risk less than �

is only required to be �nite for each � � �� In particular� using property ��� of the d� metric from

section ���� when the underlying loss function L is bounded� as we assume here� any algorithm L
solves the basic learning problem using the L��� class of regret functions if and only if it solves it

using the L� class� Thus it doesn�t matter which of these two classes of regret functions we use�

However� in practice it is the sample complexity of L that is critical� and this will depend on which

class of regret functions are used�

The nature of this dependence is seen more clearly when we expand the condition

RL�L�m�P � � �

for L � L� and L � L���� When L � L�� this condition means that given m random training

examples drawn according to P � with probability at least 	 � �� the decision rule #h produced by

the algorithm L satis�es

r�h�L�P � � r�L�P � � ��

i�e� the risk of #h is at most � greater than that of the optimal decision rule in H� When L � L��� �

this condition is the same� except that we require

r�h�L�P � � 	 � 


	� 

r�L�P � �


�

	 � 

�

Thus in the former case� the sample complexity is de�ned in terms of small additive deviations

from optimality� and in the latter� we allow both additive and multiplicative deviations� These

��



deviations are controlled by the parameters 
 and ��

For example� when r�
L
�P � � � as in the standard PAC model� then setting 
 � 	�� and � � �

makes the L� and L��� conditions equivalent� each reduces to the PAC condition

r�h�L�P � � ��

When r�
L
�P � � �� then L��� condition approximates the L� condition when 
 is small and � � ��
�

In particular� since we are assuming that the underlying loss function L is bounded between �

and M � we have � � r�h�L�P �� r�
L
�P � � M and property ��� of the d� metric shows that the L���

condition with � � �M and 
 � ���M implies the L� condition� This shows how the two parameter

L��� condition is generally more �exible than the single parameter L� condition�

��� Relation between learning and optimization

Let us assume that the underlying loss function L is �xed� and we are using either the L� or L���

regret functions derived from L� In order to solve a basic learning problem� we must �nd� with high

probability� a decision rule #h with risk close to optimal� As the true distribution P is unknown�

to do this we must rely on estimates of rh�P � for the various h � H which are derived from the

given random training sample� For a given h � H and training sample $z � �z�� � � � � zm�� where

zi � �xi� yi� � Z� let brh�	z� denote the empirical risk on $z� i�e� brh�	z� � �
m

Pm
i�� L�yi� h�xi��� Letbr��	z� � inffbrh�	z� � h � Hg� We can then de�ne a natural optimization problem associated with the

basic learning problem� given the training sample $z� �nd a decision rule #h � H such that br�h�	z� is

close to br��	z�� i�e� a decision rule whose empirical risk on the training sample is close to minimal�

Solving the optimization problem does not automatically solve the learning problem� We need

to have good empirical risk estimates as well� Since L is bounded� for every h � H� as the sample

size m � 
� brh�	z� � rh�P � with probability 	� We will say that the empirical risk estimates of

decision rules in H converge uniformly to the true risk if for all � and � � � there exists a sample

size m such that when the zi � $z� 	 � i � m� are drawn independently at random from Z according

to the distribution P � with probability at least 	 � �� we have ��brh�	z�� rh�P �� � � for all h � H�

Here � is some metric on ��� e�g� either the absolute di�erence or the d� metric�

The following result shows that uniform convergence of the empirical risk estimates� along with

a learning method L that gives a randomized solution to the optimization problem on the estimates�

gives a solution to the basic learning problem� We state it for the d� metric� but the same argument

��



works also for the absolute di�erence metric�

Lemma � Let � � � and � � 
� � � 	� Suppose the sample size m � m�
� �� �� is such that for all

probability distributions P � P

Pr��h � H � d��brh�	z�� rh�P �� � 
��� � ����

where the zi � $z� 	 � i � m� are drawn independently at random from Z according to the distribution

P � Suppose also that the algorithm L is such that for all P � P

Pr�d��brL��z��	z�� br��	z�� � 
��� � ����

where $z is drawn randomly by P as above� Then for all P � P

Pr�d��rL��z��P �� r��P �� � 
� � ��

i�e� L solves the basic learning problem for the family of L��� regret functions and has sample

complexity at most m�
� �� ���

Proof� By the triangle inequality for d� � if

	� d��rL��z��P �� brL��z��	z�� � 
���

�� d��brL��z��	z�� br��	z�� � 
��� and

�� d��br��	z�� r��P �� � 
���

then

d��rL��z��P �� r��P �� � 
�

The second assumption of the lemma states that ��� holds with probability at least 	 � ���� The

�rst assumption implies that both �	� and ��� hold with probability at least 	����� �If ��� fails then
we can �nd a decision rule h � H such that d��brh�	z�� rh�P �� � 
��� Here we use the compatibility

of d� with the ordering on the reals�� Hence with probability at least 	 � � all of �	� � ��� hold�

The result follows� �

In statistics� this type of result is called a consistency theorem about the �statistic� �i�e� the

decision rule� computed by the learning method L� This use of the term �consistency� di�ers

sharply from that common in PAC learning research�

�




� Uniformly good empirical estimates of means

In this section we concentrate on the problem of bounding the number of random examples needed

to get good empirical estimates of the risk of each of the decision rules in a decision rule space

H� For each decision rule h � H and example z � �x� y� � Z� let lh�z� � L�y� h�x��� As in the

previous section� we assume that L is a non�negative bounded loss function taking values in the

interval 
��M �� thus for each decision rule h� lh de�nes a random variable taking values in 
��M ��

The value of lh on an example �x� y� is the loss incured when you use h to determine the action to

take for instance x� and the outcome is y� The risk of h is just the expectation of lh� i�e�

rh�P � � E�lh� �

Z
Z
lh�z�dP �z��

Furthermore� if $z � �z�� � � � � zm� is a sequence of examples from Z� then the empirical risk of h on

$z is the empirical estimate of the mean of lh based on the sample $z� which we denote by bE�z�lh�� i�e�

brh�	z� � bE�z�lh� �
	

m

mX
i��

lh�zi��

Let lH � flh � h � Hg� We need to draw enough random examples to get a uniformly good empirical

estimate of the expectation of every random variable in lH�

The general problem of obtaining a uniformly good estimate of the expectation of every function

in a class F of real�valued functions has been widely studied �see e�g� 
	��� 	��� ��� and their

references�� If no assumptions at all are made about the functions in F� we immediately run into

the problem that some functions in F could take on arbitrarily large values with arbitrarily small

probabilities� making it impossible to obtain uniformly good empirical estimates of all expectations

with any �nite sample size� This problem can be avoided by making assumptions about the moments

of the functions in F� as in 
	���� or by assuming that there exists a single non�negative function

with a �nite expectation �called an envelope� that lies above the absolute value of every function

in F� as in 
	��� ��� �see also Vapnik�s chapter�� In our case� when the loss takes only values in


��M �� then the constant function M serves as an envelope� This case is especially nice since this

same envelope works for all distributions on the domain Z of the functions in F�

The usual measure of deviation of empirical estimates from true means is simply the absolute

value of the di�erence� Thus we would say that the empirical estimates for the expectations of the

functions in F converge uniformly to the true expectations if as the size of the random sample $z

��



grows�

Pr
�
�f � F � jbE�z�f��E�f�j � �

�
goes to zero for any � � �� �This is called �uniform� convergence in probability� see e�g� 
�	���

Vapnik� Dudley� Pollard and others have obtained general bounds on the sample size needed so

that

Pr
�
�f � F � jbE�z�f��E�f�j � �

�
� �

for �� � � � 
	��� 
��� 
	���� Vapnik also obtains better bounds in some important cases by consid�

ering the relative deviation of empirical estimates from true expectations� He looks at bounds on

the sample size needed so that

Pr

�
�f � F �

E�f�� bE�z�f�

E�f�
� �

�
� �

and also bounds on the sample size needed so that

Pr

�
�f � F �

E�f�� bE�z�f�p
E�f�

� �

�
� ��

�Anthony and Shawe�Taylor also obtain bounds of the latter form 
	���� Note that these are one�

sided bounds� in that they only bound the probability that the empirical mean is signi�cantly

smaller than the true mean� While extremely useful� as we mentioned in the previous section�

these measures of deviation su�er from a discontinuity at E�f� � �� and lack of convenient metric

properties� As in 
	���� we will give bounds on the sample size needed so that

Pr
�
�f � F � d��bE�z�f��E�f�� � 


�
� Pr

�
�f � F �

jbE�z�f��E�f�j
� � bE�z�f� �E�f�

� 


�
� ��

i�e� the deviation measured using the d� metric��� By setting � and 
 appropriately� we obtain

results similar to those of 
	��� and 
	��� as special cases of our main theorem� However� our results

��In 
����
 Pollard also gives results that can be used to bound the sample size needed so that

Pr

���f � F �
jbE�z�f��E�f�j

� �

qbE�z�f� �
p
E�f�

� �

�A � ��

in analogy with the second type of bound given by Vapnik
 except that these bounds are two�sided	 We do not pursue
these further here	

�	



are restricted to the case that all functions in F are positive and uniformly bounded�

��� The case of 	nite F

Before considering the general case� it is useful to see what bounds we can get in the case that F

is a �nite set of functions� Here we can easily prove the following�

Theorem � Let F be a �nite set of functions on Z with � � f�z� � M for all f � F and z � Z�

Let $z � �z�� � � � � zm� be a sequence of m examples drawn independently from Z according to any

distribution on Z� and let � � �� Then

Pr
�
�f � F � jbE�z�f��E�f�j � �

�
� �jFje����m�M�

�

For � � � � 	 and sample size

m � M�

���

�
lnjFj� ln

�

�

�
this probability is at most �� Further� for any � � � and � � 
 � 	�

Pr
�
�f � F � d��bE�z�f��E�f�� � 


�
� �jFje����m�M �

For � � � � 	 and sample size

m � M


��

�
lnjFj� ln

�

�

�
this probability is at most �� �

Proof� For the second part of the theorem� using Bernstein�s inequality �see e�g� 
	���� it is easy

to show that for any single function f with � � f �M �

Pr
�
d��bE�z�f��E�f�� � 


�
� �e��

��m�M �

Details are given in Lemma 
� part ��� in the Appendix of 
���� It follows that the probability that

there is any f � F with d��bE�z�f��E�f�� � 
 is at most �jFje����m�M � Setting this bound to � and

solving for m gives the result on the sample size� The proof of the �rst part of the lemma is similar�

except we use Hoe�ding�s inequality �see e�g� 
	����� which implies that for any single f �

Pr
�
jbE�z�f��E�f�j � �

�
� �e���

�m�M�
�

��



�

By letting F � lH� this theorem can be used in conjunction with Lemma 	 from the previous

section to obtain bounds on the sample complexity of learning algorithms that minimize empirical

risk� Here we can use either the L� or L��� family of regret functions� In the former case we get a

sample complexity

m��� �� � O

�
M�

��

�
logjlHj� log

	

�

��
� �	�

In the latter case we get a sample complexity

m�
� �� �� � O

�
M


��

�
logjlHj� log

	

�

��
� ���

As shown in the previous section� a generalization of the PAC learning model can be obtained by

using either the L� or L��� regret functions� in the latter case by setting 
 � 	�� and � � �� Note

that plugging this latter setting into ��� gives a sample complexity

m��� �� � O

�
M

�

�
logjlHj� log

	

�

��
� ���

a signi�cant improvement over �	�� which is quadratic in M��� Thus the generalization of the PAC

model using the d� metric to measure distance from optimality� and the resulting L��� family of

regret functions� o�ers new insight in this regard� �Vapnik�s use of the relative di�erence between

empirical estimates and true expectations 
	��� also has this advantage� see 
	��� the appendix of


��� and Vapnik�s chapter��

��� The general case

The main task of this section is to generalize Theorem 	 to in�nite collections of uniformly bounded

functions� The basic idea is simple� we replace the in�nite class F of functions with a �nite class

F� that �approximates� it� in the sense that each function in F is close to some function in F��

and argue that some type of uniform convergence of empirical estimates for F� implies uniform

convergence for F� In the simplest version of this technique� the choice of F� depends only on F

and the distribution P � as in the �direct method� discussed in section II�� of 
	��� �see also 
	���

section ���� 
��� chapter �� 
	��� 
	���� and White�s chapter�� However� more general results �apart

��



from certain measurability constraints� are obtained by allowing F� to depend on the particular

random sample $z �e�g� 
	���� chapter ��� Here F� is called a �random cover�� and its size is called

a �random covering number�� It is this type of result that we derive here�

We will need a few preliminary de�nitions to introduce the notion of ��covers and metric di�

mension� A more general treatment of these ideas is given in the appendix� section ��	� This more

general treatment will be used in the next section� but the following de�nitions su�ce for this

section�

For any real vectors $x � �x�� � � � � xm� and $y � �y�� � � � � ym� in �m� let dL��$x� $y� � �
m

Pm
i�� jxi �

yij� Thus dL� is the L� distance metric� Let T be a set of points that lie in a bounded region of

�m� For any � � �� an ��cover for T is a �nite set N 
 �m �not necessarily contained in T � such

that for all $x � T there is a $y � N with dL��$x� $y� � �� The function N ��� T � denotes the size of the

smallest ��cover for T � We refer to N ��� T � as a covering number�

Following 
��� we de�ne the upper metric dimension of the set T of points by

dim�T � � limsup���
logN ��� T �

log�	���
�

The lower metric dimension� denoted by dim� is de�ned similarly using liminf� When dim�T � �

dim�T �� then this quantity is denoted dim�T �� and referred to simply as the metric dimension

of T � Note that if N ��� T � � �g������n� where g��� is polylogarithmic in 	��� then dim�T � � n�

Hence the metric dimension essentially picks out the exponent in the rate of growth of the covering

number as a function of 	���

Assume all functions in F map from Z into 
��M �� For any sample $z � �z�� � � � � zm�� with

zi � Z� let

Fj�z � f�f�z��� � � � � f�zm�� � f � Fg�

We will call Fj�z the restriction of F to $z� Note that Fj�z is a set of points in the m�cube 
��M �m� We

can consider the size of the covering number N ���Fj�z� as giving some indication of the �richness at

scale � �� of the class F of functions� restricted to the domain z�� � � � � zm� The metric dimension of

Fj�z gives some indication of the �number of essential degrees of freedom� in this restriction of F�

When z�� � � � � zm are drawn independently at random from Z� the random covering number

E�N ���Fj�z�� gives some indication of the �richness� of F on a �typical� set of m points in the

domain Z� Note that for �nite F� we have N ���Fj�z� � jFj for all � and all samples $z� and hence

��



the random covering number E�N ���Fj�z �� � jFj for all �� all sample sizes m� and all distributions

on Z� The main result about uniform empirical estimates for in�nite classes of functions is similar

to Theorem 	 except that the random covering numbers are used in place of jFj�

Theorem � ��	�
�� Let F be a permissible�� set of functions on Z with � � f�z� � M for all

f � F and z � Z� Let $z � �z�� � � � � zm� be a sequence of m examples drawn independently from Z

according to any distribution on Z� Then for any � � � and � � 
 � 	�

Pr
�
�f � F � d��bE�z�f��E�f�� � 


�
� �E

�
N �
����Fj�z �

�
e��

��m��
M � �

Corollary � ��	���� Under the same assumptions as above� for all � � ��

Pr
�
�f � F � jbE�z�f��E�f�j � �

�
� �E

�
N ���	��Fj�z �

�
e��

�m����M�
�

Proof of corollary� This follows directly from the above result by setting � � �M � and 
 � ���M �

To see this� note that property ��� of the d� metric �section ���� implies that jr � sj � � whenever

d��r� s� � 
 for all � � r� s �M when this setting of � and 
 is used� �

The constants in these results are only crude estimates� No serious attempt has been made to

minimize them� �See the recent results of Talagrand 
		
� for much better constants for Corollary 	��

The bound in this latter result depends critically on the relative magnitudes of the negative

exponent in e��
�m����M�

and the exponent in the expectation of the covering number N ���	��Fj�z ��

which re�ects the extent to which Fj�z ��lls up� the m�cube 
��M �m� For example� if Fj�z has

metric dimension at most n for all m and all $z� then there is a constant c� such that for any


 � �� N ���	��Fj�z � � �c�M���n�� for suitably small �� In this case the negative exponential term

eventually dominates the expected covering number� and beyond a critical sample size

m� � O

�
nM�

��
log

M

�

�
�

the bound goes to zero exponentially fast� We will see examples of this in the following section�

where we give bounds on the metric dimension of Fj�z in terms of a combinatorial parameter called

the pseudo dimension of F� The theorem actually shows that this exponential drop o� occurs even

if this metric dimension bound holds only for �most� $z�

��This is a measurability condition de�ned in 
���� which need not concern us in practice	 A detailed discussion is
given in 
���	

��



On the other hand� if with high probability Fj�z ��lls up� the m�cube 
��M �m to the extent that

N ���	��Fj�z � � �c����
m� which is as large as possible� then the covering number dominates� and the

bound is trivial� Results in 
	��� �Theorem A��� page ���� indicate that uniform convergence does

not take place in this case� Similar remarks apply to the bound given in Theorem �� which uses

the d� metric�

The proof of Theorem � follows the proof of Pollard�s Theorem �� �
	���� p� ��� in general

outline� and is given in 
���� However� the use of the d� metric necessitates a number of substantial

modi�cations� The approach taken here is di�erent from that taken �independently� but prior to

this work� by Pollard in 
	���� Still di�erent� and more involved� techniques are used in the more

general theory of weighted empirical processes developed by Alexander 
�� ���

Actually� we can prove a slightly stronger result than Theorem � �see 
���� Theorem 	��� This

result is obtained by bounding the probability of uniform convergence on a sample of length m in

terms of the expected covering numbers associated with a sample of length �m� and by expanding

the expectation to include the negative exponential term with a �truncation� at 	� It turns out

that this saves us a factor of 	 � in the negative exponential term�

Theorem � Let F be a permissible set of functions on Z with � � f�z� � M for all f � F and

z � Z� Assume � � �� � � 
 � 	 and m � 	� Suppose that $z is generated by m independent

random draws according to any probability measure on Z� Let

p�
� ��m� � Pr
n
$z � Zm � �f � F with d��bE�z�f��E�f�� � 


o
�

Then

p�
� ��m� � �E�min��N �
����Fj�z � dL��e��
��m��M � 	���

where the expectation is over $z drawn randomly from Z�m� If in addition Fj�z is �nite for all $z � Z�m

then

p�
� ��m� � �E�min��jFj�z je��
��m��M � 	���

Theorem � is obtained as a corollary of this result by substituting m�� for m and not taking

the minimum with 	 in the left hand side of the �rst bound for p�
� ��m�� We will use Theorem �

to obtain slightly better constants in some of the results in the sequel�

��



� Capacity and Metric Dimension of Function Classes

In this section we develop a way of obtaining distribution independent bounds on the random

covering numbers needed for Theorems � and �� The key idea is to introduce a pseudo metric �see

section ��	� on the decision space A� The distance between two actions is the maximum di�erence

in loss for these actions� over all possible outcomes�

De�nition � For every loss function L � Y 	 A � 
��M �� by �L we denote the pseudo metric on

A de�ned by �L�a� b� � supy�Y jL�y� a� � L�y� b�j for all a� b � A�

Note that �A� �L� is a bounded pseudo metric space� no two actions in A are more than M apart�

The notions of ��cover and metric dimension used in the previous section can be generalized to

arbitrary pseudo metric spaces� This generalization is given in section ��	 of the appendix� In the

remainder of the paper we will use the concepts and notation given there without further special

reference�

Since decision rules in H map from the instance space X into A� the pseudo metric �L on A

can be used to induce a pseudo metric on H in which two decision rules di�er only to the extent

that the actions that they proscribe di�er with respect to �L� There are several ways to do this�

The easiest is to use an L� function distance on H� de�ning the distance between decision rules

f and g as the supremum of �L�f�x�� g�x�� over all x � X� This works� and is a useful method

of obtaining uniform convergence and learning results �see related techniques used in 
	��� and

White�s chapter�� However� as we will see� the crucial issue is the size of the smallest ��cover of

the resulting pseudo metric space H� In some cases we can get smaller covers� and hence better

results� by using an L� function distance instead� Since the L� distance is never more than the L�

distance� the results are never worse� Thus we present this more powerful method here�

De�nition � Let H be a family of functions from a set X into a bounded pseudo metric space

�A� ��� Let P be a probability measure on X� Then dL��P��� is the pseudo metric on H de�ned by

dL��P����f� g� � E���f�x�� g�x��� �

Z
X
��f�x�� g�x��dP �x�

for all f� g � H� For every � � � let

C���H� �� � supfN ���H� dL��P����g over all probability measures P on X�

��



If N ���H� dL��P���� is in�nite for some measure P � or if the set in this supremum is unbounded�

then C���H� �� � 
� We call �� C���H� �� the capacity of H� In analogy with the de�nition of

metric dimension� we de�ne the upper metric dimension of H by

dim�H� � limsup���
logC���H� ��
log�	���

�

and the lower metric dimension� denoted by dim�H�� is de�ned similarly using liminf� When

dim�H� � dim�H�� then this quantity is denoted dim�H�� and referred to simply as the metric

dimension of H� If C���H� �� �
 for some � � � then dim�H� �
�

We now show how bounds on the capacity of H lead to distribution�independent bounds on

the rate of uniform convergence of empirical risk estimates for functions in H with respect to the

loss function L� As before� let Z � X 	 Y � P be a probability distribution on Z� and lH be the

family of functions on Z de�ned by lH � flh � h � Hg� where lh�x� y� � L�y� h�x��� Let PjX be the

marginal on X of the joint distribution P on X 	 Y �see section 	����

Lemma � For all � � ��

N ��� lH� dL��D�� � N ���H� dL��PjX ��L���

Proof� For every h � H let ��h� � lh� Hence � maps from H onto lH� It su�ces to show that �

is a contraction� i�e� that

� f� g � H� dL��D����f�� ��g�� � dL��PjX ��L��f� g��

Let f and g be any two functions in H� Then

dL��D����f�� ��g�� �

Z
Z
jL�y� f�x��� L�y� g�x��jdP �x� y�

�
Z
Z
�L�f�x�� g�x��dP �x� y�

�

Z
X
�L�f�x�� g�x��dPjX �x�

��The term metric entropy is often used for the quantities logN �	�H� dL��P���� and logC�	�H� 
� 
��
 ����	 It is
also used for an analogous
 but fundamentally distinct
 concept in the dynamical systems literature �e	g	 
����	 The
term capacity has also been used with many other related meanings 
��
 ���
 ��
 ��
 ���	 Our usage here is taken
from 
���	

��



� dL��PjX ��L��f� g��

�

This gives the following theorem about distribution�independent uniform convergence of risk

estimates for learning�

Theorem � Assume that the decision rule space H and the loss function L are such that lH is

permissible� Let P be any probability distribution on Z � X 	 Y � Assume m � 	� � � � and

