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Silhouettes arise in a variety of imaging scenarios. Pristine silhouettes are often degraded via blurring, detector
sampling, and detector noise. We present a maximum a posteriori estimator for the restoration of parameterized
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1. INTRODUCTION
A. Silhouettes in Imaging
A silhouette is the image of an object represented as a solid
shape of a single color (typically black) so that its edges match
the object’s outline. The term derives from the Frenchman
Étienne de Silhouette, whose short tenure in 1759 as finance
chief caused him to become the object of public ridicule.
His austerity policies led to the expression à la Silhouette,
in reference to things perceived as cheap. The term was
applied to the contemporaneous art form of cutting out
black paper to create a facial profile, thus serving as an in-
expensive alternative to a painting [Fig. 1(a)]. Although the
term silhouette often refers to facial profiles, it is also com-
monly applied to the binary representation for the shape of
any object.

Silhouettes arise in a variety of imaging scenarios. These
include images of shadows that are cast on either a uni-
form or a nonuniform but known background, as illustrated in
Fig. 1(b). Silhouettes also occur when an object occludes a
known background. This case is particularly evident when a
bright background, such as the sun or the moon, is occluded
by a relatively dark object, such as a satellite or an aircraft, as
illustrated in Fig. 2.

Silhouette images are often degraded through multiple
mechanisms, including blur, detector sampling (e.g., box-car
sampling characteristic of standard digital cameras), and
noise. We desire to restore a crisp silhouette from a degraded
image for use in estimation, classification, and identification
tasks. For example, the restored silhouette of a satellite can be
used for pose estimation. Davidenko has quantified the clas-
sification performance (e.g., into classes of gender, age, and
race) of observers looking at standardized facial silhouettes
[1]. Restored silhouettes of a common object collected over
a range of orientations can be used to reconstruct the object’s
three-dimensional (3D) visual hull [2,3], also useful in identi-
fication and classification tasks. Clearly, facial silhouettes
can be used for identifying an individual from a gallery of
candidates. In addition, the dynamic silhouette of a walker

can be used in gait recognition [4]. Because we are primarily
interested in the behavior of the silhouette in this case, we can
consider image-compression and compressive-sensing meth-
ods that ignore the detail within the silhouette (Fig. 3).

When silhouettes can be well estimated, they can sub-
sequently be used to constrain adjacent estimation problems.
Silhouettes can fill the role of a support (or indicator)
function that can be used for phase retrieval [5], or for
superresolution [6].

B. Scope of Paper
In this paper we concentrate on estimating facial silhouettes
because of the availability of a suitable statistical database.
However, the estimators derived herein can be extended to
a wide variety of silhouette-estimation problems. An efficient
spline parameterization for facial silhouettes, along with an
associated statistical model for that parameterization, is pre-
sented in Section 2. In Section 3, we present a continuous-
discrete (CD) data-acquisition model in which a silhouette,
defined on the continuous real plane, is blurred, discretely
sampled, and corrupted with noise. Section 4 presents candi-
date silhouette estimators. A maximum-likelihood (ML) esti-
mator is shown to work well for data corrupted with modest
amounts of noise. However, a maximum a posteriori (MAP)
estimator, first presented in [7], provides needed management
of noise amplification when noise levels are more substantial.
We also present a practical MAP estimator that accommo-
dates misregistration between the data and the model as well
as acquisition over finite fields of view. Estimator perfor-
mance is discussed in Section 5, where extreme dealiasing
and dramatic superresolution (restoration of spatial frequen-
cies beyond the cutoff frequency) are demonstrated. These
dramatic results are attributed to the use of strong prior
knowledge: that the object is binary, that the silhouette can be
characterized by only a small number of parameters, and
that the statistical distribution of the parameters is known. Re-
storation of degraded silhouettes with such prior knowledge
is closely related to use of an opacity constraint for phase
retrieval [8–10] and for superresolution [11]. We conclude
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in Section 6 with recommendations for future research
directions.

