Chapter 35

Applications of Sr Isotopes in Archaeology

N.M. Slovak and A. Paytan

Abstract The inclusion of radiogenic strontium
isotope (*’Sr/*®Sr) analysis in archaeological and
bioarchaeological research has resulted in the creation
of new data by which to evaluate models of migration,
culture change, colonization, trade, and exchange.
Overwhelmingly, archaeologists have used radiogenic
strontium isotope signatures in human enamel and
bone apatite to reconstruct ancient mobility patterns
and to distinguish between individuals of local and
non-local origins at archaeological sites. The method
also has been employed to establish the provenience of
artifacts, ancient building materials, and foodstuffs
as well as to track the origins and migratory patterns
of prehistoric animals. The present chapter provides an
introduction to the fundamental principles, approaches,
applications, and future directions of radiogenic stron-
tium isotope analysis in archaeology.

35.1 Introduction

The application of radiogenic strontium isotope
(¥’Sr/*®Sr) analysis' in archaeology has revolutionized
paleomobility studies. Whereas traditional archaeo-

'Traditionally, many scholars have used the expression “stable
strontium isotopes™ when referring to 8’Sr/**Sr signatures. In the
present chapter, we prefer to employ the phrase “radiogenic
strontium isotopes” in reference to 87Sr/%Sr values so as to
distinguish this kind of data from recent paleodietary research
(Knudson et al. 2010) that utilizes stable 5%8Sr/80sr signatures.
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logical investigations relied on artifactual and archi-
tectural evidence as proxies for population movement,
the retrieval of radiogenic strontium isotope signatures
from human and faunal skeletal material allows
archaeologists to directly examine past residential
mobility and related phenomena. The present chapter
provides an introduction to the principles, methods,
and applications of radiogenic strontium isotope anal-
ysis in archaeology, beginning with a general discus-
sion of the properties of strontium isotopes.
Strontium (Sr) is a trace element that is found in
most igneous, metamorphic, and sedimentary rock, as
well as in river water, groundwater, seawater, soil,
plants, and animals. Strontium has four naturally occur-
ring stable isotopes (84Sr, 86Sr, 87Sr, and 88Sr), three
of which are non-radiogenic: 84gr (0.560%), 86gy
(9.870%), and **Sr (82.53%). The remaining isotope,
87Sr (7.040%), is radiogenic and is formed by the radio-
active decay of ®’Rb, with a half life of approximately
4.88 x 10" years (Faure and Mensing 2005). The
amount of ®’Sr in a mineral or rock containing Rb
depends upon two things: the age of the rock or mineral
and its Rb/Sr ratio (Faure and Mensing 2005). The
highest ’Sr/**Sr values are found in very old rocks
with high Rb/Sr ratios such as granites and shales,
while younger rocks and minerals with low Rb/Sr ratios
have correspondingly low ®’Sr/**Sr ratios (Faure 1977).
Because of their large atomic mass, 87Sr/3%Sr values
change little as they pass from weathered rocks through
soils to the food chain (Hurst and Davis 1981; Beard
and Johnson 2000; but see Fietzke and Eisenhauer
2006; De Souza et al. 2007; Wakabayashi et al. 2007;
Halicz et al. 2008; Ruggeberg et al. 2008). Importantly,
variations in ¥’Sr/*®Sr values that occur along biogeo-
chemical pathways are corrected for during mass spec-
trometry, at which time ®’Sr/*°Sr signatures are
normalized to the constant value of %®Sr/**Sr in natural
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rocks (Beard and Johnson 2000). Accordingly, *’Sr/*Sr
ratios in soil, groundwater, vegetation, and fauna largely
reflect underlying ®’Sr/*°Sr bedrock values (Capo et al.
1998), with some input from atmospheric sources
(see discussion in Bentley 2006 and references
therein). A similar principle applies to the marine
environment where the isotopic composition of mod-
ern seawater, characterized as 5'Sr/%®Sr = 0.7092
(Veizer 1989), is derived from ®’Sr/*°Sr signatures of
the input sources of strontium to the ocean and stron-
tium deposition into sediments (Faure 1977).
Building off of the principles of strontium isotope
geochemistry, Ericson (1985) first demonstrated that
87Sr/gGSr in human bones and teeth could be used to
study aspects of ancient human behavior. Strontium
substitutes for calcium in the foodweb, and is depos-
ited in hydroxyapatite crystal in human tooth enamel
and bones (Comar et al. 1957). Given that any mass-
dependent fractionation is corrected for, reported
87Sr/%°Sr signatures in human tissue should reflect
the 37Sr/*°Sr composition of water, plants, and animals
consumed, which in turn should reflect 3’Sr/*®Sr bed-
rock signatures in a given region (Ericson 1985).
Tooth enamel forms during infancy and childhood,
after which its chemical composition does not change
(Hillson 1996). Conversely, human bone remodels
continuously (Parfitt 1983). Assuming that an individual
consumed only locally grown foods during his or her

Outcome A:
Enamel®”Sr/88Sr = Bone 87Sr/86Sr
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lifetime, 3’Sr/%°Sr values in tooth enamel should
reflect childhood diet and, by extension, childhood
locale, while 37Sr/*®Sr signatures in bone will reflect
adult diet and, ideally, adult locale (Ericson 1985;
Sealy et al. 1991). Different *’Sr/*°Sr values in enamel
and bone from a single individual may indicate dietary
changes over time, which in turn, may indicate resi-
dence change (Ericson 1985) (Fig. 35.1).

As originally noted by Ericson (1985), the ability
to trace prehistoric mobility using ®’Sr/*°Sr in human
tissue is constrained by several factors. First, there
must be sufficient geologic variability between the
different residence areas under study such that varia-
tions in 87Slr/gGSr values can be detected. Conversely,
there must be sufficient geologic homogeneity within a
region if one is relying primarily on geologic data to
reconstruct the ¥’Sr/*®Sr range for a locale, although it
should be noted that archaeologists regularly incorpo-
rate other classes of data (e.g. faunal and human isoto-
pic values) when determining local ®”Sr/*®Sr signatures
for a region (see Sect. 35.2.1). Second, radiogenic
strontium isotope analysis may not be as effective at
tracking movement between coastal areas if the inha-
bitants of those areas relied solely on marine foods. In
such instances, individuals’ 87Sr/3651r values will reflect
the marine ¥7Sr/%0Sr signature (87Sr/868r = 0.7092,
Veizer 1989), rather than terrestrial 87Sr/2Sr values.
Third, ¥’Sr/*®Sr values among human populations can

QOutcome B:
Enamel®Sr/88Sr = Bone 87Sr/86Sr

o

Option1: Individual was l

born and lived locally
during entire lifetime.

Option 2: Individual
moved from one locale
to another with identical
87Sr/86Sr ratios.

Option1: Individual
spent childhood in one
locale and adulthood in
another locale.

Option 2: Individual
lived locally during
entire lifetime but
consumed imported
foods during childhood

Option 3: Individual moved
from one locale to another
but continued to eat foods
from former place of
residence.

or adulthood

Fig. 35.1 Potential outcomes and interpretations involved in strontium isotope analysis of human tooth enamel and bone. Although
option 1 is the most frequent interpretation in either outcome, the remaining options should be ruled out (or at least considered) in

strontium isotope studies
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serve as accurate markers of prehistoric mobility only
if a dependency on imported foods can be ruled out.
The consumption of foreign foods, particularly those
high in Ca and Sr (e.g., dairy products, leafy greens,
legumes, and fish), and Sr-rich food additives such as
sea salt (Wright 2005) can significantly alter *’Sr/**Sr
signatures in human bones and teeth, even when con-
sumed in small amounts (Burton and Wright 1995);
thus a consideration of total dietary intake is necessary
when interpreting ¥’Sr/*®Sr results.

35.2 Materials and Methods

35.2.1 Determining Local 3”Sr/*°Sr
Signatures for a Region

The first step in conducting radiogenic strontium iso-
tope analysis in archaeology is establishing local
87Sr/%°Sr values for the regions or sites under study.
A broad range of ®’Sr/**Sr signatures for an area can
be estimated from geological maps and later refined by
measuring *’Sr/*®Sr values in local, exposed bedrock
and whole soil. Very old rocks with high Rb/Sr ratios
generally exhibit ®’Sr/*°Sr signatures above 0.710
while younger rocks will have ®’Sr/*°Sr values less
than 0.704. Although these types of data will provide
a reliable estimate of geologic ®’Sr/*®Sr values for a
region, they may not be indicative of human *’Sr/*®Sr
values. As initially noted by Sillen et al. (1998) and
subsequently demonstrated and discussed by others
(Price et al. 2002; Poszwa et al. 2004; Bentley 2006;
Hedman et al. 2009), ¥’Sr/*®Sr signatures in geologic
substrate can deviate significantly from bioavailable
87S1/*°Sr values in the food chain. In order to best
capture biologically available %’Sr/*®Sr values for a
region, it is recommended that researchers measure
878r/80Sr signatures from small, local animals whose
diets have been shown to reflect average 87Sr/RGSr
regional values (Price et al. 2002).

