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We present a new methodology for constructing face stimuli for psychological experiments based on silhouetted face profiles.
Face silhouettes carry a number of theoretical and methodological advantages compared to more complex face stimuli and
lend themselves to a simple yet powerful parameterization. In five behavioral studies, we show that face silhouettes are
processed like regular face stimuli: They provide enough information for accurate gender judgments (Study 1), age
estimations (Study 2), and reliable and cross-valid attractiveness ratings (Study 3). Furthermore, face silhouettes elicit an
inversion effect (Study 4) and allow for remarkably accurate cross-identification with front-view photographs (Study 5). We
then describe a shape-based parameterization that relies on a small set of landmark points and show that face silhouettes
can be effectively represented in a 20-dimensional ‘‘silhouette face space’’ (Study 6). We show that in this physical space,
distance from the center of the space corresponds to perceived distinctiveness (Study 7), confirming a key axiom in the
formulation of the face space model. Finally, we discuss straightforward applications of the face silhouette methodology and
address some limitations.
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Introduction

Humans have a remarkable capacity to perceive, to
discriminate, and to remember faces. Our ability to
recognize one another is critical to successful navigation in
our social world, and facesVdespite sharing the same basic
features in the same basic configurationsVserve as a
primary source of individual recognition. Attempts to
explain this ability have inspired the development of
numerous empirical and methodological techniques in the
fields of psychology, neuroscience, and computer science.
Until recently, most experiments in face perception have
used raw or manually altered photographs of faces as stimuli
(e.g., Ellis, Burton, Young, & Flude, 1997; Tanaka &
Sengco, 1997). Although this has allowed researchers to
stay close to the phenomenon of interest, reliance on these
stimuli has resulted in a number of important limitations.
Photographed faces are largely uncontrolled stimuli; they
are rarely matched for size, orientation, or lighting con-
ditions. In addition, photographs do not provide a systematic
way of modifying face-specific image properties, which
severely limits the extent to which similarities between
stimuli can be measured, controlled, or manipulated.
Valentine’s (1991) proposal of a face space, in which

faces are represented as points in a high-dimensional
space and distances between points represent perceptual
dissimilarities between the corresponding faces, provided
a theoretical framework in which relationships between
face stimuli could be formalized. This general framework,
along with a few axiomatic assumptions, produced elegant

explanations of several well-known phenomena in the
face perception literature, including the distinctiveness
and other-race effects. Without direct control over the
actual face stimuli used in experiments, however, it has
been difficult to empirically test whether the assumptions
behind the general model hold true.
For example, Valentine (1991) conjectured that typical

faces occupy a dense, central region of face space, whereas
distinctive faces lie in the sparser periphery of the space.
This claim has been used as an explanation of the well-
reported phenomenon that distinctive faces, being farther
from each other and therefore less confusable, elicit better
recognition performance than typical faces. However, the
original claim regarding the spatial distributions of typical
and distinctive faces cannot be tested without a method for
assigning particular faces to particular points in face space.
Another example involves the phenomenon of cross-race
identification. Several studies have reported an asymmetric
own-race bias in the recognition of faces (see Bothwell,
Brigham, & Malpass, 1989; Meissner & Brigham, 2001;
Sporer, 2001). In particular, Caucasian subjects often show
better recognition performance with Caucasian faces
compared to Asian or African American faces, whereas
Asian or African American subjects perform just as well
with both types of faces. Researchers debate the cause of
this asymmetry, with some focusing on differences in
exposure to cross-race faces between the two groups (e.g.,
Tanaka, Kiefer, & Bukach, 2004), others highlighting the
role of differences in race homogeneity (see Lindsay,
Jack, & Christian, 1991), and still others implicating
social factors such as status and attitudes (e.g., Barden,
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Maddux, Petty, & Brewer, 2004). Having a concrete
measure of the physical variability of faces within and
between race and other demographic groups would help
resolve this debate and contribute to our understanding of
how individual faces and face categories might be encoded.
Since Valentine’s (1991) proposition of the face space

model, several different image-processing techniques have
been developed to enable the measurement and manipu-
lation of similarity between faces. The most popular
methods have included the use of eigenfaces (e.g., Turk &
Pentland, 1991), landmark-based morphing (Benson &
Perrett, 1993) and 3D reconstructions based on laser scans
or photographs (e.g., Blanz & Vetter, 1999; Bruce et al.,
1993). Although these methods have contributed to our
understanding of face representation, they have fallen
short of providing a fully reconstructive face space model
that would enable the controlled generation of parametri-
cally defined stimuli.
The eigenface method decomposes images into a set of

dimensions based on variations across pixel values. Because
the processing is done on raw pixel values, even slight
variations in lighting conditions among the original photo-
graphs can have massive effects on the eigenvalue decom-
position, which can cause two faces that are perceptually
similar to have vastly different eigenface representations. In
addition, if face images are not precisely aligned and
normalized before processing, the resulting dimensions in
the eigenspace can be incoherent and averaging two or more
face images together can result in Bghost[ features. For
example, averaging together a face with wide-set eyes and a
face with narrow-set eyes will create a face with four
semitransparent eyes. Because the relative locations of
interior features vary substantially across faces, this
correspondence problem cannot be avoided by simply
centering and scaling face images. As a consequence of
the correspondence problem, a large number of dimensions
in the eigenface representation end up being uninformative,
artificially boosting the dimensionality of the space to
hundreds of dimensions (see Penev & Sirovich, 2000).
Landmark-based models provide a way to solve the

correspondence problem. The method requires the manual
placement of a few hundred points on identifiable face
parts, such as the tip of the nose or the corners of the eyes,
across a collection of face images. This spatial coding
produces a high-dimensional space of landmark locations
that allows for arbitrary averaging, or morphing, among
the set of coded face images. However, the method does
not provide a fully reconstructive parameterization; the
location of landmark points alone, without accompanying
color or texture information, is insufficient to reconstruct a
face image. Therefore, reconstructions rely on detailed
information from the original face images that is
extremely high-dimensional and largely uncontrolled
across images (see Beale & Keil, 1995).
Some researchers have also employed methods based

on 3D laser scans as well as 3D reconstructions derived
from photographs at multiple views (e.g., O’Toole, Vetter,