2. PARAMETERIZATION AND STATISTICAL
MODEL FOR FACIAL SILHOUETTES
Two-dimensional (2D) images are most often parameterized
with pixel values. Silhouettes can be parameterized with pix-
els, but since the image is a binary-valued connected shape,
pixel parameterization is inefficient. A silhouette is defined by
its boundary, which is a one-dimensional curve embedded in a
2D space, sometimes referred to as having 1.5 dimensions.
Therefore parameterizing a silhouette image with a spline
parameterization can be far more efficient than using a pixel
parameterization. Davidenko developed a spline parameter-
ization that can be used for facial silhouettes in profile [1].
We briefly review Davidenko’s method. Figure 4 shows the
sequence for creating a spline-parameter representation from
a gray-level facial profile. First, 18 landmark points, defined in
words, are manually located. Examples of landmark-point de-
scriptions include the tip of the nose (maximum-curvature
point), the bridge of the nose, and half-way (in arc length) be-
tween the tip and the bridge of the nose. Once these landmark
points are located, then the array of points is rotated and
scaled so that the first and last landmarks fall at coordinates
(0,0) and (0,1), respectively. These normalized landmark-point
arrays are then interpolated with a cubic spline that forces a
cusp at the intersection of the lips (one of the landmark
points). A vertically elongated rectangle is then added, and the
interior of the silhouette is set to black. For comparison, the
figure also shows an image of the original gray-scale represen-
tation that has been converted to a binary representation with
a threshold operation. This comparison suggests that
Davidenko’s simple spline-fit strategy provides a reasonable
representation of the facial silhouette.

The procedure illustrated in Fig. 4 was carried out for 384
facial-profile images derived from the FERET database
[12,13]. This resulted in a 32-element (x and y values for each
of 16 variable landmark points, after normalization) param-
eter vector, α, for each of the 384 faces in the database. These
parameter vectors can be viewed as highly correlated random
vectors. Each element in the parameter vector was found to
be approximately normally distributed [1]. Accordingly, we
model the statistics of the 32-element parameter vector, α,
with a multivariate normal probability distribution as follows:

pα�α� � ��2π�M det�K̂α��−1∕2 exp
�
−

1
2
�α− ᾱ�TK̂−1

α �α− ᾱ�
�

(1)

� ��2π�M det�K̂α��−1∕2 exp
�
−

1
2
�AT�α− ᾱ��TΛ−1�AT�α− ᾱ��

�
;

(2)

where M is the dimension of the parameter vector, K̂α is the
parameter-vector sample covariance, ᾱ is the parameter-
vector sample mean, the superscript T indicates transpose,
A is a matrix constructed with principal-component vectors
(eigenvectors of the sample covariance) in its columns,
and Λ is a diagonal matrix with corresponding principal-
component values (eigenvalues of the sample covariance)
for the diagonal elements. Under this model, a facial silhouette
is characterized with a mere 32 parameters (far more efficient
than with a pixel parameterization), and the statistics of the
parameters are given by a multivariate normal distribution.

It is instructive to plot the principal-component spectrum in
order of descending value, as shown in Fig. 5. The principal-
component values have been normalized to indicate the por-
tion of the total variance associated with the corresponding
principal-component vector. For example, the first principal
component accounts for roughly 42% of the variance in the

Fig. 1. Example silhouettes. (a) Classic facial silhouette constructed
as a paper cutout. (b) Silhouette created by casting a shadow onto an
approximately uniform background. Note the information in the
shadow that is not evident in the direct image of the object.

Fig. 2. Silhouettes formed by relatively dark objects occluding a
bright background. (a) Solar transit of the Space Shuttle and the
International Space Station, image courtesy of Thierry Legault,
http://www.astrophoto.fr. (b) Aircraft occluding the moon, image
courtesy of Kurt Gleichman.

Fig. 3. Multiple frames of silhouettes of a walker occluding a back-
ground. Such silhouettes can be used for gait recognition. Silhouettes
enable image compression or compressive sensing.
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384 facial silhouettes. The rapid decay of the spectrum
suggests that the number of parameters needed to character-
ize a facial silhouette may be considerably less than 32,
depending upon the task.

