Hierarchical $V_4C_3T_X@NiO$-reduced graphene oxide heterostructure hydrogels and defective reduced graphene oxide hydrogels as free-standing anodes and cathodes for high-performance asymmetric supercapacitors†

Ziyu Geng‡, a Weiwen Chen‡, a,b Zenghui Qiu, a,b Haijun Xu, a,b Dingjie Pan c and Shaowei Chen a,c

Asymmetric supercapacitors (ASCs) based on a battery-type anode and a capacitive-type cathode have been attracting extensive interest because of their high energy density. Herein, NiO nanosheets are hydrothermally deposited onto a $V_4C_3T_X$ substrate, which are then assembled into a 3D porous heterostructure hydrogel through a graphene oxide-assisted self-convergence hydrothermal process at low temperatures. The resultant hierarchical $V_4C_3T_X@NiO$-RGO heterostructure hydrogel exhibits an ultrahigh specific capacitance of up to 1014.5 F g$^{-1}$ at 1 A g$^{-1}$. In addition, a defective reduced graphene oxide (DRGO) hydrogel is prepared using a cost-effective hydrothermal procedure followed by cobalt-catalyzed gasification, which shows a higher specific capacitance (258 F g$^{-1}$ at 1 A g$^{-1}$) than the untreated RGO hydrogel (176 F g$^{-1}$). These two electrodes are then assembled into an ASC; the device features a stable operating voltage of 1.8 V, a maximum energy density of 86.22 W h kg$^{-1}$ at 900 W kg$^{-1}$, and excellent cycling stability at 96.4% capacitance retention after 10 000 cycles at 10 A g$^{-1}$. The results from this work highlight the unique potential of MXene-based materials for the construction of high-performance ASCs.

Introduction

Supercapacitors (SCs) have been considered as sustainable electrochemical energy storage devices,1,2 featuring an ultra-high power density (10 to 10⁴ W kg$^{-1}$), fast charging/discharging, and excellent cycling stability (cycle life > 10⁸ cycles), and they have found widespread applications in transportation, hybrid batteries, etc.3–5 One major issue of SCs is their limited energy-storage performance when compared to batteries.4–7 This has become a leading topic in recent research. Asymmetrical supercapacitors (ASCs) represent a unique platform to achieve a high energy density.8

Based on the energy storage mechanism, SCs can be classified into three different types, electric double-layer capacitors (EDLCs), pseudocapacitors, and ASCs. EDLCs store and release charges at the electrode/electrolyte interface via rapid ion adsorption/desorption, but typically display a low energy density.9 In pseudocapacitors, energy is stored through a faradaic process involving fast reversible redox reactions occurring both on the surface and in the interior of the electrode materials. Thus, pseudocapacitive electrodes exhibit a high energy density, but poor cycling stability and low power density.4–7,10–12 ASCs refer to the devices in which one battery-type electrode acts as the anode while the cathode is a capacitive-type electrode.3,8 During the charge/discharge processes, ASCs take full advantage of the different potential windows of the two electrodes to maximize the operating voltage. In fact, appropriately designed ASCs have been recognized as viable devices to achieve both a high energy density and a high power density.

2D transition-metal carbides/nitrides/carbonitrides, MXenes, have been used in various applications since the first synthesis by the Gogotsi group in 2011.13–16 Typically, the production of MXenes involves selective etching of the “A” element from the ternary layered MAX phases with a general formula of $M_{n+1}AX_n$ in a hydrofluoric acid-containing solution. The resulting single MXene sheets consist of 3, 5, 7 or 9 atomic layers for $M_2X$, $M_3X_2$, $M_4X_3$, and $M_5X_4$,13,17 with a general composition of $M_{n-1}X_nT_X$, where $T_X$...
where $T_X$ is the surface functional groups and determines the hydrophilicity of the materials. It is well-known that the abundant oxidation valence states of transition metals can significantly enhance the intrinsic pseudocapacitance of MXene-based electrodes. For instance, V-based MXene $V_4C_3T_X$ has been used as high-performance SC electrodes because of various valence states of the vanadium element ranging from +2 to +5. Multi-layered $V_4C_3T_X$ also possesses a larger interlayer spacing than Ti-based MXenes, which is favorable to the intercalation and deintercalation in energy storage. In fact, owing to the high electrical conductivity, adjustable layer spacing, and rich redox active sites, $V_4C_3T_X$ electrodes have been found to display a high-rate performance, high power density and high energy density.

Nevertheless, there are two major challenges when raw $V_4C_3T_X$ is used as electrodes for high-energy SCs. First, the surface functional groups and surface defects formed in the etching process may negatively influence the energy-storage properties, and compromise the theoretical specific capacity. Second, as a typical 2D nanomaterial, the strong van der Waals interactions between adjacent $V_4C_3T_X$ nanosheets can lead to self-restacking, and significantly limit the full utilization of the active surface area. To improve the specific capacitance of $V_4C_3T_X$, one effective strategy is to fabricate $V_4C_3T_X$-based heterostructures that combine the advantages of $V_4C_3T_X$ with pseudocapacitive materials. This unique 2D lamellar structure and abundant terminal functional groups/atomic defects of $V_4C_3T_X$ render it possible to construct the desired synergetic heterostructures with high structural stability. The obtained heterostructures can not only strengthen the individual properties of each constituent, but also exhibit a synergistic effect of high reactivity, ultrahigh specific capacitance and superb electrical conductivity. However, NiO features a stable structure, high theoretical specific capacity (3750 F g$^{-1}$) and low cost, and is hailed as a powerful candidate to combine with $V_4C_3T_X$ to form heterostructures with face-to-face contact of both components. To mitigate the issue of aggregation, one viable way is to integrate the layered $V_4C_3T_X$@NiO heterostructure into a 3D interlinked structure, which can also provide abundant active sites and fast ion/electron transport channels to effectively boost the electrochemical reaction kinetics. Moreover, the disordered structure formed from the macroscopic interlinked framework can slightly inhibit structural expansion during repetitive charge/discharge, leading to excellent electrochemical stability.