Scholars have relied on a variety of fauna to calcu-
late biologically available strontium isotope levels
including cattle (Montgomery et al. 2003; Buzon et al.
2007), guinea pig (Knudson et al. 2004; Slovak et al.
2009), pigs (Bentley et al. 2004), and rabbit (Price et al.
2000). There is some debate over whether archaeolog-
ical or modern fauna should be used to calculate bio-
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logically available ®’Sr/*®Sr signatures, largely because
modern animal diets often include imported foods and
fertilizers that may skew ®’Sr/*°Sr faunal values (Price
et al. 2002; Bentley 2006). On the other hand, archaeo-
logical bone, and to a lesser extent tooth enamel, is
susceptible to diagenetic contamination. Given that
87Sr/*°Sr  signatures in modern and archaeological
fauna are subject to potential alteration, it is advisable
to incorporate both types of data (preferably archaeo-
logical tooth enamel rather than bone) when establish-
ing biologically available strontium isotope levels.
Additionally comparative ®’Sr/*°Sr measurements
from multiple species of local fauna likely will yield
the most accurate representations of biologically avail-
able ¥’Sr/*°Sr values (Price et al. 2002).

The bioavailable *’Sr/*Sr signature for a region
generally is represented as a range of values, which is
calculated using the mean of biologically available
strontium isotope levels (as determined by local fauna)
42 s.d. (Price et al. 2002). These confidence limits,
while admittedly arbitrary, have allowed researchers to
differentiate between individuals of local and non-local
origins at various archaeological sites. In some cases,
however, biologically available strontium isotope
ranges are inadequate proxies for human dietary Sr.

In her study of human skeletons from the archaeo-
logical site of Tikal, Guatemala, for example, Wright
(2005) noted that approximately half of her human
sample exhibited ®’Sr/*°Sr signatures higher than the
87Sr/308r range established for local fauna, plants, and
water. Wright attributed these elevated human
87Sr/%Sr values to the consumption of imported sea
salt, whose ®’Sr/*°Sr of 0.7092 was significantly
higher than the local Tikal signature (*’Sr/*®Sr
= 0.7078-0.7081) (Wright 2005). A similar trend
was noted at the archaeological site of Ancén, Peru
(Slovak et al. 2009) where 34 of 35 human skeletons
exhibited ®’Sr/*°Sr values notably higher than the
biologically available ®’Sr/*°Sr range for the region
(Fig. 35.2). Based on carbon and nitrogen isotope
data from a subset of the Ancén skeletal sample,
Slovak et al. (2009) and Slovak and Paytan (2009)
demonstrated that marine resources comprised nearly
half of ancient Anconeros’ diets. The authors argue that
the regular consumption of seafood likely raised inha-
bitants’ ¥’Sr/**Sr values from the local range (*’Sr/*®Sr
= 0.7063-0.7068) toward the *’Sr/**Sr of seawater.

In both of these case studies, local 878r/80Sr values
for a human population would be better determined by
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Fig.35.2 ®7Sr/%0Sr ratios in human tooth enamel and bone from
35 skeletons buried at the coastal site of Ancon. Note that almost
all 3Sr/®Sr values fall between Ancén’s biologically available
87Sr/%Sr range and the present day marine *’Sr/*Sr signature,
indicating that the majority of site inhabitants consumed a

referencing the human 87Sr/%Sr data rather than
using a ®’Sr/*%Sr range based on fauna and/or plants.
This method, originally proposed by Wright (2005),
removes individuals with outlying ¥’Sr/*°Sr values
from the data set, such that the revised body of data
conforms to a normal distribution and more accurately
reflects a local ¥’Sr/*°Sr signature.

Ultimately, and perhaps frustratingly, there is
no one method that best establishes a local 87Sr/86Sr
signature for all sites and all individuals. In instances
where archaeologists suspect that most of the human
study population is locally born and most indivi-
duals consumed local, terrestrial foods, biologically
available strontium isotope levels based on fauna
or plants likely can identify prehistoric migration.
On the other hand, if residential mobility is suspected
or if imported or marine foods were consumed
by some or all of the population, then statistical
analyses of the human data is probably more effec-
tive at differentiating between local and non-local
individuals.

Finally, the incorporation of additional isotopic
tracers, particularly carbon (613C), nitrogen (815N),
and oxygen (8'®0), also may help to clarify ambigu-
ous 3’Sr/%°Sr data. Briefly, 8'3C and 8'°N values in

mixed diet of marine and terrestrial foods. Figure adapted from
Slovak et al. (2009). Seawater 87Sr/%0Sr is based on Veizer
(1989). Reprinted from Slovak et al. (2009), with permission
from Elsevier

human tissue reflect 5'°C and 8'°N signatures in dif-
ferent classes of plants and animals consumed and can
be used to assess the relative amounts of marine and
terrestrial foods in paleodiets (DeNiro and Epstein
1978, 1981; Schoeninger and DeNiro 1984). While
neither carbon nor nitrogen isotope analysis can dif-
ferentiate between individuals of local and non-local
origin, they are important to migration studies because
they can identify potential dietary biases that would
affect strontium isotope signatures such as the inges-
tion of marine foods (for a more detailed discussion of
carbon and nitrogen isotope applications in archaeol-
ogy, see also Schwarcz and Schoeninger 2011).
Oxygen isotope signatures (8'%0), on the other
hand, can detect prehistoric migration and have been
used independent of, and in tandem with, strontium
isotope signatures to identify paleomobility (White
et al. 1998; Dupras and Schwarcz 2001; Miiller et al.
2003; Bentley and Knipper 2005; Knudson and Price
2007). 8'®0 values in human tissue ultimately reflect
the 8'%0 in drinking water (Longinelli 1984; Koch
et al. 1989), which in turn depends on a number of
factors including temperature, distance from the sea,
and elevation (Gat 1980; Yurtsever and Gat 1981;
White et al. 1998). Oxygen isotope data, therefore,
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provides an alternative line of evidence by which to
track migration and monitor ®’Sr/**Sr results.

35.2.2 Sample Selection and Sampling
Techniques for Human Remains

35.2.2.1 The Potential for Diagenesis

Diagenesis, or the molecular alteration of skeletal
material after interment, is one of the major obstacles
facing applications of radiogenic strontium isotope
analysis in archaeology. Both physical and chemical
changes to bones and teeth can occur in the post-
depositional environment, including loss of biogenic
87Sr/%0Sr signatures (Nelson et al. 1986; Sillen 1986;
Price et al. 1992; Sillen and Sealy 1995; Hoppe et al.
2003). The degree of diagenetic contamination in any
skeletal element is variable and depends on a number
of factors including the length of interment, burial
environment, and climate (Price et al. 1992; Nielsen-
Marsh and Hedges 2000a, b). The type of material
(tooth enamel vs. bone) and chemical element (strontium
vs. carbon) analyzed also can affect the degree and rate
of diagenetic processes over time (Schoeninger 1995).
Fortunately for strontium isotope studies, tooth
enamel is largely resistant to diagenesis owing to its
highly crystalline nature, low organic matter content,
and lack of porosity (Koch et al. 1997; Hillson 2005).
Numerous studies have demonstrated that biogenic
enamel isotope signatures are retrievable from prehis-
toric samples with minimal treatment (Quade et al.
1992; Wang and Cerling 1994; Koch et al. 1997,
Budd et al. 2000; Hoppe et al. 2003; Trickett et al.
2003). Bone, on the other hand, is much more prone to
diagenetic alteration than tooth enamel, largely
because of its high organic matter content (~30%),
high porosity, and poorly crystalline structure. Upon
interment, physical contaminants from the surround-
ing soil such as quartz, calcite, and clay can seep
into the pore spaces of bone (Kyle 1986). Additionally,
the post-mortem dissolution and recrystallization of bone
mineral can affect strontium isotope levels in bone as
well as the ratio of strontium to other elements such as
calcium (Ca) and phosphorus (P) (Sillen 1981, 1989;
Nelson et al. 1986; Price et al. 1992; Sandford 1992).
Over the last few decades, a number of studies have
documented ways of measuring and monitoring diage-
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netic contamination in prehistoric materials and have
established protocols to counteract diagenetic contam-
ination in teeth and bone (Nelson et al. 1986; Sillen
1986; Price et al. 1992; Sillen and Sealy 1995;
Nielsen-Marsh and Hedges 2000a, b; Hoppe et al.
2003). While the loss of biogenic isotope signatures
in archaeological samples is at times unavoidable,
the degree and effects of diagenetic contamination
can be monitored and often ameliorated by appropriate
sampling and cleaning procedures. (A more thorough
discussion of these techniques can be found in
Sects. 35.2.3.2 and 35.2.3.5.)

35.2.2.2 Selecting a Sample: Human
Teeth and Bone

Tooth enamel of the permanent dentition is laid down
as a series of layers beginning just before birth, as is
the case with the first molar crown, and continuing to
approximately 14 years of age with the completion of
the third molar crown (Table 35.1). Once formed,
chemical signatures in teeth do not alter. 87Sr/86Sr
values in different teeth, therefore, represent discrete
growth periods in an individual’s childhood and
adolescence.