3. DATA MODEL
We are interested in estimating a crisp silhouette from data for
which the silhouette has been blurred, sampled using a cam-
era detector, and corrupted with noise. The CD data-
acquisition model [14] is given by

d�x� � Dx

�Z
f �x0; α�s�x − x0�dx0

�
� n�x� (3)

� g�x� � n�x�; (4)

where f is the 2D binary silhouette, parameterized by the vec-
tor α and defined on the continuous real plane, s is the known
blur function, and Dxf·g is a discretizing operator (modeling

the action of a noiseless detector array) that takes a
continuous signal and returns a noiseless vector g defined
on the multi-index x. The acquired data, d, has been corrupted
by additive detector noise, n. When a shadow is cast directly
onto a detector array by an extended illuminator, the blur
function corresponds to the illuminator distribution function.
Alternatively, a camera may be used to record an image of a
shadow cast by a point illuminator onto a uniform surface. In
this case the blur is due to the point-spread function (PSF) of
the camera, arising from camera aberrations and diffraction
effects. In most practical applications, the blur will be due
to both the illumination extent and the camera PSF. Figure 6
shows the fundamental degradation mechanisms in simula-
tion for the average facial silhouette, f �x; ᾱ�, for known blur
arising from the extent of the sun and the shadow being cast
1.5 m from the face.

The pristine (crisp) shadow can be defined continuously on
a 2D real window (the Cartesian product of two real intervals)
through the use of splines, but is depicted on a 512 × 1024
representation grid that serves as a surrogate for the continu-
ous object. The efficiency of the 32-spline-parameter repre-
sentation of the facial silhouette can be appreciated by
comparison to the more than ½ million (512 × 1024) pixel
parameters needed to represent the silhouette on this repre-
sentation grid. The continuous blurred image is approximated
by discrete convolution with a circular disk that is the geomet-
ric pinhole image of the sun that would appear on a screen
1.5 m behind the pinhole. For this geometry, the PSF diameter
is 59 representation pixels in diameter. Note that the shadow
region will be subject to indirect illumination. We performed a
MODTRAN [15] analysis using a representative atmosphere
(mid-latitude summer, rural, visibility � 23 km), to determine
that the irradiance in the direct-illumination region will be
approximately 6.2 times that of the indirect-illumination
(shadow) region, found by integrating the sky-shine contribu-
tion over a hemisphere. Of course this ratio will vary with
geometry, time of day, atmospheric conditions, etc. Noiseless
detector sampling occurs when the continuous signal within
each of the 32 × 64 detector elements is spatially integrated.
This was approximated by aggregating the 16 × 16 represen-
tation-grid values of the blurred image that fall within each
detector element. Finally, independent and identically

Fig. 4. Steps in parameterizing a facial silhouette from a gray-level profile image.

Fig. 5. Principal-component spectrum for parameterized facial sil-
houettes, normalized to indicate proportion of variance. The red line
indicates a power-law fit to the spectrum.
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distributed Gaussian read noise values are added to the
sampled image. We characterize the degree of noise corrup-
tion with a contrast-to-noise ratio (CNR) metric,

CNR ≡
Edirect − Eshadow

σn
; (5)

where E represents irradiance and σn represents the standard
deviation of the additive noise.

4. ESTIMATORS
In this section, we examine various estimators for use in
silhouette estimation.

A. Maximum-Likelihood Estimation
It is well known that for the case of additive Gaussian noise,
the ML estimate minimizes the squared error in the predicted
data,

α̂ML � argmin
α

X
x

�
d�x� − Dx

�Z
f �x0; α�s�x − x0�dx0

��
2
: (6)

We use a limited-memory BFGS optimizer [16], starting from a
naïve initial estimate (the mean facial silhouette parameter
vector), to find an implicit estimate. Bear in mind that the
ML estimate is a parameter vector that implies a facial silhou-
ette defined continuously on a 2D real window through the
use of splines. The ML-estimation strategy works well for
cases involving modest amounts of noise. Figure 7 shows
the estimated facial silhouette for the case of CNR � 10. In
this experiment, we used a truth silhouette that was a random
draw from our facial-silhouette probability distribution func-
tion (PDF) and that was clearly distinct from the average
facial silhouette. In spite of the corrupting effects of blur, sam-
pling, and noise, the ML estimate is excellent and captures the
character of the true silhouette. The quality of the estimate is
surprisingly good, given that no regularization strategy has
been employed. In the figure we include a difference image