Experimentaly, self-gelation of reduced graphene oxide (RGO) leads to the formation of 3D mesoporous hydrogels that can be composited with various active materials to produce SC electrodes, which can be exploited for the preparation of $V_4C_3T_X$@NiO-RGO heterostructure hydrogels. Owing to the synergistic effect among each component and the porous interconnected architecture, the resultant 3D hierarchical $V_4C_3T_X$@NiO-RGO hydrogels not only take both merits of outstanding electrical conductivity and high specific capacitance, but also obviously avoid the aggregation and significantly increase the surface utilization, indicating that the 3D hierarchical $V_4C_3T_X$@NiO-RGO heterostructure hydrogel with improved overall electrochemical performance can be used as a competitive anode for ASCs.

Carbon-based materials have been widely employed as ASC cathodes, most notably graphene which features excellent electrochemical stability, high electrical conductivity, and large specific surface area. However, aggregation of graphene nanosheets and the intrinsically narrow ion/electron transport channels lead to degradation of the capacitance characteristics. Defect engineering has been recognized as an effective strategy to enhance the storage properties, in particular, for ASC cathode materials. This can be achieved by, for instance, patterning on graphene surfaces to form mesoporous structures, which provides abundant pathways for ion penetration into the materials, leading to improved storage performance. In comparison to patterning methods like electron plasma etching and lithography that involve high temperatures and dangerous gas atmospheres, carbon gasification catalyzed by metallic and oxide particles in a controlled atmosphere has emerged as an eco-friendly method suitable for large-scale preparation. To prevent aggregation, the obtained defective RGO (DRGO) can be assembled into interconnected frameworks due to self-gelation of RGO produced by the reduction of GO with L-ascorbic acid. The resultant 3D DRGO hydrogels with a mesopore structure not only provide abundant pathways for speedy ionic/electron diffusion, but also obviously avoid the aggregation and increase the surface utilization of DRGO, leading to improved storage performance.

In this work, 3D hierarchical $V_4C_3T_X$@NiO-RGO heterostructure hydrogels are fabricated using an efficient, two-step procedure and used as the anode for ASCs. In the first step, $V_4C_3T_X$@NiO heterostructures are prepared by a chemical bath deposition and thermal annealing process, and are incorporated into the conductive, porous hydrogels via a low-temperature GO-assisted self-convergence hydrothermal strategy. DRGO hydrogels are prepared and used as a cathode for ASCs. DRGO hydrogels are prepared via a GO self-gelation hydrothermal strategy with L-ascorbic acid as the reducing agent, in conjunction with cobalt-catalyzed gasification. Due to the excellent mechanical properties of the hydrogels, the materials are used directly without binders as the ASC anode and cathode. The free-standing $V_4C_3T_X$@NiO-RGO//DRGO ASC device reaches a maximum operating voltage of 1.8 V, a maximum energy density of 86.22 W h kg$^{-1}$ at 900 W kg$^{-1}$ and excellent cycle stability (retention of 96.4% capacitance over 10 000 cycles).

Experimental section

Preparation of delaminated $V_4C_3T_X$ MXene

High-quality $V_4C_3T_X$ was synthesized by following a classical etching method where the Al layers were selectively etched from a $V_4AlC_3$ MAX-phase precursor (<38 µm). Typically, 1 g of LiF was dissolved in 20 mL of a 9 M HCl solution, into which was slowly added 1 g of Ti$_3$AlC$_2$ powders with stirring for 30 min in an ice bath and then heated at 40 °C for 36 h. The resultant clay-like $V_4C_3T_X$ suspension was centrifuged at 3500 rpm and washed repeatedly with deionized (DI) water and absolute alcohol until...
A homogeneous dispersion of delaminated V₄C₃Tₓ was then prepared by ultrasonication of the above product under an Ar flow followed by centrifugation (3500 rpm) for 1 h. Finally, the dark green supernatant was collected and freeze-dried to obtain few-layer V₄C₃Tₓ floccules.

**Fabrication of V₄C₃Tₓ@NiO heterostructures**

V₄C₃Tₓ@NiO heterostructures were fabricated by liquid phase deposition along with thermal annealing. Typically, 1 g of the V₄C₃Tₓ prepared above was added into a 400 mL solution containing 3.88 g of Ni(NO₃)₂·6H₂O and 16.06 g of urea under sonication for 1 h to produce a homogeneous suspension. The mixture was heated in an oil bath at 90 °C for 3 h under magnetic stirring, and the precipitate was aged for 12 h, which was then collected by centrifugation at 10 000 rpm, rinsed with ethanol and DI water for 5–6 times, and freeze-dried. This precursor was converted into V₄C₃Tₓ@NiO heterostructures by thermal annealing at 350 °C for 2 h at a slow heating rate of 2 °C min⁻¹. As a comparison, pure NiO was also produced using the same method but in the absence of V₄C₃Tₓ.