Scholars generally select enamel samples from the
first, second, and third permanent molars, as well as
premolars, for radiogenic strontium isotope analysis.
First molars begin their initial formation in utero
(about 28-32 weeks after fertilization) (Hillson 1996)
and are completed by around 3 years of age, while

Table 35.1 Approximate timing of dental crown and root
formation of human permanent dentition

Permanent tooth  Approximate timing of
type dental crown formation

Approximate
timing of dental
root formation
5-9Y years old
5-10Y%2 years old
4-12 years old
5-12%: years old
6-14 years old
2!5-9 years old

First incisor
Second incisor
Canine

First premolar
Second premolar
First molar

3 months to 5 years old
3 months to 5 years old
6 months to 4 years old
2-5 years old

3-6 years old

0-2Y% years old

Second molar 3%—-6Y4 years old 6Y5—1415 years old
Third molar 9Y2—12 years old 12-20 years old
Note that the age ranges here are approximate and that actual

values may vary. Data compiled from Schour and Massler
(1940) and Smith (1991)
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second molars initially begin to form in an individual’s
second or third year and crown completion takes place
at 7 or 8 years (Schour and Massler 1940; Smith 1991).
Premolars have fairly identical formation rates as sec-
ond molars with the initiation of first and second pre-
molar crowns beginning towards the end of the second
year and continuing into the third year (Schour and
Massler 1940; Smith 1991). First premolar crowns
generally are completed by 6 years, followed closely
by second premolar crowns at 7 years (Schour and
Massler 1940; Smith 1991). Third molars are the
most variable tooth in terms of their development
(Hillson 1996), initially forming sometime between 7
and 13 years of age and crown completion occurring
between 12 and 16 years. Third molars form well after
the period of weaning and therefore are the least
likely of all teeth to be affected by maternal strontium
isotope signatures. On the other hand, not all indivi-
duals develop third molars (Garn et al. 1962) and
therefore these teeth may not always be available
for study. Additionally, by analyzing *’Sr/*°Sr
values in third molars in lieu of earlier forming teeth,
archaeologists might overlook evidence for residen-
tial mobility that occurred earlier in childhood and
adolescence.

Mandibular and maxillary dentitions have compa-
rable development rates (Hillson 1996) such that iso-
tope ratios from upper and lower teeth in the same
dental position shoulder expected to yield highly sim-
ilar isotope ratios. Similarly, chemical signatures are
not expected to vary significantly among the different
crown side surfaces (i.e., lingual, buccal, mesial, and
distal) (Dolphin et al. 2005).

In compiling enamel samples for radiogenic stron-
tium isotope analysis most researchers collect material
from a single tooth rather than multiple teeth for any
one individual. By doing so, archaeologists minimize
their impact on the skeleton. At the same time, how-
ever, they likely underestimate the amount of mobility
in prehistoric populations (Schweissing and Grupe
2003). A small number of researchers have addressed
this problem by serially sampling teeth from a single
individual. Schweissing and Grupe (2003), for exam-
ple, collected enamel from each permanent tooth type
from seven adult skeletons buried at the archaeolog-
ical site of Neuburg/Donau in Bavaria. Their analysis
revealed that six of the seven individuals migrated to
the site at various stages in their childhoods, including
one individual who appeared to have moved between
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at least two different regions in his life: once during
childhood and another after 14 years of age. Impor-
tantly, in the case of this latter individual, evidence for
multiple migrations would have remained undetected
had the authors not sampled several teeth from the
same skeleton. Similarly, Buikstra et al. (2004) docu-
mented several examples of early life migrations
among skeletons from the Copan Acropolis. By com-
paring ®’Sr/*®Sr values from multiple teeth from single
individuals the authors were able to determine around
what age migrant individuals settled at Copan and,
in at least one instance, detect multiple residence
changes during an individual’s childhood (Fig. 35.3).
Ultimately, the number of teeth analyzed from any one
individual is subject to access and approval by curators
and governmental agencies, and is likely to be guided
by several factors including availability and integrity
of dental material, cost of analysis, and the research
question(s).

While it is feasible to differentiate between indivi-
duals of local and non-local origin using tooth enamel
alone, many archaeological studies incorporate com-
parisons of strontium isotope signatures in tooth and
bone from the same individual. Unlike tooth enamel,
which forms early and does not chemically alter once
laid down, human bone remodels throughout an indi-
vidual’s lifetime (Tetelbaum 2000). The rate at which
bones remodel depends upon the skeletal element and
the type of bone analyzed. The diaphyses of long
bones such as the tibia and femur take decades to
remodel, while ribs replace their chemical constituents
after only a few years (Jowsey 1961; Jowsey et al.
1965; Parfitt 1983; Eriksen 1986; Hill 1998). Simi-
larly, different types of bone mineralize at different
rates, such that dense cortical bone remodels slowly
while trabecular bone remodels relatively rapidly
(Mulhern and Van Gerven 1997, 2000).

Rates of turnover for different bones have signifi-
cant consequences for migration studies and should
be taken into account when selecting bone samples
for analysis (Price et al. 2002). In instances where
migrants relocated to an area within months or a few
years prior to death, ¥’Sr/*®Sr values in their skeletons,
particularly among those bones with long turnover
rates, likely will reflect their last place of residence
rather than their new locale simply because strontium
turnover in bone takes time. On the other hand, indi-
viduals who have resided in a place for multiple years
and who have eaten locally-grown foods during that
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Fig. 35.3 87Sr/%6Sr ratios from tooth enamel and bone for two
adult individuals buried at the site of Copan. Based on data from
Buikstra et al. (2004), this figure illustrates that neither individ-
ual was born locally although 3St/**Sr values from their bones
(plotted at 40 and 50 years respectively) indicate that they lived
at Copan several years prior to their death. Note that residence

time will exhibit skeletal ¥7Sr/3®Sr values closer to, or
within, the local 87Sr/%°Sr range. In cases where indi-
viduals have resided at a new location for a period of a
few years, %’Sr/*®Sr values among bones with rapid
turnover likely will approximate local values while
87Sr/%°Sr signatures from bones with prolonged remo-
deling rates probably will fall somewhere between the
87Sr/%°Sr range of their previous locale and that of
their current place of residence. A small number of
studies have analyzed multiple bones from a single
individual with interesting results. For example, in
their study of the Tyrolean Iceman colloquially
known as “Otzi,” Hoogewerff et al. (2001) documen-
ted different ’Sr/*°Sr values in the Iceman’s rib and
femur, potentially indicating that Otzi travelled to
multiple locales during the last years of his life.
While it may be tempting to select those bones with
fairly rapid turnovers such as ribs or the ends of long
bones for radiogenic strontium isotope analysis, these
bones are composed primarily of trabecular bone,
which is much more susceptible to diagenesis than
compact, cortical bone (Lambert et al. 1982; Buikstra
et al. 1989). Ultimately the selection of bone(s) for

change for Burial 95-1 likely would not have been detected
using the third molar (M3) only. Similarly, potential evidence
for multiple childhood migrations for Burial 95-2 is detectable
only by sampling several of the individual’s teeth (i.e., M1, 12,
and M3)

sampling should be guided not only by the research
question and scope, but also by the integrity of the
specimen and the overall risk of diagenetic contami-
nation as assessed from the burial environment.

35.2.2.3 Sampling Strategies for Human
Tooth Enamel and Bone

Tooth Enamel

Most strontium isotope analyses of archaeological
human tooth enamel rely on the bulk sampling
method, in which enamel is collected across a tooth’s
buccal, lingual, mesial, or distal crown surface from
the occlusal margin to the cemento-enamel junction
(CEJ), indiscriminate of enamel growth phases. By
collecting samples in this manner, scientists average
out potential fluctuations in ®’Sr/*°Sr that may have
accumulated over the course of a tooth’s mineraliza-
tion, which as discussed in the previous section occurs
at different times and rates in an individual’s life. The
resulting 87Sr/%9Sr enamel value, therefore, represents
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Fig. 35.4 Bulk sampling of enamel for ¥Sr/*°Sr isotope anal-
ysis from a human skeleton buried at the site of Ancén, Peru.
The arrow points to the region of the tooth from which enamel
was drilled

a bulk signature formed over a period of several
months or years in an individual’s childhood or ado-
lescence (Fig. 35.4).

The collection of enamel bulk samples for isotope
analysis is relatively straightforward. The enamel sur-
face of the tooth selected for sampling should be
abraded using either a Dremel tool or dental drill fitted
with a carbide burr to eliminate adhering materials and
to remove surface enamel that is most susceptible to
diagenetic alteration (Hillson 1996). Enamel samples
then can be drilled into a fine powder or chunked and
later ground to a powder using a sterilized mortar and
pestle. Researchers should aim to collect approximately
5-20 mg of tooth enamel if possible. Although only a
small amount of enamel is needed for actual analysis,
some material may be lost during sample preparation.