Troje, & Bülthoff, 1997; Vetter, 1998). These methods
involve automatic alignments of several thousand loca-
tions and textures across a collection of 3D face data and
use specialized graphics software to display and manipu-
late the resulting images. Although this approach can
produce rather realistic face reconstructions, the automatic
alignment procedureVbased on digitally derived image
propertiesVdoes not guarantee true anatomical corre-
spondence between points across different faces, again
creating a correspondence problem and a large number of
uninterpretable dimensions. In addition, its usefulness for
face perception researchers is limited by the expensive
equipment and software needed to build a database, to
construct the model, and to display the 3D images.
To avoid some of these obstacles, there have been

recent attempts at low-dimensional parameterizations of
face space using simplified face stimuli. Synthetic faces
(Wilson, Loffler, & Wilkinson, 2002) are one such
method. These stimuli are computerized line drawings
obtained from gray-scale face photographs by manually
identifying a set of landmark points within each face and
extracting local contrast information in specified regions.
Synthetic faces are then reconstructed by smoothly
interpolating between the landmark points, matching the
contrast patterns of the original image, and placing face
features in specified locations. Synthetic faces carry the
main advantage of providing a relatively low-dimensional
full parameterization of faces (using 37 dimensions) while
preserving substantial individuating facial information. In
their behavioral studies, Wilson et al. (2002) showed that
synthetic faces allow for accurate matching to original
photographs across various viewpoints and produce
inversion effects, as originally reported with face photo-
graphs by Yin (1969). A main limitation to this method
is its reliance on predefined, generic face features such
as eyes and eyebrows to reconstruct each face. Recent
research has shown that empirically derived Bfeatures[
may be more useful in characterizing the perceptually
salient information available in faces (see Schyns,
Bonnar, & Gosselin, 2002).

Silhouetted face profiles

The method presented here (see also Davidenko, 2004)
shares some qualities with the synthetic face algorithm but
uses a purely shape-based approach to face representation.
The stimuli are silhouetted face profiles obtained by
reducing gray-scale photographs of face profiles to two-tone
black and white images that are then cropped at the forehead,
below the chin, and down the ear line (see Figure 1).

Methodological advantages

Silhouettes carry a number of advantages over the
methods discussed above. First, because they rely only on
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shape information from face profiles, there are minimal
constraints on the viewing conditions in the photographs
used and it is thus relatively easy and inexpensive to
construct a large database of face silhouettes from a
collection of profile-view photographs. Second, as we
discuss below, face silhouettes lend themselves to a low-
dimensional, landmark-based parameterization. Third,
there is no need to predefine features to reconstruct
silhouettes or even to define what a feature is; as we will
see, psychologically salient Bfeatures[ emerge naturally
from the statistical analysis of the shape of the silhouettes.
Of course, silhouettes, lacking texture information, also
carry some limitations that are addressed in the general
discussion.
In this paper, we first present a series of studies that

demonstrate that face silhouettes are visually processed
much like regular face stimuli, even providing enough
information for individual face recognition. We then
describe a simple parameterization of silhouettes that
results in a low-dimensional silhouette face space. We
present two further studies, the first of which seeks to
determine the number of dimensions required to represent
silhouette face space; in the second, we use the space to
empirically test Valentine’s (1991) conjecture that dis-
tinctive faces lie in sparse, peripheral regions of face
space. Finally, we discuss the theoretical advantages of
the face silhouettes compared to existing methodologies,
propose straightforward applications for studying a variety
of face perception phenomena, and consider limitations of
the method.

Methods

Visual processing of silhouettes
Constructing face silhouettes

In the five studies described below, we used 48 face
silhouettes to investigate how much face information is
available in these simple stimuli. The first three studies
were administered as questionnaires where participants

made judgments of gender (Study 1), age (Study 2), or
attractiveness (Study 3) on the 48 silhouettes. To keep the
questionnaires brief, we randomly sorted and split the
48 silhouettes into three sets of 16, and each participant
responded to only one of the three sets and to only one of
the three measures. Silhouettes in each set were presented
on a single sheet of paper, organized into four rows of four
silhouettes. Following the questionnaire studies, we
present evidence that silhouettes elicit an inversion effect
(Study 4) and that they can be individually matched to
their corresponding front-view images (Study 5).
Forty-eight face profile-view images were selected from

the FERET database (Phillips, Moon, Rizvi, & Rauss,
2000; Phillips, Wechsler, Huang, & Rauss, 1998) to
include various demographic groups. Of the 48 faces, 24
were male and 24 were female, and within each gender,
approximately 16 were White, 4 were Black, 2 were Asian,
and 2 were of other or mixed racial backgrounds. Ages of
the people photographed ranged from 18 to 65 years, with
a mean of 26 years. There were no correlations among
gender, race, and age.
Silhouettes were generated by editing the 48 profile

images using Adobe Photoshop. Images were passed
through a threshold filter, resulting in black face profiles
over white backgrounds (see Figures 1A and B). These
two-toned images were then cropped horizontally at the
forehead, below the chin, and down the ear line, removing
any visible hair or clothing and obscuring head shape (see
Figure 1C). The resulting silhouettes were flipped and
rotated, if necessary, to face left and were magnified or
shrunk to be of the same height.