**Synthesis of V₄C₃Tₓ@NiO-RGO hydrogels**

The synthesis of 3D V₄C₃Tₓ@NiO-RGO hydrogels was based on a GO-assisted self-convergence hydrothermal strategy. GO was fabricated from natural graphite flakes by an improved Hummers’ method. A GO homogeneous colloidal suspension (2 mg mL⁻¹) was prepared by ultrasonication of GO in DI water for 4 h, followed by centrifugation (3800 rpm for 30 min) to remove the thick layers. 8 mg of V₄C₃Tₓ@NiO powders was then added into a 15 mL glass vial containing 1 mL of the prepared GO colloidal suspension under mechanical stirring and ultrasonic dispersion for 1 h each to obtain a homogeneous suspension, into which was immediately added 4 mg of L-ascorbic acid (L-ascorbic acid/GO = 2 : 1, w/w) under magnetic stirring for 30 min. The vessel was then sealed and underwent hydrothermal treatment for 5 h at 90 °C, affording a V₄C₃Tₓ@NiO-RGO hydrogel that was rinsed with DI water several times until the pH was around 7. For comparison, an RGO hydrogel was also fabricated using the same process but without the addition of V₄C₃Tₓ@NiO heterostructures.

**Preparation of DRGO and RGO hydrogels**

DRGO hydrogel was prepared via an efficient and environmentally friendly hydrothermal method followed by cobalt (Co) catalyzed gasification under ambient conditions. Firstly, a certain amount of Co particles was diffused into 1 mL of the prepared GO colloidal suspension (2 mg mL⁻¹) under mechanical stirring and ultrasonic dispersion for 1 h each to obtain a homogeneous GO/Co (10 wt%) hybrid solution, into which was added 4 mg of L-ascorbic acid (GO/L-ascorbic acid = 1 : 2, w/w) under mechanical stirring for 30 min, and the resulting solution was heated hydrothermally at 90 °C for 5 h to obtain an RGO hydrogel with Co particles attached uniformly on the surfaces. The resulting hybrid hydrogel was then rinsed with DI water repeatedly until pH ≈ 7, collected by lyophilization, and underwent oxidation in air at 300 °C for 30 min involving two reactions, (i) 6CoO + O₂ → 2Co₃O₄ and (ii) Co₃O₄ + C → 3CoO + CO. The product was finalized by immersing in boiled concentrated nitric acid (98%) for 1 h to remove the remaining cobalt oxide, rinsed with DI water several times and freeze-dried. As a comparison, RGO hydrogel was prepared using the same process but without Co particles.

**Material characterization**

The morphologies of the samples were examined by field-emission scanning electron microscopy (FESEM, Quant 250 FEG) and transmission electron microscopy (TEM, JEOL JEM-2100F) measurements. Elemental mapping studies based on energy dispersive X-ray analysis (EDX) and selected-area electron diffraction (SAED) were performed with the JEOL 2100F microscope. Crystal structures were characterized by powder X-ray diffraction (XRD) measurements on a BRUKER diffractometer (D8 advance CuKα radiation source, λ = 0.15406 nm), and the Raman spectra were acquired with a Renishaw inVia micro-Raman system (Thermo Fisher DXR). The electrochemical behaviors of the as-prepared electrodes were measured using a Barrett-Joyner-Halenda (BJH) model from the adsorption branch of the isotherms.

**Electrochemical measurements**

The electrochemical behaviors of the as-prepared electrodes were examined in a typical three-electrode system in 1 M KOH, in which Pt foil was used as the counter electrode, and an Hg/HgO electrode as the reference electrode. The V₄C₃Tₓ or V₄C₃Tₓ@NiO heterostructures were used as the active materials on the working electrode, which was prepared by pressing a homogeneous slurry containing 80 wt% of active materials, 10 wt% of carbon black, and 10 wt% of polytetrafluoroethylene (PTFE), along with a small amount of anhydrous ethanol onto a nickel foam current collector (1 cm × 1 cm, under a pressure of 10 MPa). Owing to the excellent mechanical properties, the 3D RGO, DRGO, and V₄C₃Tₓ@NiO-RGO hydrogelling electrodes were fabricated without binders. The mass of the active materials in each electrode was ca. 1.0 mg. After being dried at 90 °C for 12 h in a vacuum oven, the working electrode was immersed in a 1 M KOH solution for 24 h to ensure equilibrium contact between the active materials and electrolyte. All electrochemical tests, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD), were undertaken with a CHI 660B electrochemical workstation. In addition, the specific capacitance (Cₛ, F g⁻¹) of the active materials on the working electrode was calculated from the GCD curves based on the equation of Cₛ = IΔt/mΔV, where I (A) is the discharge current, Δt (s) is the discharge time, and m (g) is the mass loading of active materials.
material on the working electrode, and $\Delta V$ (V) represents a potential window.