As an alternative to collecting samples in bulk,
some consideration has been given to the possibility
of microsampling enamel growth layers using either
microdrilling or laser ablation. Laser ablation, and to a
lesser extent microdrilling, requires far smaller sam-
ples than the bulk method, making it well-suited for
isotopic analyses of rare materials such as fossil speci-
mens or extremely small faunal teeth (Copeland et al.
2008). Furthermore, microsamples from a single
human tooth potentially can capture seasonal fluctua-
tions in enamel isotope values in strontium and other
elements, as has been demonstrated in isotope studies
of non-human animals (Koch et al. 1995; Fricke and
O’Neil 1996; Stuart-Williams and Schwarcz 1997).

N.M. Slovak and A. Paytan

Despite these proposed benefits, microsampling
remains largely untested on human archaeological
samples. In part, this is due to the fact that microsam-
pling via microdrilling remains technically difficult
and fairly specialized (Richards et al. 2009). In
addition, comparisons of laser ablation (LA)- and
traditional solution mode-multi-collector inductively
coupled plasma mass spectrometry (MC-ICP-MS)
87Sr/*°Sr  measurements from tooth enamel have
shown that the former method is generally more inac-
curate and imprecise than solution-based techniques,
owing to potential isobaric interferences during laser
analysis (Simonetti et al. 2008; Nowell and Horstwood
2009). In recent years, however, a small number of
studies have addressed these deficiencies and demon-
strated that LA-MC-ICP-MS data may be appropriate
in some archaeological cases. Research by Horstwood
et al. (2008), for example, indicates that with proper
on-line interference correction routines and additional
calibration against a set of reference materials, reliable
LA-MC-ICP-MS-based ®’Sr/*°Sr signatures from
archaeological specimens potentially can be produced.
While Horstwood et al. (2008) acknowledge that their
analytical protocol appears to work well on samples
with concentrations >300 ppm Sr, the authors note
that laser ablation data from samples with concentra-
tions <200 ppm Sr exhibit a much greater degree of
inaccuracy and should used cautiously. Copeland et al.
(2008, 2010) analyzed modern and fossil rodent teeth
from the Sterkfontein Valley of South Africa using
both LA-MC-ICP-MS and TIMS. While their LA-
MC-ICP-MS-based enamel *’Sr/*°Sr values were
less precise than the corresponding TIMS values, the
authors do argue that LA-MC-ICP-MS is sufficiently
accurate to investigate geographic origins and resi-
dential mobility if the geologic units under study are
considerably variable from one another.

Finally, it is still somewhat unclear whether the
analysis of microsamples from different human enamel
growth layers can actually capture seasonal variations in
87S1/%°Sr. As noted by Montgomery and Evans (2006),
enamel mineralization in human teeth occurs in a
multidirectional pattern such that 87SI‘/86SI‘ values
likely are averaged out across a tooth’s surface rather
than occurring in a well-ordered, sequential fashion
across growth layers. Recent research (Dolphin et al.
2005; Richards et al. 2008), however, indicates that
incremental shifts in ¥’Sr/*°Sr values within a single
human tooth may be detectable using laser ablation
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techniques. In their study of deciduous dentition from
modern children living in the Solis Valley of Mexico,
Dolphin et al. (2005) illustrated that significant
intra-tooth variations in trace element concentrations
between prenatally- and postnatally-formed enamel
were detectable using LA-ICP-MS. Similarly Richards
et al. (2008) used laser ablation plasma ionization
mass spectrometry (LA-PIMMS) to document three
distinct clusters of ®’Sr/*®Sr values from a single
Neanderthal third molar, which appeared to correspond
to distinct phases of enamel secretion (Fig. 35.5).
Richards et al. (2008) interpret the variation in

Fig. 35.5 Sequential sampling of a Neanderthal tooth using
laser ablation. Numerical values represent the %’Sr/%°Sr ratios
for the individual laser-ablation pits. Reprinted from Richards
et al. (2008), with permission from Elsevier
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87Sr/%0Sr signatures over time as evidence for Nean-
derthal mobility. Assuming the results of Dolphin
et al.’s (2005) and Richards et al.’s (2008) study are
applicable to archaeological samples more broadly,
then laser ablation ICP-MS methods potentially can
capture variation in enamel ®’Sr/*°Sr at much finer
temporal resolutions than previously achieved using
the bulk sampling technique.

Bone

The collection of bone for radiogenic strontium iso-
tope analysis also can be performed using a Dremel
Multipro drill, generally outfitted with an inverted
cone tip to remove bone powder or a diamond disk
saw to remove bone chunks. Prior to removing the
sample, the sample area should be gently abraded to
remove surface contamination. Samples should be
taken from cortical bone, if possible, as this type of
bone is less susceptible to diagenetic alteration than
trabecular bone. It is suggested that at least 50 mg to
1 g of bone be collected since some preparation pro-
tocols for bone are quite rigorous and can result in a
partial loss of sample (Hoppe et al. 2003).

A Cautionary Note

We conclude our discussion on sample selection with
a note of caution. It should be remembered that col-
lecting samples for radiogenic strontium isotope anal-
ysis involves the permanent removal of enamel and
bone from archaeological specimens, samples which
are entirely consumed during purification and mass
spectrometry. Although the amount of enamel and
bone needed for isotopic analysis is quite small (less
than 20 mg for traditional bulk sampling methods and
even less for laser ablation techniques), there are ways
of minimizing one’s impact on archaeological materi-
als when selecting specimens for sampling. In the case
of tooth enamel, researchers should attempt to sample
teeth that are no longer embedded in the alveolar bone
if possible as this reduces the risk of damage to the
surrounding alveolus and bones of the skull. When
selecting bone for analysis, researchers should avoid
sampling intact bone if fragmentary bone is available
for study, so as to minimize impact to the skeleton.
Additionally, scientists should try to avoid removing
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enamel or bone samples from those teeth or parts of
the skeleton that exhibit pathological lesions, cultural
modifications, or other diagnostic markers as these
features potentially can be used to reconstruct aspects
of health, diet, growth, and socio-cultural practices
among ancient populations (see e.g., Larsen 1997,
Katzenberg and Saunders 2008). Finally, since multi-
ple isotopic signatures can be retrieved from a single
dental or bony element, scientists should formulate
hypotheses and devise their sampling strategy so as
to maximize the kinds of chemical information that
can be retrieved from their samples while minimizing
damage to the skeleton.

35.2.3 Laboratory Analysis

Radiogenic strontium isotope analysis is a well estab-
lished procedure and has long been used by geologists.
Accordingly laboratory sample preparation proce-
dures and analytical techniques have been thoroughly
studied and routinely applied (see e.g. Faure and
Mensing 2005). Here we briefly summarize pre-
paration protocols relevant for archeological studies
and provide some information on mass spectrometric
analyses.

35.2.3.1 Preparation Protocols for Isotopic
Analysis of Bedrock, Soil,
and Groundwater

To determine the strontium isotopic composition of
environmental samples that represent the local prove-
nance signature, care must be given to collect relevant
and representative samples. As discussed earlier, such
samples may include bedrock, soil, groundwater,
river/lake water or vegetation, as well as archaecozoo-
logical and archaeobotanical materials (the seawater
signature is well established and does not need to be
analyzed). Several sub-samples from different, ran-
domly spread locations relevant to the study should
be collected and homogenized. Archaeobotanical
remains should be carefully cleaned of dust by ultra-
sonication in milliQ water and acetone several times,
while archaeozoological materials should be prepared
for analysis following the protocols outlined for
human samples below.

N.M. Slovak and A. Paytan

Homogenized samples are dissolved in preparation
for strontium separation for mass spectrometry. Many
sample dissolution methods have been used ranging
from an acid pre-leach followed by partial dissolution
in weak acid (McArthur et al. 1993) to a total dissolu-
tion in mixed strong acids (Hein et al. 1993). The main
purpose of the pre-leaching is to minimize contamina-
tion by non-target components which may adhere to
the sample surface. Such cleaning should be included
if diagenetic contamination is expected (Bailey et al.
2000). The pristine, clean, representative target sam-
ples should then be fully dissolved. The exact pro-
cedure for sample dissolution will depend on the
properties of the sample. For example, pure carbonate
rocks may be digested by relatively dilute acetic acid
(Montanez et al. 1996), while bulk silicate rocks and
soil are typically dissolved in a mixture of hot concen-
trated HNO;3; and HF acids followed by drying and
repeat treatment with HCl and HNO; (Billings and
Adams 1964). Organic substances like vegetation are
either oxidized in hot HNO; or ashed for 4 h in a
muffle furnace at 550°C and then dissolved in a mix-
ture of 6 N HNO; and HCI (Porder et al. 2003),
followed by removal of any residue through filtration.
After dissolution, samples are dried down and then
re-constituted in a minimal amount of acid (typically
HCI or HNO3) in preparation for strontium separation
by ion chromatography. Water or other fluids contain-
ing strontium are filters and the appropriate volume
containing enough strontium for analysis is dried
down and re-constituted as above. All reagents used
for dissolution must be trace metal clean or distilled to
lower strontium blanks.