� � 
 � 	� Let $z be generated by m independent draws from Z according to P � Then

Pr ��h � H � d��brh�L�	z�� rh�L�P �� � 
� � �C�
����H� �L�e����m��M �

Proof� Let F � lH� For any sequence $z of points in Z there is a trivial isometry between �Fj�z � dL��

and �F� dL��P�z��� where P�z is the empirical measure induced by $z� in which each set has measure

equal to the fraction of the points in $z it contains� Thus by Lemma � above� we have

N ���Fj�z � dL�� � N ���F� dL��P�z�� � N ���H� dL��P�z jX
��L�� � C���H� �L�

for all $z � Z�m� Hence� setting � � 
���� the given probability is at most �C�
����H� �L�e����m��M

by Theorem �� �

In order to apply the above theorem� we need tools for bounding the capacity of various decision

rule spaces� Along these lines� we close this section by stating two basic lemmas� one about the

capacity of the free product of a set of function classes� and the other about the capacity of

compositions of functions classes� Proofs can be found in 
����

De�nition � Let �A�� ���� � � � � �Ak� �k� be bounded metric spaces� Let A � A� 	 � � � 	Ak and � be

the metric on A de�ned by

��$u� $v� �
	

k

kX
j��

�j�uj � vj�

for any $u � �u�� � � � � uk� and $v � �v�� � � � � vk� � A� For each j� 	 � j � k� let Hj be a family of

functions from X into Aj� The free product of H� through Hk is the class of functions

H � f�f�� � � � � fk� � fj � Hj � 	 � j � kg�

�




where �f�� � � � � fk� � X � A is the function de�ned by

�f�� � � � � fk��x� � �f��x�� � � � � fk�x���

Lemma � If H�H�� � � � �Hk are de�ned as above then

	� for any probability measure P on X and � � ��

kY
j��

N ��k��Hj � dL��P��j�� � N ���H� dL��P���� �
kY

j��

N ���Hj � dL��P��j���

�� dim�H� �
Pk

j�� dim�Hj�� and similarly for dim and dim� when the latter is de�ned�

De�nition � Let P be a probability measure on X and f be a measurable function from X into

Y � Then Pf denotes the probability measure on Y induced by f � i�e�

Pf �S� � P �f���S�� for all measurable S 
 Y�

De�nition � Let f be a function from a metric space �X� �� into a metric space �Y� ��� A Lipschitz

bound on f is a real number b � � such that for all x� y � X� ��f�x�� f�y�� � b ��x� y�� The

Lipschitz bound on f is the smallest such b� If F is a class of functions from �X� �� into �Y� �� then

b is a uniform Lipschitz bound on F if b is a Lipschitz bound on f for all f � F �

Lemma � Let �X�� ���� � � � � �Xk��� �k��� be metric spaces� where �Xj � �j� is bounded� � � j � k�

and Hj be a class of functions with f � Xj � Xj�� for all f � Hj� 	 � j � k� Let bj be a uniform

Lipschitz bound on Hj for all � � j � k� Let H denote the class of all functions from X� into Xk��

de�ned by compositions of functions in the Hj�s� i�e�

H � ffk � fk�� � � � � � f� � fj � Hj� 	 � j � kg�

	� For any �� ��� � � � � �k � � such that

� �
kX

j��

�� kY
l�j��

bl

�A �j

��



we have

C���H� �k��� �
kY

j��

C��j �Hj � �j����

�� dim�H� �Pk
j�� dim�Hj�� and similarly for dim and dim� when the latter is de�ned�

� Sample size bounds for learning with multi�layer neural nets

We now present some applications of the results of the previous section to learning with feedforward

neural nets �see e�g� 
		�� 	����� The decision rule space H represented by a feedforward neural

net consists of a family of functions from an instance space X 
 �n into a decision space A 
 �k

for some k� n � 	� To apply Theorem � of the previous section� we will need to obtain an upper

bound on the capacity C���H� �L� of such decision rule spaces for various loss functions L�

For many loss functions� the metric �L on A 
 �k can be bounded in terms of the dL� metric�

i�e� we can �nd a constant cL such that for all 	a � �a�� � � � � ak� and $b � �b�� � � � � bk� in A� �L�	a�$b� �
cLdL��	a�$b� � cL

k

Pk
i�� jai � bij� In this case it is clear that C���H� �L� � C���cL�H� dL��� Thus our

problem is reduced to obtaining an upper bound on the capacity C���cL�H� dL���

We now give a few examples to illustrate this reduction� First consider the common case in

which the outcome space Y is also contained in �k� e�g� we receive explicit feedback on each

coordinate of our action 	a � A 
 �k� This occurs when each coordinate ai of the action 	a is a

prediction of the corresponding coordinate of the outcome $y� Here the loss function L may itself be

a metric on �k which measures the distance between the predicted vector and the actual outcome

vector� When L is a metric� we have for any actions 	a�$b � A

�L�	a�$b� � sup
�y�Y

jL�$y�	a�� L�$y�$b�j � L�	a�$b�

by the triangle inequality for L� Thus if the metric L is bounded with respect to dL� metric�

i�e� L�	a�$b� � cLdL��	a�$b� for all 	a�$b � A� then we have �L�	a�$b� � cLdL��	a�$b�� For example� if

L�$y�	a� � dL��$y�	a� � �
k

�Pk
i���yi � ai�

�
����

then we may take cL � 	� and similarly for the other

dLq metrics� for q � 	�

Note that the above trick does not apply to the mean squared loss L�$y�	a� � �
k

Pk
i���yi � ai�

�

since this loss does not satisfy the triangle inequality� However� in this case it is easy to show

by direct calculation that if the outcome space Y is bounded� e�g� Y 
 
��M �k� then �L�	a�$b� �

�	



�MdL��	a�$b�� and hence we may take cL � �M �

For our �nal example� consider the case when Y � f�� 	gk � A 
 
�� 	�k and L is the cross entropy

loss

L�$y�	a� � �
kX
i��

�yilnai � �	� yi�ln�	� ai�� �

As discussed in section 	�	��� this is the log likelihood loss for the regression problem in which the

action 	a represents a vector of probabilities for independent Bernoulli variables� and the outcome

$y gives the observed values of these variables� This loss is bounded if we restrict the probabilities

in 	a to be between B and 	�B for some � � B � 	��� In this case

�L�	a�$b� � sup�y�Y

					
kX
i��

�
yiln

bi
ai

� �	� yi�ln
�	� bi�

�	� ai�

�					
�

kX
i��

jln bi
ai
j�

kX
i��

jln �	� bi�

�	� ai�
j

� �

B

kX
i��

jai � bij�

The latter inequality follows from the fact that for x� y � ��

jlnx
y
j � ln

max�x� y�

min�x� y�
� max�x� y�

min�x� y�
� 	 �

jx� yj
min�x� y�

�

Thus in this case we may take cL � �k�B�

We now turn to the task of obtaining an upper bound on the capacity C���H� dL�� when the

decision rules in H map into a decision space A 
 �k� and in particular� when these decision rules

are represented by neural networks� When k � 	� i�e� the neural net has only one output� the

decision rule space H is a family of real valued functions and dL��a� b� � ja� bj for a� b � A� In this

case we can sometimes apply methods based on the work of Vapnik and Chervonenkis 
	��� and

Pollard 
	��� 	��� to get bounds on the capacity� Vapnik�s method for doing this is described in


	�
� and his chapter� Another way to do this� based on Pollard�s notion of the pseudo dimension

of H� denoted dimC�H�� is developed in section ��� in the appendix� Both methods are extensions

of basic method of Vapnik and Chervonenkis method for f�� 	g�valued functions� using the notion

of the VC dimension 
	���� which has already seen many applications in machine learning 
	��� ����

Using the results on the pseudo dimension derived in the appendix� we get the following result�

�Here dimC denotes the pseudo dimension��

��



Theorem � Let H be a family of functions from X into A � 
��M �� Assume dimC�H� � d for

some 	 � d �
�

	� For all � � � �M �

C���H� dL�� � �

�
�eM

�
ln

�eM

�

�d
�

�� dim�H� � dimC�H��

Proof� Let P be any probability measure on X� Then by Theorems � and 	� in sections ��	 and

��� of the appendix�

N ���H� dL��P �� �M���H� dL��P �� � �

�
�eM

�
ln

�eM

�

�d
�

�Theorem 	� is applied with Z � X and F � H�� This gives �	��� and ���� follows easily from �	���

�

In the general case� whereA 
 �k for k � 	� we can apply the methods from the previous section�

in addition to the pseudo dimension methods from section ���� to obtain bounds on C���H� dL���

We illustrate this for the case when H is the class of decision rules represented by a feedforward

neural network�

A feedforward neural network is de�ned as a directed acyclic graph in which the incoming edges

to each node �or unit� are ordered and each incoming edge can carry a real number representing

the activation on that edge� We will assume that all activations are restricted to the interval 
c�� c��

for some constants c� � c�� The units are divided into input units� which have no incoming edges

from other units and serve as input ports for the network �their activations are determined by these

external inputs�� and computation units� which have incoming edges from other units and compute

an activation based on the activations on these incoming edges� After an activation has been

determined� this activation is placed on the outgoing edges of the unit� Computation units with

no outgoing edges are called output units and serve as output ports for the network� Computation

units that are not output units are called hidden units� The network as a whole computes a function

that maps from vectors of activation values in its input units to vectors of activation values in its

output units by composing the functions computed by its computation units in the obvious way�

The action of a computation unit with n incoming edges can be speci�ed by a function f from


c�� c��
n into 
c�� c��� where f�$x� is the resulting activation of the unit when the activations of its

incoming edges are given be the vector $x � 
c�� c��
n� In the nets we consider� the function f is

��



de�ned by

f�$x� � �

�������$x�� � � � � �k�$x�� � � �
kX

j��

wj�j�$x�

�A �

where the wj�s are adjustable real weights� � is an adjustable real bias� ��� � � � � �k are �xed real�

valued functions which we call the input transformers� � � �k � � is a �xed function which we

call the global modi�er� and � � � � 
c�� c�� is a �xed non�increasing or non�decreasing function

which we call the squashing function� Di�erent units can have di�erent modi�ers� transformers and

squashing functions� We say that the function f computed by a given computation unit with n

incoming edges has Lipschitz bound b if for any $x� $y � 
c�� c��
n� jf�$x�� f�$y�j � bdL��$x� $y��

We give a few examples to illustrate the �exibility of this model at the level of the individual

computation unit� First assume that k � n� i�e� the number of input transformers is the same as

the number of inputs� and that each input transformer simply extracts a component of the input�

i�e� �j�$x� � xj� 	 � j � n� In this case� which is the standard case for most neural net research�

the overall input transformation is just the identity map and can be ignored� In this standard case�

if the global modi�er � � � we get what is known as a quasi�linear unit 
		���

f�$x� � �

��� � kX
j��

wjxj

�A �

In the standard case� if ��$x� �
Pn

j�� x
�
j we get a unit that computes a function of the form

f�$x� � �

���� � nX
j��

�xj � aj�
�

�A �

where aj � �wj�� and �� � ��Pn
j�� a

�
j � This is similar to what is called a radial basis unit in the

neural net literature 
	��� ����

Now assume that k � n but the input transformers take logs of the components of the inputs�

i�e� �j�$x� � logxj � �Here we assume c� � ��� Let � � � and change the squashing function � to

��� where ���x� � ��ex�� Then

f�$x� � ��

��� � nX
j��

wjlogxj

�A � �

��e� nY
j��

x
wj
j

�A �

giving what is commonly known as a product unit 
����

We de�ne a feedforward architecture as a feedforward net with unspeci�ed weights and biases�

��



i�e� each computation unit has a �xed global modi�er� a �xed squashing function and �xed input

transformers� but it has variable weights and a variable bias� We say a unit is at depth j in an

architecture if the longest �directed� path from an input unit to that unit has j edges� Thus all

input units are at depth �� all computation units that have incoming edges only from input units are

at depth 	� all computation units that have incoming edges only from input units and computation

units at depth 	 are at depth �� etc� The depth of the architecture is the depth of the deepest unit

in it�

We can bound the capacity of the decision rule space represented by a feedforward architecture

as follows�

Theorem � Let A be a feedforward architecture as above with n � 	 input units� k � 	 output

units� and depth d � 	� Let W be the total number of adjustable weights and biases in A� Assume

bj � 	 for � � j � d� and let H be all functions from 
c�� c��
n into 
c�� c��

k representable on A by

setting the adjustable weights and biases such that for all j� � � j � d� the average of the Lipschitz

bounds of the functions computed by computation units at depth j is at most bj� Then for all

� � � � c� � c��

C���H� dL�� �
�
�e�c� � c��d

Qd
l�� bl

�

��W

�

�

Proof� For each j� � � j � d� let nj be the number of units at depth j in the architecture A�

For each j� � � j � d � 	� let lj �
Pj

i�� nj� and let ld � nd � k� For each j� 	 � j � d � 	� let

Xj � 
c�� c��
lj�� � Then for each j� 	 � j � d� we can de�ne the family Hj of functions from Xj into

Xj�� in the following manner�

First assume j � d� Let u�� � � � � unj be an enumeration of the computation units at depth j

and f�� � � � � fnj be functions such that fi can be represented by ui� 	 � i � nj� and the average

Lipschitz bound on the fis is at most bj � Let hj be the free product of f�� � � � � fnj and lj�� copies

of the identity function on 
c�� c��� Thus hj � Xj � Xj��� The function hj represents a mapping

from the sequence of all activations of units at depth at most j�	 to the sequence of all activations

of units at depth at most j� where the activations at depth at most j � 	 are unaltered� and the

new activations� i�e� those at depth j� are calculated by f�� � � � � fnj � The family Hj consists of all

functions hj obtained in this manner� by varying the weights and biases in the units u�� � � � � unj at

depth j in such a manner that the Lipschitz constraint is satis�ed�

��



When j � d� no subsequent calculations will be performed so we no longer need to preserve the

activations of shallower units� Hence� we omit the identity function components in each hd � Hd�

Otherwise the de�nition of Hd is the same as that for Hj � where j � d�

It is clear that the class H in the statement of the theorem can be represented as the class of

compositions of functions from classes H�� � � � �Hd� Since the identity function has Lipshitz bound

	 � bj � the average Lipschitz bound on the components of each function hj � Hj is at most bj� It

is easily veri�ed that a free product function is Lipschitz bounded by the average of the Lipschitz

bounds on its component functions� Hence by assumption� bj is a uniform Lipschitz bound on Hj �

� � j � d� For each j� 	 � j � d� let aj �
Qd
l�j�� bl and �j �

�
daj

� Since � � c� � c� and aj � 	�

�j � c� � c�� Let �j be the dL� metric on Xj� 	 � j � d� 	� Then by Lemma �� part �	��

C���H� dL�� �
dY

j��

C��j �Hj � �j����

For each j� Hj is contained in the free product of lj function classes� Each class F in this

product is either the trivial class containing only the identity function� or is a �nite dimensional

vector space of real�valued functions� summed with a �xed modi�er and then composed with a

non�increasing or non�decreasing squashing function� In the latter case� the dimension N of this

vector space is the number of free parameters associated with the corresponding computation unit�

i�e� the number of weights plus one �for the adjustable bias�� Hence by Theorems � and 
 in

section ��� of the appendix� the pseudo dimension dimC�F� � N � Thus by Theorem � above�

C��j�F � dL� � � �

�
�e�c� � c��

�j
ln

�e�c� � c��

�j

�N
�
�
�e�c� � c��

�j

��N

�

since �lnx � x and N � 	� Since the capacity of a class with only one function is 	� it follows from

Lemma � part �	� that

C��j �Hj � �j��� �
�
�e�c� � c��

�j

��Wj

�

whereWj is the total number of weights and biases of all computation nodes at depth j� Multiplying

these bounds over all j� it follows that

C���H� dL�� �
dY

j��

�
�e�c� � c��

�j

��Wj

��



�
dY

j��

�
�e�c� � c��d

Qd
l�j�� bl

�

��Wj

�
�
�e�c� � c��d

Qd
l�� bl

�

��W

�

�

Corollary � Let n� k� H� W � d and b�� � � � � bd be as in the previous theorem� Let X be the instance

space 
c�� c��
n� A be the decision space 
c�� c��

k� and Y be any outcome space� Let L � Y 	A� 
��M �

be a loss function and cL be a constant such that �L�	a�$b� � cLdL��	a�$b� for all 	a�$b � A� Let m � 	�

� � � � ��c� � c��� � � 
 � 	� and P be any probability distribution on Z � X 	 Y � Let $z be

generated by m independent random draws from Z according to P �

	� Then

Pr ��f � H � d��brf�L�	z�� rf�L�P �� � 
� � �

�
cL	�e�c� � c��d

Qd
l�� bl


�

��W

e��
��m��M �

�� Assume that for each computation unit at depth � and above the number of weights is at most

Wmax� no weight is allowed to have absolute value greater than �� the input transformers

are identity functions� the global modi�er has Lipschitz bound at most r� and the squashing

function has Lipschitz bound at most s� where s��Wmax � r� � 	� Then for any � � � � 	�

the probability in �	�� is less than � for sample size

m � O

�
M


��

�
W

�
log

cL�c� � c��


�
� dlog�s��Wmax � r��

�
� log

	

�

��
�

Proof� Let � � 
��� � c� � c�� It can be veri�ed that lH is permissible for the decision rule space

H� Hence� using Theorem � and Theorem ��

Pr ��f � H � d��brf�L�	z�� rf�L�P �� � 
� � �C�
����H� �L�e����m��M

� �C�
���cL�H� dL��e��
��m��M

� �

�
cL	�e�c� � c��d

Qd
l�� bl


�

��W

e��
��m��M �

For the second bound� it is readily veri�ed that the L� Lipschitz bound for a linear function

de�ned by Wmax weights and a bias is no more than Wmax times the largest absolute value of any

��



weight� Furthermore� the Lipschitz bound for the sum of two functions is no more than the sum

of the Lipschitz bounds on the individual functions� and the Lipschitz bound for the composition

of two functions is no more than the product of the Lipschitz bounds on the individual functions�

Thus if the input transformers are identity functions� the global modi�er and squashing function

have Lipschitz bounds r and s respectively and no weight is allowed to have absolute value greater

than �� then the Lipschitz bound for a computation unit is at most s��Wmax � r�� If this holds

for all units at depth � and above� may take bj � s��Wmax � r� for all j � � in the �rst bound�

Solving for m� this gives the order�of�magnitude estimate of the second bound� �

We give the constants in the upper bound of part �	�� the above theorem only to show that

they are not outlandishly large� We do not mean to suggest that the bound is tight� At present we

cannot even verify that the asymptotic bound of part ���� is tight� In particular� we cannot show

that the dependence on the Lipschitz bounds is necessary� Evidence that it may not be necessary

comes from the analysis of the case where the squashing function � is a sharp threshold function�

i�e� ��x� � sign�x�� Corollary � does not apply in this case� because the jump in � prevents us from

obtaining a Lipschitz bound on the computation units� As we let a smooth � approach the sign

function� its slope increases without limit� and thus the bound given in Corollary � degenerates�

Nevertheless� using the techniques in 
	�� it can be shown that results similar to Corollary � hold

in this case� except that no Lipschitz bounds are required� and a bound on the sample size is

O

�
	


��

�
W log

N


�
� log

	

�

��
�

where N is the total number of computation units in the net� Details are given in 
����

Despite the uncertainty about the need for the Lipschitz bounds� the result does give some

indication of the maximum training sample size that will be needed for many popular network

con�gurations� For example� if the squashing function is chosen as ��x� � 	��	 � e�x�T � for some

temperature T � � then it can be shown that the Lipschitz bound s for � is 	��T � When the

modi�er � � �� then r � �� Thus in this case the term dlog�s��Wmax � r�� in the bound of

Corollary � becomes dlog��Wmax�T �� If the maximum weight �� the temperature T and the depth

d are constants� along with c�� c�� M � and cL� then the asymptotic bound of the theorem becomes

O

�
	


��

�
W log

Wmax


�
� log

	

�

��
�

��



which is similar to the bound obtained in 
	���

It should also be noted that Corollary � does have the feature that no Lipschitz bounds are

required on the computation units at depth one� Thus if all computation units are at depth one�

i�e� there are no hidden units� then no Lipschitz units are required at all� If the architecture has

only one layer of hidden units at depth one and a single output unit at depth two� as is quite

common� then Lipschitz bounds are required only on the output unit� This means that the weights

and biases associated with the hidden units do not need to be bounded in order to get the rates

of uniform convergence given by Corollary �� as they would� for example� if the methods given in

White�s chapter were used to obtain a result of this type�

For an example of the above� consider networks that implement generalized radial basis�	 func�

tions� as described in 
	���� These networks have one layer of hidden units at depth 	 and one

output unit at depth �� The structure of the hidden units is as described in the example above�

the input transformers are identity functions� the modi�er is
Pn

i�� x
�
i and the squashing function

is usually a smooth decreasing function� The output unit simply computes a weighted sum� so for

this unit the modi�er is the � function and the squashing function is the identity� Since this is the

only unit at depth � and above� we require a Lipschitz bound only for this unit� If � is a bound on

the maximum weight coming into the output unit� and Wmax is the number of units in the hidden

layer� then the term dlog�s��Wmax � r�� in the above bound becomes log��Wmax�� Again� �xing

�� c� � c�� M � and cL gives the same sample size bound�

O

�
	


��

�
W log

Wmax


�
� log

	

�

��
�

similar to that obtained in 
	���

SinceW appears to be the dominant factor in these bounds� apart from the accuracy parameters


 and �� these bounds support the conventional wisdom that the training set size should be primarily

related to the number of adjustable parameters in the net� They also support the notion that this

relationship between appropriate training size and the number of parameters is nearly linear� at

least in the worst case� Further work is needed to sharpen these relationships �see e�g� the lower

��The computation units in the network of radial basis functions described here are quite primitive in that they
have no adjustable multiplicative parameter included in their basic radial distance calculation	 Such parameters
would be needed to do any reasonable type of kernel based density estimation �see e	g	 
����	 These parameters
can be simulated by inserting another layer of computation units between the inputs and the layer described here	
Alternately
 the analysis can also be done directly for adjustable kernel units	 This cleaner approach is detailed in

����	

�




bounds obtained in 
	����

� Conclusion

We have extended the PAC learning model to a more general decision theoretic framework so that

it addresses many of the concerns raised by machine learning practitioners� and also introduced a

number of new theoretical tools� Here we concentrate on applications of the extended model to the

problem of obtaining upper bounds on su�cient training sample size� Further work will be required

to obtain lower bounds on sample size needed� and to determine the computational complexity of

�nding decision rules with near minimal empirical risk� Some promising results along these lines

are given in 
���� However� even granting that such results can be obtained� the extended model

still has a number of shortcomings in its present form� Some of these can be easily remedied� others

may be more problematic�

First� we de�ne the model only for a �xed decision rule space H� The model should be extended

to learning problems on a sequence of decision rule spaces fHn � n � 	g� where Hn is a decision rule

space on an n�attribute domain Xn �e�g� 
�� 	�n�� and to families of decision rule spaces of di�erent