Assembly and electrochemical tests of ASC

The V$_4$C$_3$T$_x$@NiO-RGO//DRGO ASC was assembled by using V$_4$C$_3$T$_x$@NiO-RGO hydrogel as the anode and DRGO hydrogel as the cathode in a 1 M KOH electrolyte, and the electrochemical measurements of the ASC were carried out in a three-electrode system. The optimal mass ratio of V$_4$C$_3$T$_x$@NiO-RGO and DRGO was calculated by balancing the charge between the anode and cathode, $Q = C\Delta V m$; $Q_+ = Q_-$, $m_+/m_- = C_+/C_-\Delta V_+ / \Delta V_-$, where $Q_+$ and $Q_-$ refer to the charge stored at the anode and cathode, $C_+$ and $C_-$ are the specific capacitance of the anode and cathode in the three-electrode system, $\Delta V_+$ and $\Delta V_-$ represent the potential window, and $m_+$ and $m_-$ stands for the active material mass in the anode and cathode, respectively. Furthermore, the energy density ($E$, W h kg$^{-1}$) and power density ($P$, W kg$^{-1}$) of the ASC were calculated by $E = C_{ASC}\Delta V^2 / 7.2$ and $P = 3600E / \Delta t$, where $C_{ASC}$ (F g$^{-1}$) and $\Delta V$ (V) stand for the specific capacitance and the potential window of the ASC, respectively, and $\Delta t$ (s) represents the discharge time of the ASC.

Results and discussion

Structure and electrochemical characteristics of anode materials

Fig. 1a shows the synthesis process for the hierarchical V$_4$C$_3$T$_x$@NiO core–shell heterostructure, where ultrathin Ni(OH)$_2$ nanosheets were uniformly deposited onto the V$_4$C$_3$T$_x$ surface by chemical bath deposition, and the resultant V$_4$C$_3$T$_x$@Ni(OH)$_2$ was thermally annealed in air to produce hierarchical V$_4$C$_3$T$_x$@NiO heterostructures. The morphologic structures of the prepared samples were firstly characterized by TEM measurements. As shown in Fig. 1b, the V$_4$C$_3$T$_x$ nanosheets exhibit a two-dimensional wrinkled paper-like structure. Fig. 1c and d show that the V$_4$C$_3$T$_x$@NiO heterostructure consisted of a hierarchical structure with the V$_4$C$_3$T$_x$ surface uniformly covered with few-layer ultrathin NiO films. In high-resolution TEM measurements (Fig. 1e), the NiO nanosheets can be seen to display distinctly clear lattice fringes with an interplanar spacing of about 0.21 nm, consistent with the NiO (200) crystalline planes (JCPDS 43-1477). This is consistent with the SAED patterns (Fig. 1e inset) which show three intense rings due to the (111), (200) and (220) crystal planes of NiO (JCPDS 43-1477). These characteristic peaks can also be clearly found in the V$_4$C$_3$T$_x$@NiO heterostructures; yet, the (002) peak for V$_4$C$_3$T$_x$@NiO shifts to a lower angle than that for V$_4$C$_3$T$_x$, suggesting deposition of NiO onto the V$_4$C$_3$T$_x$ nanosheets inhibits the aggregation of V$_4$C$_3$T$_x$. Furthermore, no diffraction peaks can be identified for Ni(OH)$_2$, confirming that the symmetric Ni-OH has been transformed into Ni-O in the thermal annealing process. Consistent results were obtained in Raman measurements. Fig. 2b shows that both V$_4$C$_3$T$_x$ and V$_4$C$_3$T$_x$@NiO exhibited the characteristic peaks at 271.5 and 771.6 cm$^{-1}$, corresponding to the vibrations of the V–C bonds of V$_4$C$_3$T$_x$. Meanwhile, two broad peaks at 566 cm$^{-1}$ and 1068 cm$^{-1}$, due respectively to the first (1P) and second-order phonon (2P) scattering, were clearly observed in the Raman spectra of NiO and V$_4$C$_3$T$_x$@NiO heterostructures. The fact that no additional peak is detected confirms that the flower-like NiO nanosheets were uniformly deposited over the entire exposed surface of the V$_4$C$_3$T$_x$ nanosheets.

The chemical composition and bonding states of the various elements in the nanocomposites were further analyzed by XPS.
measurements. From the survey spectra in Fig. 3a and b, four peaks can be identified for V$_4$C$_3$TX and V$_4$C$_3$TX@NiO heterostructures at around 285.1, 517.1, 531.5, and 685.7 eV, due to the C 1s, V 2p, O 1s, and F 1s electrons, respectively. A new peak appears at 856 eV corresponding to Ni after the deposition of NiO on the V$_4$C$_3$TX nanosheets surface, indicating the successful synthesis of the heterostructures (Fig. 1a).

Fig. 3c–f depict the high-resolution XPS spectra of the V$_4$C$_3$TX@NiO heterostructure. In Fig. 3c, the high-resolution spectrum of the C 1s electron can be deconvoluted into five peaks at 282.5, 284.6, 285.3, 286.3, and 288.8 eV, due to C–V, C–C, C–H, C–O and O–C, respectively. Fig. 3d displays the V 2p region for V$_4$C$_3$TX, where three doublets were deconvoluted, 513.6/521.5 eV to the 2p$_{3/2}$/2p$_{1/2}$ electrons of V–C, 514.9/523.1 eV to V$^{3+}$, and 516.9/524.6 eV to V$^{4+}$. The deposition of NiO on the V$_4$C$_3$TX surface led to a decrease of the content of functional groups and partial oxidation. In the O 1s spectra (Fig. 3e), two peaks were resolved at 530.7 (V–O) and 531.9 eV (V–OH), corresponding to the adsorbed H$_2$O, and another at 529.2 (Ni–O), due to oxygen bonded to Ni. The formation of NiO is observed in the high-resolution scans of the Ni 2p electrons (Fig. 3f), where deconvolution of the spectrum yielded two peaks at 853.7 and 855.6 eV, due to the 2p$_{3/2}$ and 2p$_{1/2}$ electrons of Ni$^{2+}$, respectively.