35.2.3.2 Preparation Protocols for Isotopic
Analysis of Archaeological Human
Remains and Modern Fauna

Pretreatment protocols for archaeological specimens
will vary depending on the element analyzed. As
discussed earlier, tooth enamel is largely resistant to
diagenetic contamination while archaeological bone
is highly susceptible to post-mortem alteration. As a
result, pretreatment protocols for tooth enamel are
relatively straightforward and less intensive than that
required for archaeological bone specimens.

While various preparation methods exist for archaeo-
logical tooth enamel, the general consensus is that
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sequential rinses or an overnight bath in weak
(£1.0 N) acetic acid remove most diagenetic carbo-
nates in enamel (Sillen 1986; Hoppe et al. 2003). It
should be noted that samples can lose up to 70% of
their weight depending on the specific preparation
protocol followed (Hoppe et al. 2003); thus, care
should be taken in determining the number of rinses
enamel powder should be subjected to. Once acetic
acid has been removed from enamel samples, the
residual powder should be rinsed with distilled/deio-
nized water and sonicated three times for at least
5 min. Samples can be left overnight to dry or dried
down using a desiccator, hot plate, or oven (below
50°C).

Archaeological bone samples should be subjected to
more rigorous preparation procedures than those estab-
lished for enamel, although it should be emphasized
that no one pretreatment protocol has been found that
completely separates biogenic and diagenetic strontium
in bone (Koch et al. 1997; Hoppe et al. 2003; Trickett
et al. 2003). Many studies have adopted Sillen’s (1986)
solubility profile method (or a version thereof), in
which powdered bone is subjected to a series of washes
in 0.1 N buffered acetic acid (pH = 4.5). Following
acid treatment, bone samples should be rinsed and
sonicated three or more times using distilled/deionized
water for several minutes. Given the large number of
rinses (Sillen’s original 1986 study consisted of 24 acid
washes), it is recommended that powdered bone sam-
ples initially weigh between 30 and 50 mg, as signifi-
cant amounts of sample can be lost during preparation.
As an alternative to Sillen’s method, Knudson et al.
(2004) recommend sonication of chunked bone in deio-
nized water for 30 min, followed by sonication in 5%
acetic acid for 30 min, and a second aliquot of 5%
acetic acid for 5 min. Once rinsed, bone samples can
be ashed and powdered.

Since diagenesis is not an issue when analyzing
bones and teeth from modern fauna, enamel and/or
bone from these specimens require minimal pretreat-
ment prior to analysis. Mechanical cleaning is recom-
mended for all modern samples, and if necessary,
samples can be left overnight in H,O, (30%) to
remove organics. Cleaned samples should then be
sonicated with distilled water and dried down. All
dried samples (both archaeological and modern tooth
enamel and bone) can then be dissolved in either HCI
or HNOj in preparation for strontium separation by
ion chromatography.
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35.2.3.3 Strontium Separation

Prior to mass spectrometric analysis strontium has to
be purified to reduce mass interference (isobaric inter-
ference) by other elements and compounds (specifi-
cally ®'Rb) and to maximize ionization efficiency
(residual Ca decreases the ionization efficiency of
strontium and the stability of the ion beam). This is
done using ion chromatography by passing the sample
solution through columns filed with cation exchange
resin (Hart and Brooks 1974). About 1 pg of strontium
is typically prepared for isotope analysis. The most
commonly used separation technique involves cation-
exchange chromatography using resin (AG 50W-X8)
in HCl medium. This resin retains strontium more
strongly than singly charged alkali metals including
major elements such as Mg and trace elements such as
Rb (Hart et al. 1974). However the separation from Ca
and Al can be compromised when these are present in
higher concentrations relative to Sr. Use of longer
columns can alleviate some of these problems (Birck
1986). Columns are conditioned with 3-5 column
volumes of 0.75 N HCI and the sample (dissolved in
a small amount of 0.75 N HCI) is loaded. The cations
are eluted with 1.8 or 2 N HCl (depending on the acid
strength used for calibration). The strontium fraction is
collected and this fraction is dried down in preparation
for mass spectrometry. Columns should be calibrated
routinely to ensure clean separation and efficient
recovery of Sr.

Strontium can also be extracted from nitric acid
media using crown ether in octanol, sorbed on an
inert substrate (Sr-Spec, Eichrom® non-ionic ester
polymer resin, 100-150 mesh) (Horwitz et al. 1991,
1992). This method is more selective for strontium and
strontium does not break through from the columns
until about 30 column volumes of 3 M HNOj. Stron-
tium is eluted using 0.05 M HNO;. Using Sr-Spec is
very effective in separating rubidium and calcium
from Sr, although barium is not as easily removed
and longer columns or stronger acid should be used
for barium-rich samples (Pin and Bassin 1992). Stron-
tium blanks of the Sr-Spec columns are typically
higher than those of the AG 50W-X8 resin, particu-
larly when using columns repeatedly, thus care should
be taken to monitor blanks or to avoid re-use of col-
umns (Pin and Bassin 1992). All reagents used for
strontium separation should be trace metal grade or
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distilled to ensure low blanks, and procedural blanks
should be monitored routinely.

35.2.3.4 Instrumentation

Several options are available for mass spectrometric
analysis including solid-source thermal ionization
mass spectrometry (TIMS), solution quadrupole-
based ICP-mass spectrometry (ICP-QMS) (Vanhaecke
et al. 1999), or multi collector ICP-mass spectrometry
(MC-ICPMS) (Waight et al. 2002). The MC-ICPMS
could also be coupled to laser ablation (LA-MC-
ICPMS) (Christensen et al. 1995; Vroon et al. 2008).
TIMS has been used for longer than the other instru-
ments and is the most routinely used procedure for
strontium isotope analyses. Although using the TIMS
is time consuming (each analysis could take 1-2 h) it
requires less strontium compared to other solution-
based analyses and has the highest reproducibility
and precision.

For TIMS, following strontium purification, the
samples are dried down, re-dissolved in 1% HNO3;,
and loaded with 0.1 M H3PO, on degassed Re or Ta
filaments. Samples as small as 20 ng of strontium can
be routinely analyzed using TIMS although larger
samples are desirable if sample is available. The iso-
baric interferences of *’Rb are determined by monitor-
ing ®Rb and applying corrections as needed. All
87S1/%Sr values are corrected for mass fractionation
in the instrument using *°Sr/**Sr = 0.1194 (this cor-
rection is also referred to as normalization). NIST
SRM 987 strontium carbonate standard is always ana-
lyzed along with samples, and the value of this stan-
dard is used to determine long-term external precision
as well as for comparison of data between laboratories.
The accepted value of the SRM 987 standard is
0.71024 and data is either corrected for offset from
this value or the value obtained for SRM 987 is
reported along with the data. Typical internal preci-
sion on the mass spectrometer is around 0.000010, and
the external precision is approximately £0.000020
(Oslick et al. 1994) (2o standard deviation).

Techniques for radiogenic strontium isotope analy-
sis on a double-focusing multiple collector inductively
coupled plasma mass spectrometer (MC-ICPMS) can
be done on unspiked or spiked samples (Fortunato
et al. 2004). Measurement protocol includes stan-
dard-sample—standard bracketing methods using the
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isotopic reference material (SRM 987) with wash solu-
tions between sample or standard introductions. This
permits internal correction of the isotope ratios
87Sr/%°Sr and 3*Sr/*°Sr with ¥¥Sr/*°Sr and lowering of
memory effects from preceding samples. Using MC-
ICPMS can yield accurate and precise results similar
to those obtainable by TIMS and the procedure is
faster (about four samples per hour). This procedure,
however, requires a larger amount of strontium (at
least 300 ng per sample) in comparison to TIMS.
Moreover, backgrounds should be measured to correct
for interferences on masses 84 and 86 derived from
small amounts of krypton in the argon supply in the
plasma, and stable, residual memory strontium and
rubidium signals from sample material on the torch
and cones. Simultaneous ionization of all elements
during plasma-based ionization also proves to be a
disadvantage during radiogenic strontium isotope
analysis as extra chemical clean-up steps, beyond
those necessary for TIMS analyses, are required to
remove potential isobaric interference. LA-MC-
ICPMS strontium isotope ratio measurements of vari-
ous geological and biological samples allow analyses
of small samples and fine spatial resolution with mini-
mal preparation. However significant deviations in the
84S1/%°Sr ratio and the radiogenic ®’Sr/*Sr ratio from
values obtained by analysis of strontium chemically
separated from the sample matrix have been reported
(Vroon et al. 2008). The precise reasons for this
remain unclear but likely reflect a combination of
isobaric interferences from Ca dimers and Ca argides
and doubly charged REE, as well as disruption of mass
bias effects due to differential loading of the plasma.

It is also unclear whether this is an instrument- or
technique-specific problem and great care should be
taken when attempting strontium isotope analyses by
in situ LA-MC-ICPMS techniques (Garcia-Ruiz et al.
2008; see also Section “Tooth Enamel,” this chapter,
for a related discussion).