�complexities� on a �xed domain 
��� 
��� 
���� so that tradeo�s between decision rule complexity

and empirical risk can be addressed� The former extension is easy� the latter more involved� One

approach to the latter problem is via Vapnik�s principle of structural risk minimization 
	�
� �see

also 
����� Other approaches include the MDL �see e�g� 
	���� regularization �see e�g� 
	����� and

more general Bayesian methods �see e�g� 
�����

Second� the constants in the upper bounds are still too large to give sample size estimates that

are useful in practice� It may be di�cult to improve them to the point where the results are directly

usable in applied work� Thus even with matching asymptotic lower bounds� practitioners may still

need to rely at least in part on empirically derived sample size bounds� It is possible that the

Bayesian viewpoint may yield better tools for calculating sample complexities� Support for this

belief is given in 
�
� ��� ��� 
��� However� necessary sample size estimates for decision rule spaces

as general as those studied from the minimax perspective using uniform convergence have not yet

been tackled from the Bayesian perspective� Vapnik�s recent work gives an alternative� related

approach �see Vapnik�s chapter��

Finally� many other issues would need to be considered in a complete treatment of the problem

of over�tting� including distribution speci�c bounds on sample complexity �Theorem � is actually

��



distribution speci�c� since the random covering numbers are distribution speci�c� yet we only apply

it here in a distribution independent setting�� decision rule spaces with in�nite pseudo and metric

dimensions �these include various classes of �smooth� functions and their relatives� see 
���� Chapter

� and 
	���� and non i�i�d� sources of examples �see 
	��� 
�� and White�s chapter�� Despite these

shortcomings� we feel that the theory we give here provides useful insights into the nature of the

problem of over�tting in learning� and because of its generality will be a useful starting point for

further research in this area�

	 Acknowledgements

I would like to thank Dana Angluin� David Pollard and Phil Long for their careful criticisms of an

earlier draft of this paper� and their numerous suggestions for improvements� I also thank Naoki

Abe� Anselm Blumer� Richard Dudley� and Michael Kearns for helpful comments on earlier drafts�

I would also like to thank Ron Rivest� David Rumelhart� Andrzej Ehrenfeucht and Nick Littlestone

for stimulating discussions on these topics�


 Appendix


�� Metric spaces� covering numbers and metric dimension

A pseudo metric on a set S is a function � from S 	 S into �� such that for all x� y� z � S�

x � y � ��x� y� � �� ��x� y� � ��y� x� �symmetry�� and ��x� z� � ��x� y� � ��y� z� �triangle

inequality�� If in addition ��x� y� � � � x � y� then � is a metric� �S� �� is a �pseudo� metric

space� �S� �� is complete if every Cauchy sequence of points in S converges to a point in S� �S� ��

is separable if it contains a countable dense subset� i�e� a countable subset A such that for every

x � X and � � � there exists a � A with ��x� a� � �� If ��x� y� � 	 � x �� y then � is called the

discrete metric�

The diameter of a set T � S is supf��x� y� � x� y � Tg� If the diameter of T is �nite the we say

that T is bounded� For any � � �� an ��cover for T is a �nite set N � S �not necessarily contained

in T � such that for all x � T there is a y � N with ��x� y� � �� If T has a ��nite� ��cover for all

� � � then T is totally bounded� �Note that this implies that �T� �� is separable and bounded�� In

this case the function N ��� T� �� denotes the size of the smallest ��cover for T �w�r�t� the space S

and the �pseudo� metric ��� We refer to N ��� T� �� as a covering number� A set R � T is ��separated

�	



if for all distinct x� y � R� ��x� y� � �� We denote by M��� T� �� the size of the largest ��separated

subset of T � We refer to M��� T� �� as a packing number� The third argument to N and M will be

omitted when the metric � is clear from the context�

The following inequalities are easily veri�ed �see e�g� 
�����

Theorem � If T is a totally bounded subset of the �pseudo� metric space �S� �� then for any � � ��

M���� T� �� � N ��� T� �� �M��� T� ���

Hence both these measures of boundedness� by covering number and by packing number� are

equivalent to within a factor of � of �� Following 
��� we de�ne the upper metric dimension of a

�pseudo� metric space �S� �� by

dim�S� � limsup���
logN ��� S� ��

log�	���
�

The lower metric dimension� denoted by dim� of a �pseudo� metric space �S� �� is de�ned similarly

using liminf� When dim�S� � dim�S�� then this quantity is denoted dim�S�� and referred to

simply as the metric dimension of �S� ��� This quantity has also been called the fractal dimension


�	� and the capacity dimension 
���� A very lucid and intuitive treatment is given in 
����


�� Pseudo dimension of classes of real�valued functions

In this section we will look at one way that bounds on the covering numbers appearing in Theorem �

can be obtained� This technique� due to Pollard 
	���� who extended methods from 
���� is based on

certain intuitions from combinatorial geometry� It generalizes the techniques based on the Vapnik�

Chervonenkis dimension used in 
���� which apply only to f�� 	g�valued functions� We begin by

establishing some basic notation�

De�nition � For x � �� let sign�x� � 	 if x � � else sign�x� � �� For $x � �x�� � � � � xd� � �d�
let sign�$x� � �sign�x��� � � � � sign�xd�� and for T 
 �d let sign�T � � fsign�$x� � $x � Tg� For any

Boolean vector $b � �b�� � � � � bd�� f$x � �d � sign�$x� � $bg is called the $b�orthant of �d� where we have�
somewhat arbitrarily� included points with value zero for a particular coordinate in the associated

lower orthant� Thus sign�T � denotes the set of orthants intersected by T � For any T 
 �d� and
$x � �d� let T � $x � f$y � $x � $y � Tg� i�e� the translation of T obtained by adding the vector $x� We

��



say that T is full if there exists $x � �d such that sign�T � $x� � f�� 	gd� i�e� if there exists some

translation of T that intersects all �d orthants of �d�

The following result is well known and can be proved in a variety of ways� For example� it

follows easily from well known bounds on the number of cells in arrangements of hyperplanes �see

e�g� 
�
��� We give an elementary proof using a technique from 
����

Lemma � No hyperplane in �d intersects all orthants of �d�

Proof� Let T be a hyperplane in �d� Choose a vector $x � �d as follows� If T includes the origin�

then let $x be any vector that is orthogonal to T and has at least one strictly negative coordinate�

�For any nonzero orthogonal vector $x� if $x doesn�t have a negative coordinate then �$x does��

Otherwise let $x be the �nonzero� vector in T on the line perpendicular to T that passes through the

origin� To complete the proof� we show that for all $y � T � sign�$y� �� 		� sign�$x�� where 		 denotes

the all 	�s vector�

Suppose to the contrary that sign�$y� � 		� sign�$x� for some $y � T � This implies that the inner

product
Pd

i�� xiyi is non positive� and is in fact strictly negative if either $x or $y contain a strictly

negative coordinate� However� by our choice of $x� either $x is orthogonal to $y and contains a strictly

negative coordinate� giving an immediate contradiction� or $x is non�zero and $x is orthogonal to

$y � $x� In this last case�
dX
i��

xiyi �
dX
i��

x�i �

which is again a contradiction� since the left side is non�positive while the right side is strictly

positive� �

It follows from this lemma that if T is contained in a hyperplane of �d then T is not full�

De�nition 	 Let F be a family of functions from a set Z into �� For any sequence $z � �z�� � � � � zd�

of points in Z� let Fj�z � f�f�z��� � � � � f�zd�� � f � Fg� If Fj�z is full then we say that $z is shattered

by F� The pseudo dimension of F� denoted dimC�F�� is the largest d such that there exists a

sequence of d points in Z that is shattered by F� If arbitrarily long �nite sequences are shattered�

then dimC�F� is in�nite�

It is clear that when F is a set of f�� 	g�valued functions then for any sequence $z of d points in