The fabrication process of the V$_4$C$_3$TX@NiO-RGO hydrogel using GO-assisted hydrothermal assembly is schematically illustrated in Fig. 4a. To assemble V$_4$C$_3$TX@NiO heterostructures into a 3D porous architecture, GO was utilized as the gelation agent. In view of the easy oxidation of V$_4$C$_3$TX nanosheets in water at high temperatures, a mild hydrothermal strategy at low temperatures was selected to avoid severe oxidation and structural degradation of V$_4$C$_3$TX. During the hydrothermal assembling process, GO was reduced by both ascorbic acid and surface functional groups of V$_4$C$_3$TX and the resultant RGO nanosheets were interconnected with each other to form a 3D framework, while the V$_4$C$_3$TX@NiO were assembled into the macroscopic RGO framework to produce a V$_4$C$_3$TX@NiO-RGO heterostructured hydrogel. As shown in Fig. 4b, when the V$_4$C$_3$TX@NiO/GO mixed colloid was aged at 90 °C, 3D hydrogels with a diameter and a height of about 0.8 and 0.5 cm were formed from the V$_4$C$_3$TX@NiO/GO precursor at 80 wt% of V$_4$C$_3$TX@NiO.

Fig. 4c–e show the SEM images of the RGO and V$_4$C$_3$TX@NiO-RGO foams obtained by freeze-drying the obtained hydrogels, separately. It is observed that the foams featured a continuous and well-defined 3D interconnected porous structure with random open pores and thin pore walls. From the magnified SEM image of the hybrid foam (Fig. 4e), one can see that the heterostructured hydrogel retains the 2D flat structure, and the pore size of the
network ranges from sub-micrometers to several micrometers and the pore walls consist of stacked $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ heterostructures crosslinked by RGO nanosheets. This indicates that the 3D hydrogel effectively prevents restacking of $\text{V}_4\text{C}_3\text{T}_x$ nanosheets, which is favorable for the enhancement of performance. From the XRD patterns in Fig. 4f one can see that the (002) diffraction peak shifts from 5.43° for $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ powder to 5.14° for the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO hydrogel after the intercalation of RGO nanosheets among the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ layers, corresponding to an enlarged interlayer spacing from 1.29 to 1.71 nm. Moreover, the (002) peak of the hydrogel is broader than that of the powder, suggesting an inhibition of aggregation of $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ nanosheets, which is conducive to enhancing the capacitance in electrochemical applications.

$\text{N}_2$ adsorption–desorption measurements show that the restacking of the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ heterostructure was effectively restrained. Fig. 4g shows the $\text{N}_2$ adsorption–desorption isotherms of the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ powders, which possesses a type IV isotherm with a very low adsorption volume in the low and medium relative pressure ranges, suggesting the absence of micropores and mesopores, while the isotherm displays a maximum adsorption capacity at $P/P_0 = 1$, corresponding to micropores responsible for abundant adsorption of $\text{N}_2$ at high relative pressures. In contrast, the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO hydrogel features a type II isotherm with a significant hysteresis loop in the relative pressure range from 0.1 to 1.0 (Fig. 4h), revealing a typical mesoporosity structure. The specific surface area of the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO hydrogel is then estimated to be 315 m$^2$ g$^{-1}$, which is approximately 4.04 times that of $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ (78 m$^2$ g$^{-1}$). Additionally, the pore size is calculated by the BJH method. From the inset of Fig. 4g, one can see that the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ powder consisted mainly of micropores with an average pore size of 4.9, 6.7, and 10.6 nm, while, the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO hydrogel shows average pore sizes of 18.3, 18.7, 20.4, 22.4, and 25.1 nm [inset of Fig. 4h] in the mesopore range. Taken together, these results indicate that the hydrogel consisted of a 3D porous interconnected architecture with random open pores and thin pore walls due to $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ and RGO. This is favorable for mitigating the aggregation and enhancing the electrical conductivity of $\text{V}_4\text{C}_3\text{T}_x$ MXenes and hence accessible active areas for practical applications.

The capacitance characteristics of these samples were then tested by CV, GCD and EIS measurements within the potential range of 0 to 0.8 V (vs. Hg/HgO). Due to the high porosity and conductivity, and excellent mechanical strength, the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO hydrogel can be used as a free-standing SC electrode, avoiding the complex traditional electrode fabrication process and the use of inactive binders and conductive additives. From Fig. 5a, one can clearly see that the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ and $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO electrodes all exhibited a pair of redox peaks at a scan rate of 10 mV s$^{-1}$ in 1 M KOH, due to the variations in the V valence state in alkaline media. In comparison with $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ and $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO show slightly different anodic and cathodic peaks due to the reactions between $\text{Ni}^{2+}/\text{Ni}^{3+}$ and Ti. More importantly, the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO sample exhibited a far higher current density and larger integrated area, and hence a higher specific capacity, than $\text{V}_4\text{C}_3\text{T}_x$ and $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$. This demonstrates that the assembly of the 3D hydrogel structure indeed improves the pseudocapacitive performance of $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO. The CV curves of the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO at various scan rates are shown in Fig. 5b. The reduction and oxidation peaks exhibited only a slight shift to the negative and positive directions with increasing scan rate, indicating the reversible nature of the redox reactions.