Study 1: Gender judgments

Participants and procedure

The aim of this study was to determine how much gender
information people could extract from face silhouettes. One
hundred fifty-six Stanford undergraduates (ages 18–22)
participated in the study for course credit. Participants were
asked to determine the gender of 16 silhouettes and enter a
confidence rating using a 1–7 scale. In this way, each of the
48 silhouettes was rated by 52 participants. A sample from
this questionnaire is shown in Figure 2.

Results and discussion

There was a very high intersubject agreement on the
gender of the silhouettes, as indicated by a Cronbach’s !
of .9716 on the gender judgments and .9754 on the signed
confidence ratings. Overall, the proportion of correct
classifications was 69.5%, significantly above chance,
#2(1) = 598.8, p G .0001. Performance was well predicted
by subjects’ confidence ratings, wherein higher confidence
correlated with higher accuracy, r = .927, p = .003 (see
Figure 3).
Male silhouettes were classified as male 83.3% of the

time, #2(1) = 580.4, p G .0001, and female silhouettes

Figure 1. A profile view of a face (A), the two-tone reduction
(B), and the cropped silhouette (C).
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were classified as female 55.7% of the time, #2(1) = 17.3,
p G .0001. This male bias in the perceived gender of
silhouettes is consistent with previous studies on gender
classification from ambiguous or impoverished stimuli
(e.g., Graf & Wichmann, 2002; Wild et al., 2000). We
suggest two possible explanations for the male bias in our
participants’ responses. First, the lack of hair on the
silhouettes could be perceived as a cue to baldness, which
could in turn be a cue to maleness. Second, and more
importantly, there is evidence from anthropological
studies (e.g., Alley & Hildebrandt(-Karraker), 1988) that
male faces are physically more variable than female faces
(as we shall see below; when silhouettes are analyzed in a
multidimensional space, the region occupied by male
silhouettes is larger than that occupied by female
silhouettes). A disproportionate overlap in the region of
face space corresponding to both genders would make
female faces more likely than male faces to fall into a
gender-ambiguous region of the space (i.e., if the space of
Bclearly male[ facesVand silhouettesVis larger than the
space of Bclearly female[ faces, then probabilistically
female silhouettes are more likely to be ambiguous than
are male silhouettes). Overall, considering their lack of
hair or texture informationVtwo important cues for

gender (see Wild et al., 2000; Wright & Sladden,
2003)Vface silhouettes allowed for remarkably successful
gender classification.

Study 2: Age estimations

Participants and procedure

This study tested whether age information could be
extracted from silhouettes. Fifty-one Stanford undergrad-
uates (ages 18–20) participated for course credit. Partic-
ipants were asked to estimate the approximate age of
16 silhouettes by selecting the appropriate age bracket,
from a choice of Bteens,[ B20s,[ B30s,[ B40s,[ B50s,[
and B60s.[ Each of the 48 test silhouettes was rated by
17 participants.

Results and discussion

There was high intersubject agreement as to the age of
the silhouettes, as indicated by Cronbach’s ! = .9587. We
found a high correlation between the mean rated age and
the actual age of the silhouettes, r = .659, p G .0001 (see
Figure 4), confirming that information about age is indeed
extractable from silhouetted face profiles. The percentage
of classifications that fell within one bracket of the correct
age was 68.3%, compared to a chance level of 38.8%,
#2(1) = 298, p G .0001. There was a tendency to
overestimate the age of the silhouettes, especially on the
younger faces, as shown in Figure 4. Again, silhouettes
provide a substantial amount of age information, although
they lack internal features that normally contribute to age
perception (George & Hole, 1998).

Figure 3. Proportion of correct gender judgments as a function of
reported confidence (r = .927, p = .003).

Figure 4. Actual and rated ages for the 48 silhouettes (r = .659,
p G .0001). Regression line (dotted) and veridical line (solid) are
shown for comparison.

Figure 2. Gender judgments on face silhouettes in Study 1.
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Study 3: Attractiveness ratings

Participants and procedure

A recent study by Valenzano, Mennucci, Tartarelli, and
Cellerino (2006) suggests that simplified face profiles
with minimal information about internal features can
provide reliable attractiveness information. The goal of
this study was to determine whether face silhouettesV
which carry no internal featuresVcould elicit reliable
and cross-valid ratings of attractiveness. Three groups
of Stanford undergraduates (N1 = 84, N2 = 48, N3 = 30;
ages 18–23) participated in the study for course credit.
Each participant in Group 1 rated the attractiveness of
16 silhouettes on a 0–10 scale. Participants in Group 2
rated the attractiveness of gray-scale profile-view images
of the same faces as in Group 1. Participants in Group 3
rated the attractiveness of gray-scale front-view images of
the same faces. Figure 5 shows a sample row from each of
the three questionnaires. Each face in each view was rated
by at least 10 participants.

Results and discussion

Silhouettes elicited highly reliable attractiveness ratings
across participants (Cronbach’s ! = .9430). This reliability
was comparable to that obtained with profile images
(Cronbach’s ! = .9464) and surprisingly even higher
than that obtained with front-view images (Cronbach’s

! = .8834). Attractiveness ratings were significantly
correlated across view types (see Figure 6). Ratings on
the silhouettes were highly correlated with ratings on
the profile-view images, r = .78, p G .0001. This value
was as high as the correlation between ratings on profile-
view images and front-view images, r = .77, p G .0001.
There was a lower but still highly significant correlation
between ratings on silhouettes and front-view images,
r = .49, p = .0004. One might expect a lower correlation
in this case because silhouettes lack texture information
and present a vastly different view than front-view images.
Still, attractiveness ratings on silhouettes were highly
predictive of those ratings on front-view and profile-view
faces, indicating that silhouettes contain much of the
information necessary to determine the attractiveness of a
face.
Consistent with previous findings using front-view

images (e.g., Little & Hancock, 2002), we found a
negative correlation between rated masculinity (Study 1)
and rated attractiveness among the silhouettes, r = j.76,
p G .0001. Also consistent with previous work (e.g., Ishi &
Gyoba, 2001), this correlation was driven by ratings on
male faces; that is, among female faces, there was no
significant correlation between rated gender and rated
attractiveness. Interestingly, male and female participants
did not differ systematically in the way they rated the

Figure 5. Sample stimuli for attractiveness ratings (Study 3).
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attractiveness of the silhouettes. Overall, silhouettes
provide information for reliable ratings of attractiveness
that are highly predictive of ratings of their profile- and
front-view counterparts.