that indicates where the estimated silhouette differs from
the true silhouette. At most locations there is no difference
(zero represented by a mid-gray value). The only differences
are within a thin ribbon proximate to the true-silhouette facial
boundary. Estimation performance can be quantified by one
of many candidate dissimilarity measures that are used to
compare two curves (e.g., the Hausdorff distance or the
Fréchet distance) [17]. Ultimately, only metrics that can be
related to task performance are meaningful. Herein, we use
the area of symmetric difference (ASD) between the true and
estimated silhouettes, defined over a common region of
interest (ROI), and normalize it by the arc length of the
true-silhouette facial boundary. This measure has the favor-
able feature that it satisfies the properties of a metric. In ad-
dition, the normalized ASD (NASD) has a relatively simple
geometric interpretation: it is the area of all nonzero regions
(typically a thin ribbon) in the ROI difference image, normal-
ized by the arc length of the true-silhouette boundary over that
same ROI. The units of the NASD are in length, and it can be
interpreted as a kind of average displacement from the true-
silhouette boundary.

Fig. 6. Mechanisms of degradation in silhouette imaging. From left to right: the ideal continuous silhouette of the average face represented on a
512 × 1024 grid, blurred by solar extent for shadow 1.5 m away from face, 32 × 64 discrete array resulting from detector sampling, and with additive
read noise.

Fig. 7. Maximum-likelihood (ML) estimation performance for
CNR � 10. The difference image indicates that the estimate is excel-
lent and the NASD is 1.42 representation-grid pixels. For reference, a
single representation pixel is approximately 0.25 mm for an average
face size.
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In Fig. 8 we provide similar experimental results, except
that the amount of noise has been increased and the quality
of the data is far more challenging. The ML estimates in these
noisy regimes develop caricature-like silhouettes. The ML es-
timate associated with the particular noise realization at
CNR � 3.16 features a “Bob Hope” nose, whereas the estimate
at CNR � 1.73 developed “Andy Rooney” eyebrows. These
caricature features arise when principal components with
small principal-component values (therefore statistically
unlikely) are nevertheless useful in minimizing the squared
error in the data. The additional noise has rendered both re-
storations unrecognizable. It is not surprising that we need a
strategy to avoid overfitting the data in these noisy regimes.

B. Maximum a posteriori Estimation
The MAP estimate for the parameter vector α maximizes the
log of the posterior probability density function,

α̂MAP � argmax
α

fln�pr�djα�� � ln�pr�α��g (7)

≈ argmin
α

�X
x

�
d�x� − Dx

�Z
f �x0; α�s�x − x0�dx0

��
2

� η�AT�α − ᾱ��TΛ−1�AT�α − ᾱ��
�
; (8)

where we have introduced the hyperparameter η to help
control noise amplification. The right-hand side for each of
the above equations consists of two terms. The first is a
data-agreement term, identical to that used in ML estimation.
The second is a regularization term that penalizes components
that are statistically unlikely. Figure 9 provides a comparison
between ML and MAP estimates for three CNR levels. Clearly,
the regularization provided by MAP estimation eliminates the
caricature-like features evident in the low-CNR ML estimates.
This is done by biasing the estimate toward the average face.

We have included the average facial silhouette in the figure to
illustrate that the MAP estimates more closely resemble the
true silhouette than the average face. For these simulations,
we selected the hyperparameter value so as to roughly min-
imize the NASD. In practice, the hyperparameter value can be
found using generalized cross validation [18], or related strat-
egies. It is remarkable that the MAP estimate for CNR � 1.73
resembles the true silhouette as well as it does, given the poor
quality of the corresponding data shown in Fig. 8. This can be
attributed to the use of strong prior knowledge: that the object
is binary, that the silhouette can be characterized by only 32
parameters, and that the statistical distribution of the param-
eters is known.