To further evaluate the charge storage properties of these electrodes, the GCD curves were collected at the same current density of 1 A g$^{-1}$ (Fig. 5c). These nonlinear GCD curves featured an evident plateau, consistent with the typical pseudocapacitive behavior and fast charge/discharge kinetics, in agreement with the CV results. In addition, the GCD curves show a nearly symmetrical triangular-shaped shape, further confirming the reversible nature of the faradaic redox reactions. Obviously, the $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$-RGO electrode exhibited a longer discharge time, and the specific capacitance (1021 F g$^{-1}$) was significantly higher than those of $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ (675 F g$^{-1}$) and $\text{V}_4\text{C}_3\text{T}_x$ (193 F g$^{-1}$) (Fig. 5d). The enhanced electrochemical performance is likely due to the gelation of $\text{V}_4\text{C}_3\text{T}_x@\text{NiO}$ by a conducting 3D porous RGO framework. In fact, the specific capacity of $\text{V}_4\text{C}_3\text{T}_x$ is higher than the theoretically predicted capacity of $\text{V}_4\text{C}_3\text{T}_x$, which is due to the formation of vanadium oxide during the synthesis process that provides the additional pseudocapacitance. Similar phenomena have been observed in other MXenes.15,16 As shown in Fig. 5e, there is an obvious IR drop in GCD measurements within the current density range of
0.5 to 10 A g\(^{-1}\), indicating fast electron transfer and electrolyte ion diffusion in the device.

Usually, the specific capacitance of an electrode decreases as the discharge current density increases, because a large current density requires a quick charge/discharge reaction, as shown in Fig. 5f. Nevertheless, \(V_{4C_3T_x}\)@NiO-RGO can be seen to show an increase in the specific capacitance from 1021 F g\(^{-1}\) to 912 F g\(^{-1}\) as the current density varies from 0.5 to 10 A g\(^{-1}\), indicating high surface utilization and excellent rate performance (89.3% of the initial specific capacitance). As a comparison, the specific capacities of \(V_{4C_3T_x}\) and \(V_{4C_3T_x}\)@NiO decrease from 193 to 142 F g\(^{-1}\) (73.6% retention) and 675 to 561.1 F g\(^{-1}\) (83.1% retention), respectively. In fact, the specific capacitance of the \(V_{4C_3T_x}\)@NiO-RGO electrode was superior to those of Ti₃C₂Tₓ-based electrodes reported previously, as displayed in Table S1 (ESI†). The remarkable rate capability of \(V_{4C_3T_x}\)@NiO-RGO is attributed to the synergistic coupling effect among the structural components and the 3D architecture. Specifically, the conductive \(V_{4C_3T_x}\) core in the heterostructure offers both abundant transport channels for ions and active interfacial centers, while the ultrathin NiO shells can increase the pseudocapacitance and promote the diffusion and migration of electrolyte ions. In addition, the 3D structure allows fast electrolyte ion diffusion and intimate contact of \(V_{4C_3T_x}\)@NiO with the electrolyte solution, leading to a high-rate capability.

To evaluate the electrical conductivity of the samples, EIS experiments were carried out in the range of 0.1 to 100 kHz. Fig. 5g depicts the Nyquist plots, with the equivalent circuit diagram shown in the inset, where the semicircle in the high frequency region reflects the interfacial charge-transfer resistance \(R_{ct}\) and the linear part in the low frequency region is the Warburg resistance \(W_{d}\) due to diffusion of electrolyte species. It can be observed that the shape of the semicircle is similar for \(V_{4C_3T_x}\)@NiO, \(V_{4C_3T_x}\)@NiO-RGO, and \(V_{4C_3T_x}\)@NiO-RGO hydrogels. Yet, \(R_{ct}\) is obviously smaller for the \(V_{4C_3T_x}\)@NiO-RGO hydrogel (2.8 \(\Omega\)) than for \(V_{4C_3T_x}\)@NiO (5.1 \(\Omega\)), indicative of enhanced electron-transfer kinetics. Additionally, the intercept \(R_{ct}\) with the x-axis can be estimated to be 3.9 \(\Omega\) for \(V_{4C_3T_x}\)@NiO and 1.8 \(\Omega\) for \(V_{4C_3T_x}\)@NiO-RGO hydrogels, signifying that indeed the gelation of \(V_{4C_3T_x}\)@NiO enhanced the electrical conductivity. Notably, the slope of the linear segment for the \(V_{4C_3T_x}\)@NiO-RGO hydrogel is greater than that of \(V_{4C_3T_x}\)@NiO, suggesting the increasingly capacitive nature of the former.

Long-term cycle stability is another significant factor in practical applications, which was evaluated through a consecutive charge–discharge process at a current density of 10 A g\(^{-1}\) for up to 10 000 cycles, and the results are depicted in Fig. 5h. It can be observed that more than 97.8% of the capacitance was retained (85.1% for \(V_{4C_3T_x}\) and 94.1% for \(V_{4C_3T_x}\)@NiO) and the shape of the GCD curves did not change appreciably, indicating the low leakage current and excellent long-term cyclic stability of the \(V_{4C_3T_x}\)@NiO-RGO electrode.

**Structure and electrochemical characteristics of cathode materials**

Owing to the excellent electrical conductivity, large specific surface area and abundant mesoporous structure, defect-rich graphene has been considered an ideal cathode material for ASCs. Herein, a DRGO hydrogel was prepared using a multi-step strategy as outlined in Fig. 6a. The microstructures of RGO and DRGO were first characterized by SEM measurements. The former can be seen to consist of almost transparent carbon nanosheets with a thin wrinkled structure (Fig. 6b), whereas the latter shows a well-defined porous structure (Fig. 6c). The average pore size of DRGO is about 25 nm and the pore distribution is rather uniform. The morphology was further analyzed by TEM measurements, where the samples showed a curled morphology consisting of a thin wrinkled paper-like structure. Before the patterning process (Fig. 6d), the exterior walls of RGO were cavity-free with an ordered graphitic structure; yet, after the cobalt-catalyzed gasification and acid digestion treatment, abundant mesopores were produced, as shown in Fig. 6e and f.