Judgments on face silhouettes

Studies 1, 2, and 3 demonstrate that despite being
relatively simple stimuli, silhouetted face profiles carry
rich information about their front-view counterparts.

People can extract gender and age from the silhouettes,
and they can make reliable judgments of attractiveness on
silhouettes that correspond well to those judgments on
profile- and front-view images of the same faces. The
negative correlation between attractiveness and masculin-
ity of silhouettes is consistent with previous studies using
front-view images of faces, suggesting a clear correspond-
ence in the information carried by front-view faces and
silhouetted face profiles. Face silhouettes seem to isolate
consistent factors pertaining to these judgments, as they
produce extremely reliable ratings (Cronbach’s ! 9 .94 for
all three types of judgments).

Figure 6. Correlations of attractiveness ratings of profile-view images versus silhouettes (A; r = .78, p G .0001); front-view images versus
profiles (B; r = .77, p G .0001); and front-view images versus silhouettes (C; r = .49, p = .0004).
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In the next study, we test whether a well-known
phenomenon associated with face processing, the face
inversion effect, also holds with face silhouettes.

Study 4: Silhouette inversion effect

In the face inversion effect, first reported by Yin (1969),
people demonstrate superior processing for upright faces
that does not transfer to upside-down faces. Not only are
upside-down faces processed more poorly than upright
faces, but this decreased performance is disproportionate
compared to other object categories. This study tested
whether upright face silhouettes are recognized more
accurately than upside-down face silhouettes. If so, it
would suggest that people’s expertise with upright front-
view faces generalizes to the silhouette view.

Stimuli

One hundred different target face silhouettes were con-
structed by smoothly interpolating among the 48 silhou-
ettes used in Studies 1, 2, and 3 (the next section in this
paper describes this procedure in more detail). Based on
the distribution of variations across silhouettes, we created
small distortions of the target silhouettes to create two
distractors for each target silhouette. An example of a target
and its two distractor silhouettes is shown in Figure 7.

Participants and procedure

Eighteen Stanford undergraduates (ages 18–20) partici-
pated in the study for course credit. Participants com-
pleted 100 short-delay 3-alternative-forced choice (3AFC)
recognition trials. In each trial, participants observed one
of the target silhouettes for 2 s, followed by a masked
delay of 3 s (see Figure 8). They were then presented with
three alternative test silhouettesVthe target and two
distractorsVpositioned randomly on the screen, from
which they were instructed to choose the silhouette they
had just seen. There were two between-subject conditions:
nine participants were assigned to the Bupright condition[
and nine to the Bupside-down condition[ in which all
target and test silhouettes were flipped vertically (see
Figure 8).

Results and discussion

Performance on the 3AFC task was significantly above
the chance level of 33% correct in both conditions: 59%
correct in the upright condition, #2(1) = 267, p G .0001,
and 48% correct in the upside-down condition, #2(1) =
147, p G .0001. Once again, we found that silhouettes
exhibited the same processing characteristics as front-
view faces: participants showed a significant performance
advantage for upright silhouettes over upside-down
silhouettes, unpaired t(16) = 2.15, p = .024. Further, the
advantage found in this study (roughly 10% difference
between upright and inverted silhouettes on a 3AFC task)
is comparable to that found in previous studies using
front-view faces (e.g., Aylward et al., 2005).
That silhouettes provide sufficient information for

generic categorical and qualitative judgments and elicit
an inversion effect clearly suggests that they are processed
much like regular face stimuli. It remains to be seen,
however, whether the information correspondence
between silhouettes and their front-view counterparts
allows for individual recognition. To test whether this is
the case, we measured people’s ability to match a
silhouette to its front-view counterpart in Study 5.

Study 5: Matching silhouettes and front-view images

Participants and procedure

Seventeen Stanford students (ages 19–29) volunteered
to participate in the study. A set of 20 male and 20 female
silhouettes were randomly selected from the database of
48 silhouettes. The study consisted of four pages, each
page containing six rows of 4AFC items. On the first page,
each row contained a male front-view image (target)
followed by four silhouettes from which participants were
asked to circle the appropriate match to the target. In the
second page, participants matched female front-view
images to silhouettes. The third and fourth pages were
like the first and second, except participants matched
silhouettes to front-view images. An example row from
each of the four pages is shown in Figure 9. As a first

Figure 7. Example of a target and two distractor silhouettes.

Figure 8. Example upright and upside-down trials from Study 4.
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study in novel face identification with silhouettes, this task
presented targets and tests simultaneously and imposed no
time constraints for participants’ responses.