35.2.3.5 Monitoring for Diagenesis

The identification and removal of diagenetic contami-
nation are crucial steps in radiogenic strontium isotope
analysis of archaeological materials. As discussed
above, the elimination of post-depositional contami-
nants from bone and enamel can be achieved through
mechanical cleaning at the time of sample collection
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and through chemical cleaning prior to sample disso-
lution. Even with these pretreatment procedures in
place, however, it is difficult to be sure that all diage-
netic contamination has been successfully removed.
Several methods for monitoring diagenetic contami-
nation have been established (Sillen 1989; Price et al.
1992; Nielsen-Marsh and Hedges 2000a, b), and a few
techniques are briefly summarized here.

Changes to the mineralogy and crystallinity of
enamel and bone can be monitored using either
X-Ray Diffraction (XRD) or Fourier Transform Infra-
red Spectroscopy (FTIR). In general, crystallinity is
higher in altered apatite than in pristine apatite (Sillen
1989; Shemesh 1990). The degree of crystallinity can
be measured by calculating the crystallinity index
(CI). On an infrared spectrum, the CI is the extent of
phosphate peak splitting at 565-605 cm ™' and is
measured by calculating the relative depth of the val-
ley between the two peaks (Shemesh 1990). Samples
that exhibit CI’s above the range established for fresh
bone, 2.8-3.1 (Weiner and Bar-Yosef 1990; Wright
and Schwarcz 1996; White et al. 1998; Garvie-Lok
et al. 2004), likely have been altered.

Diagenetic contamination in enamel and bone also
can be detected by comparing levels of trace elements
in archaeological samples with those in modern
specimens (Kohn et al. 1999; Hoogewerff et al.
2001; Price et al. 2002). The ratio of calcium to phos-
phorus (Ca/P), for example, commonly is used to
monitor potential alteration in archaeological materi-
als. Modern, unaltered bone contains approximately
37% Ca by weight and 17% P, with a Ca/P ratio of
about 2 (Kyle 1986). Ca/P ratios much greater than 2,
therefore, indicate contamination. Additionally, scien-
tists have measured carbonate/phosphate ratios (C/P)
in archaeological specimens (Nielsen-Marsh and
Hedges 2000a), as well as the concentration of ura-
nium (U) in archaeological bone samples (Kohn et al.
1999; Knudson and Price 2007; Conlee et al. 2009) in
order to monitor diagenetic contamination.

35.3 Applications

The number and diversity of strontium isotope studies
in archaeology have increased dramatically over the
last two decades. The technique primarily has been
used to differentiate between individuals and fauna of
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local and non-local origin, although a few studies have
adopted the method as a means of identifying and
sourcing non-local building materials, artifacts, and
foodstuffs. While not exhaustive, the present section
highlights some of the major applications of radio-
genic strontium isotope analysis in archaeology to
date (Table 35.2).

35.3.1 #75r/®°Sr Analyses
of Archaeological Humans

The majority of strontium isotope applications have
focused on analyses of human skeletons from archaeo-
logical sites. While 87Sr/86Sr values in human bones and
teeth have been used primarily to identify immigrants
and track the degree of residential mobility in the past,
archaeologists have applied ®’Sr/*°Sr data to address
broader socio-cultural questions pertaining to imperial
strategies and colonization, marital residence patterns,
ethnicity and identity, and violence and warfare.

Ancient complex societies adopted various poli-
tical strategies to manage their vast territories, includ-
ing the establishment of colonies. Traditionally,
archaeologists have used the presence of foreign,
imperial-style ceramics, textiles, architecture, and
burial practices as proxies for population movement
and imperial control. With the introduction of radio-
genic strontium isotope analysis to archaeology, scien-
tists have been able to directly document the presence
of foreigners at ancient sites and, thus, explore coloni-
zation models more effectively.

A number of such studies has been conducted in the
Andean region of South America, including Kelly
Knudson and colleagues’ work (Knudson et al. 2004;
Knudson and Price 2007; Knudson 2008) on resi-
dential mobility within the Tiwanaku polity during
the Middle Horizon (550-1000 ap). In a pioneering
study, Knudson et al. (2004) identified a number of
migrants at the eponymous capital of Tiwanaku in
Bolivia, as well as two immigrants, likely from Tiwa-
naku, at the site of Chen Chen in Peru. The latter site
had been interpreted as a Tiwanaku colony based on
the presence of Tiwanaku-style artifacts, but prior to
Knudson et al.’s work, no definitive evidence for
Tiwanaku migration was available.

Similar research has been carried out by Slovak
(2007) and Slovak et al. (2009) on the nature of Wari
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imperial influence at the site of Ancén on Peru’s
Central Coast. While some scholars have suggested
that the site functioned as an important Wari outpost,
other researchers have argued that Ancon remained
free of Wari political and economic control. While
the results of Slovak et al.’s (2009) radiogenic stron-
tium isotope study do not resolve the debate entirely,
the presence of a migrant, likely from the Wari heart-
land, coupled with Wari-style objects at the site sug-
gests that the identification of Ancén as a Wari colony
is at the very least plausible.

Radiogenic strontium isotope research on Late
Horizon (1400-1532 ap) sites in the Andes has shed
light on Inka political strategies as well, including
the state-mandated resettlement of individuals into
mitima communities (D’Altroy 2005). Andrushko
et al. (2009), for example, noted a dramatic increase
in the number of migrants at the Inka site of
Chokepukio, Peru during the Late Horizon, which
the authors partially attribute to coerced migrations
resulting from Inka imperial labor policies. On the
other hand, a multi-isotopic study by Turner et al.
(2009) has shown that the famed site of Machu Picchu
likely did not function as a mitima colony composed of
relocated colonists from a common geographic area or
areas, but rather was maintained as a private estate for
the Inka emperor by elite retainers whose geographic
origins were widely dispersed.

In the Old World, strontium isotope data also has
been used to investigate colonization. Buzon et al.
(2007), for example, examined radiogenic strontium
isotope signatures among individuals buried at the site
of Tombos in ancient Nubia during the Egyptian New
Kingdom Period — a time when the Nubian Kingdom
was subsumed under Egyptian rule. As noted by the
Buzon et al. (2007), the nature and extent of Egyptian
control over Nubia remains unclear; however, stron-
tium isotope data indicates that colonial rule at
Tombos may have been administered not only by
individuals of foreign origin (i.e., Egyptians) but by
local Nubians as well.

Montgomery et al. (2005) used both strontium and
lead isotopes to explore the origins of potential immi-
grants at an Anglian cemetery in England during the
fifth to seventh centuries AD, a time period that par-
tially overlaps with the mass migration of Anglo-
Saxons into Britain. While the geographic origins of
the individuals identified as non-local based on their
87Sr/*°Sr signatures in Montgomery et al.’s (2005)
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study could not be assigned definitely to Angeln, the
authors’ results highlight the potential of strontium
isotope applications to elucidate the nature and extent
of colonization and mass migrations in the archaeo-
logical record.

Finally, extensive evidence for human migration
has been documented via radiogenic strontium isotope
analysis during the early and late Neolithic periods of
Europe (see e.g., Bentley et al. 2003, 2004; Price et al.
2004, 20064a, b; Nehlich et al. 2009). Price et al. (2004),
for example, employed radiogenic strontium isotope
analysis to determine whether the spread of Bell Bea-
ker culture throughout many parts of Europe during the
Neolithic/Bronze Age transition resulted from the
migration of foreign peoples into these areas, or from
the importation of Bell Beaker-style artifacts into com-
munities by local peoples. The results of their study,
which included skeletons from Bell Beaker graves in
Austria, the Czech Republic, Germany, and Hungary,
demonstrate that 51 of 81 individuals analyzed
(61.7%) were born elsewhere. While Price et al.’s
(2004) data does not entirely resolve the question of
whether migration or diffusion was responsible for the
rapid and widespread expansion of the Bell Beaker
culture at this time, their work underscores the consid-
erable degree of human mobility that did occur during
the Neolithic and provides an alternative line of evi-
dence for evaluating the Bell Beaker phenomenon.