The structural variations were also investigated by XRD and Raman spectroscopy measurements. From the XRD patterns in Fig. 7a, the diffraction peaks at 2θ = ca. 26° and 43° can be assigned to the (002) and (100) planes of carbon. The corresponding Raman spectra of RGO and DRGO are shown in Fig. 7b, where a pair of strong peaks can be identified, the G band at around 1587 cm\(^{-1}\) for the doubly degenerated zone center E\(_{2g}\) mode, and the D band at about 1352 cm\(^{-1}\) for the disordered sp\(^2\) graphene. Additionally, based on their fitting area, the D/G intensity ratio of DRGO \((I_D/I_G = 1.08)\) is greater than that of RGO \((I_D/I_G = 0.99)\), confirming a more defective structure of the former, where the structural defects likely arose from the Co-catalyzed cavity production.

The corresponding N\(_2\) adsorption–desorption isotherms are displayed in Fig. 7c and d. RGO (Fig. 7c) can be seen to possess a type II isotherm, and shows the maximum adsorption capacity at \(P/P_0 = 1\), suggestive of abundant micropores in the sample.
same current density of 1 A g\(^{-1}\)) were further evaluated by GCD measurements at the series resistance. The capacitance characteristics of these electrodes were quasi-rectangular in shape, and there is no significant distortion with increasing potential scan rates, indicating excellent rate stability and low internal resistance. As shown in the inset to Fig. 7d, the specific BET surface area of DRGO is estimated to be 586 m\(^2\) g\(^{-1}\), markedly higher than that (189 m\(^2\) g\(^{-1}\)) of pristine RGO.

The electrochemical performance of these samples was then examined within the potential range of −1 to 0 V in 1 M KOH electrolyte. Fig. 8a displays the CV curves of RGO and DRGO hydrogel electrodes at a scan rate of 10 mV s\(^{-1}\). All CV curves are quasi-rectangular in shape, and the CV curve of the DRGO hydrogel electrode shows a larger integration area than the RGO hydrogel electrode, revealing a higher specific capacitance (258 F g\(^{-1}\)) that is indeed higher than that (189 m\(^2\) g\(^{-1}\)) of pristine RGO.

For comparison, DRGO exhibits a type IV isotherm with a significant hysteresis loop within the relative pressure of 0.1 to 1.0, due to the formation of a mesoporous structure. The porosity can be further examined using the BJH method. From the inset in Fig. 7c, RGO can be seen to display a broad distribution of pore sizes, and the average pore sizes are located at 1.8, 3.8 and 7.6 nm, indicating that the sample consisted mainly of micropores. For DRGO, the main pore sizes are 24.8, 26.0, 27.3 and 30.1 nm, consistent with the mesoporous structure (as shown in the inset to Fig. 7d). The specific BET surface area of DRGO was estimated to be 586 m\(^2\) g\(^{-1}\), markedly higher than that (189 m\(^2\) g\(^{-1}\)) of pristine RGO.

Note that the electrical conductivity of the DRGO hydrogel (2.3 \(\Omega\)) is similar to that of the RGO hydrogel (2.2 \(\Omega\)), whereas the slope of the linear segment in the DRGO hydrogel is greater than that of the RGO hydrogel, consistent with the results of relevant carbon-based materials for SC applications reported previously (Table S2, ESI). The excellent performance can be attributed to the appropriate pore structure, and good electrical conductivity. Firstly, the high porosity of the samples greatly increases the electrode/electrolyte contact area. Secondly, the porous structure offers a large volume of the electrolyte. Thirdly, the porous structure provides vast pathways for ion transport and high-rate performance.

Thirdly, the porous structure provides vast pathways for ion transport and high-rate performance. Additionally, the GCD curves were all symmetric, indicative of good charge–discharge stability. Both the CV and GCD curves suggest reversible EDLC behavior of the DRGO hydrogel.

The Nyquist impedance plots of RGO and DRGO in a frequency range from 0.01 Hz to 100 kHz (the inset is the corresponding equivalent circuit diagram). The electrochemical performance of this 3D DRGO hydrogel electrode is better than most of the results of relevant carbon-based materials for SC applications reported previously (Table S2, ESI). The excellent performance can be attributed to the appropriate pore structure, and good electrical conductivity. Firstly, the high porosity of the samples greatly increases the electrode/electrolyte contact area. Secondly, the porous structure provides a large volume of the electrolyte. Thirdly, the porous structure provides vast pathways for ion transport and high-rate performance.
with the better capacitive performance of the DRGO hydrogel. Moreover, this method indicates that only carbon in contact with metallic and oxide particles will be oxidized by the solid-state reaction at a relatively low temperature (300 °C), which retains the planar sp² carbon sheets and high electrical conductivity. The cycling performance of RGO and DRGO hydrogel electrodes was then tested by a consecutive charge–discharge process at 10 A g⁻¹ (Fig. 8h). After 10 000 cycles, the capacitance of the DRGO hydrogel still retains 96.2% of the initial value, but only about 94.7% is retained for the RGO hydrogel, indicating the much better stability of the DRGO hydrogel.