Results and discussion

Overall performance in the 4AFC task was 70.1%
correct, significantly above the 25% level expected from
chance performance, #2(1) = 443, p G .0001. Performance
on male faces was substantially better than performance
on female faces (80.9% correct vs. 59.3% correct). This
advantage for male faces again may be due to the greater
variance generally found among male faces, as compared
to female faces (Alley & Hildebrandt(-Karraker), 1988),
which would make them more distinguishable from each
other. Indeed, the male and female silhouettes used in this
study had a variance of 1.67 and 1.27, respectively
(arbitrary face space units), which may have contributed
to the behavioral performance differences. There were no
effects of participants’ gender on performance. There were
also no performance differences between matching a
front-view image to the correct silhouette and matching
a silhouette to the correct front-view image.
These results can be compared to those reported by

Wilson et al. (2002) using synthetic faces. In their study,
five participants performed a similar task, matching
synthetic faces to their real counterparts, and vice versa.
Performance was 90% correct on a 4AFC when views
between targets and alternatives were mismatched by a
20- rotation in depth. Although this performance exceeds
that obtained here with silhouettes, it should be noted that
silhouettes have three additional constraints over synthetic
faces that should be expected to limit performance. First,
silhouettes are two-toned, so any gray-scale information,
including texture, skin color, or eye position, is unavail-
able. Second, the cropping at the forehead eliminates the
possibility of using hair cues for matching. Third,

silhouettes are entirely in profile view, which provides
shape information that is not directly observable in their
front-view counterparts. This is a far more drastic angle
difference than the 20- difference used Wilson et al.’s
(2002) study. Given these constraints, it is impressive that
performance on face silhouettes is as high as it is, even
surpassing performance on a similar task with 3D models
(Bruce et al., 1991).
The results of this last study show that not only do

silhouettes carry a substantial amount of generic, face-
relevant information and elicit face-specific processing,
but they also contain sufficient information about individ-
ualistic features that allow them to be successfully
matched to their gray-scale front-view counterparts. In
the next section, we develop a simple parameterization
that allows us to fully represent face silhouettes in a low-
dimensional metric space. We first describe a shape-based
parameterization of silhouettes. We then show that
silhouettes can be effectively represented in a 20-dimen-
sional subspace of the original parameterization (Study 6).
Finally, we use this silhouette parameterization to test
Valentine’s (1991) conjecture regarding the relationship
between eccentricity in face space and perceived distinc-
tiveness (Study 7).

Parameterization of silhouettes

To construct a parameterized silhouette face space,
we selected 384 profile images from the FERET database
to include 192 males and 192 females, 256 Caucasian,
41 Asian, 32 African American, and 76 other or mixed race
faces. Using Matlab, two independent coders recorded the
positions of 18 key points on the contour of each profile
image (see Figure 10A). The 18 points were chosen to be
easily identifiable landmarks that clearly corresponded
across faces (e.g., the tip of the nose, the cusp between the
lips, etc.; for a similar approach, see Valenzano et al.,
2006). The precise correspondence of key points across
face images ensures that the dimensions of the resulting
face space will represent actual face variations and not
encoding noise.
Using Matlab, a normalization procedure was used to

translate, to rotate, and to dilate each set of 18 points to
make the first and last points coincide at (0, 0) and (0, 1)
across all 384 images (see Figure 10B). This was done for
two reasons. First, because the profile images from the
FERET database were not taken under the same viewing
conditions for each person, the actual size of each image
was not informative about the physical size of the person’s
face. A flat normalization was the simplest way to make a
canonical size for the silhouettes. Second, by having the
first and last points coincide for all images, the position of
these points becomes uninformative, which reduces the
number of informative points from 18 to 16 coordinate
points, or 32 scalar x and y values.

Figure 9. Example row from each page of the matching study
(Study 5).
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The power of a full parameterization lies in the ability
to reconstruct a stimulus given only the relevant parameter
values. In the case of face silhouettes, the 32-dimensional
vectors (representing the 16 informative x–y coordinates)
contain the necessary information for reconstruction but
are not themselves the reconstructed stimuli. To display
a reconstructed silhouette given the 32 parameters, we
first used Matlab to generate bi-cubic splines that
smoothly interpolated between adjacent x–y points,
forcing a single cusp between the lips (see Figure 10C).
We then added a fixed-width rectangle along the height of
the face and shaded the interior of the silhouette black (see
Figure 10D). Neither of these transformations increased
the number of parameters needed to define each silhou-
ette. The resulting reconstructions are subjectively very
similar to the two-toned, cropped versions of the original
profile images for all 384 silhouettes (for an example, see
Figures 10D and E).

Creating a silhouette face space

The most direct way of obtaining a vector space to
represent the set of possible silhouettes would be to
consider each of the 16 informative x–y coordinates, or
32 parameters, as a separate dimension. Each silhouette
would correspond to a point in this space, and all possible
silhouettes would correspond to a complex region in the
space. A major disadvantage of this direct approach is that
there are many intercorrelations among the 32 parameters.
For instance, the x value for the point corresponding to the
tip of the nose is highly correlated with the x value of the
point below it (see Figure 10A). This type of interde-
pendence results in complex constraints among the
dimensions of the space, making it difficult to describe
properties of the space and to sample from it to construct
novel silhouettes.
To capture the intercorrelations among parameters, we

conducted a principal components analysis (PCA) on the
32 parameters to produce 32 linearly independent princi-

pal components (PCs). There are several advantages of
using a PC representation. First, each PC is linearly
independent from every other PC. This means that
whatever value a silhouette has on PC1 does not in any
way constrain its value on PC2, PC3, and so forth. In
addition to being independent, we used a test of normality
to show that the 32 PCs are distributed normally across
the 384 silhouettes (see Figure 11). The normal distribu-
tion of silhouettes in this space provides concrete support
of Valentine’s (1991) original conjecture about the
centrally dense distribution of faces in face space.
A second advantage of using PCA is that the resulting