Radiogenic strontium isotope analysis also has
yielded potential evidence for exogamous marriage
practices in the past, particularly among females.
Grupe et al. (1997) and Price et al. (1998) documented
a disproportionate number of migrant females at Bell
Beaker period (2500-1900 Bc) sites in Bavaria, which
they interpret as tentative evidence for exogamy. Sim-
ilarly Schweissing and Grupe (2003) noted a similar
trend among southern Bavarian populations during the
Roman-period occupation. In this latter case study,
approximately 56% of females analyzed (or 10 out of
18 women) yielded non-local *’Sr/*®Sr enamel signa-
tures compared to 37% of males (or 15 of 41 men).
These results potentially suggest that females were
married into the community at a greater rate than men.
Elsewhere in Europe, Bentley et al. (2004) documen-
ted significantly more female immigrants than male
immigrants at Early Neolithic cemeteries in Germany,
which may indicate that larger number of females
married into low-lying agricultural communities dur-
ing this time period.
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In some cases, strontium isotope data from human
skeletons has been used to elucidate the relationship
between ethnic identity and geographic origin. Price
et al. (2000), for example, analyzed 878r/30Sr values
from a sample of individuals buried in various ethnic
enclaves or barrios at the site of Teotihuacan in
Mexico and discovered that the majority of people
appear to have been born non-locally. In this instance,
then, the presence of foreign cultural elements such as
architecture, pottery, burial practices, and food pre-
paration techniques within the barrios appear to have
resulted (at least in part) from foreign peoples living
there. In a similar vein, Bentley et al. (2003) noted a
significant correlation between burial location and
87Sr/%°Sr signatures at the site of Vaihingen, Germany.
A greater percentage of non-local individuals (14 of
24), as determined by their 87S5r/%0Sr values, were
buried in the Neolithic ditch encircling Vaihingen
than in the settlement itself (5 of 22 individuals)
(Bentley et al. 2004). These findings potentially sug-
gest that non-local individuals were viewed as
socially and/or ethnically different and buried dis-
tinctly (Bentley et al. 2003). Finally, in an innovative
study by Price et al. (2006a, b), ®’Sr/*®Sr signatures
from five individuals buried at a colonial cemetery in
Campeche, Mexico indicate that they likely were born
in West Africa. Importantly, four of these individuals
appeared ethnically distinct prior to isotope analysis
based on the type of dental modification they exhib-
ited. Price et al.’s (20064, b) study not only documents
some of the earliest representatives of the pre-
eighteenth century slave trade, but also highlights a
correlation between biological indicators of identity,
i.e., place of origin, and sociocultural indicators of
identity, i.e., dental modification practices.

On the other hand, radiogenic strontium isotope
data may not always accord well with sociocultural
data. Expanding on research produced in an earlier
pilot study (Price et al. 1994; Ezzo et al. 1997), Ezzo
and Price (2002), noted that ethnic identities among
individuals buried at Grasshopper Pueblo, Arizona
often were blurred and not necessarily correlated
with strontium isotope signatures. Similarly, Knudson
and Torres-Rouff (2009) documented a complex rela-
tionship between isotope signatures and cultural iden-
tity among individuals buried at the site of Caspana in
northern Chile during the Late Intermediate Period
(1100-1400 ap). Based on potential ethnic markers
such as cranial modification and burial styles, the
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Caspana individuals were distinct from neighboring
groups in the region, as might be expected among a
migrant community; however all but one of the indi-
viduals at Caspana was born and raised locally.

Finally, the use of strontium isotope data has been
applied to investigations of violence and warfare in the
archaeological record. The identity of trauma victims
has long been of interest to archaeologists and physical
anthropologists but has been relatively difficult to
ascertain; radiogenic strontium isotope analysis has
the potential to provide archaeologists with data
regarding the geographic origins of these individuals
in the past. Price et al. (2006a, b) analyzed 87Sr/308r
signatures from 22 of the 34 human skeletons uncov-
ered in a Neolithic-period mass grave in Talheim,
Germany. The results of their study indicate that the
majority of the individuals were born locally, and lend
support to the authors’ (Price et al. 2006a, b) interpre-
tation that the burials probably represent members of a
single community who were killed by another group.
In a similar vein, recent applications of radiogenic
strontium isotope analysis to victims of trophy head
taking in the Andes, a practice in which the skull of an
individual was obtained either through decapitation or
by its removal from a corpse, has produced interesting
and exciting results. In a study by Tung and Knudson
(2008), 3 of 5 trophy heads found at the Wari site of
Conchopata in Peru were identified as non-local using
radiogenic strontium isotope analysis. The authors
suggest that one possible interpretation for these
results is that the non-local trophy heads were foreign
enemies who had been taken captive and subsequently
decapitated. On the other hand, strontium isotope data
from Conlee et al. (2009) and Knudson et al. (2009)
have established that trophy head taking among the
ancient Nasca of southern Peru was a localized phe-
nomena, in which trophy head victims likely were
culled from local populations in the region.

35.3.2 %75r/°°Sr Analyses
of Archaeological Fauna

In addition to examining human mobility in the past,
scholars have analyzed strontium isotope data from
fauna to better understand animal migration patterns.
While the technique has been widely applied to extant
animal populations (van der Merwe et al. 1990; Koch
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etal. 1992, 1995; Chamberlain et al. 1997), the present
section highlights radiogenic strontium isotope studies
of archaeological fauna.

Hoppe et al.’s (1999) investigation of mammoth
and mastodon mobility in the American Southeast
during the late Pleistocene was one of the earliest
applications of ¥’Sr/*®Sr to prehistoric faunal popula-
tions. Hoppe et al.’s (1999) research demonstrated that
neither mammoth nor mastodons engaged in large-
scale migrations (>700 km), and highlighted signifi-
cant variability in the extent and frequency of mobility
between the two animal species. Subsequent radio-
genic strontium isotope studies on the origins and
migration patterns of Pleistocene- and Holocene-era
North American fauna have been carried out by other
scholars, including Porder et al. (2003), Hoppe (2004),
and Feranec et al. (2007).

While the above investigations have improved
researchers’ understanding of prehistoric animal
behavior, radiogenic strontium isotope ratios from
ancient fauna also have been used to elucidate human
activity in the past. Towers et al. (2009), for example,
recently investigated the origins of cattle and aurochs
buried in two Bronze Age barrows in England.
Hundreds of cattle remains had been found associated
with human burials within the barrows, but little was
known about the animals’ origins or the purpose(s) of
their placement in the tombs. Radiogenic strontium
isotope data from a sub-sample of the archaeological
fauna indicated that while most animals were raised
locally, two individuals had been born elsewhere, sug-
gesting that long-distance exchange was undertaken by
human populations at the time (Towers et al. 2009).

Radiogenic strontium isotope analyses of archaeo-
logical fauna also can shed light on ancient animal
husbandry practices. Balasse et al. (2002) determined
strontium isotope ratios from two archaeological
sheep and one archaeological cow (along with C
and N isotope ratios from these and other archaeolog-
ical fauna) to investigate the plausibility of a seasonal
mobility model for Late Stone Age pastoralists in
South Africa. Their findings suggest that ancient
fauna were not herded between the coast and hinter-
land seasonally, but rather stayed within one region for
their entire lives or migrated at some point (rather than
seasonally) during their lifetimes. In a more recent
multi-isotopic study of ancient herding practices,
Thornton et al. (2010) tentatively reconstructed prehis-
toric herding practices among human groups in the

N.M. Slovak and A. Paytan

Osmore Valley, Peru using ¥’Sr/**Sr signatures (along
with 8'°C and 8'°N values) from archaeological
camelid bone. Although radiogenic strontium isotopes
were unable to differentiate between camelids poten-
tially herded in mid- to lower-elevation zones, 87Sr/35sr
values were sufficiently different to distinguish between
camelids pastured in the highland puna region and those
herded in middle and lower elevation habitats.

35.3.3 %75r/°°Sr Analyses of Building
Materials, Artifacts, and Food

Similar to radiogenic strontium isotope studies of
human and faunal remains, the origins of artifacts,
archaeological building materials, and ancient food
stuffs have been traced using ®’Sr/*°Sr analysis. For
example, Freestone et al. (2003) reconstructed the
potential origins and raw materials used to create
sixth to eleventh century ap glass found in the Eastern
Mediterranean region by determining *’Sr/*Sr values
from four production sites in Israel and Egypt. Simi-
larly, Henderson et al. (2005) utilized radiogenic
strontium isotopes (along with oxygen and lead iso-
topes) to trace the potential geologic sources of Syrian
glass from the eighth to ninth centuries ap. Elsewhere
in the Old World, radiogenic strontium isotope analysis
has been applied to shell beads from the Paleolithic La
Madeleine child burial in France to determine their
origin (Vanhaeren et al. 2004). 87Sr/%0Sr results indi-
cate that at least some of the shells were collected from
faraway beaches rather than nearby outcrops. The
authors (Vanhaeren et al. 2004) argue that prehistoric
artisans likely preferred beach shells to shells found
in neighboring Miocene outcrops because the former
type was morphologically more compatible with
Paleolithic bone needle technology.

The origins of textiles, particularly those made from
plant materials, can be elucidated using radiogenic stron-
tium isotope analysis. Benson et al. (2006), for example,
employed ®’Sr/*°Sr analysis (as well as oxygen
isotopes) to successfully trace the origins of raw mate-
rials used in textile manufacture in the American
Southwest. In a more recent study, the feasibility of
radiogenic strontium isotope analysis to track the
origins of ancient woolen textiles was recently tested
by Frei et al. (2009) using modern sheep hair from
Scandinavian specimens. The authors determined that
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with appropriate pretreatment procedures, *’Sr/*°Sr
values from hair potentially can be used to source
woolen materials in the archaeological record (Frei
et al. 2009).