C. Practical MAP Estimation
All of the estimates reported thus far have assumed that the
registration between collected data and model landmark end-
points, (0,0) and (0,1), is known a priori and that the field of
view (FOV) covers the entire silhouette. In most practical ap-
plications, neither of these assumptionsholds. TheMAPestima-
tor is readily adapted to accommodate these considerations.
First, we generalize the silhouette parameter vector to include
deterministic in addition to probabilistic parameters:

α ≡ �αTp ; αTd �T ; (9)

where αp is the vector of probabilistic parameters (heretofore
referred to as α in the absence of deterministic parameters) and
αd is a vector of four deterministic parameters, accommodating
lateral registration, rotation, and magnification of the data
relative to the normalized-landmark model. A convenient
parameterization for the deterministic vector is simply x

and y coordinate values of the first and last landmark points.
We also elaborate on our interpretation of the discretizing

operator, Dxf·g, which models the action of a detector array,
converting a continuously defined function into a vector, g�x�.
In addition to modeling the detector-element spatial response
and sampling rate, this operator models the FOV governed by
the extent of the detector array. Therefore, variable FOV is
implicit in the operator notation. With these modifications,
the practical MAP estimate is readily found to be

Fig. 8. ML estimation of silhouette for CNR � 3.16 and 1.73. In these
low-CNR regimes, the ML estimates develop caricature features that
do not match the true silhouette.

Fig. 9. Maximum-likelihood (ML) and maximum a posteriori (MAP)
estimates of facial silhouettes for three CNR levels. The data associ-
ated with these CNR levels are shown in Figs. 7 and 8. The true
silhouette and the average facial silhouette are also provided for
comparison.
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α̂PMAP � argmin
α

�X
x

�d�x� − Dx

�Z
f �x0; α�s�x − x0�dx0

��
2

� η�AT�αp − ᾱp��TΛ−1�AT�αp − ᾱp��
�
; (10)

where the FOV extent is implicit in the discretizing operator.
We performed a simulation experiment to investigate the

ability of practical MAP estimation to accommodate modest
misregistration while essentially collecting data over the full
facial silhouette. In this experiment, misregistered data were
created by transforming the true landmark points (laterally,
rotationally, and in magnification) so that the first (below-
chin) landmark point was translated by (−2.0, 1.5) detected
pixels and the last (hairline) landmark point was translated
by (0.3, −0.7) detected pixels. Joint estimation of deterministic
as well as probabilistic parameters is shown to perform
better than naïve estimation, in which the data and model

are assumed to be properly registered and deterministic
parameters are not estimated. The results are illustrated in
Fig. 10.

We also performed an experiment to investigate the effects
of varying the FOV, in isolation from registration effects.
The results, shown in Fig. 11, indicate that estimation perfor-
mance degrades very slowly with decreasing FOV until the
FOV is smaller than the ROI, where estimation accuracy
degrades rapidly with decreasing FOV. In addition, estima-
tion for regions outside of the FOV is relatively poor, as
expected.

Finally, we provide a result involving both misregistration
and reduced FOV. In this experiment, the misregistration was
much more dramatic and the FOV was relatively small.
Whereas the misregistration parameters were not accurately
estimated with the practical MAP estimator, the fit to the true
silhouette is remarkably good over the FOV, as illustrated in
Fig. 12. This suggests that the statistical correlations between

Fig. 10. Demonstration of practical MAP estimation for modest misregistration in the case of using the full FOV. The central panel shows CNR �
10misregistered data such that the first (below-chin) and last (hairline) landmark points are translated by (−2.0, 1.5) and (0.3, −0.7) detected pixels,
respectively. The joint estimate is significantly better than the naïve estimate (misregistration ignored) and comparable to the estimate made with
registered data. The yellow borders represent the field of view (FOV) and the ROI over which the NASD (in representation pixels) was computed for
the data and the difference images, respectively.

Fig. 11. Estimation as the FOV varies in the case of no registration errors. The upper row shows the data (CNR � 10) and the varying FOVs. The
lower row shows the corresponding error images and the NASD values (in representation pixels), computed over a common ROI, equivalent to the
fourth largest FOV. The estimates degrade very slowly with decreasing FOV until the FOV is smaller than the ROI, where estimation accuracy
degrades rapidly with decreasing FOV.
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landmark points tend to be local. The results of Fig. 12 give us
confidence that MAP estimation of silhouettes can be accom-
plished in practical settings.