PCs are listed in order of how much physical variance
they account for. Figure 12 shows that the first PC alone
accounts for roughly 42% of the physical variance of the
384 silhouettes, the first 5 PCs together account for almost
90% of the physical variance, and the first 20 PCs together
account for over 99% of the variance. This suggests that
fewer than 32 parameters may actually be necessary to
accurately represent the 384 silhouettes from our database,
and conceivably most silhouettes in general. In Study 6,
described below, we examine how many PCs can be
pruned from the representation of a silhouette before the
physical consequences become noticeable.
Finally, the PC representation provides practical advan-

tages for constructing novel face stimuli. Because the PCs
are independent and normally distributed about zero, one
can easily sample from a multinormal space to construct
artificial yet realistic-looking face silhouettes (a procedure
we employ in Studies 6 and 7). This also simplifies the
process of averaging and caricaturing faces. For example,
the 32-element zero vector represents the average of all
384 silhouettes. To obtain a morph between two silhou-
ettes, simply compute the arithmetic average of the two
corresponding vectors of PC coefficients. To create
caricatures, Banticaricatures,[ or Bantifaces[ of a partic-
ular silhouette, simply multiply the original vector of
coefficients by a scalar greater than one, between zero and
one, or less than zero, respectively. One can create

Figure 10. Steps in the parameterization of a silhouette. The original gray-scale profile image with 18 key points (A); normalized image
(B); splines between adjacent points to create a smooth contour (C); filled in contour (D); and original silhouetted face profile (E).
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Figure 11. Distribution of PC coefficients across all 384 silhouettes. The range of coefficients (shown on the x axes) decreases by a factor
of about 30 from PC1 to PC32.
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intermediate morph levels between two or more silhou-
ettes by computing linear combinations of the correspond-
ing vectors. Figure 13 shows the effect of varying the
coefficients of PC1, PC2, and PC3 from negative to
positive values.

Study 6: Effective dimensionality of silhouette face
space

Although a PCA tells us how much physical variance
each PC accounts for, this information does not directly
predict the magnitude of the perceptual effect of varying
each PC coefficient. In this study, we examined the
perceptual effects of pruning a silhouette representation
down from its original 32 PCs. Specifically, we measured
performance on a same/different task comparing fully
represented silhouettes (sampled from the multinormal
silhouette face space, using all 32 PCs) to Breduced[
silhouettes (setting the last n PCs to zero).

Participants and procedure

Twenty-eight Stanford undergraduates (ages 18–21)
participated in the study for course credit. The task
required participants to observe two parameterized sil-
houettes (a Btarget[ and a Btest[ silhouette), side by side,
on a computer monitor and enter Bs[ if the silhouettes
were the same or Bd[ if they were different. The two
silhouettes remained on the screen until participants
entered their response, after which a blank screen was
presented for 500 ms preceding the next trial. Each
participant completed 360 same/different trials, 120 of
which were Bcatch[ trials where the target and test
silhouettes were identical. For each trial, a target
silhouette was generated from silhouette face space by

sampling randomly from the multinormal distribution of
PC coefficients described earlier (see Figure 11). The
corresponding test silhouette was either identical to the
target (catch trial) or matched the target on the first n PC
coefficients, with all subsequent PC coefficients set to
zero. For example, the two vectors below could represent
the set of normalized PC coefficients describing a target
silhouette and a test silhouette with 12 matching PC
values (n = 12):

Vtarget = [0.8 0.7 1.3 0.7 1.2 j1.2 j0.0 j0.2 j1.6 0.3
j1.1 1.4j0.8 0.5 0.2j0.9j2.2j0.1j1.0 0.6 0.5 1.7
0.6 j0.6 0.4 j1.0 j0.0 j0.0 0.0 j0.3 1.1 j1.9]; and

Vtest = [0.8 0.7 1.3 0.7 1.2 j1.2 j0.0 j0.2 j1.6 0.3
j1.1 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0].

The number of matching PC values varied from trial to
trial. For the 240 noncatch trials, the number of matching
PC values was sampled uniformly from the set {0, 1, 2, 3,
4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 30}. Participants
completed five practice trials before beginning the experi-
ment to become familiar with the task.

Results and discussion

As expected, participants’ ability to detect a difference
between the target and test silhouettes decreased as a
function of the number of matching PCs. Figure 14 shows

Figure 13. The effects of varying the coefficients of PC1, PC2, and
PC3. The middle silhouette is the center of silhouette face space
(i.e., the average of all 384 silhouettes from our database).

Figure 12. Proportion of physical variance explained by each of
the 32 PCs. The data are well fitted by a power curve with
coefficients .778 and j.613.
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the proportion of Bdifferent[ responses as a function of the
number of matching PCs, including catch trials with 32
matching PCs. The proportion of Bdifferent[ responses
when the test silhouette matches the target in more than
the first 20 PC coefficients was statistically indistinguish-
able from when the test and target silhouette were
identical. That is, the information present in PCs 21
through 32 seems to be perceptually unnoticeable. We
therefore suggest that silhouettes can be effectively and
veridically represented in a 20-dimensional space.1

Having constructed a fully parameterized, 20-dimen-
sional silhouette face space, we can exploit it to test any
number of predictions about face perception and repre-
sentation. In our final study, we test one of Valentine’s
(1991) basic conjectures about face space: the relationship
between the distinctiveness of a face and its eccentricity in
the space.

Study 7: Distinctiveness and silhouette face space

Spatial models of face representation carry the assump-
tion, explicit or implicit, that the space is centrally
distributed with typical faces packed densely near the
center of the space and that distinctive faces spread
sparsely in the periphery. We have already shown that
silhouette face space is centrally distributed; specifically,
silhouettes are distributed normally along each PC
dimension. With our fully parameterized face space, we
can now test whether distance from the center of the space
corresponds to perceived distinctiveness.

Participants and procedure

Sixty Stanford undergraduates (ages 18–22) were
instructed to rate the distinctiveness of 16 of the 48 real

face silhouettes used in Studies 1, 2, 3, and 4, on a
1–10 scale, from least distinctive to most distinctive.
Following previous convention (e.g., Valentine, 2001;
Wickham, Morris, & Fritz, 2000), participants were
instructed that Bdistinctive faces are those that would be
easy to spot in a crowd.[ Each of the 48 face silhouettes
was rated by 20 participants.