In addition to artifacts, the sources of various build-
ing materials have been identified via radiogenic
strontium isotope analysis. At various archaeological
sites in the Mediterranean, Gale et al. (1988) used
sulfur and strontium isotopes to trace the geologic
sources of gypsum — a material used in internal con-
struction during Mycenaean times. Similarly, Brilli
et al. (2005) determined 87Sr/%0Sr values for eight
Mediterranean quarry areas which were in use during
classical times. While some of the quarries exhibited
overlapping ¥’Sr/*®Sr values, the authors demonstrate
that radiogenic strontium isotope data, in tandem with
other geochemical and petrographic applications,
can be used to determine the potential provenance
of architectural and sculptural marble artifacts
(Brilli et al. 2005). At Chaco Canyon, New Mexico,
Reynolds et al. (2005) determined *’Sr/*°Sr data for
multiple specimens of ponderosa pine used in the
construction of buildings at various Great Houses.
Reynolds et al.’s (2005) results indicate that Chaco’s
ancient inhabitants sourced their timber from a num-
ber of different outcrops, many of which were located
at considerable distances from archaeological sites.

Finally, radiogenic strontium isotope analysis has
been used to investigate the origins of food stuffs in
the archaeological record. Recently, Benson et al.
(2009) and Benson (2010) have determined ®’Sr/*Sr
values for maize found at sites in Chaco Canyon and
Aztec Ruin, New Mexico, which in turn have allowed
the authors (Benson et al. 2009; Benson 2010) to
speculate on changing trade relationships in the
ancient American Southwest.

35.4 Future Directions

Radiogenic strontium isotope analysis in archaeology
has come a long way in the last 25 years, but more work
remains to be done. The distribution of radiogenic
strontium isotope applications thus far has been limited
to several key areas in space and time, including the
Neolithic in central Europe, Great Britain, and South-
east Asia; the Late Stone age in South Africa; early
colonization of the Pacific; the Pleistocene/Holocene
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transition in the central and Southeastern U.S.; and the
development of complex societies in the American
Southwest, Mesoamerica, and the Middle though Late
Horizons in the Andes of South America. Many areas
and time periods, including the hominid fossil record,
remain relatively unexplored using radiogenic stron-
tium isotope analysis, although the few studies that
have been conducted indicate enormous promise.

Sillen et al. (1995), for example, measured 87Sr/30Sr
values from ~1.8 ma Homo sp. and Australopithecus
robustus skeletons at the site of Swartkrans in South
Africa, and (as discussed earlier) Richards et al. (2008)
determined ®’Sr/*’Sr signatures from a 40,000 ya
Neanderthal tooth found in Greece. Additionally,
Sillen et al. (1998) compiled *’Sr/*®Sr isotope data for
the Sterkfontein Valley of South Africa using water,
soil, and plant samples and compared these values to
87S1/*°Sr from Pleistocene-era vertebrates. All three
studies have shed light on hominid diet and potential
mobility patterns, although future applications of
radiogenic strontium isotope analysis to fossil homi-
nids may be hindered by the rare nature of the speci-
mens and the potential for diagenetic contamination.
To this end, the recent work by Copeland et al. (2008,
2010) that demonstrates the non-destructive nature of
sampling via laser-ablation should prove critical.

In those regions of the world where radiogenic stron-
tium isotope analysis has been applied, more work
should be done to define local ®’Sr/*®Sr signatures.
Ideally, such reconstructions would entail the collection
of samples from exposed bedrock, soil, plants, and
water along with small fauna and archaeological
human remains from the region. Hodell et al.’s (2004)
study of the Maya region, which involved the collection
of 216 samples of rock, soil, water, and plants from
Mexico, Honduras, and Guatemala, provides a good
model for other researchers to follow (Fig. 35.6), as
does Hedman et al.’s (2009) recent research on bio-
available ®’Sr/*°Sr values for the Midwestern United
States. In this latter study, local 87Sr/308r signatures
were established using the remains of nearly 50 ancient
fauna from 14 archaeological sites in Illinois, Iowa,
Indiana, and Missouri (Fig. 35.7). Both Hodell et al.
(2004) and Hedman et al.’s (2009) research demonstrate
the effectiveness and utility of collecting numerous and
varied environmental samples from broad geographic
regions and major geologic zones.

As discussed in the previous section, the ability of
radiogenic strontium isotope analysis to source food
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stuffs at ancient sites primarily has been used to
examine archaeological models of prehistoric trade,
exchange, and technology. Radiogenic strontium iso-
topes from ancient foodstuffs, however, also can
be used to monitor the reliability of archaeological
human ®'Sr/*®Sr values. The effectiveness of
87Sr/%°Sr data as an indicator of migration depends
upon the premise that ancient humans primarily ate
locally-grown foods; however even foods that appear
to have been cultivated locally may have been brought
in from elsewhere or treated with foreign additives
during food preparation (see e.g. Wright 2005).
Analyzing ¥ Sr/*°Sr values from food found in archae-
ological contexts (including those resources presumed

to have been grown or raised locally), would better
refine archaeological and isotopic interpretations.

The inclusion of additional isotopic tracers to radio-
genic strontium isotope applications in archaeology
also can facilitate interpretation of trends observed,
and already has been alluded to in this chapter. Briefly,
carbon (613C) and nitrogen (SISN) isotope analyses of
human remains can trace the relative contributions of
C4-, Cs-, and marine-based foods in an individual’s
overall diet (DeNiro and Epstein 1978, 1981; Schoe-
ninger and DeNiro 1984; Schwarcz and Schoeninger
2011) and thus can be used to identify potential dietary
biases that might affect strontium isotope signatures.
Similarly, oxygen isotope data in human tissue (3'*0),
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Fig. 35.7 Geologic map of Midwestern U.S. with mean
87Sr/%6Sr values for various archaeological sites as determined

which is dependent on a variety of climatic factors
(Gat 1980; Yurtsever and Gat 1981; White et al.
1998), provides an alternative, independent marker
of migration.

Finally, new research by Knudson et al. (2010)
demonstrates that the relationship between **Sr and
86Sr (expressed as 8%°Sr/*°Sr and reflecting mass
dependent fractionation) also can be significant to
archaeological studies. According to Knudson et al.
(2010), 3%8S1/%Sr varies by trophic level, such that in
terrestrial ecosystems 8°°Sr/*°Sr decreases as one
moves from bedrock and soils to points further along
the food web, while in marine environments 5%8Sr/30Sr
is highest in seawater and lowest in carnivorous
fish and marine mammals. Ideally, then, it should be
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possible to distinguish among different components in
ancient diets by examining 8%*Sr/*°Sr data in human
bone and tooth mineral. While still in its incipient
stages, Knudson et al.’s research using &%%Sr/*°Sr
data revealed dietary variability among archaeological
Andean populations, and holds enormous promise for
future archaeological studies.

35.5 Conclusion

The contributions of radiogenic strontium isotope
analysis to archaeology thus far have been many.
The provenience of artifacts, architectural elements,
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and food stuffs can be sourced using this method, and
the social and cultural implications of such findings
explored more readily and reliably by archaeologists.
Similarly, ¥’Sr/*®Sr data from the human skeleton
potentially provides researchers with direct evidence
for an individual’s geographic origin and a means to
measure the degree of residential mobility within his
or her lifetime. These results, in turn, have been used
to reexamine models of migration, colonization, mari-
tal patterns, warfare, ethnicity, and cultural identity in
past societies.

Despite these successes, however, the interpreta-
tion of ¥’Sr/*®Sr data is hardly straightforward. While
the technique is often employed as a way of differen-
tiating between migration and diffusion in the archae-
ological record (see e.g., Knudson et al. 2004; Price
et al. 2004; Slovak et al. 2009), the presence of foreign
individuals at sites, even when accompanied by for-
eign-style artifacts, should be viewed cautiously. In
most cases, even with evidence for migration, scholars
cannot rule out the possibility that other social pro-
cesses such as trade and exchange or competition
between elites in a local community for exotic goods
may have played an equally significant part in instigat-
ing widespread cultural change. Similarly, there may
be any number of reasons to explain why an individual
relocated to a site during his or her lifetime. Simple
radiogenic strontium isotope models that would equate
foreigners with colonizers, for example, can be just as
problematic as earlier archaeological approaches that
equated archaeological cultures with peoples (see e.g.,
critique in Jones 1997).

In addition to these theoretical challenges, various
aspects of strontium isotope methodology remain
problematic. For example, no single pretreatment
protocol (or series of protocols) is used exclusively
to prepare archaeological samples for analysis (see
Sects. 35.2.3.1 and 35.2.3.2 and references therein),
nor is there a consensus as to whether biogenic
87Sr/%0Sr values can be retrieved from archaeological
bone (Sillen 1986; Koch et al. 1997; Hoppe et al. 2003;
Trickett et al. 2003). Similarly, no one method appears
to be universally adequate for establishing a “local”
87Sr/%0Sr signature (Price et al. 2002; Wright 2005),
nor is there absolute agreement on the reliability and
comparability of LA-MS-ICP-MS-based ®'Sr/*°Sr
data and traditional solution-based TIMS data (see
e.g., Horstwood et al. 2008; Simonetti et al. 2008;
Nowell and Horstwood 2009; Copeland et al. 2010).

N.M. Slovak and A. Paytan

Current and future radiogenic strontium isotope research
surely will help to resolve some of these issues; in the
interim, ¥’Sr/*®Sr analysis remains a powerful tool
with which to critically examine the archaeological
record.
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