Z� Fj�z is full if and only if Fj�z � f�� 	gd� Thus in this case dimC�F� is the length d of the longest

��



sequence of points $z such that Fj�z � f�� 	gd� This is the de�nition of the Vapnik�Chervonenkis di�

mension of a class F of f�� 	g�valued functions 
	���
�
�
���� Thus the pseudo dimension generalizes

the Vapnik�Chervonenkis dimension to arbitrary classes of real�valued functions�

The pseudo dimension also generalizes the algebraic notion of the dimension of a vector space

of real�valued functions 
����

Theorem 	 �Dudley� Let F be a d�dimensional vector space of functions from a set Z into ��
Then dimC�F� � d�

Proof� Fix any sequence $z � �z�� � � � � zd��� of points in Z� For any f � F let %�f� � �f�z��� � � � � f�zd�����

Then % is a linear mapping from F into �d��� and the image of % is Fj�z � Since F is a vector space

of dimension d� this implies that Fj�z is a subspace of �d�� of dimension at most d� Hence by

Lemma �� Fj�z is not full� This implies dimC�F� � d� On the other hand� if F is a d�dimensional

vector space of real�valued functions on Z� then there exists a sequence $z of d points in Z such that

Fj�z � �d� Hence $z is shattered� implying that dimC�F� � d� �

There are many other ways that the VC dimension can be generalized to real�valued functions



	� 

�� 
	��� 
	�
� 
��� �see also Vapnik�s chapter�� Dudley 
��� compares several such generaliza�

tions� albeit in a di�erent context� The generalization we have proposed here� the pseudo dimension�

is a minor variant of the notion used by Pollard in 
	��� to de�ne classes of real�valued functions of

polynomial discrimination� called VC�subgraph classes in 
���� The pseudo dimension will be used

in the form de�ned above in Pollard�s new book 
	����

The pseudo dimension has a few invariance properties that are useful �see 
	��� for further

results of this type��

Theorem 
 Let F be a family of functions from Z into �� Fix any function g from Z into � and

let G � fg � f � f � Fg� Let I be a real interval �possibly all of �� such that every function in F

takes values only in I� Fix any nondecreasing �resp� nonincreasing� function h � I � � and let

H � fh � f � f � Fg� where � indicates function composition� Then

	� ��	
��� dimC�G� � dimC�F� and

�� ����� 
��� dimC�H� � dimC�F�� with equality if h is continuous and strictly increasing �resp�

continuous and strictly decreasing��

Proof� Part �	� follows directly from the fact that the notion of a set of points being full is

invariant under translation� For part ��� it su�ces to prove the results for h nondecreasing and

��



h continuous and strictly increasing� Let $z � �z�� � � � � zd� be such that Hj�z is full� i�e� such that

Hj�z � $x intersects all �d orthants of �d for some vector $x � �x�� � � � � xd� in �d� Then for every

Boolean vector $b � f�� 	gd there exists a function f�b � F such that for every i� 	 � i � d� we have

h � f�b�zi� � xi if and only if the ith bit of $b is 	� For each i� 	 � i � d� let

ui � minff�b�zi� � the ith bit of $b is 	g

and

li � maxff�b�zi� � the ith bit of $b is �g�

Since h is nondecreasing� we have ui � li for each i� Let ri � �ui�li��� for each i and 	r � �r�� � � � � rd��

Let T � ff�b � $b � f�� 	gdg� Then clearly T � 	r intersects every orthant of �d� so T is full� Since

T 
 F� this implies that Fj�z is full� and hence dimC�H� � dimC�F�� Equality follows when h is

continuous and strictly increasing since we obtain the class F from H by composing with h��� �

By putting a probability measure on Z� we can view a class F of real�valued functions on Z as

a pseudo metric space� The distance between two functions is the integral of the absolute value of

their di�erence� i�e� the L� distance� relative to the given measure� To make this work� we need

to make some assumptions about the integrability of the functions in F under the given measure�

Since we will be concerned only with families of functions taking values in a bounded range in this

paper� this will cause no problems for us� For convenience� we choose this range to be 
��M �� For

a more general treatment� see 
	���
����

De�nition 
 Let F be a class of functions from Z into 
��M �� where M � �� and P be a probability

measure on Z� Then dL��D� is the pseudo metric on F de�ned by

dL��D��f �g� � E�jf � gj� �
Z
Z
jf�z�� g�z�jdP �z� for all f �g � F�

Using techniques that go back to Dudley 
���� Pollard has obtained a beautiful theorem bounding

the metric dimension of �F� dL��D�� by dimC�F� for any probability measure P on Z� Actually this

result is much stronger in that it gives explicit bounds on the packing numbers for F using dL��D�

balls of radius �� Since packing numbers are closely related to covering numbers �Theorem � in

section ��	�� these bounds can then be used with Theorem � to obtain uniform convergence results

for empirical estimates of functions in F� We now state a version of Pollard�s result �
	���� Lemma

��� p� ��� for the special case when F is a class of functions taking values in the interval 
��M �

��



with somewhat better bounds on the packing numbers��


Theorem �� �Pollard� Let F be a family of functions from a set Z into 
��M �� where dimC�F� � d

for some 	 � d �
� Let P be a probability measure on Z� Then for all � � � �M �

M���F� dL��D�� � �

�
�eM

�
ln

�eM

�

�d
�

The proof uses essentially the same techniques as Pollard�s� and is given in 
���� Using our

results on uniform convergence from section ���� we can now show the following�

Theorem �� Let F be a permissible family of functions from a set Z into 
��M � with dimC�F� � d

for some 	 � d � 
� Assume m � 	� � � � � �M and � � 
 � 	� Let $z be generated by m

independent draws according to any distribution on Z� Then

Pr
�
�f � F � d��bE�z�f��E�f�� � 


�
� �

�
	�eM


�
ln

	�eM


�

�d
e��

��m��M �

Moreover� for m � �M
���

�
�dln�eM

�� � ln�
�

�
this probability is at most ��

Proof� Let � � 
���� Since 
 � 	 and � � �M � � � M � For any sequence $z of points in Z there

is a trivial isometry between �Fj�z � dL�� and �F� dL��P�z��� where P�z is the empirical measure induced

by $z� in which each set has measure equal to the fraction of the points in $z it contains� Thus by

Theorem � of section ��	 and Theorem 	�� we have

N ���Fj�z � dL�� �M���Fj�z � dL�� � �

�
�eM

�
ln

�eM

�

�d
�

for all $z � Z�m� Hence the given probability is at most

�

�
�eM

�
ln

�eM

�

�d
e��

��m��M � �

�
	�eM


�
ln

	�eM


�

�d
e��

��m��M

by Theorem ��

For the second result� setting the bound above equal to � and solving for m gives

m � �M


��

�
dln

�
	�eM


�
ln

	�eM


�

�
� ln

�

�

�
�

��Still better bounds
 without the logarithmic factor that is present in the theorem quoted here
 are given in 
���	

��



It is easily veri�ed that ln�alna� � �ln�a��� when a � �� and from this the bound given in the

second result follows� �

Corollary � Under the same assumptions as above� for all � � � �M �

Pr
�
�f � F � jbE�z�f��E�f�j � �

�
� �

�
��eM

�
ln

��eM

�

�d
e��

�m�
�M�
�

Moreover� for m � 
�M�

��

�
�dln�
eM

� � ln�
�

�
this probability is at most ��

Proof� This follows directly from the above result by setting � � �M � 
 � ���M � and using

property ��� of the d� metric� as in the proof of Corollary 	 in section ���� �
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