Results and discussion

There was a reasonably high intersubject reliability in
the distinctiveness ratings of the silhouettes (Cronbach’s
! = .8869). More importantly, these ratings were well
predicted by the position of the silhouettes in silhouette
face space. We first defined an unweighted Euclidean
distance between each of the 48 silhouettes and the overall
mean; that is, we computed the root sum of squares of the
raw PC coefficients that define each silhouette. The
correlation between these distances and the mean
distinctiveness ratings was highly significant, r = .583,
p G .0001 (see Figure 15), providing empirical evidence of
Valentine’s (1991) conjecture.
Because of the disparity in the amount of variance

explained by each subsequent PC, a statistically large
coefficient on an early PC has a much larger physical
effect on the shape of a silhouette than an equivalently
large coefficient on a later PC. For instance, suppose
Silhouette A has a value of +3 standard deviation (SD) on
PC1 and 0 on all other PCs, whereas Silhouette B has a
value of +3 SD on PC10 and 0 on all other PCs. When
converting to x–y units,2 Silhouette A will have a
Euclidean distance of 0.09365 units from the center of
the space, whereas Silhouette B will have a Euclidean
distance of 0.00124 units from the center. This means that
Silhouette A lies roughly 75 times farther than Silhouette
B from the center of space. However, it is unlikely that

Figure 14. Performance on a same/different trial where the test
silhouette matches the target on the first n PCs, and all other PCs
are set to zero. When the number of matching PCs is 21 or
greater, performance is indistinguishable from catch trials (i.e., 32
matching PCs).

Figure 15. The correlation between unweighted Euclidean dis-
tances and distinctiveness ratings on the 48 silhouettes (r = .583,
p G .0001).
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Silhouette A is 75 times as distinctive as Silhouette B
(see Figure 16). At the same time, the physical variance
accounted by each subsequent PC should not be ignored;
that is, we would not predict that Silhouette A and
Silhouette B, both 3 SD away from the average silhouette,
should be equally distinctive.
We reasoned that although the variance accounted for

by each PC should influence its role in determining
perceptual distinctiveness, the contribution of the 20 PCs
might be more evenly distributed than is suggested by the
power function derived earlier (see Figure 12). We
therefore considered a family of Euclidean metrics with
a single parameter w that determined how much to
normalize the distribution of standard deviations of the
PCs. Specifically, for w ranging from 0 to 1, we defined a
set of weighted PC coefficients Cweighted (PC, w) for each
silhouette, as follows:

CweightedðPC;wÞ ¼ CunweightedðPCÞ*ðSDðPCÞÞjw: ð1Þ

When w = 0, the coefficients are unchanged; when w = 1,
the standard deviations of the PCs are nullified and every
PC is weighted equally; for values of w between 0 and 1,
there is an intermediate weighting of PCs. Figure 17A
shows the effect of the parameter w on the correlation
between Euclidean distance and average distinctiveness
ratings. We find that the highest correlation, r = .668,

p G .0001, is achieved when w = 0.68 (see Figure 17B).
This suggests that although the magnitude of physical
change in silhouettes decreases considerably with subse-
quent PCs, the perceptual effects of statistically large PC
values remain large. This raises a number of intriguing
questions about the relationship between physical and
psychological face space that are beyond the scope of the
present project and remain work in progress.

Discussion

In the studies reported above, we have shown that
silhouetted face profiles provide a simple yet powerful
methodology for studying face perception. In Studies 1,
2, 3, and 4, we showed that silhouettes carry a rich amount
of information pertinent to face perception, including
information about the gender, age, and attractiveness of
faces, as well as orientation-dependent processing that
elicits an inversion effect. In Study 5, we showed that
silhouettes contain enough identifying information to
allow for accurate matching to front-view images. In
Studies 6 and 7, we showed how a simple parameter-
ization of face silhouettes yields a useful model to address
questions in the face perception literature. Specifically,
we showed that face silhouettes can be fully specified by
their position in a 20-dimensional, multinormal vector
space, where distinctive silhouettes lie in the sparse
periphery. This is an empirical confirmation of a key
assumption in the face space framework (Valentine,
1991)Vone that may generalize to front-view representa-
tions of faces.

Figure 16. The perceptual effects of varying PC1 and PC4.
Although +3 SD on PC1 causes a physical change 75 times
larger than +3 SD on PC10, the perceptual effects seem much less
disproportionate.

Figure 17. The effect of varying parameter w from 0 to 1 on
the correlation between Euclidean distance and distinctiveness
ratings.
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Theoretical contributions

In evaluating a novel methodology, it is necessary to
compare it to existing methodologies. Silhouetted face
profiles carry a number of theoretical advantages com-
pared to existing methods reviewed earlier, and we argue
that these advantages make silhouettes especially well
suited to experimenters studying face perception.
First, like the 3D face models (e.g., Blanz & Vetter,

1999), face silhouettes provide a shape-based approach for
deriving face dimensions. This has the advantage of
introducing minimal bias in the representation of face
stimuli. The method measures variability across faces
along various dimensions without specifying a priori what
those dimensions, or features, are. This featureless
representation can allow experimenters to study what the
perceptually salient aspects of a face are, without
presupposing Bclassical[ features. Much research in face
perception is concerned with determining whether we
perceive faces as a sum of their features or whether we
pay more attention to the configurations of features (for a
review, see Rakover, 2002). Surprisingly, little work has
focused on determining what exactly a face feature is (for
an exception, see Schyns et al., 2002). It is not clear
whether face parts for which we have names (the nose, the
mouth, the chin, etc.) contribute to face perception in a
qualitatively different way than other less well-defined,
perhaps unconnected, face parts. Indeed, the PCs of
silhouette face space provide a set of empirically testable
candidate dimensions of representation based on intrinsic
variations across face stimuli. Future studies can compare
these candidate dimensions to classical features as well as
arbitrary configurations, such as the distance between the
eyes or the space between the nose and the mouth, that
have been used in many perceptual paradigms (e.g., Yovel
& Kanwisher, 2004).
Second, like synthetic faces (Wilson et al., 2002), face