5. ESTIMATION PERFORMANCE
A. Dealiasing
Consider the case of a shadow being cast by an extended il-
luminator (like the sun) onto a planar detector array such as a
common CCD. Under a geometric-optics model, the PSF will
be a scaled version of the illuminator distribution. We model
the PSF associated with solar illumination as a circular disk or
top hat. The modulation transfer function (MTF) for such a

PSF is a rectified sombrero (jinc) function. Although this MTF
has zeros, the area over which the MTF is zero is of measure
zero, and there is no cutoff frequency for this image. Therefore
any sampled data will technically be aliased. In our simulation
to demonstrate dealiasing, we approximated a crisp facial
silhouette with a 256 × 512 representation grid, as illustrated
in Fig. 13. The discrete Fourier transform (DFT) of this image
shows that there is spatial-frequency content distributed out
to the edge of the Fourier array. This is true of the blurred
image as well, although the content has been modulated down
owing to the associated MTF. Blur from a circular disk im-
poses a sombrero-function modulation on the Fourier repre-
sentation. Box-car sampling can be modeled with convolution

Fig. 12. Practical MAP estimation with dramatic misregistration and reduced FOV. The true silhouette and corresponding data have been mis-
registered (translated, rotated, and scaled) relative to the model by translating the first and last landmark points, as shown. The rectangular box
indicates the FOV over which the data were used for estimation. The estimated facial silhouette is relatively accurate within the region of the FOV,
with an NASD of 2.14 representation pixels.

Fig. 13. Demonstration of extreme dealiasing enabled by strong prior knowledge. The crisp silhouette is constructed on a 256 × 512 representation
grid, and the corresponding Fourier-domain representation (magnitude of the DFT, displayed with log transformation and scaling, common for all
panels, selected to emphasize relevant features) shows that object spatial frequencies are nonzero out to the edge of the array. Blur from a circular
disk imposes a sombrero-function modulation on the Fourier representation. Additional blur from the 8 × 8 aggregation kernel imposes an addi-
tional 2D sinc modulation. The bold squares (in blue) represent the Nyquist frequency for the undersampled data, equal to 1/8th the Nyquist fre-
quency for the crisp silhouette. The Fourier representation of the undersampled data (enlarged in the figure by a factor of 8) is a mixture of many
overlapping Fourier components. The silhouette estimated from the noiseless undersampled data is virtually indistinguishable from the true (crisp)
silhouette. When noise is added, silhouette estimation degrades gracefully.
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with an aggregation kernel followed by decimation. Accord-
ingly, additional blur from an 8 × 8 aggregation kernel imposes
an additional 2D-sinc modulation on the blurred image. Deci-
mation of the blurred image to 32 × 64 detected pixel values
corresponds to undersampling by a factor of 8 and mixing of
many (64) overlapping Fourier components so that the
Fourier data are severely aliased.

Figure 13 illustrates that the estimated silhouette success-
fully disentangles the extreme aliasing when a single frame of
data is undersampled by a factor of 8. This is accomplished
through the use of strong prior knowledge. Note that classical
multiframe dealiasing would require 64 frames, with carefully
orchestrated subpixel shifts, to perform the dealiasing in the
absence of prior knowledge. By contrast, extreme dealiasing
using prior knowledge about silhouettes is demonstrated from
a single noiseless data frame, where the reconstruction is vir-
tually indistinguishable from the true object. When noise is
added to the data, performance degrades gracefully. Even
in the presence of significant noise (CNR � 10), the Fourier
representation appears qualitatively similar to that of the true
object and the recovered silhouette closely resembles the
crisp silhouette.

B. Superresolution
In this article, we are invoking the classical meaning of the
term superresolution: the recovery of Fourier information be-
yond the cutoff frequency (or bandwidth extrapolation)
through the use of prior knowledge. It is well known that
superresolution based on a support constraint (knowledge
that the object is of finite extent) can be accomplished, but
that it is extremely ill-conditioned [19,20]. Superresolution
can also be accomplished with the use of a nonnegativity con-
straint. The use of superresolution with an opacity constraint
has been proposed as well [11]. We demonstrate that dramatic
and robust superresolution can be accomplished by utilizing
prior knowledge about silhouettes.