**Electrochemical properties of V₄C₃Tx@NiO-RGO//DRGO ASC**

In order to evaluate the potential applications of the prepared materials as electrodes for energy-storage devices, a freestanding V₄C₃Tx@NiO-RGO//DRGO ASC device (Fig. 9a) was constructed by using the V₄C₃Tx@NiO-RGO hydrogel as the anode, DRGO hydrogel as the cathode, and 1 KOH as the electrolyte, with a porous polymer membrane as the separator. To optimize the performance of this ASC device, the mass ratio of the anode to cathode was adjusted to approximately 1:3.2 (with the total mass loading of the active materials at 4.2 mg), according to charge balance theory.⁴⁻³,⁸,⁴² As shown in Fig. 9b, the CV curves were firstly measured at a scan rate of 10 mV s⁻¹ and displayed a stable voltage window from 0 to 0.8 V for V₄C₃Tx@NiO-RGO and from −1 to 0 V for DRGO electrodes, which determine the operating voltage of the ASC device. Fig. 9c displays the CV curves of the ASC device within various voltage ranges (0–1.4, 0–1.5, 0–1.6, 0–1.7, 0–1.8, and 0–1.9 V) at a scan rate of 50 mV s⁻¹. Notably, the stable voltage can be enlarged to 1.8 V. A clear sharp current increase in the red circle can be observed due to obvious oxygen evolution with the operating voltage further increased to 1.9 V. To maximize the cycle life, we set the operating voltage of the ASC device at 1.8 V. A clear sharp current increase in the red circle can be observed due to obvious oxygen evolution with the operating voltage further increased to 1.9 V. To maximize the cycle life, we set the operating voltage of the ASC device at 1.8 V. A clear sharp current increase in the red circle can be observed due to obvious oxygen evolution with the operating voltage further increased to 1.9 V. To maximize the cycle life, we set the operating voltage of the ASC device at 1.8 V. A clear sharp current increase in the red circle can be observed due to obvious oxygen evolution with the operating voltage further increased to 1.9 V. To maximize the cycle life, we set the operating voltage of the ASC device at 1.8 V.

Additionally, the shape of the CV curves remained almost unchanged with increasing sweep rate, suggesting the excellent rate capability and capacitive behavior of the ASC device. GCD curves at various current densities in Fig. 9e display a curvature at similar voltages as the CVs, which originates from the pseudocapacitive nature of the electrode materials. Moreover, the symmetric triangular shape with no clear IR drop of the GCD curves once again confirms the excellent capacitive behaviors and electrochemical reversibility of the ASC device. The specific capacitance of the ASC device at different current density can be calculated according to the GCD curves, and the capacitance of this ASC is estimated to be 191.6 and 123.5 F g⁻¹ at 0.5 and 10 A g⁻¹, respectively (Fig. 9f). Rate capability at the high current density of 10.0 A g⁻¹ is 64.5% of its initial value. This high-rate performance can be attributed not only to capacity matching, but also to the kinetic balance and fast redox kinetics of both electrodes. Furthermore, the ASC device provides an ultrahigh energy density of 86.22 W h kg⁻¹ at a power density of 900 W kg⁻¹. Even at a high power density of 9240 W kg⁻¹, an energy density of 55.58 W h kg⁻¹ was retained. This performance is superior to those of Ni- and V₄C₃Tx-based ASCs reported previously, as shown in the Ragone plot (Fig. 9g).⁴⁶,⁵²,⁵⁵,⁷¹–⁷⁶

Consecutive GCD measurements at a current density of 10 A g⁻¹ for 10 000 cycles were then carried out to evaluate the cycling stability. From Fig. 9h, this ASC device can be seen to retain 96.4% of its initial capacitance over 10 000 cycles, with virtually no change of the GCD curves (inset to Fig. 9h), indicating remarkable cycling stability. In fact, the cycle life of our ASC is comparable to that of previously reported similar ASCs.⁷⁷–⁸⁰ Additionally, the Coulombic efficiency was stable at near 99.6% throughout the cycle test (Fig. 9h), further manifesting that our ASC device has an excellent energy conversion efficiency.

**Conclusions**

In summary, 3D V₄C₃Tx@NiO-RGO heterostructure hydrogels were synthesized using an efficient two-step process. High-pseudocapacitance NiO nanosheets were uniformly deposited on the surface of highly conductive V₄C₃Tx constructing a face-to-face contact framework. Additionally, the 3D interconnected architecture significantly avoided the self-restacking of the
V4C3T6@NiO-RGO, resulting in a favorable electrochemical performance with an ultrahigh specific capacitance of 1021 F g$^{-1}$ at 0.5 A g$^{-1}$ and an excellent rate capability (89.3% at 10 A g$^{-1}$). Both the heterostructure and 3D hydrogel configurations were key to the high energy density and power density of the electrode. The 3D DRGO hydrogel was prepared through a cost-effective hydrothermal method followed by cobalt-catalyzed gasification. Due to the abundant mesopore density of the electrode. The 3D DRGO hydrogel was prepared based heterostructure hydrogels for high-energy density free-standing ASCs.

Author contributions
The manuscript was written through contributions from all authors. All authors have given approval to the final version of the manuscript.

Conflicts of interest
There are no conflicts of interest to declare.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant no. 52073022, and 31961133017), and the National Basic Research Program of China (Grant no. 5 2014CB745100). S. W. C. thanks the National Science Foundation (CHE-1900235) for partial support of this work.

References