silhouettes provide a low-dimensional parameterization of
face space. In contrast to high-dimensional models in
which a large number of uninterpretable dimensions make
the space difficult to characterize, silhouette face space is
efficient and substantially more manageable. Because face
silhouettes exclude texture or internal feature information,
the space of face silhouettes is inherently low dimen-
sional. In Study 6, we showed that silhouettes can be
effectively represented in a 20-dimensional PC space
without any perceptually noticeable loss of information.
This allows for a fuller exploration of face space than can
be done with more complex models.
These two key advantages, which are individually

present in other methods, are rarely encountered in
conjunction. Face silhouettes thus provide a featureless,
shape-based representation with minimal biases that has
an empirically derived low-dimensional solution.
Third, the face silhouette methodology suggests

straightforward extensions for the parameterization of
nonface stimuli, such as objects and nonsense shapes.

The abstract structure of the parameterized face space can
be transformed to create a fully equivalent nonface object
space. This arbitrary object space would share all the
statistics of the face space (including normal distributions
on all PCs, a Bprototype[ shape, etc.), enabling one to
quantitatively test the generality of theories derived to
explain face perception in a well-controlled, comparable
set of nonface stimuli.

Practical advantages and applications

The simplicity of the encoding of face silhouettes,
along with the minimal constraints placed on profile face
images that can be included in a parameterization, allows
researchers to compile very large databases (e.g.,
including thousands of different faces). Once profile
images are obtained, constructing parameterized silhou-
ettes is a relatively quick procedure. The method
requires recording the positions of 18 landmark points
along the contour of each profile image, which can
achieved with Matlab or comparable software. It takes
less than a minute to code each profile, providing a huge
savings over other methods such as morph-based models
(e.g., Benson & Perrett, 1993). In addition, no sophisti-
cated software is required to generate and display the
parameterized silhouettes. This complements existing
methodologies by allowing statistical analyses of face
space that are not currently feasible with more complex
models.
For instance, a simple analysis of the 384 database

silhouettes shows that the Bhyper-volume[ occupied by
male silhouettes in 20-dimensional silhouette face space
exceeds the hypervolume occupied by female silhouettes
roughly by a ratio of 1.7:1. This could be a key factor in
explaining the male bias found in the identification of
gender-ambiguous faces as well as the performance
difference between male and female faces in the matching
task from Study 5. Specifically, based on the different
sized regions, one would predict that the region of face
space that contains both male and female faces makes up a
larger proportion of the female region than of the male
region; that is, female faces are more likely than male
faces to look gender ambiguous. As another example, a
preliminary study (Davidenko & Ramscar, 2007) shows
that people can identify race from face silhouettes
substantially more accurately than they can identify
gender. A cluster analysis shows that Black, White, and
Asian face silhouettes occupy more distinct regions of
face space than do male and female face silhouettes,
explaining the differences in classification performance.
These and many other statistical analyses are possible
because of the sheer quantity of faces that can be included
in the parameterization.
A fully parameterized face space allows us to create

face stimuli at specified locations in the space to make, for
instance, equally similar pairs of faces. A problematic
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issue in face perception research is that the face stimuli
are rarely controlled for similarity, and this can bias the
results of behavioral measures such as recognition
memory performance. For example, if recognition per-
formance is shown to be better on a set BA[ of faces
compared to a set BB,[ this may be due to a proposed
experimental manipulation, but it could also be due to
faces in Set A being more variable, and thus more
distinguishable from each other, than faces in Set B.
Being able to measure, to control, and to manipulate face
similarity gives experimenters the ability to overcome
these potential confounds in studies examining the role of
distinctiveness or race in face recognition.

Limitations

There are some clear limitations to the face silhouette
methodology. We know from previous research that
certain parts of a face, like the eyes, are important for
face perception, recognition, and categorization (e.g.,
Brown & Perrett, 1993; Bruce et al., 1993; McKelvie,
1976), and these parts are not available in the silhouette
representation. Furthermore, silhouettes lack texture and
color information which are also known to contribute
to recognition and perception of gender, age, and race
(Alley & Schultheis, 2001; O’Toole, Vetter, & Blanz,
1999; Yip & Sinha, 2002).
We certainly do not claim that face silhouettes contain

all of the information used in face perception. However,
as the studies presented here demonstrate, processing face
silhouettes involves some of the critical mechanisms
present in standard face perception and recognition, and
insights from our silhouette face space model may
generalize to other forms of face representation. We hope
that, as a first parametric model of faces in profile view,
the face silhouette methodology will provide a comple-
mentary approach to existing models based on front-view
images.
Finally, it is worth noting that what we have constructed

with the parameterized silhouettes is a physical face space
and not necessarily a psychological face space (for a
distinction, see Busey, 1998). We have not fully deter-
mined whether pairs of points that bear the same spatial
relationship in silhouette face space will necessarily
correspond to face silhouettes that bear the same percep-
tual similarity to each other. Preliminary psychophysical
analyses (Davidenko, Ramscar, & Yarlett, 2007) show
that values along the first four PCs indeed predict
similarity ratings as well as confusability rates across face
silhouettes. Although we reserve a stronger claim until
this work is complete, the fact that the parameterization of
silhouettes is based on their physical shape alone gives us
good reason to believe that the physical space of
silhouettes will bear a close relationship to psychological
face space.
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Footnote

1

It remains to be shown whether silhouettes can be
represented in an even lower dimensional space. Here we
merely claim that 20 dimensions are sufficient.

2

Units are defined with respect to the normalized
silhouettes that span (0, 0) to (0, 1) on the x–y plane.
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