Consider the case of a monochromatic point illuminator
that casts a crisp shadow onto a surface that is then imaged
onto a detector array via an aberration-free lens system. In
this case the PSF will be an Airy pattern and the MTF will
have a clearly defined cutoff frequency arising from diffrac-
tion. Accordingly, the data can be sampled at the Nyquist rate
so that there is no aliasing and all Fourier components out to
the cutoff frequency can in principle be recovered. It is
natural to inquire whether information beyond the cutoff fre-
quency can also be recovered. In our simulation to demon-
strate superresolution, we approximated a crisp facial
silhouette with a 256 × 512 representation grid. Figure 14 il-
lustrates that the estimated silhouette successfully recovers
Fourier components out to spatial frequencies in excess of
eight times the cutoff frequency in the noiseless case. This
is a dramatic amount of superresolution. The silhouette
estimated from the noiseless sampled data is virtually indis-
tinguishable from the true (crisp) silhouette. Even when a
significant amount of noise (CNR � 10) is added to the
sampled data, silhouette estimation degrades gracefully.
The prior knowledge that we are invoking for estimating
facial silhouettes leads to far more robust estimation than
superresolution using a support constraint, which is known
to be highly ill-conditioned.

6. SUMMARY AND RECOMMENDATIONS
We have demonstrated that fine-resolution estimates of con-
tinuously defined facial silhouettes can be obtained from
coarsely sampled data in the presence of significant amounts
of additive noise. This is accomplished by using strong prior
knowledge in the form of a parametric model for facial silhou-
ettes that is far more efficient than a conventional pixel
parameterization. Additional prior knowledge obtained
through statistical training on an ensemble of facial silhou-
ettes was shown to be useful when the data are particularly

Fig. 14. Demonstration of dramatic superresolution enabled by strong prior knowledge. Blur is caused by imaging with an unaberrated optical
system and convolving with an 8 × 8 aggregation filter. Accordingly, the Fourier representation of the sampled data (enlarged in the figure by a
factor of 8) displays a clear cutoff frequency. The bold squares (in blue) represent the Nyquist frequency for the sampled data, equal to 1/8th the
Nyquist frequency for the crisp silhouette. The silhouette estimated from the noiseless sampled data is virtually indistinguishable from the true
(crisp) silhouette. When noise is added, silhouette estimation degrades gracefully.
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noisy. Practical MAP estimation, accommodating data misre-
gistration and detecting over a finite FOV, was also demon-
strated. Finally, both extreme dealiasing and dramatic
superresolution (recovery of information beyond the diffrac-
tion limit) were demonstrated.

The simulations presented herein are somewhat idealized
in that the facial silhouettes are all provided in profile. Such
silhouettes arise only in restrictive geometries such that a
human face is pointed in a direction orthogonal to the illumi-
nation direction and the detector array or surface onto which
the silhouette is projected is also orthogonal to the illumina-
tion direction. We concentrated on this restrictive case be-
cause it retains the essence of the problem of interest and it
corresponds to the available training data. An additional pro-
jective operator can be included in the data-acquisition model
to accommodate projections onto surfaces not perpendicular
to the direction of illumination. Note that for extended
(e.g., solar) illumination, such geometries will also result in
field-dependent blur. This is evident in Fig. 1(b), in which the
shadow is relatively crisp where the range from the occluder
is small (tire region) and grows progressively more blurry as
the range grows (most noticeable at the head). If the geometry
of the illumination, occluder, and surface is known, then the
field-dependent blur can be readily modeled. Accordingly, the
data-agreement term of the MAP estimator will involve a field-
dependent blur kernel in the integral instead of a simple con-
volution kernel.

In the case of using a camera to image a shadow falling on a
flat surface, the surface reflectivity may not be uniform. This
case can be accommodated by collecting a second image of
the surface in the absence of shadow. Similarly, silhouette es-
timation in the case of a relatively dark object occluding a
bright background will require images with and without occlu-
sion when the background is not uniform.

In our experiments, we used a simple spline parameteriza-
tion to characterize facial silhouettes. We believe that the
characterization can be improved upon by using more sophis-
ticated spline parameterizations, such as with NURBS [21] or
T-splines [22]. In many silhouette-estimation applications, the
parametric model for the silhouette will not be as well be-
haved as that of the human face in profile. What parametric
model should we use to represent the silhouette of a walker
for gait recognition or for the silhouette of a satellite for pose
estimation? Other candidate parametric models include level
sets [23–25] and various shape-coding models [26,27]. Perhaps
the parametric silhouette model could be built from the data
itself, by adaptively inserting spline control points until the
data no longer support further model complexity. The joint
estimation of the parametric model and the corresponding
parameter values is an important research direction for sil-
houette estimation and related problems.
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